Published as a conference paper at ICLR 2021

REFERENCES

M. Alizadeh, J. Fernandez-Marqués, N. D. Lane, and Y. Gal. An empirical study of binary neural
networks’ optimisation. International Conference on Learning Representations (ICLR), 2019.

J. Ba, J. Kiros, and G. Hinton. Layer normalization. arXiv preprint, arXiv:1607.06450, 2016.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint, arXiv:1308.3432, 2013.

M. Courbariaux, Y. Bengio, and J.P. David. Binaryconnect: Training deep neural networks with
binary weights during propagations. Neural Information Processing Systems (NeurIPS), 2015.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized Neural Networks:
Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv
preprint, arXiv:1602.02830, 2016.

Y. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional networks.
International Conference on Machine Learning (ICML), 2017.

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation. arXiv
preprint, arXiv:1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. International Conference
on Learning Representations (ICLR), 2017.

J. Gu, C. Li, B. Zhang, J. Han, X. Cao, J. Liu, and D. Doermann. Projection convolutional neural
networks for 1-bit cnns via discrete back propagation. arXiv preprint, arXiv:1811.12755, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel. Flow++: Improving flow-based generative
models with variational dequantization and architecture design. International Conference on
Machine Learning (ICML), 2019a.

J. Ho, E. Lohn, and P. Abbeel. Compression with flows via local bits-back coding. Neural Information
Processing Systems (NeurIPS), 2019b.

E. Hoogeboom, J. W. T. Peters, R. van den Berg, and M. Welling. Integer discrete flows and lossless
compression. Neural Information Processing Systems (NeurIPS), 2019.

S. Toffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint, arXiv:1502.03167, 2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations (ICLR), 2015.

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. International Conference on
Learning Representations (ICLR), 2014.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, 1. Sutskever, and M. Welling. Improved
variational inference with inverse autoregressive flow. Neural Information Processing Systems
(NeurlIPS), 2016.

F. H. Kingma, P. Abbeel, and J. Ho. Bit-Swap: recursive bits-back coding for lossless compression
with hierarchical latent variables. International Conference on Machine Learning (ICML), 2019.

P. Kingma, D. and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. Neural
Information Processing Systems (NeurlIPS), 2018.

L. Maalge, M. Fraccaro, V. Liévin, and O. Winther. Biva: A very deep hierarchy of latent variables
for generative modeling. Neural Information Processing Systems (NeurIPS), 2019.

M. McDonnell. Training wide residual networks for deployment using a single bit for each weight.
International Conference on Learning Representations (ICLR), 2018.

10

Published as a conference paper at ICLR 2021

F. Pedersoli, G. Tzanetakis, and A. Tagliasacchi. Espresso: Efficient forward propagation for benns.
International Conference on Learning Representations (ICLR), 2018.

R. Ranganath, D. Tran, and D. M. Blei. Hierarchical variational models. International Conference on
Machine Learning (ICML), 2016.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. European Conference on Computer Vision (ECCV), 2016.

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. [International
Conference on Machine Learning (ICML), 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic back-propagation and variational inference
in deep latent gaussian models. International Conference on Machine Learning (ICML), 2014.

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Neural Information Processing Systems (NeurIPS), 2016.

J. Townsend, T. Bird, and D. Barber. Practical lossless compression with latent variables using bits
back coding. International Conference on Learning Representations (ICLR), 2019.

J. Townsend, T. Bird, J. Kunze, and D. Barber. Hilloc: Lossless image compression with hierarchical
latent variable models. International Conference on Learning Representations (ICLR), 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. Neural Information Processing Systems (NeurlIPS), 2017.

11

Published as a conference paper at ICLR 2021

A SAMPLES

R
l""e!.'

(b) Flow+
(32-bit Welghts 32-bit actlvatlons)

(c) ResNet VAE (d) Flow++
(1-bit weights, 32-bit activations) (1-bit welghts 32-bit activations)

(e) ResNet VAE (f) Flow++
(1-bit weights, 1-bit activations) (1-bit weights, 1-bit activations)

Figure 3: Samples from the ResNet VAE (left) and Flow++ (right) models trained on CIFAR.
We provide samples from the models with (a)/(b) real-valued weights and activations, (c)/(d)
binary weights and real-valued activations, (e)/(f) binary weights and activations.

12

Published as a conference paper at ICLR 2021

»
Y

—— binary weight norm 4.6 —— binary weight norm
—— batch norm —— batch norm

&
-

>
o

bits per dimension
¢ w
©
bits per dimension
B
N

w
©
>
=)

w

S
w
=)

w
o
w
o

w
&
5
w
S

w
IS

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000 14000

step step
(a) Flow++ (1-bit weights + 1-bit activations) (b) Flow++ (1-bit weights + 32-bit activations)

Figure 4: Training loss values achieved when using binary weight normalization and batch
normalization for the training of binary weighted Flow++ models.

B ABLATION OF BINARY WEIGHT NORMALIZATION

To examine the performance of the binary weight normalization (BWN), we perform an ablation
against using the more widely used batch normalization (loffe & Szegedyl 2015). We simply place a
batch normalization operation after every layer, instead of using BWN. Note that this still permits
the use of fast binary operations, since the weights and activations are binary valued. We train the
Flow++ model with binary weights and both binary and real-valued activations, comparing the two
normalization schemes. The results are shown in Figure[d] We can see that BWN is slightly better for
the model with binary activations, and significantly better for the model with real-valued activations.
Importantly, we have found BWN to be more stable than batch normalization, which can often result
in training instabilities. Indeed, to obtain the results we present when using batch normalization,
training was restarted many times. BWN is also both faster to compute and simpler, not relying on
retaining running averages of batch statistics.

It is also worth noting, that it is not possible to train these binary weighted generative models without
any form of normalization, since training is too unstable. This is not surprising, since the binary
weights themselves are large in magnitude and can result (in particular with binary activations) in
very large layer outputs.

C THE RESNET VAE MODEL

The ResNet VAE model (Kingma et al.l 2016)) is a hierarchical VAE. We make some, relatively small,
improvements over the original model, and now give a full description of the model.

The model has a hierarchy of latent layers, z1.;,. The generative model factors as:

L—1
po(x,z1..) = po(x|z1..)pe(z1) | [pe(zilzis1.) (15)
1=1
The inference model is factored top-down:
L—1
4o (z1:01%) = 49 (2 |%) [[g0 (z|zi11:,%) (16)
1=1

There is also a deterministic upwards pass (through the latent layers) performed in the inference
model, which produces features used by the posterior, conditioned on just x. We refer to the inference
model as bidirectional, since there is both an upwards and downwards pass to be performed. The full
graphical model is shown in Figure 5]

13

Published as a conference paper at ICLR 2021

\‘ Y s A
\ * 'y : .\ *
<«— h, u; —» <«— hy
<‘ h1 u —>@<— h1
()+— o
(a) Generative model (b) Bi-directional inference model

Figure 5: Graphical models of the generative and inference models in a hierarchical VAE
with bi-directional inference. Stochastic nodes are circular, deterministic nodes are diamond.
Green lines indicate residual layers.

The objective is obtained by expanding the usual ELBO:

logp(x) > Ey,(z,.,) log pe(x|z1.)] — DxL (q¢(zL|x)|| pe(zL)) a7
L—1
- Z Dxr, (9¢(2i|2i41:1, X)|| po(2i|2141:1.)) (18)

=1

Where Dyy is the KL divergence. Both the prior and posterior for a latent layer are diagonal when
conditioned on deeper layers. We use logistic distributions for the latent variables, rather than the
usual Gaussian distributions. We observed slightly improved performance using logistic distributions,
and the parameterization is similar to a Gaussian, with a mean and scale parameter per dimension.
The likelihood pg(x|z1.1,) is a discretized logistic distribution.

In Figure [5 the residual connections are displayed in green, with the non-residual connections in
black. The non-residual connections are convolutional layers with ELU activations functions. The
residual connections are made from stacks of residual blocks. Each residual block is constructed as:

Input — Activation — Conv2D3y3 — Activation — Conv2D3y3 (19)

With a skip connection adding the output to the input. The original implementation uses just one
block per layer of latents. We expand this to a stack of blocks, of varying length. This block
structure is depicted for the binary case in Figure[T[a)-(b). For the floating-point model we simply use
floating-point weight normalized convolutions, rather than BWN convolutions, and ELU activations.

D THE FLOW++ MODEL

Here we describe fully the variational dequantization from the Flow++ model (Ho et al.,2019a)), and
any alterations we make to the model itself.

As described in Section flows are invertible functions constructed from a composition of many
simpler invertible functions:

f9:f10f20...0fL (20)

Each f; is a coupling layer (I0). Coupling layers are parameterized as a stack of convolutional residual
blocks, with a convolution layer before and after the stack to project to and from the channel size of
the residual stack. Each block is of the form:

Input — Activation — Conv2D3,3 — Activation — Gate 21

Where Gate isa 1 x 1 convolution followed by a gated linear unit (Dauphin et al.|[2017). There is a
skip connection adding the input to the output, along with layer normalization (Ba et al.,|2016)). This
block structure is depicted in Figure|l|for the binary case.

14

Published as a conference paper at ICLR 2021

Note that the original Flow++ implementation also utilizes an attention mechanism in the coupling
layers, which adds significant complexity. We omit this from our model, since their ablations
demonstrated that the improvement from the attention mechanism is marginal.

In composition the coupling layers can transform a simple density to approximate the data density.
The transformed density is pg(x), which we obtain by the change of variables formula (8.

Our data is generally discrete, so we actually require a discrete distribution, not a continuous
density. To allow this, the Flow++ model uses variational dequantization. Suppose that the data is in
[0,1,...,255]”. We can get a discrete distribution from a continuous density by integrating over the
D-dimensional unit hypercube:

Py(x) = /[o o po(x + u)du (22)

Variational dequantization then proceeds by forming a lower-bound to this discrete distribution by
applying Jensen’s inequality:

log Py (x) > Eqy (ulx) [log pe(x + u) — log g¢(u|x)] (23)

Where g4 (u|x) is now a learned component, which "dequantizes" the discrete data. This is itself
parameterized as a flow, using a composition of coupling layers as above. So our model in total
consists of a main flow pg(x) and a dequantizing flow g (u|x).

E INITIALIZATION OF BWN LAYERS

An important aspect of weight normalized layers is the initialization. Since we are normalizing
the weights, and not the output of a layer (like in batch normalization), at initialization a weight
normalized layer has an unknown output scale. To remedy this, it is usual to use data-dependent
initialization (Salimans & Kingmal 2016J)), in which some data points are used to set the the initial g
and b values such that the layer output is approximately unit normal distributed.

This can be applied straightforwardly to BWN layers when training the model end-to-end, that is
initializing the model at random and training til convergence. It is common, though, when training
binary neural networks for classification, to use two-stage training (Alizadeh et al., [2019). This
initializes the underlying weights vk of binary layers with the values from a trained model with
real-valued weights.

Consider what would happen if we were to try and initialize all the components of a BWN layer with
those from a trained layer with real-valued weights. The g and b can be transferred directly, and it
is logical to initialize the underlying weights vg with the trained v values. So the magnitude of the
overall weight vector w would remain the same in the BWN layer as in the floating-point layer, since
we normalize the vp vector and apply the same g, b. This initialization seems reasonable, but fails in
practice. We speculate that the reason that this fails is that, although the magnitude of the weight
vector remains the same after transfer, the direction can be very different, since the sign function will
change the direction of V]Rﬂ Since we perform dot products with the weight vector, the output from
the initialized binary layer is very different from the trained layer.

A more considered approach is to only initialize the underlying weights vg with the values from the
trained network, and initialize g and b with data-dependent initialization as normal. This way, the
data-dependent initialization can compensate for the change of direction that occurs in the binarization
of v. This method does train, but slower than initializing at random and training end-to-end. The
only difference between training end-to-end and using this reduced form of two-stage training is the
initial values, v, of the real-valued weights underlying vg. In the random initialization these are
sampled from a Gaussian:

v ~ N(0,0.05) (24)

We can even normalize the trained real-valued weights such that they have the same mean and
variance as the Gaussian (within a weight tensor). This still results in worse performance from the
two-stage training.

"Note that this effect is stronger in higher dimensional spaces.

15

	Samples
	Ablation of binary weight normalization
	The ResNet VAE Model
	The Flow++ model
	Initialization of BWN Layers

