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A SAMPLES

(a) ResNet VAE
(32-bit weights, 32-bit activations)

(b) Flow+
(32-bit weights, 32-bit activations)

(c) ResNet VAE
(1-bit weights, 32-bit activations)

(d) Flow++
(1-bit weights, 32-bit activations)

(e) ResNet VAE
(1-bit weights, 1-bit activations)

(f) Flow++
(1-bit weights, 1-bit activations)

Figure 3: Samples from the ResNet VAE (left) and Flow++ (right) models trained on CIFAR.
We provide samples from the models with (a)/(b) real-valued weights and activations, (c)/(d)
binary weights and real-valued activations, (e)/(f) binary weights and activations.
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(a) Flow++ (1-bit weights + 1-bit activations)
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(b) Flow++ (1-bit weights + 32-bit activations)

Figure 4: Training loss values achieved when using binary weight normalization and batch
normalization for the training of binary weighted Flow++ models.

B ABLATION OF BINARY WEIGHT NORMALIZATION

To examine the performance of the binary weight normalization (BWN), we perform an ablation
against using the more widely used batch normalization (Ioffe & Szegedy, 2015). We simply place a
batch normalization operation after every layer, instead of using BWN. Note that this still permits
the use of fast binary operations, since the weights and activations are binary valued. We train the
Flow++ model with binary weights and both binary and real-valued activations, comparing the two
normalization schemes. The results are shown in Figure 4. We can see that BWN is slightly better for
the model with binary activations, and significantly better for the model with real-valued activations.
Importantly, we have found BWN to be more stable than batch normalization, which can often result
in training instabilities. Indeed, to obtain the results we present when using batch normalization,
training was restarted many times. BWN is also both faster to compute and simpler, not relying on
retaining running averages of batch statistics.

It is also worth noting, that it is not possible to train these binary weighted generative models without
any form of normalization, since training is too unstable. This is not surprising, since the binary
weights themselves are large in magnitude and can result (in particular with binary activations) in
very large layer outputs.

C THE RESNET VAE MODEL

The ResNet VAE model (Kingma et al., 2016) is a hierarchical VAE. We make some, relatively small,
improvements over the original model, and now give a full description of the model.

The model has a hierarchy of latent layers, z1:L. The generative model factors as:

pθ(x, z1:L) = pθ(x|z1:L)pθ(zL)
L−1∏
l=1

pθ(zl|zl+1:L) (15)

The inference model is factored top-down:

qφ(z1:L|x) = qφ(zL|x)
L−1∏
l=1

qφ(zl|zl+1:L,x) (16)

There is also a deterministic upwards pass (through the latent layers) performed in the inference
model, which produces features used by the posterior, conditioned on just x. We refer to the inference
model as bidirectional, since there is both an upwards and downwards pass to be performed. The full
graphical model is shown in Figure 5.
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(a) Generative model
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(b) Bi-directional inference model

Figure 5: Graphical models of the generative and inference models in a hierarchical VAE
with bi-directional inference. Stochastic nodes are circular, deterministic nodes are diamond.
Green lines indicate residual layers.

The objective is obtained by expanding the usual ELBO:

log p(x) ≥ Eqφ(z1:L) [log pθ(x|z1:L)]−DKL ( qφ(zL|x)|| pθ(zL)) (17)

−
L−1∑
l=1

DKL ( qφ(zl|zl+1:L,x)|| pθ(zl|zl+1:L)) (18)

Where DKL is the KL divergence. Both the prior and posterior for a latent layer are diagonal when
conditioned on deeper layers. We use logistic distributions for the latent variables, rather than the
usual Gaussian distributions. We observed slightly improved performance using logistic distributions,
and the parameterization is similar to a Gaussian, with a mean and scale parameter per dimension.
The likelihood pθ(x|z1:L) is a discretized logistic distribution.

In Figure 5 the residual connections are displayed in green, with the non-residual connections in
black. The non-residual connections are convolutional layers with ELU activations functions. The
residual connections are made from stacks of residual blocks. Each residual block is constructed as:

Input→ Activation→ Conv2D3x3 → Activation→ Conv2D3x3 (19)

With a skip connection adding the output to the input. The original implementation uses just one
block per layer of latents. We expand this to a stack of blocks, of varying length. This block
structure is depicted for the binary case in Figure 1(a)-(b). For the floating-point model we simply use
floating-point weight normalized convolutions, rather than BWN convolutions, and ELU activations.

D THE FLOW++ MODEL

Here we describe fully the variational dequantization from the Flow++ model (Ho et al., 2019a), and
any alterations we make to the model itself.

As described in Section 2.2, flows are invertible functions constructed from a composition of many
simpler invertible functions:

fθ = f1 ◦ f2 ◦ ... ◦ fL (20)

Each fl is a coupling layer (10). Coupling layers are parameterized as a stack of convolutional residual
blocks, with a convolution layer before and after the stack to project to and from the channel size of
the residual stack. Each block is of the form:

Input→ Activation→ Conv2D3x3 → Activation→ Gate (21)

Where Gate is a 1× 1 convolution followed by a gated linear unit (Dauphin et al., 2017). There is a
skip connection adding the input to the output, along with layer normalization (Ba et al., 2016). This
block structure is depicted in Figure 1 for the binary case.

14



Published as a conference paper at ICLR 2021

Note that the original Flow++ implementation also utilizes an attention mechanism in the coupling
layers, which adds significant complexity. We omit this from our model, since their ablations
demonstrated that the improvement from the attention mechanism is marginal.

In composition the coupling layers can transform a simple density to approximate the data density.
The transformed density is pθ(x), which we obtain by the change of variables formula (8).

Our data is generally discrete, so we actually require a discrete distribution, not a continuous
density. To allow this, the Flow++ model uses variational dequantization. Suppose that the data is in
[0, 1, ..., 255]D. We can get a discrete distribution from a continuous density by integrating over the
D-dimensional unit hypercube:

Pθ(x) =

∫
[0,1)D

pθ(x+ u)du (22)

Variational dequantization then proceeds by forming a lower-bound to this discrete distribution by
applying Jensen’s inequality:

logPθ(x) ≥ Eqφ(u|x) [log pθ(x+ u)− log qφ(u|x)] (23)

Where qφ(u|x) is now a learned component, which "dequantizes" the discrete data. This is itself
parameterized as a flow, using a composition of coupling layers as above. So our model in total
consists of a main flow pθ(x) and a dequantizing flow qφ(u|x).

E INITIALIZATION OF BWN LAYERS

An important aspect of weight normalized layers is the initialization. Since we are normalizing
the weights, and not the output of a layer (like in batch normalization), at initialization a weight
normalized layer has an unknown output scale. To remedy this, it is usual to use data-dependent
initialization (Salimans & Kingma, 2016), in which some data points are used to set the the initial g
and b values such that the layer output is approximately unit normal distributed.

This can be applied straightforwardly to BWN layers when training the model end-to-end, that is
initializing the model at random and training til convergence. It is common, though, when training
binary neural networks for classification, to use two-stage training (Alizadeh et al., 2019). This
initializes the underlying weights vR of binary layers with the values from a trained model with
real-valued weights.

Consider what would happen if we were to try and initialize all the components of a BWN layer with
those from a trained layer with real-valued weights. The g and b can be transferred directly, and it
is logical to initialize the underlying weights vR with the trained v values. So the magnitude of the
overall weight vector w would remain the same in the BWN layer as in the floating-point layer, since
we normalize the vB vector and apply the same g, b. This initialization seems reasonable, but fails in
practice. We speculate that the reason that this fails is that, although the magnitude of the weight
vector remains the same after transfer, the direction can be very different, since the sign function will
change the direction of vR

7. Since we perform dot products with the weight vector, the output from
the initialized binary layer is very different from the trained layer.

A more considered approach is to only initialize the underlying weights vR with the values from the
trained network, and initialize g and b with data-dependent initialization as normal. This way, the
data-dependent initialization can compensate for the change of direction that occurs in the binarization
of v. This method does train, but slower than initializing at random and training end-to-end. The
only difference between training end-to-end and using this reduced form of two-stage training is the
initial values, v0, of the real-valued weights underlying vB. In the random initialization these are
sampled from a Gaussian:

v0 ∼ N (0, 0.05) (24)
We can even normalize the trained real-valued weights such that they have the same mean and
variance as the Gaussian (within a weight tensor). This still results in worse performance from the
two-stage training.

7Note that this effect is stronger in higher dimensional spaces.
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