703	Table 4: Hyper	fable 4: Hyperparameters of the evolutionary algorithm for generating the upper and lower bounds.						
704		Hyperparameter	PotholeWorld-v0	CartPole-v1				
705		Population Size	75	75				
706		Mutation Rate μ	0.9	0.9				
707		Crossover Rate ρ	0.8	0.8				
708		Tournament Size k	3	3				
709		Max Generations	125	100				
710								
711		Table 5. VIDEI	Dalaanithan humamaa	amatana				
712		Hyperparameter	PotholeWorld-v0	CartPole-v1				
713		Expert Algorithm	DON	DON				
714		Number of Batch Rollouts	10	10				
715		Maximum Samples	200000	200000				
716		Maximum Iterations	20	20				
717		Training Fraction	0.8	0.8				
718		Reweighting	True	True				
719		Number of Test Rollouts	50	50				
720								
721								
722	A ADDITI	ONAL EA DETAILS						
723								
724	Individual En	coding of Trees Our EA d	oes not operate on the	e decision trees o	lirectly; instead, we			
725	represent each	tree as a real-valued feature	e vector in continuou	is space. Each t	ree is vectorized in			
726	depth-first orde	er, with all vectors having a c	consistent length deter	mined by a pre-	specified maximum			
727	depth M. Spe	cifically, each feature vecto	or has a dimension of	f $\mathbb{R}^{2^{M+1}-1}$, enc	oding the structure			
728	and information	n of the tree. This allows for	r more efficient mani	pulation and cor	nparison within the			
729	continuous fea	ture space, avoiding the need	d to store and operate	on the full decis	sion trees directly.			
730								
731	Tournament S	Selection Mechanism For	selecting individual	s during reprodu	uction, we use tour-			

ournament selection with a size of 3, where three random individuals from the population compete 732 based on their fitness, and the best among them is chosen as a parent. This process ensures that better-performing individuals are more likely to be selected while maintaining diversity by allowing 734 weaker individuals a chance to reproduce. 735

В HYPERPARAMETERS

702

733

736 737

738

739 In this section, we provide detailed descriptions of the hyperparameter settings used in our experi-740 ments. 741

742 **Evolutionary Algorithm for Upper and Lower Bounds** We use the EA to arrive at the upper 743 and lower bounds on the preference score for each preference for each environment. We present the 744 specific configurations for the hyperparameters in Table 4 This table includes essential parameters 745 such as the mutation rate, crossover rate, population size, and the number of generations, among 746 others. 747

748 **VIPER** The hyperparameters specific to the VIPER algorithm are detailed in Table 5, including the 749 number of batch rollouts, maximum samples, and the fraction of data used for training. These number 750 of batch rollout controls how many expert trajectories are generated during training, providing the 751 data needed to distill the policy. The maximum number of samples limits the total state-action pairs 752 collected. The fraction of data used for training determines how much of the collected dataset is used in each iteration, balancing the need for immediate policy updates with the potential benefit 753 of retaining data for future use. The maximum iterations specifies how many rounds of VIPER 754 are completed. Reweighting means that the algorithm reweights the samples used to train the DT 755 according to the associated Q-values.

756								
757		Table 6: Hyperparameters of PASTEL.						
758		Hyperparameter	PotholeWorld-v0	CartPole-v1				
759		Population Size	75	75				
760		Number of Trees in Initial Population	675	150				
761		Mutation Rate μ	0.9	0.9				
762		Crossover Rate ρ	0.8	0.8				
763		Tournament Size k	3	3				
764		Max Generations	75	75				
765		Expert for Imitation Learning	DQN	DQN				
705		EA Start (Query Number)	5	5				
700		EA Spacing (every k steps)	5	5				
707								
768	DACTEL							
769	PASIEL	In Table 6 we provide the hyper	parameters for PAS	IEL. Both enviro	nments,			
770	Potholewo	orid-v0 and CartPole-v1, share similar	CONFIGURATIONS, WITH	n the only differen	ice that			
771	Potnolewo	brid-vo uses more trees in the initial (vir	ER-generated) popul	ation.				
772								
773								
774								
775								
776								
777								
778								
779								
780								
781								
782								
783								
784								
785								
786								
787								
700								
700								
709								
790								
791								
792								
793								
794								
795								
796								
797								
798								
799								
800								
801								
802								
803								
804								
805								
806								
807								
808								
809								