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Abstract

We propose the first general PAC-Bayesian generalization bounds for adversarial
robustness, that estimate, at test time, how much a model will be invariant to
imperceptible perturbations in the input. Instead of deriving a worst-case analysis
of the risk of a hypothesis over all the possible perturbations, we leverage the PAC-
Bayesian framework to bound the averaged risk on the perturbations for majority
votes (over the whole class of hypotheses). Our theoretically founded analysis
has the advantage to provide general bounds (i) that are valid for any kind of
attacks (i.e., the adversarial attacks), (ii) that are tight thanks to the PAC-Bayesian
framework, (iii) that can be directly minimized during the learning phase to obtain
a robust model on different attacks at test time.

1 Introduction

While machine learning algorithms are able to solve a huge variety of tasks, Szegedy et al. [2014]
pointed out a crucial weakness: the possibility to generate samples similar to the originals (i.e., with
no or insignificant change recognizable by the human eyes) but with a different outcome from the
algorithm. This phenomenon, known as “adversarial examples”, contributes to the impossibility to
ensure the safety of machine learning algorithms for safety-critical applications such as aeronautic
functions (e.g., vision-based navigation), autonomous driving, or medical diagnosis (see, e.g., Huang
et al. [2020]). Adversarial robustness is thus a critical issue in machine learning that studies the ability
of a model to be robust or invariant to perturbations of its input. A perturbed input that fools the
model is usually called an adversarial example. In other words, an adversarial example can be defined
as an example that has been modified by an imperceptible noise (or that does not exceed a threshold)
but which leads to a misclassification. One line of research is referred to as adversarial robustness
verification [e.g., Gehr et al., 2018, Huang et al., 2017, Singh et al., 2019, Tsuzuku et al., 2018],
where the objective is to formally check whether the neighborhood of each sample does not contain
any adversarial examples. This kind of method comes with some limitations such as scalability or
overapproximation [Gehr et al., 2018, Katz et al., 2017, Singh et al., 2019]. In this paper we stand in
another setting called adversarial attack/defense [e.g., Papernot et al., 2016, Goodfellow et al., 2015,
Madry et al., 2018, Carlini and Wagner, 2017, Zantedeschi et al., 2017, Kurakin et al., 2017]. An
adversarial attack consists in finding perturbed examples that defeat machine learning algorithms
while the adversarial defense techniques enhance their adversarial robustness to make the attacks
useless. While a lot of methods exist, adversarial robustness suffers from a lack of general theoretical
understandings (see Section 2.2).

To tackle this issue, we propose in this paper to formulate the adversarial robustness through the lens
of a well-founded statistical machine learning theory called PAC-Bayes and introduced by Shawe-
Taylor and Williamson [1997], McAllester [1998]. This theory has the advantage to provide tight
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generalization bounds in average over the set of hypotheses considered (leading to bounds for
a weighted majority vote over this set), in contrast to other theories such as VC-dimension or
Rademacher-based approaches that give worst-case analysis, i.e., for all the hypotheses. We start
by defining our setting called adversarially robust PAC-Bayes. The idea consists in considering an
averaged adversarial robustness risk which corresponds to the probability that the model misclassifies
a perturbed example (this can be seen as an averaged risk over the perturbations). This measure can
be too optimistic and not enough informative since for each example we sample only one perturbation.
Thus we also define an averaged-max adversarial risk as the probability that there exists at least
one perturbation (taken in a set of sampled perturbations) that leads to a misclassification. These
definitions, based on averaged quantities, have the advantage (i) of still being suitable for the PAC-
Bayesian framework and majority vote classifiers and (ii) to be related to the classical adversarial
robustness risk. Then, for each of our adversarial risks, we derive a PAC-Bayesian generalization
bound that can are valid to any kind of attack. From an algorithmic point of view, these bounds can
be directly minimized in order to learn a majority vote robust in average to attacks. We empirically
illustrate that our framework is able to provide generalization guarantees with non-vacuous bounds
for the adversarial risk while ensuring efficient protection to adversarial attacks.

Organization of the paper. Section 2 recalls basics on usual adversarial robustness. We state our
new adversarial robustness PAC-Bayesian setting along with our theoretical results in Section 3, and
we empirically show its soundness in Section 4. All the proofs of the results are deferred in Appendix.

2 Basics on adversarial robustness

2.1 General setting

We tackle binary classification tasks with the input space X=Rd and the output/label space
Y ={−1,+1}. We assume that D is a fixed but unknown distribution on X×Y . An example
is denoted by (x, y)∈X×Y . Let S={(xi, yi)}mi=1 be the learning sample consisted of m examples
i.i.d. from D; We denote the distribution of such m-sample by Dm. Let H be a set of real-valued
functions from X to [−1,+1] called voters or hypotheses. Usually, given a learning sample S∼Dm,
a learner aims at finding the best hypothesis h from H that commits as few errors as possible on
unseen data from D. One wants to find h∈H that minimizes the true risk RD(h) on D defined as

RD(h) = E
(x,y)∼D

` (h, (x, y)) , (1)

where ` :H×X×Y→R+ is the loss function. In practice since D is unknown we cannot compute
RD(h), we usually deal with the empirical risk RS(h) estimated on S and defined as

RS(h) =
1

m

m∑
i=1

`(h, (xi, yi)).

From a classic ideal machine learning standpoint, we are able to learn a well-performing classifier
with strong guarantees on unseen data, and even to measure how much the model will be able to
generalize on D (e.g., with generalization bounds).

However, in real-life applications at classification time, an imperceptible perturbation of the input
(e.g., due to a malicious attack or a noise) can have a bad influence on the classification performance
on unseen data [Szegedy et al., 2014]: the usual guarantees do not stand anymore. Such imperceptible
perturbation can be modeled by a (relatively small) noise in the input. Let b>0 and ‖·‖ be an arbitrary
norm (the most used norms are the `1, `2 and `∞-norms), the set of possible noises B is defined by

B=
{
ε ∈ Rd

∣∣ ‖ε‖ ≤ b}.
The learner aims to find an adversarial robust classifier that is robust in average to all noises inB over
(x, y)∼D. More formally, one wants to minimize the adversarial robust true risk RROB

D (h) defined as
RROB
D (h) = E

(x,y)∼D
maxε∈B ` (h, (x+ε, y)) . (2)

Similarly as in the classic setting, since D is unknown, RROB
D (h) cannot be directly computed, and

then one usually deals with the empirical adversarial risk

RROB
S (h) =

1

m

m∑
i=1

maxε∈B` (h, (xi+ε, yi)) .
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That being said, a learned classifier h should be robust to adversarial attacks that aim at finding an
adversarial example x+ε∗(x,y) to fool h for given example (x, y), where ε∗(x,y) is defined as

ε∗(x,y) ∈ argmaxε∈B `(h, (x+ε, y)). (3)

In consequence, adversarial defense mechanisms often rely on the adversarial attacks by replacing
the original examples with the adversarial ones during the learning phase; This procedure is called
adversarial training. Even if there are other defenses, adversarial training appears to be one of the
most efficient defense mechanisms [Ren et al., 2020].

2.2 Related works

Adversarial Attacks/Defenses. Numerous methods2 exist to solve–or approximate–the optimiza-
tion of Equation (3). Among them, the Fast Gradient Sign Method (FGSM Goodfellow et al. [2015])
is an attack consisting in generating a noise ε in the direction of the gradient of the loss function
with respect to the input x. Kurakin et al. [2017] introduced IFGSM, an iterative version of FGSM:
at each iteration, one repeats FGSM and adds to x a noise, that is the sign of the gradient of the loss
with respect to x. Following the same principle as IFGSM, Madry et al. [2018] proposed a method
based on Projected Gradient Descent (PGD) that includes a random initialization of x before the
optimization. Another technique known as the Carlini and Wagner Attack [Carlini and Wagner,
2017] aims at finding adversarial examples x+ε∗(x,y) that are as close as possible to the original
x, i.e., they want an attack being the most imperceptible as possible. However, producing such
imperceptible perturbation leads to a high-running time in practice. Contrary to the most popular
techniques that look for a model with a low adversarial robust risk (Equation (2)), our work stands
in another line of research where the idea is to relax this worst-case risk measure by considering
an averaged adversarial robust risk over the noises instead of a max-based formulation [see, e.g.,
Zantedeschi et al., 2017, Hendrycks and Dietterich, 2019]. Our averaged formulation is introduced in
the Section 3.

Generalization Bounds. Recently, few generalization bounds for adversarial robustness have been
introduced [e.g. Khim and Loh, 2018, Yin et al., 2019, Montasser et al., 2019, 2020, Cohen et al.,
2019, Salman et al., 2019]. Khim and Loh, and Yin et al.’s results are Rademacher complexity-based
bounds. The former makes use of a surrogate of the adversarial risk; The latter provides bounds in
the specific case of neural networks and linear classifiers, and involves an unavoidable polynomial
dependence on the dimension of the input. Montasser et al. study robust PAC-learning for PAC-
learnable classes with finite VC-dimension for unweighted majority votes that have been “robustified”
with a boosting algorithm. However, their algorithm requires to consider all possible adversarial
perturbations for each example which is intractable in practice, and their bound suffers also from
a large constant as indicated at the end of the Montasser et al. [Theorem 3.1 2019]’s proof. Cohen
et al. provide bounds that estimate what is the minimum noise to get an adversarial example (in the
case of perturbations expressed as Gaussian noise) while our results give the probability to be fooled
by an adversarial example. Salman et al. leverage Cohen et al.’s method and adversarial training in
order to get tighter bounds. Moreover, Farnia et al. present margin-based bounds on the adversarial
robust risk for specific neural networks and attacks (such as FGSM or PGD). While they made use of a
classical PAC-Bayes bound, their result is not a PAC-Bayesian analysis and stands in the family of
uniform-convergence bounds [see Nagarajan and Kolter, 2019, Ap. J for details]. In this paper, we
provide PAC-Bayes bounds for general models expressed as majority votes, their bounds are thus not
directly comparable to ours.

3 Adversarially robust PAC-Bayes

Although few theoretical results exist, the majority of works come either without theoretical guarantee
or with very specific theoretical justifications. In the following, we aim at giving a different point of
view on adversarial robustness based on the so-called PAC-Bayesian framework. By leveraging this
framework, we derive a general generalization bound for adversarial robustness based on an averaged
notion of risk that allows us to learn robust models at test time. We introduce below our new setting
referred to as adversarially robust PAC-Bayes.

2The reader can refer to Ren et al. [2020] for a survey on adversarial attacks and defenses.
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3.1 Adversarially robust majority vote

The PAC-Bayesian framework provides practical and theoretical tools to analyze majority vote
classifiers. Assuming the voters setH and a learning sample S as defined in Section 2, our goal is
not anymore to learn one classifier fromH but to learn a well-performing weighted combination of
the voters involved inH, the weights being modeled by a distribution Q onH. This distribution is
called the posterior distribution and is learned from S given a prior distribution P onH. The learned
weighted combination is called a Q-weighted majority vote and is defined by

∀x ∈ X, HQ(x) = sign

[
E

h∼Q
h(x)

]
. (4)

In the rest of the paper, we consider the 0-1 loss function classically used for majority votes in
PAC-Bayes and defined as `(h, (x, y))=I (h(x) 6= y) with I(a)=1 if a is true, and 0 otherwise. In
this context, the adversarial perturbation related to Equation (3) becomes

ε∗(x,y) ∈ argmaxε∈B I(HQ(x+ε) 6= y). (5)
Optimizing this problem is intractable due to the non-convexity of HQ induced by the sign function.
Note that the adversarial attacks of the literature (like PGD or IFGSM) aim at finding the optimal
perturbation ε∗(x,y), but, in practice one considers an approximation of this perturbation.

Hence, instead of searching for the noise that maximizes the chance of fooling the algorithm,
we propose to model the perturbation according to an example-dependent distribution. First
let us define ω(x,y) a distribution, on the set of possible noises B, that is dependent on an
example (x, y) ∈ X×Y . Then we denote as D the distribution on (X×Y )×B defined as
D((x, y), ε) = D(x, y) · ω(x,y)(ε) which further permits to generate perturbed examples. To es-
timate our risks (defined below) for a given example (xi, yi)∼D, we consider a set of n perturbations
sampled from ω(xi,yi) denoted by Ei={εij}nj=1. Then we consider as a learning set the m×n-sample
S = {((xi, yi),Ei)}mi=1 ∈ (X×Y×Bn)m. In other words, each ((xi, yi),Ei) ∈ S is sampled from
a distribution that we denote by Dn such that

Dn((xi, yi),Ei) = D(xi, yi)·
n∏
j=1

ω(xi,yi)(ε
i
j).

Then, inspired by the works of Zantedeschi et al. [2017], Hendrycks and Dietterich [2019], we define
our robustness averaged adversarial risk as follows.
Definition 1 (Averaged Adversarial Risk). For any distribution D on (X×Y )×B, for any distribu-
tion Q onH, the averaged adversarial risk of HQ is defined as

RD(HQ) = Pr
((x,y),ε)∼D

(HQ(x+ ε) 6= y)

= E
((x,y),ε)∼D

I(HQ(x+ ε) 6= y).

The empirical averaged adversarial risk is computed on a m×n-sample S = {((xi, yi),Ei)}mi=1 is

RS(HQ) =
1

mn

m∑
i=1

n∑
j=1

I(HQ(xi+ε
i
j) 6= yi).

As we will show in Proposition 3, the risk RD(HQ) can considered optimistic regarding ε∗(x,y)
of Equation (5). Indeed, instead of taking the ε maximizing the loss, a unique ε is drawn from a
distribution. Hence, it can lead to a non-informative risk regarding the occurrence of adversarial
examples. To overcome this, we propose an extension that we refer as averaged-max adversarial risk.
Definition 2 (Averaged-Max Adversarial Risk). For any distribution D on (X×Y )×B, for any
distribution Q onH, the averaged-max adversarial risk of HQ is defined as

ADn(HQ) = Pr
((x,y),E)∼Dn

(
∃ ε ∈ E, HQ(x+ ε) 6= y

)
.

The empirical averaged-max adversarial risk computed on a m×n-sample S={((xi, yi),Ei)}mi=1 is

AS(HQ) =
1

m

m∑
i=1

maxε∈Ei
I(HQ(xi + ε) 6= yi).

For an example (x, y)∼D, instead of checking if one perturbed example x+ε is adversarial, we
sample n perturbed examples x+ε1, . . . , x+εn and we check if at least one example is adversarial.
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3.2 Relations between the adversarial risks

Proposition 3 below shows the intrinsic relationships between the classical adversarial risk RROB
D (HQ)

and our two relaxations RD(HQ) and ADn(HQ). In particular, Proposition 3 shows that the larger n,
the number of perturbed examples, the higher is the chance to get an adversarial example and then to
be close to the adversarial risk RROB

D (HQ).
Proposition 3. For any distribution D on (X×Y )×B, for any distribution Q on H, for any
(n, n′) ∈ N2, with n ≥ n′ ≥ 1, we have

RD(HQ) ≤ ADn′ (HQ) ≤ ADn(HQ) ≤ RROB
D (HQ). (6)

The left-hand side of Equation (6) confirms that the averaged adversarial risk RD(HQ) is optimistic
regarding the classical RROB

D (HQ). Proposition 4 estimates how close RD(HQ) can be to RROB
D (HQ).

Proposition 4. For any distribution D on (X × Y )×B, for any distribution Q onH, we have

RROB
D (HQ)− TV(Π‖∆) ≤ RD(HQ),

where ∆ and Π are distributions on X×Y , and ∆(x′, y′), respectively Π(x′, y′), corresponds to the
probability of drawing a perturbed example (x+ε) with ((x, y), ε)∼D, respectively an adversarial
example (x+ε∗(x,y), y) with (x, y)∼D. We have

∆(x′, y′) = Pr
((x,y),ε)∼D

[x+ε=x′, y=y′] , and Π(x′, y′) = Pr
(x,y)∼D

[x+ε∗(x, y)=x′, y=y′] , (7)

and TV(Π‖∆) = E
(x′,y′)∼∆

1

2

∣∣∣∣Π(x′,y′)

∆(x′,y′)
−1

∣∣∣∣ , is the Total Variation (TV) distance between Π and ∆.

Note that ε∗(x,y) depends on Q, and hence Π depends on Q. From Equation (7), RROB
D (HQ) and

RD(HQ) can be rewritten (see Lemmas 8 and 9 in Appendix B) respectively with ∆ and Π as

RD(HQ) = Pr
(x′,y′)∼∆

[HQ(x′) 6= y′] , and RROB
D (HQ) = Pr

(x′,y′)∼Π
[HQ(x′) 6= y′] .

Finally, Propositions 3 and 4 relate the adversarial risk RD(HQ) to the “standard” adversarial risk
RROB
D (HQ). Indeed, by merging the two propositions we obtain

RROB
D (HQ)− TV(Π‖∆) ≤ RD(HQ) ≤ ADn(HQ) ≤ RROB

D (HQ). (8)

Hence, the smaller the TV distance TV(Π‖∆), the closer the averaged adversarial risk RD(HQ) is
from RROB

D (HQ) and the more probable an example ((x, y), ε) sampled from D would be adversarial,
i.e., when our “averaged” adversarial example looks like a “specific” adversarial example. Moreover,
Equation (8) justifies that the PAC-Bayesian point of view makes sense for adversarial learning with
theoretical guarantees: the PAC-Bayesian guarantees we derive in the next section for our adversarial
risks also give some guarantees on the “standard risk” RROB

D (HQ).

3.3 PAC-Bayesian bounds on the adversarially robust majority vote

First of all, since RD(HQ) and ADn(HQ) risks are not differentiable due to the indicator function, we
propose to use a common surrogate in PAC-Bayes (known as the Gibbs risk): instead of considering
the risk of the Q-weighted majority vote, we consider the expectation over Q of the individual risks
of the voters involved inH. In our case, we define the surrogates with the linear loss as

RD(HQ) = E
((x,y),ε)∼D

1

2

[
1−y E

h∼Q
h(x+ε)

]
,

and ADn(HQ) = E
((x,y),E)∼Dn

1

2

[
1−min

ε∈E

(
y E
h∼Q

h(x+ε)
)]
.

The next theorem relates these surrogates to our risks, implying that a generalization bound for
RD(HQ), resp. for ADn(HQ), leads to a generalization bound for RD(HQ), resp. ADn(HQ).
Theorem 5. For any distributions D on (X×Y )×B and Q onH, for any n>1, we have

RD(HQ) ≤ 2RD(HQ), and ADn(HQ) ≤ 2ADn(HQ).
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Theorem 6 below presents our PAC-Bayesian generalization bounds for RD(HQ). Before that, it is
important to mention that the empirical counterpart of RD(HQ) is computed on S which is composed
of non identically independently distributed samples, meaning that a “classical” proof technique is
not applicable. The trick here is to make use of a result of Ralaivola et al. [2010] that provides a
chromatic PAC-Bayes bound, i.e., a bound which supports non-independent data.

Theorem 6. For any distribution D on (X×Y )×B, for any set of votersH, for any prior P onH,
for any n, with probability at least 1−δ over S, for all posteriors Q onH, we have

kl(RS(HQ)‖RD(HQ)) ≤ 1

m

[
KL(Q‖P) + ln

m+ 1

δ

]
, (9)

and RD(HQ) ≤ RS(HQ) +

√
1

2m

[
KL(Q‖P) + ln

m+ 1

δ

]
, (10)

where RS(HQ) =
1

mn

m∑
i=1

n∑
j=1

1

2

[
1−yi E

h∼Q
h(xi+ε

i
j)

]
,

kl(a‖b)=a ln a
b+(1−a) ln 1−a

1−b , and KL(Q‖P)= E
h∼P

ln P(h)
Q(h) the KL-divergence between P and Q.

Surprisingly, this theorem states bounds that do not depend on the number of perturbed examples
n but only on the number of original examples m. The reason is that the n perturbed examples are
inter-dependent (see the proof in Appendix). Note that Equation (9) is expressed as a Seeger [2002]’s
bound and is tighter but less interpretable than Equation (10) expressed as a McAllester [1998]’s
bound; These bounds involve the usual trade-off between the empirical risk RS(HQ) and KL(Q‖P).

We now state a generalization bound for ADn(HQ). Since this value involves a minimum term,
we cannot use the same trick as for Theorem 6. To bypass this issue, we use the TV distance
between two “artificial” distributions on Ei. Given ((xi, yi),Ei) ∈ S, let πi be an arbitrary dis-
tribution on Ei, and given h ∈ H, let ρhi be a Dirac distribution on Ei such that ρhi (ε)=1 if
ε= argmaxε∈Ei

1
2

[
1−yih(xi+ε)

]
(i.e., if ε is maximizing the linear loss), and 0 otherwise.

Theorem 7. For any distribution D on (X×Y )×B, for any set of votersH, for any prior P onH,
for any n, with probability at least 1−δ over S, for all posteriorsQ onH, for all i ∈ {1, . . . ,m}, for
all distributions πi on Ei independent from a voter h ∈ H, we have

ADn(HQ) ≤ 1

m
E

h∼Q

m∑
i=1

max
ε∈Ei

1

2
(1−yih(xi+ε)) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
(11)

≤ AS(HQ) +
1

m

m∑
i=1

E
h∼Q

TV(ρhi ‖πi) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
, (12)

where AS(HQ) =
1

m

m∑
i=1

1

2

[
1−min

ε∈Ei

(
yi E
h∼Q

h(xi+ε)
)]
, and TV(ρ‖π) = E

ε∼π

1

2

∣∣∣∣[ ρ(ε)

π(ε)

]
−1

∣∣∣∣ .
To minimize the true average-max riskADn(HQ) from Equation (11), we have to minimize a trade-off
between KL(Q‖P) (i.e., how much the posterior weights are close to the prior ones) and the empirical
risk 1

m Eh∼Q
∑m
i=1 maxε∈Ei

1
2 (1−yih(xi+ε)). However, to compute the empirical risk, the loss for

each voter and each perturbation has to be calculated and can be time-consuming. With Equation (12),
we propose an alternative, which can be efficiently optimized using 1

m

∑m
i=1 Eh∼QTV(ρhi ‖πi) and

the empirical average-max risk AS(HQ). Intuitively, Equation (12) can be seen as a trade-off between
the empirical risk, which reflects the robustness of the majority vote, and two penalization terms: the
KL term and the TV term. The KL-divergence KL(Q‖P) controls how much the posterior Q can
differ from the prior ones P . While the TV term Eh TV(ρhi ‖πi) controls the diversity of the voters,
i.e., the ability of the voters to be fooled on the same adversarial example. From an algorithmic
view, an interesting behavior is that the bound of Equation (12) stands for all distributions πi on
Ei. This suggests that given (xi, yi), we want to find πi minimizing Eh∼QTV(ρhi ‖πi). Ideally,
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this term tends to 0 when πi is close3 to ρhi and all voters have their loss maximized by the same
perturbation ε ∈ Ei.
To learn a well-performing majority vote, one solution is to minimize the right-hand side of the
bounds, meaning that we would like to find a good trade-off between a low empirical risk RS(HQ) or
AS(HQ) and a low divergence between the prior weights and the learned posterior ones KL(Q‖P).

4 Experimental evaluation on differentiable decision trees

In this section, we illustrate the soundness of our framework in the context of differentiable decision
trees learning. First of all, we describe our learning procedure designed from our theoretical results.

4.1 From the bounds to an algorithm

We consider a finite voters setH consisting of differentiable decision trees [Kontschieder et al., 2016]
where each h∈H is parametrized by a weight vector wh. Inspired by Masegosa et al. [2020], we
learn the decision trees of H and a data-dependent prior distribution P from a first learning set S ′
(independent from S); This is a common approach in PAC-Bayes [Parrado-Hernández et al., 2012,
Lever et al., 2013, Dziugaite and Roy, 2018, Dziugaite et al., 2021]. Then, the posterior distribution is
learned from the second learning set S by minimizing the bounds. This means we need to minimize
the risk and the KL-divergence term. Our two-step learning procedure is summarized in Algorithm 1.

Step 1. Starting from an initial prior P0 and an initial set of voters H0, where each voter h is
parametrized by a weight vector wh

0 , the objective of this step is to construct the hypothesis setH
and the prior distribution P to give as input to Step 2 for minimizing the bound. To do so, at each
epoch t of the Step 1, we learn from S ′ an “intermediate” prior Pt on an “intermediate” hypothesis
set Ht consisting of voters h parametrized by the weights wh

t ; Note that the optimization in Line
9 is done with respect to wt={wh

t }h∈Ht
. At each iteration of the optimizer, from Lines 4 to 7, for

each (x, y) of the current batch S′, we attack the majority vote HPt
to obtain a perturbed example

x+ε. Then, in Lines 8 and 9, we perform a forward pass in the majority vote with the perturbed
examples and update the weights wt and the prior Pt according to the linear loss. To sum up, from
Lines 11 to 20 at the end of Step 1, the prior P and the hypothesis setH constructed for Step 2 are
the ones associated to the best epoch t∗ ∈ {1, . . . , T ′} that permits to minimize RSt(HPt), where
St={attack(x, y) | (x, y) ∈ S} is the perturbed set obtained by attacking the majority vote HPt .

Step 2. Starting from the prior P on H and the learning set S, we perform the same process as in
Step 1 except that the considered objective function corresponds to the desired bound to optimize
(Line 30, denoted B(·)). For the sake of readability, we deferred in Appendix G the definition of B(·)
for Equations (9) and (12). Note that the “intermediate” priors do not depend on S, since they are
learned from S ′: the bounds are then valid.

4.2 Experiments4

In this section, we empirically illustrate that our PAC-Bayesian framework for adversarial robustness
is able to provide generalization guarantees with non-vacuous bounds for the adversarial risk.

Setting. We stand in a white-box setting meaning that the attacker knows the voters set H, the
prior distribution P , and the posterior one Q. We empirically study 2 attacks with the `2-norm and
`∞-norm: the Projected Gradient Descent (PGD, Madry et al. [2018]) and the iterative version of
FGSM (IFGSM, Kurakin et al. [2017]). We fix the number of iterations at k=20 and the step size at bk
for PGD and IFGSM (where b=1 for `2-norm and b=0.1 for `∞-norm). One specificity of our setting
is that we deal with the perturbation distribution ω(x,y). We propose PGDU and IFGSMU, two variants
of PGD and IFGSM. To attack an example with PGDU or IFGSMU we proceed with the following
steps: (1) We attack the prior majority vote HP with the attack PGD or IFGSM: we will obtain a first
perturbation ε′ ; (2) We sample n uniform noises η1, . . . , ηn between −10−2 and +10−2 ; (3) We set

3Note that, since ρhi is a Dirac distribution, we have Eh TV(ρhi ‖πi)= 1
2

[
1−Eh πi(ε∗h)+Eh

∑
ε6=ε∗

h
πi(ε)

]
,

with ε∗h = argmaxε∈Ei

1
2

[
1−yih(xi+ε)

]
.

4The source code is available at https://github.com/paulviallard/NeurIPS21-PB-Robustness.
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Algorithm 1 Average Adversarial Training with Guarantee

Require: S,S ′: disjoint learning sets – T, T ′: number of epochs – P0: initial prior –H0 (with w0): initial
hypothesis set – attack(): the attack function – B(·): the objective function associated to a bound

Step 1 – prior and voters’ set construction
1: for t from 1 to T ′ do
2: Pt←Pt−1 andHt←Ht−1 (wt←wt−1)
3: for all batches S′ (from S ′) do
4: for all (x, y) ∈ S′ do
5: (x+ε, y)← attack(x, y)
6: S′ ← (S′ \ {(x, y)}) ∪ {(x+ε, y)}
7: end for
8: Update Pt with∇PtRS′(HPt)
9: Update wt with∇wt

RS′(HPt)
10: end for
11: St ← ∅
12: for all (x, y) ∈ S do
13: (x+ε, y)← attack(x, y)
14: St ← St ∪ {(x+ε, y)}
15: end for
16: t∗ ← argmint′∈{1,...,t}RSt′ (HPt′ )
17: P ← Pt∗
18: H ← Ht∗
19: end for
20: return (P,H)

Step 2 – bound minimization
21: (P,H)← Output of Step 1
22: Q0 ← P
23: for t from 1 to T do
24: for all batches S (from S) do
25: Qt ← Qt−1

26: for all (x, y) ∈ S do
27: (x+ε, y)← attack(x, y)
28: S← (S \ {(x, y)}) ∪ {(x+ε, y)}
29: end for
30: Update Qt with∇QtBS(HQt)
31: end for
32: St ← ∅
33: for all (x, y) ∈ S do
34: (x+ε, y)← attack(x, y)
35: St ← St ∪ {(x+ε, y)}
36: end for
37: t∗ ← argmint′∈{1,...,t} BSt′ (HQt′ )
38: Q ← Qt∗
39: end for
40: return (Q,H)

the i-th perturbation as εi = ε′ + ηi. Note that, for PGDU and IFGSMU, after one attack we end up
with n=100 perturbed examples. We set n=1 when these attacks are used as a defense mechanism in
Algorithm 1. Indeed since the adversarial training is iterative, we do not need to sample numerous
perturbations for each example: we sample a new perturbation each time the example is forwarded
through the decision trees. We also consider a naive defense referred to as UNIF that only adds a
noise uniformly such that the `p-norm of the added noise is lower than b.
We study the following scenarios of defense/attack. These scenarios correspond to all the pairs
(Defense,Attack) belonging to the set {—, UNIF, PGD, IFGSM}×{—, PGD, IFGSM} for the baseline,
and {—, UNIF, PGDU, IFGSMU}×{—, PGDU, IFGSMU}, where “—” means that we do not defend,
i.e., the attack returns the original example (note that PGDU and IFGSMU when “Attack without U”
refers to PGD and IFGSM for computing the classical adversarial risk RROB()).

Datasets and algorithm description. We perform our experiment on six binary classification
tasks from MNIST [LeCun et al., 1998] (1vs7, 4vs9, 5vs6) and Fashion MNIST [Xiao et al., 2017]
(Coat vs Shirt, Sandal vs Ankle Boot, Top vs Pullover). We decompose the learning set into two
disjoint subsets S ′ of around 7, 000 examples (to learn the prior and the voters) and S of exactly
5, 000 examples (to learn the posterior). We keep as test set T the original test set that contains
around 2, 000 examples. Moreover, we need a perturbed test set, denoted by T, to compute our
averaged(-max) adversarial risks. Depending on the scenario, T is constructed from T by attacking
the prior model HP with PGDU or IFGSMU with n=100 (more details are given in Appendix). We
run our Algorithm 1 for Equation (9) (Theorem 6), respectively Equation (12) (Theorem 7), and
we compute our risk RT(HQ), respectively AT(HQ), the bound value and the usual adversarial
risk associated to the model learned RROB

T (HQ). Note that, during the evaluation of the bounds, we
have to compute our relaxed adversarial risks RS(HQ) and AS(HQ) on S. For Step 1, the initial
prior P0 is fixed to the uniform distribution, the initial set of votersH0 is constructed with weights
initialized with Xavier Initializer [Glorot and Bengio, 2010] and bias initialized at 0 (more details
are given in Appendix). During Step 2, to optimize the bound, we fix the confidence parameter
δ=0.05, and we consider as the set of votersH two settings: H as it is output by Step 1, and the set
HSIGN = {h′(·) = sign(h(·)) |h ∈ H} for which the theoretical results are still valid (we will see that
in this latter situation we are able to better minimize the TV term of Theorem 7). For the two steps,
we use Adam optimizer [Kingma and Ba, 2015] for T=T ′=20 epochs with a learning rate at 10−2

and a batch size at 64.
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Table 1: Test risks and bounds for MNIST 1vs7 with n=100 perturbations for all pairs (De-
fense,Attack) with the two voters’ set H and HSIGN. The results in bold correspond to the best
values between results for H and HSIGN. To quantify the gap between our risks and the classical
definition we put in italic the risk of our models against the classical attacks: we replace PGDU and
IFGSMU by PGD or IFGSM (i.e., we did not sample from the uniform distribution). Since Eq. (12)
upper-bounds Eq. (11) thanks to the TV term, we compute the two bound values of Theorem 7.

`2-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .005 .005 .005 .005 .017 .019 .005 .005 .005 .005 .099 0.100 .099 .100
— PGDU .245 .255 .263 .276 .577 .448 .315 .313 .325 .326 .801 1.667 .684 .515
— IFGSMU .084 .086 .066 .080 .170 .185 .117 .113 .106 .110 .356 1.431 .286 .251
UNIF — .005 .005 .005 .005 .018 .019 .005 .005 .005 .005 .099 0.100 .099 .100
UNIF PGDU .151 .146 .151 .158 .355 .292 .183 .178 .190 .189 .531 1.620 .454 .355
UNIF IFGSMU .063 .061 .031 .035 .088 .114 .071 .070 .056 .054 .248 1.405 .200 .186
PGDU — .006 .007 .006 .007 .023 .024 .006 .007 .006 .007 .102 0.103 .102 .103
PGDU PGDU .028 .030 .021 .025 .065 .064 .028 .029 .025 .028 .143 1.389 .137 .136
PGDU IFGSMU .021 .022 .013 .016 .043 .045 .022 .022 .018 .019 .125 1.362 .121 .119
IFGSMU — .006 .007 .006 .007 .019 .021 .006 .007 .006 .007 .100 0.102 .100 .102
IFGSMU PGDU .040 .041 .033 .035 .086 .094 .040 .039 .040 .038 .184 1.368 .166 .163
IFGSMU IFGSMU .021 .022 .013 .014 .039 .049 .021 .022 .018 .021 .131 1.329 .122 .123
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Figure 1: Visualization of the impact of the TV term in Equation (12). The left, respectively the right,
bar plot show the bounds for the set of votersHSIGN, respectivelyH. We plot the bounds for all the
scenarios of Table 1 that use the TV distance, i.e., all except the pairs (·, —). In orange we represent
the value of the TV term while in blue we represent all the remaining terms of the bound.

Analysis of the results. For the sake of readability, we exhibit the detailed results for one task
(MNIST:1vs7) and all the pairs (Defense,Attack) with `2-norm in Table 1, and we report in Figure 1
the influence of the TV term in the bound of Theorem 7 (Equation (12)). The detailed results on the
other tasks are reported in Appendix; We provide in Figure 2 an overview of the results we obtained
on all the tasks for the pairs (Defense,Attack) where “Defense=Attack” and withHSIGN.

First of all, from Table 1 the bounds of Theorem 6 are tighter than the ones of Theorem 7: this is an
expected result since we showed that the averaged-max adversarial risk ADn(HQ) is more pessimistic
than its averaged counterpart RD(HQ). Note that the bound values of Equation (11) are tighter than
the ones of Equation (12). This is expected since Equation (11) is a lower bound on Equation (12).

Second, the bounds withHSIGN are all informative (lower than 1) and give insightful guarantees for
our models. For Theorem 7 (Equation (12)) with H, while the risks are comparable to the risks
obtained withHSIGN, the bound values are greater than 1, meaning that we have no more guarantee
on the model learned. As we can observe in Figure 1, this is due to the TV term involved in the
bound. ConsideringHSIGN when optimizing A(·) helps to control the TV term. Even if the bounds
are non-vacuous for Theorem 6 withH, the best models with the best guarantees are obtained with
HSIGN. This is confirmed by the columns RROB

T (HQ) that are always worse than RT(HQ) and mostly
worse than AT(HQ) withHSIGN. The performance obtained withHSIGN can be explained by the fact
that the sign “saturates” the output of the voters which makes the majority vote more robust to noises.
Thus, we focus the rest of the analysis on results obtained withHSIGN.

Third, we observe that the naive defense UNIF is able to improve the risks RT(HQ) and AT(HQ), but
the improvement with the defenses based on PGDU and IFGSMU is much more significant specifically
against a PGDU attack (up to 13 times better). We observe the same phenomenon for both bounds
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Figure 2: Visualization of the risk and bound values when “Defense=Attack” when the set of voters
isHSIGN. Results obtained with the PGDU, respectively IFGSMU, defense are represented by a star F,
respectively a circle  (reminder: RROB

T (HQ) is computed with a PGD, respectively IFGSM, attack).
The dashed line corresponds to bisecting line y=x. ForRT(HQ) andAT(HQ), the closer the datasets
are to the bisecting line, the more accurate our relaxed risk is compared to the classical adversarial
risk RROB

T (HQ). For the bounds, the closer the datasets are to the bisecting line, the tighter the bound.

(Theorems 6 and 7). This is an interesting fact because this behavior confirms that we are able to
learn models that are robust against the attacks tested with theoretical guarantees.

Lastly, from Figure 2 and Table 1, it is important to notice that the gap between the classical risk and
our relaxed risks is small, meaning that our relaxation are not too optimistic. Despite the pessimism
of the classical risk RROB

T (HQ), it remains consistent with our bounds, i.e., it is lower than the bounds.
In other words, in addition to giving upper bounds for our risks RT(HQ) and AT(HQ), our bounds
give non-vacuous guarantees on the classical risks RROB

T (HQ).

5 Conclusion

To the best of our knowledge, our work is the first one that studies from a general standpoint adversarial
robustness through the lens of the PAC-Bayesian framework. We have started by formalizing a new
adversarial robustness setting (for binary classification) specialized for models that can be expressed
as a weighted majority vote; we referred to this setting as Adversarially Robust PAC-Bayes. This
formulation allowed us to derive PAC-Bayesian generalization bounds on the adversarial risk of
general majority votes. We illustrated the usefulness of this setting on the training of (differentiable)
decision trees. Our contribution is mainly theoretical and it does not appear to directly lead to
potentially negative social impact.

This work gives rise to many interesting questions and lines of future research. Some perspectives will
focus on extending our results to other classification settings such as multiclass or multilabel. Another
line of research could focus on taking advantage of other tools of the PAC-Bayesian literature. Among
them, we can make use of other bounds on the risk of the majority vote that take into consideration
the diversity between the individual voters; For example, the C-bound [Lacasse et al., 2006], or
more recently the tandem loss [Masegosa et al., 2020]. Another very recent PAC-Bayesian bound
for majority votes that needs investigation in the case of adversarial robustness is the one proposed
by Zantedeschi et al. [2021] that has the advantage to be directly optimizable with the 0-1 loss. Last
but not least, in real-life applications, one often wants to combine different input sources (from
different sensors, cameras, etc). Being able to combine these sources in an effective way is then a
key issue. We believe that our new adversarial robustness setting can offer theoretical guarantees
and well-founded algorithms when the model we learn is expressed as a majority vote, whether for
ensemble methods with weak voters [e.g. Roy et al., 2011, Lorenzen et al., 2019], or for fusion of
classifiers [e.g. Morvant et al., 2014], or for multimodal/multiview learning [e.g. Sun et al., 2017,
Goyal et al., 2019].
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A PAC-Bayes Analysis of Adversarial Robustness
Supplementary Material

The supplementary material is structured as follows. The sections from A to E are devoted to our
proofs. We give details on Algorithm 1 and on the computation of the bounds in Section G. We
discuss, in Section F, the validity of the bound when we select a prior with S and have a distribution
on perturbations depending on this selected prior. We introduce, in Section H, the voters that we use
in our majority vote. Finally, we present additional experiments in Section I.

A Proof of Proposition 3

Proposition 3. For any distribution D on (X×Y )×B, for any distribution Q on H, for any
(n, n′) ∈ N2, with n ≥ n′ ≥ 1, we have

RD(HQ) ≤ ADn′ (HQ) ≤ ADn(HQ) ≤ RROB
D (HQ). (13)

For any distribution D on (X×Y )×B, for any distribution Q on H, for any (n, n′) ∈ N2, with
n ≥ n′ ≥ 1, we have

RD(HQ) ≤ ADn′ (HQ) ≤ ADn(HQ) ≤ RROB
D (HQ).

Proof. First, we prove AD1(HQ)=RD(HQ). We have

AD1(HQ) = 1− Pr
((x,y),E)∼D1

(∀ε ∈ E, HQ(x+ ε) = y)

= 1− Pr
((x,y),E)∼D1

(∀ε ∈ {ε1}, HQ(x+ ε) = y)

= 1− Pr
((x,y),E)∼D1

(HQ(x+ ε1) = y) = RD(HQ).

Then, we prove the inequality ADn′ (HQ) ≤ ADn(HQ) from the fact that the indicator function I(·)
is upper-bounded by 1. Indeed, from Definition 2 we have

1−ADn(HQ) = E
(x,y)∼D

E
E∼ωn

(x,y)

I (∀ε ∈ E, HQ(x+ ε) = y)

= E
(x,y)∼D

[
n∏
i=1

E
εi∼ω(x,y)

I (HQ(x+ εi) = y)

]

≤ E
(x,y)∼D

 n′∏
i=1

E
εi∼ω(x,y)

I (HQ(x+ εi) = y)


= E

(x,y)∼D
E

E′∼ωn′
(x,y)

I
(
∀ε ∈ E ′, HQ(x+ ε) = y

)
= 1−ADn′ (HQ).

Lastly, to prove the rightmost inequality, we have to use the fact that the expectation over the set B is
bounded by the maximum over the set B. We have

ADn(HQ) = E
(x,y)∼D

E
ε1∼ω(x,y)

. . . E
εn∼ω(x,y)

I (∃ε∈{ε1, . . . , εn}, HQ(x+ ε) 6= y)

≤ E
(x,y)∼D

max
ε1∈B

. . . max
εn∈B

I (∃ε ∈ {ε1, . . . ,εn}, HQ(x+ ε) 6= y)

= E
(x,y)∼D

max
ε1∈B

. . . max
εn−1∈B

I (∃ε ∈ {ε1, . . . , ε∗}, HQ(x+ ε) 6= y)

= E
(x,y)∼D

I (HQ(x+ ε∗) 6= y)

= E
(x,y)∼D

max
ε∈B

I (HQ(x+ ε) 6= y) = RROB
D (HQ).

Merging the three equations proves the claim.

14



B Proof of Proposition 4

In this section, we provide the proof of Proposition 4 that relies on Lemmas 8 and 9 which are also
described and proved. Lemma 8 shows that RD(HQ) is equivalent to R∆(HQ).
Lemma 8. For any distribution D on (X×Y )×B and its associated distribution ∆, for any posterior
Q onH, we have

RD(HQ) = Pr
(x+ε,y)∼∆

[HQ(x+ε)6=y] = R∆(HQ).

Proof. Starting from the averaged adversarial risk RD(HQ) = E((x,y),ε)∼D I [HQ(x+ε)6=y], we
have

RD(HQ) = E
(x′+ε′,y′)∼∆

1
∆(x′+ε′,y′)

[
Pr

((x,y),ε)∼D
[HQ(x+ε)6=y, x′+ε′=x+ε, y′=y]

]
= E

(x′+ε′,y′)∼∆

1
∆(x′+ε′,y′)

[
E

((x,y),ε)∼D
I[HQ(x+ε)6=y] I[x′+ε′=x+ε, y′=y]

]
.

In other words, the double expectation only rearranges the terms of the original expectation: given
an example (x′+ε′,y′), we gather probabilities such that HQ(x+ε)6=y with (x+ε,y)=(x′+ε′,y′) in
the inner expectation, while integrating over all couple (x′+ε′, y′) ∈ X×Y in the outer expectation.
Then, from the fact that when x′+ε′=x+ε and y′=y, I[HQ(x+ε)6=y] = I[HQ(x′+ε′)6=y′], we have

RD(HQ) = E
(x′+ε′,y′)∼∆

1
∆(x′+ε′,y′)

[
E

((x,y),ε)∼D
I[HQ(x′+ε′) 6=y′]I[x′+ε′=x+ε, y′=y]

]
= E

(x′+ε′,y′)∼∆

1
∆(x′+ε′,y′)

[
I[HQ(x′+ε′)6=y′] E

((x,y),ε)∼D
I[x′+ε′=x+ε, y′=y]

]
.

Finally, by definition of ∆(x′+ε′,y′), we can deduce that

RD(HQ) = E
(x′+ε′,y′)∼∆

1
∆(x′+ε′,y′) [I[HQ(x′+ε′)6=y′] ∆(x′+ε′,y′)]

= E
(x′+ε′,y′)∼∆

I[HQ(x′+ε′)6=y′] = R∆(HQ).

Similarly, Lemma 9 shows that RROB
D (HQ) is equivalent to RΠ(HQ).

Lemma 9. For any distribution D on X × Y and its associated distribution Π, for any posterior Q
onH, we have

RROB
D (HQ) = Pr

(x+ε,y)∼Π
[HQ(x+ε)6=y] = RΠ(HQ).

Proof. The proof is similar to the one of Lemma 8. Indeed, starting from the definition of
RROB
D (HQ) = E(x,y)∼D I[HQ(x+ε∗(x,y)) 6= y], we have

RROB
D (HQ) = E

(x′+ε′,y′)∼Π

1
Π(x′+ε′,y′)

[
E

(x,y)∼D
I [HQ(x+ε∗(x,y)) 6= y]I[x′+ε′=x+ε∗(x,y), y′=y]

]
= E

(x′+ε′,y′)∼Π

1
Π(x′+ε′,y′)

[
E

(x,y)∼D
I [HQ(x′+ε′) 6= y′]I[x′+ε′=x+ε∗(x,y), y′=y]

]
.

Finally, by definition of Π(x′+ε′, y′), we can deduce that

RROB
D (HQ)= E

(x′+ε′,y′)∼Π

1
Π(x′+ε′,y′) [I [HQ(x′+ε′) 6= y′] Π(x′+ε′,y′)]

= E
(x′+ε′,y′)∼Π

I [HQ(x′+ε′)6=y′]= RΠ(HQ).
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We can now prove Proposition 4.

Proposition 4. For any distribution D on (X × Y )×B, for any distribution Q onH, we have

RROB
D (HQ)− TV(Π‖∆) ≤ RD(HQ).

Proof. From Lemmas 8 and 9, we have

RD(HQ) = R∆(HQ), and RROB
D (HQ) = RΠ(HQ).

Then, we apply Lemma 4 of Ohnishi and Honorio [2021], we have

RΠ(HQ) ≤ TV(Π‖∆) +R∆(HQ) ⇐⇒ RROB
D (HQ) ≤ TV(Π‖∆) +RD(HQ).

C Proof of Theorem 5

Theorem 5. For any distributions D on (X×Y )×B and Q onH, for any n>1, we have

RD(HQ) ≤ 2RD(HQ), and ADn(HQ) ≤ 2ADn(HQ).

Proof. By the definition of the majority vote, we have

1

2
RD(HQ) =

1

2
Pr

((x,y),ε)∼D

(
y E
h∼Q

h(x+ε) ≤ 0

)
=

1

2
Pr

((x,y),ε)∼D

(
1− y E

h∼Q
h(x+ ε) ≥ 1

)
≤ E

((x,y),ε)∼D

1

2

[
1− y E

h∼Q
h(x+ ε)

]
(Markov’s ineq. on y Eh(x+ ε)).

Similarly we have

1

2
ADn(HQ) =

1

2
Pr

((x,y),E)∼Dn

(
∃ε ∈ E, y E

h∼Q
h(x+ ε) ≤ 0

)
=

1

2
Pr

((x,y),E)∼Dn

(
min
ε∈E

(
y E
h∼Q

h(x+ ε)
)
≤ 0

)
=

1

2
Pr

((x,y),ε)∼D

(
1−min

ε∈E

(
y E
h∼Q

h(x+ ε)
)
≥ 1

)
≤ E

((x,y),ε)∼D

1

2

[
1−min

ε∈E

(
y E
h∼Q

h(x+ ε)
)]

(Markov’s ineq. on min y Eh(x+ ε)).

D Proof of Theorem 6

Theorem 6. For any distribution D on (X×Y )×B, for any set of votersH, for any prior P onH,
for any n, with probability at least 1−δ over S, for all posteriors Q onH, we have

kl(RS(HQ)‖RD(HQ)) ≤ 1

m

[
KL(Q‖P) + ln

m+ 1

δ

]
, (14)

and RD(HQ) ≤ RS(HQ) +

√
1

2m

[
KL(Q‖P) + ln

m+ 1

δ

]
, (15)

where RS(HQ) =
1

mn

m∑
i=1

n∑
j=1

1

2

[
1−yi E

h∼Q
h(xi+ε

i
j)

]
,

kl(a‖b)=a ln a
b+(1−a) ln 1−a

1−b , and KL(Q‖P)= E
h∼P

ln P(h)
Q(h) the KL-divergence between P and Q.
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Proof. Let Γ=(V,E) be the graph representing the dependencies between the random vari-
ables where (i) the set of vertices is V=S, (ii) the set of edges E is defined such that
(((x, y), ε), ((x′, y′), ε′)) /∈ E ⇔ x 6= x′. Then, applying Th. 8 of Ralaivola et al. [2010] with our
notations gives

kl(RS(HQ)‖RD(HQ)) ≤ χ(Γ)

mn

[
KL(Q‖P) + ln

mn+ χ(Γ)

δχ(Γ)

]
,

where χ(Γ) is the fractional chromatic number of Γ. From a property of Scheinerman and Ullman
[2011], we have

c(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1,

where c(Γ) is the order of the largest clique in Γ and ∆(Γ) is the maximum degree of a vertex
in Γ. By construction of Γ, c(Γ)=n and ∆(Γ)=n−1. Thus, χ(Γ)=n and rearranging the terms

proves Equation (9). Finally, by applying Pinsker’s inequality (i.e., |a−b|≤
√

1
2kl(a‖b)), we obtain

Equation (10).

E Proof of Theorem 7

Theorem 7. For any distribution D on (X×Y )×B, for any set of votersH, for any prior P onH,
for any n, with probability at least 1−δ over S, for all posteriorsQ onH, for all i ∈ {1, . . . ,m}, for
all distributions πi on Ei independent from a voter h ∈ H, we have

ADn(HQ) ≤ 1

m
E

h∼Q

m∑
i=1

max
ε∈Ei

1

2
(1−yih(xi+ε)) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
(16)

≤ AS(HQ) +
1

m

m∑
i=1

E
h∼Q

TV(ρhi ‖πi) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
, (17)

where AS(HQ) =
1

m

m∑
i=1

1

2

[
1−min

ε∈Ei

(
yi E
h∼Q

h(xi+ε)
)]
, and TV(ρ‖π) = E

ε∼π

1

2

∣∣∣∣[ ρ(ε)

π(ε)

]
−1

∣∣∣∣ .
Proof. Let Lh,(x,y),ε=

1
2

[
1−yh(x+ε)

]
for the sake of readability. The losses maxε∈E1

Lh,(x1,y1),ε,
. . . maxε∈E1

Lh,(xm,ym),ε are i.i.d. for any h∈H. Hence, we can apply Theorem 20 of Germain et al.

[2015] and Pinsker’s inequality (i.e., |q−p|≤
√

1
2kl(q‖p)) to obtain

E
h∼Q

E
(x,y),E)∼Dn

max
ε∈E

Lh,(x,y),ε ≤ E
h∼Q

1

m

m∑
i=1

max
ε∈Ei

Lh,(xi,yi),ε +

√
KL(Q‖P) + ln 2

√
m
δ

2m
.

Then, we lower-bound the left-hand side of the inequality with ADn(HQ), we have

ADn(HQ) ≤ E
h∼Q

E
((x,y),E)∼Dn

max
ε∈E

Lh,(x,y),ε.

Finally, from the definition of ρhi , and from Lemma 4 of Ohnishi and Honorio [2021], we have

E
h∼Q

1

m

m∑
i=1

max
ε∈Ei

Lh,(xi,yi),ε = E
h∼Q

1

m

m∑
i=1

E
ε∼ρhi

Lh,(xi,yi),ε

≤ E
h∼Q

1

m

m∑
i=1

TV(ρhi ‖πi) + E
h∼Q

1

m

m∑
i=1

E
ε∼πi

Lh,(xi,yi),ε

= E
h∼Q

1

m

m∑
i=1

TV(ρhi ‖πi) +
1

m

m∑
i=1

E
ε∼πi

E
h∼Q

Lh,(xi,yi),ε

≤ E
h∼Q

1

m

m∑
i=1

TV(ρhi ‖πi) +AS(HQ).
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F Details on the Validity of the Bounds

In this section, we discuss about the validity of the bound when (i) generating perturbed sets such as
S from a distribution D dependent on the prior P (ii) selecting the prior P with St.
Actually, computing the bounds implies perturbing examples, i.e., generating examples from D that
is defined as D((x, y), ε) = D(x, y) · ω(x,y)(ε). However, in order to obtain valid bounds, ω(x,y)

must be defined a priori. Since the prior P is defined a priori as well, ω(x,y) can be dependent on P .
Hence, ω(x,y) boils down to generating perturbed example (x+ε, y) by attacking the prior majority
vote HP with PGDU or IFGSMU. Nevertheless, our selection of the prior P with S may seem like
“cheating”, but this remains a valid strategy when we perform a union bound.

We explain the union bound for Theorem 6, and the same technique can be applied for Theorem 7.
Let D1, . . . ,DT be T distributions defined as D1 = D(x, y)·ω1

(x,y)(ε), . . . ,DT = D(x, y)·ωT(x,y)(ε)

on (X×Y )×B where each distribution ωt(x,y) depends on the example (x, y) and possibly on the
fixed prior Pt. Furthermore, we denote as (Dn

t )m the distribution on the perturbed learning sample
consisted of m examples and n perturbations for each example. Then, for all distributions Dt, we
can derive a bound on the risk RDt

(HQ) which holds with probability at least 1− δ
T , we have

Pr
St∼(Dn

t )m

[
∀Q, kl(RSt

(HQ)‖RDt
(HQ))≤ 1

m

[
KL(Q‖Pt)+ ln

T (m+1)

δ

]]
= Pr

S1∼(Dn
1 )m,...,ST∼(Dn

T )m

[
∀Q, kl(RSt(HQ)‖RDt(HQ))≤ 1

m

[
KL(Q‖Pt)+ ln

T (m+1)

δ

]]
≥1− δ

T .

Then, from a union bound argument, we have

Pr
S1∼(Dn

1 )m,...,ST∼(Dn
T )m

[
∀Q, kl(RS1

(HQ)‖RD1
(HQ))≤ 1

m

[
KL(Q‖Pt)+ ln

T (m+1)

δ

]
,

and . . . ,

and kl(RST
(HQ)‖RDT

(HQ))≤ 1

m

[
KL(Q‖PT )+ ln

T (m+1)

δ

] ]
≥1−δ.

Hence, we can select P∈{P1, . . . ,PT } with S, and let D((x, y), ε) = D(x, y) · ω(x,y)(ε) be the
distributions on (X×Y )×B where ω(x,y)(ε) is dependent on P and on the example (x, y), we can
say that

Pr
S∼(Dn)m

[
∀Q, kl(RS(HQ)‖RD(HQ))≤ 1

m

[
KL(Q‖P)+ ln

T (m+1)

δ

]]
≥ 1− δ. (18)

Additionally, when applying the same process for Equations (11) and (12) in Theorem 7, we have

Pr
S∼(Dn)m

[
∀Q, ADn(HQ) ≤ 1

m
E

h∼Q

m∑
i=1

max
ε∈Ei

1

2
(1−yih(xi+ε))

+

√
1

2m

[
KL(Q‖P) + ln 2T

√
m

δ

] ]
≥ 1− δ, (19)

and

Pr
S∼(Dn)m

[
∀Q, ADn(HQ) ≤ AS(HQ)+

1

m

m∑
i=1

E
h∼Q

TV(ρhi ‖πi)

+

√
1

2m

[
KL(Q‖P)+ ln 2T

√
m

δ

] ]
≥ 1− δ. (20)

G Details on Algorithm 1 and on the computation of the bounds

In this section, we explain how we attack the examples and optimize the bounds in Algorithm 1.
Moreover, we present the computation of the bounds after the optimization. Furthermore, remark that
the bounds involve the number of epochs T (see Section F for more details).
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Computing the bounds. Unlike Equation (19) or Equation (20), Equation (18) is not directly
optimizable since we upper-bound a deviation (the kl) between the empirical and true risk. Hopefully,
we can compute the bound when it is expressed with the inverse binary kl divergence kl−1 defined as
kl−1(a|ε) = maxb∈[0,1] {kl(a‖b) ≤ ε}. Equation (18) can be rewritten as

RD(HQ) ≤ kl−1

(
RS(HQ)

∣∣∣∣ 1

m

[
KL(Q‖P)+ ln

T (m+1)

δ

])
.

Optimizing the bounds. During each epoch t of Step 2 in Algorithm 1, the posterior distributionQt
is updated with ∇QtBS(HQt). The objective function associated to Equation (18) of Theorem 6 is

BS(HQt
) = kl−1

(
RS(HQt

)

∣∣∣∣ 1

m

[
KL(Qt‖P)+ ln

T (m+1)

δ

])
.

Note that the derivative of kl−1 and its computation can be found in [Reeb et al., 2018, Appendix A].
On the other hand, the objective function to optimize Equation (20) of Theorem 7 is defined as

BS(HQt) = AS(HQt) +

√
1

2m

[
KL(Qt‖P) + ln 2T

√
m

δ

]
.

Note that the TV distance is 0 when we sample one noise for each example, i.e., when n=1. In
consequence, the distance is not optimized in Algorithm 1. However, if we had n>1, we would have
to minimize it.

Attacking the examples. The attack function used in Algorithm 1 differs from the attack that
generates the perturbed set S (for the bound). Indeed, at each iteration (in both steps), the function
attacks an example with the current model while S is generated with the prior majority vote HP (the
output of Step 1). Note that for all attacks, in order to be differentiable with respect to the input, we
remove the sign function on the voters’ outputs.

H About the (differentiable) decision trees

In this section, we introduce the differentiable decision trees, i.e., the voters of our majority vote.
Note that we adapt the model of Kontschieder et al. [2016] in order to fit with our framework: a voter
must output a real between −1 and +1. An example of such a tree is represented in Figure 3.

p0

p1 p2

s3 s4 s5 s6

Figure 3: Representation of a (differentiable) decision tree of depth l = 2; The root is the node 0 and
the leafs are 4; 5; 6 and 7. The probability pi(x) (respectively 1−pi(x)) to go left (respectively right)
at the node i is represented by pi (we omitted the dependence on x for simplicity). Similarly, the
predicted label (a “score” between −1 and +1) at the leaf i is represented by si.

This differentiable decision tree is stochastic by nature: at each node i of the tree, we continue
recursively to the left sub-tree with a probability of pi(x) and to the right sub-tree with a probability
of 1−pi(x); When we attain a leaf j, the tree predicts the label sj . Precisely, the probability pi(x)
is constructed by (i) selecting randomly 50% of the input features x and applying a random mask
Mi ∈ Rd on x (where the k-th entry of the mask is 1 if the k-th feature is selected and 0 otherwise),
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by (ii) multiplying this quantity by a learned weight vector vi ∈ Rd, and by (iii) applying a sigmoid
function to output a probability. Indeed, we have

pi(x) = σ
(
〈vi,Mi�x〉

)
,

where σ(a) = [1 + e−a]
−1 is the sigmoid function; 〈a, b〉 is the dot product between the vector a

and b and a� b is the elementwise product between the vector a and b. Moreover, si is obtained by
learning a parameter ui ∈ R and applying a tanh function, i.e., we have

si = tanh
(
ui

)
.

Finally, instead of having a stochastic voter, h will output the expected label predicted by the tree
(see Kontschieder et al. [2016] for more details). It can be computed by h(x) = f(x, 0, 0) with

f(x, i, l′) =

{
si if l′ = l

pi(x)f(x, 2i+1, l′+1) + (1− pi(x))f(x, 2i+2, l′+1) otherwise .

I Additional experimental results

In this section, we present the detailed results for the 6 tasks (3 on MNIST and 3 on Fashion MNIST)
on which we perform experiments that show the test risks and the bounds for the different scenarios
of (Defense, Attack). We train all the models using the same parameters as described in Section 4.2.
Table 2 and Table 3 complement Table 1 to present the results for all the tasks when using the `2-norm
with b = 1 (the maximum noise allowed by the norm). Then, we run again the same experiment but
we use the `∞-norm with b = 0.1 and exhibit the results in Table 4 and Table 5. For the experiments
on the 5 other tasks using the `2-norm, we have a similar behavior than MNIST 1vs7 (presented in
the paper). Indeed, using the attacks PGDU and IFGSMU as defense mechanism allows to obtain better
risks and also tighter bounds compared to the bounds obtained with a defense based on UNIF (which
is a naive defense). For the experiments on the 6 tasks using the `∞-norm, the trend is the same as
with the `2-norm, i.e., the appropriate defense leads to better risks and bounds.

We also run experiments that do not rely on the PAC-Bayesian framework. In other words, we train the
models following only Step 1 of our adversarial training procedure (i.e., Algorithm 1) using classical
attacks (PGD or IFGSM): we refer to this experiment as a baseline. In our cases, it means learning a
majority vote HP′ that follows a distribution P ′. As a reminder, the studied scenarios for the baseline
are all the pairs (Defense,Attack) belonging to the set {—, UNIF, PGD, IFGSM}×{—, PGD, IFGSM}.
We report the results in Table 6 and Table 7. With this experiment, we are now able to compare
our defense based on PGDU or IFGSMU and a classical defense based on PGD and IFGSM. Hence,
considering the test risks RROB

T (HQ) (columns “Attack without U” of Tables 1 to 5) and RROB
T (HP′)

(in Tables 6 and 7) , we observe similar results between the baseline and our framework.
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Table 2: Test risks and bounds for 2 tasks of MNIST with n=100 perturbations for all pairs
(Defense,Attack) with the two voters’ set H and HSIGN. The results in bold correspond to the best
values between results for H and HSIGN. To quantify the gap between our risks and the classical
definition we put in italic the risk of our models against the classical attacks: we replace PGDU and
IFGSMU by PGD or IFGSM (i.e., we did not sample from the uniform distribution). Since Eq. (12)
upperbounds Eq. (11) thanks to the TV term, we compute the two bound values of Theorem 7.

`2-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .015 .015 .015 .015 0.060 .067 .015 .015 .015 .015 0.129 0.135 0.129 .135
— PGDU .632 .628 .520 .526 1.059 .847 .672 .641 .683 .684 1.718 2.405 1.392 .962
— IFGSMU .447 .443 .157 .166 0.387 .572 .461 .451 .337 .345 1.137 2.090 0.776 .669
UNIF — .024 .024 .024 .024 0.073 .083 .024 .024 .024 .024 0.140 0.148 0.140 .148
UNIF PGDU .646 .619 .486 .500 1.016 .809 .649 .626 .648 .650 1.646 2.417 1.338 .915
UNIF IFGSMU .442 .442 .128 .139 0.316 .528 .442 .442 .281 .293 0.907 2.118 0.633 .617
PGDU — .024 .025 .024 .025 0.094 .101 .024 .025 .024 .025 0.158 0.163 0.158 .163
PGDU PGDU .148 .135 .111 .103 0.360 .355 .146 .136 .129 .120 0.442 2.062 0.414 .403
PGDU IFGSMU .104 .103 .072 .072 0.277 .277 .102 .102 .090 .084 0.358 1.954 0.335 .328
IFGSMU — .027 .025 .027 .025 0.080 .091 .027 .025 .027 .025 0.146 0.154 0.146 .154
IFGSMU PGDU .188 .178 .111 .119 0.383 .405 .190 .178 .126 .134 0.501 2.063 0.454 .454
IFGSMU IFGSMU .126 .115 .076 .070 0.248 .290 .127 .115 .091 .085 0.371 1.918 0.329 .342

(a) MNIST 4vs9

`2-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .015 .015 .015 .015 .043 .045 .015 .015 .015 .015 .117 0.118 .117 .118
— PGDU .279 .271 .232 .234 .600 .453 .284 .274 .284 .284 .829 1.929 .724 .524
— IFGSMU .143 .137 .089 .090 .204 .227 .144 .139 .125 .127 .422 1.662 .337 .293
UNIF — .017 .017 .017 .017 .054 .055 .017 .017 .017 .017 .124 0.125 .124 .125
UNIF PGDU .219 .201 .172 .177 .433 .350 .219 .209 .217 .218 .671 1.810 .565 .419
UNIF IFGSMU .122 .122 .052 .055 .119 .181 .122 .123 .077 .082 .307 1.554 .242 .248
PGDU — .013 .015 .013 .015 .061 .061 .013 .015 .013 .015 .131 0.130 .131 .130
PGDU PGDU .057 .057 .045 .041 .157 .160 .057 .057 .055 .045 .227 1.536 .218 .218
PGDU IFGSMU .043 .043 .027 .031 .114 .119 .042 .043 .037 .035 .187 1.433 .179 .181
IFGSMU — .014 .012 .014 .012 .057 .057 .014 .013 .014 .013 .128 0.127 .128 .127
IFGSMU PGDU .077 .072 .054 .043 .170 .174 .076 .075 .055 .052 .252 1.510 .233 .236
IFGSMU IFGSMU .055 .048 .034 .030 .105 .121 .052 .051 .039 .032 .191 1.379 .177 .185

(b) MNIST 5vs6
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Table 3: Test risks and bounds for 3 tasks Fashion MNIST with n=100 perturbations for all pairs
(Defense,Attack) with the two voters’ set H and HSIGN. The results in bold correspond to the best
values between results for H and HSIGN. To quantify the gap between our risks and the classical
definition we put in italic the risk of our models against the classical attacks: we replace PGDU and
IFGSMU by PGD or IFGSM (i.e., we did not sample from the uniform distribution). Since Eq. (12)
upperbounds Eq. (11) thanks to the TV term, we compute the two bound values of Theorem 7.

`2-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .021 .020 .021 .020 0.060 0.070 .019 .019 .019 .019 0.130 0.139 0.130 0.139
— PGDU .695 .650 .494 .568 1.042 1.090 .677 .686 .588 .674 1.326 2.307 1.152 1.082
— IFGSMU .451 .451 .269 .328 0.585 0.731 .405 .438 .295 .381 0.878 1.971 0.730 0.746
UNIF — .071 .071 .071 .071 0.185 0.191 .071 .071 .071 .071 0.236 0.241 0.236 0.241
UNIF PGDU .423 .477 .418 .425 0.957 0.755 .486 .486 .513 .513 1.372 2.173 1.151 0.869
UNIF IFGSMU .326 .331 .105 .105 0.273 0.422 .333 .331 .144 .142 0.496 1.642 0.397 0.504
PGDU — .034 .032 .034 .032 0.094 0.114 .034 .032 .034 .032 0.158 0.174 0.158 0.174
PGDU PGDU .103 .115 .086 .091 0.227 0.289 .102 .115 .096 .101 0.299 1.985 0.283 0.338
PGDU IFGSMU .092 .099 .073 .076 0.195 0.248 .092 .099 .082 .082 0.266 1.914 0.253 0.299
IFGSMU — .028 .030 .028 .030 0.091 0.105 .027 .030 .027 .030 0.155 0.166 0.155 0.166
IFGSMU PGDU .115 .114 .085 .085 0.254 0.287 .112 .114 .096 .101 0.331 2.026 0.313 0.337
IFGSMU IFGSMU .095 .097 .067 .068 0.206 0.232 .093 .097 .080 .081 0.282 1.927 0.266 0.285

(a) Fashion MNIST Sandall vs Ankle Boot

`2-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .038 .037 .038 .037 .088 .091 .038 .037 .038 .037 .153 0.155 .153 .155
— PGDU .292 .248 .233 .112 .452 .363 .289 .272 .287 .246 .578 1.314 .525 .479
— IFGSMU .194 .154 .132 .075 .300 .262 .193 .181 .176 .148 .423 1.103 .376 .359
UNIF — .039 .039 .039 .039 .091 .093 .041 .039 .041 .039 .155 0.157 .155 .157
UNIF PGDU .240 .220 .099 .117 .346 .332 .250 .231 .250 .245 .553 1.228 .490 .443
UNIF IFGSMU .177 .171 .070 .078 .228 .247 .197 .185 .186 .164 .445 1.046 .371 .346
PGDU — .045 .044 .045 .044 .108 .105 .046 .045 .046 .045 .172 0.167 .172 .167
PGDU PGDU .108 .100 .077 .082 .203 .211 .104 .100 .081 .087 .279 1.118 .269 .264
PGDU IFGSMU .094 .086 .071 .069 .184 .186 .090 .086 .076 .073 .257 1.015 .248 .241
IFGSMU — .041 .043 .041 .043 .094 .101 .039 .042 .039 .042 .158 0.163 .158 .163
IFGSMU PGDU .106 .114 .078 .092 .220 .226 .109 .113 .084 .095 .293 1.052 .279 .275
IFGSMU IFGSMU .082 .087 .065 .072 .171 .176 .082 .089 .068 .078 .247 0.927 .234 .232

(b) Fashion MNIST Top vs Pullover

`2-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .122 .122 .122 .122 0.276 0.286 .122 .122 .122 .122 0.318 0.328 0.318 0.328
— PGDU .744 .738 .674 .689 1.386 1.066 .745 .740 .767 .768 1.773 2.386 1.576 1.180
— IFGSMU .652 .646 .454 .474 0.947 0.887 .659 .648 .618 .632 1.597 2.214 1.276 0.992
UNIF — .204 .204 .204 .204 0.444 0.444 .204 .204 .204 .204 0.475 0.476 0.475 0.476
UNIF PGDU .750 .714 .682 .671 1.350 1.069 .750 .719 .752 .749 1.732 2.063 1.524 1.189
UNIF IFGSMU .605 .575 .423 .431 0.871 0.866 .605 .578 .530 .526 1.304 1.860 1.091 0.956
PGDU — .168 .165 .168 .165 0.423 0.428 .167 .165 .167 .165 0.463 0.461 0.463 0.460
PGDU PGDU .389 .402 .306 .369 0.768 0.719 .390 .402 .319 .403 0.847 2.354 0.810 0.755
PGDU IFGSMU .361 .368 .298 .324 0.693 0.672 .362 .368 .320 .361 0.799 2.258 0.754 0.707
IFGSMU — .150 .163 .150 .163 0.424 0.428 .149 .163 .149 .163 0.458 0.461 0.458 0.461
IFGSMU PGDU .391 .428 .347 .292 0.778 0.757 .390 .426 .371 .298 0.856 2.327 0.820 0.791
IFGSMU IFGSMU .356 .382 .291 .273 0.685 0.689 .354 .382 .331 .278 0.772 2.218 0.734 0.723

(c) Fashion MNIST Coat vs Shirt
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Table 4: Test risks and bounds for 3 tasks of MNIST with n=100 perturbations for all pairs
(Defense,Attack) with the two voters’ set H and HSIGN. The results in bold correspond to the best
values between results for H and HSIGN. To quantify the gap between our risks and the classical
definition we put in italic the risk of our models against the classical attacks: we replace PGDU and
IFGSMU by PGD or IFGSM (i.e., we did not sample from the uniform distribution). Since Eq. (12)
upperbounds Eq. (11) thanks to the TV term, we compute the two bound values of Theorem 7.

`∞-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 0.1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .005 .005 .005 .005 .017 .019 .005 .005 .005 .005 0.099 0.100 .099 .100
— PGDU .454 .454 .375 .384 .770 .638 .492 .484 .480 .476 1.127 2.031 .946 .716
— IFGSMU .428 .423 .350 .361 .727 .610 .474 .465 .448 .443 1.061 2.008 .886 .686
UNIF — .004 .004 .004 .004 .018 .019 .004 .004 .004 .004 0.099 0.100 .099 .100
UNIF PGDU .487 .491 .369 .392 .779 .667 .512 .507 .484 .487 1.179 2.083 .972 .739
UNIF IFGSMU .436 .442 .325 .337 .664 .598 .466 .459 .417 .417 1.023 1.959 .841 .671
PGDU — .006 .006 .006 .006 .024 .024 .005 .006 .005 .006 0.103 0.103 .103 .103
PGDU PGDU .018 .020 .013 .016 .046 .050 .018 .020 .015 .020 0.127 1.461 .122 .123
PGDU IFGSMU .020 .021 .012 .016 .048 .054 .019 .021 .015 .020 0.130 1.455 .125 .127
IFGSMU — .006 .007 .006 .007 .023 .024 .006 .007 .006 .007 0.102 0.103 .102 .103
IFGSMU PGDU .018 .019 .016 .016 .046 .051 .018 .019 .018 .019 0.126 1.489 .122 .124
IFGSMU IFGSMU .020 .020 .015 .016 .050 .055 .020 .020 .020 .019 0.131 1.481 .126 .127

(a) MNIST 1 vs 7

`∞-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 0.1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .015 .015 .015 .015 0.060 0.067 .015 .015 .015 .015 0.129 0.135 0.129 0.135
— PGDU .929 .930 .651 .662 1.367 1.125 .920 .925 .874 .880 2.213 2.661 1.792 1.266
— IFGSMU .935 .935 .601 .609 1.243 1.088 .926 .928 .800 .806 2.047 2.615 1.649 1.224
UNIF — .017 .017 .017 .017 0.062 0.072 .017 .017 .017 .017 0.131 0.139 0.131 0.139
UNIF PGDU .895 .895 .615 .623 1.302 1.078 .884 .888 .815 .818 2.035 2.722 1.670 1.208
UNIF IFGSMU .898 .898 .516 .528 1.112 1.027 .884 .890 .697 .706 1.875 2.658 1.497 1.153
PGDU — .039 .037 .039 .037 0.093 0.094 .039 .037 .039 .037 0.156 0.157 0.156 0.157
PGDU PGDU .108 .109 .090 .090 0.200 0.209 .108 .109 .110 .112 0.337 1.874 0.290 0.271
PGDU IFGSMU .121 .124 .101 .103 0.229 0.235 .121 .124 .126 .125 0.378 1.890 0.326 0.297
IFGSMU — .046 .044 .046 .044 0.102 0.119 .046 .044 .046 .044 0.164 0.178 0.164 0.178
IFGSMU PGDU .105 .093 .091 .078 0.203 0.214 .105 .093 .108 .089 0.321 1.810 0.286 0.269
IFGSMU IFGSMU .119 .095 .102 .080 0.220 0.229 .119 .095 .122 .090 0.357 1.821 0.309 0.283

(b) MNIST 4 vs 9

`∞-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 0.1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .015 .015 .015 .015 .043 .045 .015 .015 .015 .015 0.117 0.118 0.117 .118
— PGDU .500 .499 .387 .390 .923 .744 .502 .500 .474 .475 1.361 2.275 1.146 .830
— IFGSMU .519 .505 .395 .398 .915 .762 .514 .516 .481 .481 1.335 2.283 1.129 .847
UNIF — .015 .015 .015 .015 .052 .053 .015 .015 .015 .015 0.123 0.124 0.123 .124
UNIF PGDU .529 .544 .388 .393 .925 .761 .517 .532 .481 .482 1.342 2.349 1.137 .848
UNIF IFGSMU .536 .544 .372 .379 .881 .774 .523 .544 .451 .456 1.268 2.348 1.077 .857
PGDU — .015 .014 .015 .014 .060 .064 .015 .014 .015 .014 0.130 0.133 0.130 .133
PGDU PGDU .055 .058 .037 .039 .131 .143 .056 .057 .046 .046 0.219 1.619 0.202 .204
PGDU IFGSMU .061 .065 .040 .043 .146 .154 .059 .062 .050 .046 0.232 1.626 0.216 .214
IFGSMU — .019 .014 .019 .014 .069 .064 .018 .014 .018 .014 0.136 0.132 0.136 .132
IFGSMU PGDU .061 .061 .040 .050 .143 .142 .061 .061 .045 .061 0.218 1.694 0.208 .205
IFGSMU IFGSMU .066 .069 .044 .054 .154 .152 .065 .069 .048 .068 0.228 1.708 0.216 .214

(c) MNIST 5 vs 6
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Table 5: Test risks and bounds for 3 tasks of Fashion MNIST with n=100 perturbations for all pairs
(Defense,Attack) with the two voters’ set H and HSIGN. The results in bold correspond to the best
values between results for H and HSIGN. To quantify the gap between our risks and the classical
definition we put in italic the risk of our models against the classical attacks: we replace PGDU and
IFGSMU by PGD or IFGSM (i.e., we did not sample from the uniform distribution). Since Eq. (12)
upperbounds Eq. (11) thanks to the TV term, we compute the two bound values of Theorem 7.

`∞-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 0.1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .021 .020 .021 .020 0.060 0.070 .019 .019 .019 .019 0.130 0.139 0.130 0.139
— PGDU .951 .944 .606 .719 1.275 1.333 .935 .920 .762 .864 1.617 2.503 1.421 1.317
— IFGSMU .957 .947 .588 .718 1.231 1.336 .950 .950 .734 .851 1.587 2.495 1.395 1.316
UNIF — .076 .077 .076 .077 0.178 0.184 .076 .077 .076 .077 0.230 0.235 0.230 0.235
UNIF PGDU .964 .961 .714 .719 1.496 1.265 .966 .963 .853 .859 2.098 2.417 1.785 1.416
UNIF IFGSMU .978 .976 .627 .632 1.306 1.259 .979 .979 .758 .762 1.914 2.422 1.597 1.396
PGDU — .041 .040 .041 .040 0.114 0.111 .041 .040 .041 .040 0.173 0.171 0.173 0.171
PGDU PGDU .098 .097 .089 .086 0.207 0.210 .099 .097 .101 .100 0.306 1.826 0.281 0.267
PGDU IFGSMU .113 .112 .105 .101 0.244 0.246 .115 .112 .120 .113 0.353 1.853 0.321 0.302
IFGSMU — .045 .047 .045 .047 0.131 0.137 .045 .047 .045 .047 0.188 0.194 0.188 0.194
IFGSMU PGDU .100 .102 .089 .085 0.203 0.232 .100 .102 .102 .102 0.298 1.645 0.274 0.287
IFGSMU IFGSMU .112 .116 .099 .096 0.232 0.260 .112 .116 .114 .112 0.328 1.687 0.301 0.313

(a) Fashion MNIST Sandall vs Ankle Boot

`∞-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 0.1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .038 .037 .038 .037 .088 .091 .038 .037 .038 .037 0.153 0.155 0.153 .155
— PGDU .596 .515 .477 .218 .844 .662 .590 .576 .570 .502 1.049 1.924 0.948 .857
— IFGSMU .723 .623 .573 .257 .971 .751 .716 .695 .678 .598 1.189 2.031 1.080 .980
UNIF — .032 .032 .032 .032 .083 .085 .032 .033 .032 .033 0.149 0.151 0.149 .151
UNIF PGDU .438 .439 .356 .245 .813 .563 .435 .435 .423 .312 1.082 1.867 0.959 .688
UNIF IFGSMU .546 .547 .453 .325 .974 .690 .544 .547 .530 .409 1.266 2.009 1.128 .823
PGDU — .048 .053 .048 .053 .115 .130 .048 .053 .048 .053 0.177 0.188 0.177 .188
PGDU PGDU .102 .116 .089 .099 .205 .223 .102 .116 .096 .115 0.282 1.323 0.266 .278
PGDU IFGSMU .120 .135 .102 .115 .237 .255 .120 .135 .109 .133 0.318 1.380 0.299 .309
IFGSMU — .051 .045 .051 .045 .120 .115 .051 .045 .051 .045 0.179 0.175 0.179 .175
IFGSMU PGDU .106 .094 .091 .085 .211 .193 .106 .094 .102 .097 0.292 1.488 0.273 .252
IFGSMU IFGSMU .120 .111 .101 .102 .239 .218 .119 .111 .113 .113 0.322 1.546 0.299 .277

(b) Fashion MNIST Top vs Pullover

`∞-norm Algo.1 with Eq. (9) Algo.1 with Eq. (12)
b = 0.1 Attack without U Attack without U

RROB
T (HQ) RT(HQ) Th. 6 RROB

T (HQ) AT(HQ) Th. 7 - Eq. (12) Th. 7 - Eq. (11)
Defense Attack HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H HSIGN H
— — .122 .122 .122 .122 0.276 0.286 .122 .122 .122 .122 0.318 0.328 0.318 0.328
— PGDU .884 .887 .781 .795 1.579 1.268 .882 .886 .864 .872 2.020 2.640 1.803 1.390
— IFGSMU .901 .902 .756 .774 1.558 1.272 .901 .902 .865 .876 2.032 2.651 1.795 1.393
UNIF — .166 .166 .166 .166 0.352 0.357 .166 .166 .166 .166 0.389 0.394 0.389 0.394
UNIF PGDU .911 .914 .796 .798 1.402 1.326 .913 .914 .896 .888 1.934 2.325 1.713 1.447
UNIF IFGSMU .935 .937 .787 .798 1.392 1.350 .934 .936 .887 .882 1.905 2.378 1.693 1.469
PGDU — .163 .162 .163 .162 0.386 0.395 .163 .162 .163 .162 0.419 0.430 0.419 0.430
PGDU PGDU .394 .396 .359 .329 0.764 0.673 .394 .396 .403 .394 0.954 2.321 0.865 0.726
PGDU IFGSMU .475 .480 .442 .410 0.910 0.769 .477 .480 .487 .472 1.121 2.411 1.020 0.826
IFGSMU — .167 .168 .167 .168 0.411 0.395 .167 .168 .167 .168 0.445 0.429 0.445 0.429
IFGSMU PGDU .396 .373 .359 .293 0.772 0.641 .396 .373 .405 .328 0.970 2.368 0.877 0.692
IFGSMU IFGSMU .465 .428 .424 .334 0.891 0.705 .465 .429 .470 .372 1.090 2.425 0.995 0.758

(c) Fashion MNIST Coat vs Shirt
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Table 6: Test risks for 6 tasks of MNIST and Fashion MNIST datasets for all pairs (Defense,Attack)
with the two voters’ set H and HSIGN using `2-norm. The results of these tables are computed
considering defenses of the literature, i.e., adversarial training using PGD or IFGSM. We also add an
adversarial training using UNIF for the completeness of comparison between this baseline defense
and our algorithm. The results in bold correspond to the best values between results forH andHSIGN.

`2-norm, b = 1 RROB
T (HP′)

Defense Attack HSIGN H
— — .005 .005
— PGD .326 .327
— IFGSM .122 .121
UNIF — .005 .005
UNIF PGD .191 .190
UNIF IFGSM .071 .072
PGD — .007 .007
PGD PGD .027 .026
PGD IFGSM .022 .021
IFGSM — .005 .006
IFGSM PGD .041 .035
IFGSM IFGSM .021 .021

(a) MNIST 1 vs 7

`2-norm, b = 1 RROB
T (HP′)

Defense Attack HSIGN H
— — .015 .015
— PGD .692 .692
— IFGSM .464 .462
UNIF — .024 .024
UNIF PGD .653 .653
UNIF IFGSM .441 .438
PGD — .024 .027
PGD PGD .136 .138
PGD IFGSM .097 .102
IFGSM — .022 .027
IFGSM PGD .166 .186
IFGSM IFGSM .113 .124

(b) MNIST 4 vs 9

`2-norm, b = 1 RROB
T (HP′)

Defense Attack HSIGN H
— — .015 .015
— PGD .283 .283
— IFGSM .144 .144
UNIF — .017 .017
UNIF PGD .220 .219
UNIF IFGSM .122 .122
PGD — .014 .013
PGD PGD .056 .055
PGD IFGSM .045 .041
IFGSM — .013 .014
IFGSM PGD .077 .070
IFGSM IFGSM .053 .047

(c) MNIST 5 vs 6

`2-norm, b = 1 RROB
T (HP′)

Defense Attack HSIGN H
— — .019 .019
— PGD .709 .708
— IFGSM .426 .414
UNIF — .071 .072
UNIF PGD .531 .531
UNIF IFGSM .331 .329
PGD — .034 .036
PGD PGD .107 .103
PGD IFGSM .091 .087
IFGSM — .031 .029
IFGSM PGD .125 .108
IFGSM IFGSM .104 .090

(d) Fashion MNIST
Sandall vs Ankle Boot

`2-norm, b = 1 RROB
T (HP′)

Defense Attack HSIGN H
— — .038 .038
— PGD .286 .285
— IFGSM .188 .186
UNIF — .041 .039
UNIF PGD .249 .248
UNIF IFGSM .197 .192
PGD — .043 .045
PGD PGD .102 .117
PGD IFGSM .090 .094
IFGSM — .038 .040
IFGSM PGD .120 .106
IFGSM IFGSM .092 .080

(e) Fashion MNIST
Top vs Pullover

`2-norm, b = 1 RROB
T (HP′)

Defense Attack HSIGN H
— — .122 .122
— PGD .768 .767
— IFGSM .683 .680
UNIF — .204 .204
UNIF PGD .753 .754
UNIF IFGSM .607 .606
PGD — .182 .178
PGD PGD .453 .412
PGD IFGSM .408 .379
IFGSM — .148 .146
IFGSM PGD .405 .411
IFGSM IFGSM .369 .364

(f) Fashion MNIST
Coat vs Shirt
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Table 7: Test risks for 6 tasks of MNIST and Fashion MNIST datasets for all pairs (Defense,Attack)
with the two voters’ set H and HSIGN using `∞-norm. The results of these tables are computed
considering defenses of the literature, i.e., adversarial training using PGD or IFGSM. We also add an
adversarial training using UNIF for the completeness of comparison between this baseline defense
and our algorithm. The results in bold correspond to the best values between results forH andHSIGN.
`∞-norm, b = 0.1 RROB

T (HP′)

Defense Attack HSIGN H
— — .005 .005
— PGD .499 .498
— IFGSM .479 .480
UNIF — .004 .004
UNIF PGD .516 .515
UNIF IFGSM .467 .467
PGD — .006 .007
PGD PGD .019 .019
PGD IFGSM .021 .021
IFGSM — .007 .007
IFGSM PGD .017 .018
IFGSM IFGSM .019 .020

(a) MNIST 1 vs 7

`∞-norm, b = 0.1 RROB
T (HP′)

Defense Attack HSIGN H
— — .015 .015
— PGD .921 .921
— IFGSM .923 .923
UNIF — .017 .017
UNIF PGD .877 .876
UNIF IFGSM .877 .877
PGD — .041 .040
PGD PGD .108 .109
PGD IFGSM .122 .123
IFGSM — .057 .044
IFGSM PGD .109 .101
IFGSM IFGSM .119 .108

(b) MNIST 4 vs 9

`∞-norm, b = 0.1 RROB
T (HP′)

Defense Attack HSIGN H
— — .015 .015
— PGD .498 .498
— IFGSM .511 .510
UNIF — .015 .015
UNIF PGD .512 .511
UNIF IFGSM .511 .511
PGD — .014 .014
PGD PGD .065 .058
PGD IFGSM .068 .065
IFGSM — .018 .017
IFGSM PGD .061 .063
IFGSM IFGSM .069 .071

(c) MNIST 5 vs 6

`∞-norm, b = 0.1 RROB
T (HP′)

Defense Attack HSIGN H
— — .019 .019
— PGD .938 .938
— IFGSM .948 .949
UNIF — .076 .077
UNIF PGD .970 .969
UNIF IFGSM .981 .981
PGD — .041 .040
PGD PGD .098 .097
PGD IFGSM .115 .111
IFGSM — .112 .047
IFGSM PGD .045 .100
IFGSM IFGSM .101 .114

(d) Fashion MNIST
Sandall vs Ankell Boot

`∞-norm, b = 0.1 RROB
T (HP′)

Defense Attack HSIGN H
— — .038 .038
— PGD .574 .577
— IFGSM .700 .696
UNIF — .032 .033
UNIF PGD .428 .435
UNIF IFGSM .540 .550
PGD — .047 .049
PGD PGD .101 .097
PGD IFGSM .118 .112
IFGSM — .049 .048
IFGSM PGD .100 .090
IFGSM IFGSM .112 .108

(e) Fashion MNIST
Top vs Pullover

`∞-norm, b = 0.1 RROB
T (HP′)

Defense Attack HSIGN H
— — .122 .122
— PGD .879 .879
— IFGSM .898 .898
UNIF — .166 .166
UNIF PGD .913 .911
UNIF IFGSM .934 .933
PGD — .164 .167
PGD PGD .398 .395
PGD IFGSM .479 .481
IFGSM — .163 .169
IFGSM PGD .356 .391
IFGSM IFGSM .422 .461

(f) Fashion MNIST
Coat vs Shirt
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