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Abstract

Rationalization is a self-explaining framework for NLP models. Conventional
work typically uses the maximum mutual information (MMI) criterion to find the
rationale that is most indicative of the target label. However, this criterion can be
influenced by spurious features that correlate with the causal rationale or the target
label. Instead of attempting to rectify the issues of the MMI criterion, we propose
a novel criterion to uncover the causal rationale, termed the Minimum Conditional
Dependence (MCD) criterion, which is grounded on our finding that the non-causal
features and the target label are d-separated by the causal rationale. By minimizing
the dependence between the unselected parts of the input and the target label
conditioned on the selected rationale candidate, all the causes of the label are
compelled to be selected. In this study, we employ a simple and practical measure
of dependence, specifically the KL-divergence, to validate our proposed MCD
criterion. Empirically, we demonstrate that MCD improves the F1 score by up to
13.7% compared to previous state-of-the-art MMI-based methods. Our code is
available at: https://github.com/jugechengzi/Rationalization-MCD.

1 Introduction
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Figure 1: The standard rationalization framework RNP. X is the orig-
inal full text. XZ is the selected rationale candidate and Ŷ is the
predictor’s output.

With the success of deep
learning, there is growing
concern about the inter-
pretability of deep learn-
ing models, particularly as
they are rapidly being de-
ployed in various critical
fields (Lipton, 2018). Ide-
ally, the explanation for a prediction should be both faithful (reflecting the model’s actual behavior)
and plausible (aligning with human understanding) (Chan et al., 2022).

Post-hoc explanations, which are trained separately from the prediction process, may not faithfully
represent an agent’s decision, despite appearing plausible (Lipton, 2018). Sometimes, faithfulness
should be considered a prerequisite that precedes plausibility in explanations of neural networks,
especially when these networks are employed to assist in critical decision-making processes, as this
factor determines the trustworthiness of the explanations. In contrast to post-hoc methods, ante-hoc
(or self-explaining) techniques typically offer increased transparency (Lipton, 2018) and faithfulness
(Yu et al., 2021), as the prediction is made based on the explanation itself.

∗Corresponding authors. This paper is a collaboration between Intelligent and Distributed Computing
Laboratory, Huazhong University of Science and Technology and iWudao Tech.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/jugechengzi/Rationalization-MCD
https://www.iwudao.tech/


A model-agnostic ante-hoc explanation framework, called Rationalizing Neural Predictions (RNP),
was proposed by Lei et al. (2016) and is also known as rationalization. RNP utilizes a cooperative
game between an explainer and a predictor, where the explainer identifies a human-interpretable subset
of the input (referred to as rationale) and passes it to the subsequent predictor for making predictions,
as shown in Figure 1. The explainer and predictor are trained cooperatively to maximize prediction
accuracy. A significant advantage of RNP-based rationalization is its certification of exclusion, which
guarantees that any unselected part of the input has no contribution to the prediction. This property
ensures the maintenance of faithfulness, enabling us to focus solely on plausibility (Yu et al., 2021).
Notably, although RNP was initially proposed in the field of NLP and and its enhancement schemes
have primarily been validated using text data, its framework can also be applied to other domains,
e.g., explaining image classification (Yuan et al., 2022) and graph neural networks (Luo et al., 2020).

Previous rationalization methods generally utilize the maximum mutual information (MMI) criterion
to determine the rationale, defined as the subset most indicative of the target label. However, this
criterion merely uncovers associations rather than causal relationships between the rationale and
the label. Consequently, MMI is easily affected by spurious correlations and the plausibility of
chosen rationales might be diminished, even though the rationales still faithfully report the predictor’s
behavior (Chang et al., 2020). In rationalization, there are two stages from which correlations may
arise. The first type of correlation originates from the process of dataset generation, and we refer to
it as feature correlation. A typical example of feature correlation, as pointed out in LIME (Ribeiro
et al., 2016), is that wolves often appear together with snow. Consequently, whether the background
features snow or not can serve as a strong indicator for classifying an image as depicting a wolf.
Another instance of feature correlation is demonstrated in the first row of Table 1. Within a beer
review, a favorable taste often correlates with an appealing aroma. Comments regarding the taste
can serve as a strong indicator for the smell label. The predictor might inadvertently overfit to such
correlations, leading to local optima. Consequently, the suboptimal predictor could mislead the
explainer to select these spurious correlations. Another type of correlation stems from the rationale
(mask) selection stage, and we call it mask correlation. An example of mask correlation is depicted
in the second row of Table 1. Consider a situation where the explainer has implicitly learned the
category of X , and selects a “-” for all negative inputs while excluding it from all positive inputs.
In this case, the predictor only needs to determine whether the input rationale includes a “-” or not.
Even though this phenomenon has not been analyzed from the perspective of spurious correlation, it
has been observed and named as degeneration in prior research (Yu et al., 2019).

Some methods have been developed to address either feature correlation or degeneration separately.
INVRAT (Chang et al., 2020) attempts to tackle feature correlation using invariant risk minimization
(IRM) (Arjovsky et al., 2019). The main idea is to emphasize spurious (non-causal) variations by
splitting the dataset into distinct environments. However, IRM-based methods have several limitations.
For instance, they require strong prior knowledge about the relationships between non-causal and
causal features (e.g., the extra labels of non-causal features) in order to divide the dataset (Lin et al.,
2022b). Moreover, IRM-based methods are limited to addressing only a finite set of predetermined
non-causal features, neglecting the potential existence of numerous unknown non-causal features.
In fact, a recent study (Lin et al., 2022b) in the field of IRM has theoretically demonstrated that it
is nearly impossible to partition a dataset into different environments to eliminate all non-causal
features using IRM. Other challenges, such as the tendency to overfit, difficulty in applying to larger
models (Zhou et al., 2022; Lin et al., 2022a), and the marginal shift risk of the input (Rosenfeld et al.,
2021), have also been identified within the realm of IRM. Inter_RAT (Yue et al., 2023) attempts to
eliminate feature correlation through backdoor adjustment, intervening directly with the confounders.
However, it is extremely hard to measure the confounders since they are usually not observable in the
dataset. As for degeneration, although not explicitly associated with spurious correlation until this
study, some efforts have been tried to fix the problem. The common idea is to introduce auxiliary
modules that have access the full texts to regularize the original explainer (Yu et al., 2021) or the
predictor (Yu et al., 2021; Liu et al., 2022). Regularized by these auxiliary modules, the predictor can
somewhat disregard the mask correlation, and degeneration is partially alleviated.

Although these methods have tried to fix the problems resulted from spurious correlations, they are
still MMI-based methods and how the problems come into being is not well explored. In this study,
we first identify the two stages that the spurious correlations may come from, and link the important
degeneration problem to a more general mask correlation. Then, we identify that the target label Y
and all the non-causal features (including the rationale masks) in the input X are d-separated by the

2



Table 1: The examples of feature correlation and mask correlation. Human-annotated rationales are
underlined. Rationales from RNP are highlighted in red.

RNP
Dataset: Beer-Aroma. Label: Positive. Predition: Positive. Problem: feature correlation
Text: the appearance was nice . dark gold with not much of a head but nice lacing when it started to dissipate
. the smell was ever so hoppy with a hint of the grapefruit flavor that ’s contained within . the taste was
interesting , up front tart grapefruit , not sweet in the least . more like grapefruit rind even . ⋯⋯.
Dataset: Beer-Aroma. Label: Negative. Predition: Negative. Problem: mask correlation
Text: 12 oz bottle poured into a pint glass - a - pours a transparent , pale golden color . the head is pale
white with no cream , one finger ’s height , and abysmal retention . i looked away for a few seconds and the
head was gone s - stale cereal grains dominate . hardly any other notes to speak of . very mild in strength t
- sharp corn/grainy notes throughout it ’s entirety . ⋯⋯.

causal features, meaning that the non-causal features are independent of Y given the causal features.
This leads to a new avenue for addressing feature correlation and mask correlation simultaneously: we
only need to penalize the dependence between the target label and the unselected features conditioned
on the selected rationale candidate, such that all the direct causal features will be included in the
selected rationale candidate. Based on this observation, we develop a new criterion for the causal
rationale, namely minimum conditional dependence (MCD). Various methods can be adopted to
measure the dependence, such as mutual information, the Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al., 2007), and so on. In this paper, we adopt a simple and practical measurement
for independence, the KL-divergence, to verify the effectiveness of the proposed criterion. Then, we
conduct experiments on two widely used benchmarks to validate the effectiveness of MCD.

In summary, our contributions are:

• To the best of our knowledge, we are the first to identify the degeneration problem as a
form of spurious correlation. Leveraging probabilistic graphical models, we are the first to
comprehensively elucidate feature correlation and degeneration under a unified perspective.

• We find that the target label and non-causal features are d-separated by the direct causal
features. Based on this insight, we propose the MCD criterion, which opens a new avenue for
discovering causal rationales, marking the main contribution of this study. Unlike previous
methods, MCD-based methods do not require prior expert knowledge about non-causal
features, thus presenting potential for broader applicability.

• We present a simple and practical architecture to develop an MCD-based method. Experi-
ments across various datasets demonstrate that our approach achieves an improvement of up
to 13.7% in F1 score compared to state-of-the-art MMI-based rationalization methods.

2 Related work

Rationalization. The basic cooperative framework of rationalization called RNP (Lei et al., 2016) is
flexible and offers a unique advantage: certification of exclusion, which means any unselected input
is guaranteed to have no contribution to the prediction (Yu et al., 2021). Based on this cooperative
framework, many methods have been proposed to improve RNP from various aspects. Bao et al.
(2018) used Gumbel-softmax to do the reparameterization for binarized selection. Bastings et al.
(2019) replaced the Bernoulli sampling distributions with rectified Kumaraswamy distributions. Jain
et al. (2020) disconnected the training regimes of the generator and predictor networks using a
saliency threshold. Paranjape et al. (2020) imposed a discrete bottleneck objective to balance the
task performance and the rationale length. Chang et al. (2019) tried to select class-wise rationales.
Antognini et al. (2021); Antognini and Faltings (2021) tried to select rationales belonging to different
aspects at once. Zheng et al. (2022) called for more rigorous evaluation of rationalization models.
Fernandes et al. (2022) leveraged meta-learning techniques to improve the quality of the explanations.
Havrylov et al. (2019) cooperatively trained the models with standard continuous and discrete
optimization schemes. Hase et al. (2020) explored better metrics for the explanations. Rajagopal
et al. (2021) used phrase-based concepts to conduct a self-explaining model. Other methods like data
augmentation with pretrained models (Plyler et al., 2021), training with human-annotated rationales
(Chan et al., 2022), have also been tried. These methods are orthogonal to our research.
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Spurious correlations. Several methods have been proposed to address the issues arising from either
feature correlation or mask correlation. The impact of feature correlation is somewhat mitigated by
techniques such as invariant risk minimization (Chang et al., 2020) or backdoor adjustment (Yue
et al., 2023). However, as indicated in the introduction, these methods have certain limitations. To
combat mask correlation, the usual strategy involves introducing an auxiliary module, which has
access to the full input, to regulate the original modules and prevent them from overfitting to trivial
patterns introduced by the explainer (Yu et al., 2021, 2019; Liu et al., 2022). Other methods like using
multiple explainers to select diverse rationales (Liu et al., 2023a), assigning asymmetric learning
rates for the two players (Liu et al., 2023b), have also been tried. Unfortunately, these methods have
limited effectiveness against feature correlation in the input data. These aforementioned methods
are most relevant to our research, yet we are the first to consider both feature correlation and mask
correlation from a unified perspective.

3 Preliminaries

We consider the text classification task, where the input is a text sequence X=[x1, x2,⋯, xl] with xi

being the i-th token and l being the number of tokens. The label of X is a one-hot vector Y ∈ {0,1}c,
where c is the number of categories. D represents the training set. Ante-hoc rationalization consists of
an explainer fE(⋅) and a predictor fP (⋅), with θe and θp representing the parameters of the explainer
and predictor, respectively. The goal of an MMI-based explainer is to select the most indicative pieces
from the input that are related to the label.

For (X,Y ) ∼ D, the explainer first outputs a sequence of binary mask M = fE(X) = [m1,⋯,ml] ∈

{0,1}l (in practice, the explainer first outputs a Bernoulli distribution for each token and the mask for
each token is independently sampled using gumbel-softmax). Then, it forms the rationale candidate
XZ by the element-wise product of X and M :

XZ =M ⊙X = [m1x1,⋯,mlxl]. (1)
To simplify the notation, we denote fE(X) as XZ in the following sections, i.e., fE(X) = XZ .
With the generator’s selection, we get a set of (Z,Y ) pairs, which are generally considered to be
samples taken from the distribution P (Z,Y ). Then, vanilla RNP attempts to identify the rationale by
maximizing the mutual information I(Y ;XZ):

X∗Z = argmax
XZ

I(Y ;XZ) = argmax
XZ

(H(Y )−H(Y ∣XZ)) = argmin
XZ

H(Y ∣XZ), s.t. XZ = fE(X).

(2)

In practice, the entropy H(Y ∣XZ) is commonly approximated by the minimum cross-entropy
minθp Hc(Y, Ŷ ∣XZ), with Ŷ = fP (XZ) representing the output of the predictor. It is essential to
note that the minimum cross-entropy is equal to the entropy (please refer to Appendix B.3). Replacing
XZ with fE(X), the explainer and the predictor are trained cooperatively:

min
θe,θp

Hc(Y, fP (fE(X))∣fE(X)), s.t., (X,Y ) ∼ D. (3)

To make the selected rationale human-intelligible, rationalization methods usually constrain the
rationales by compact and coherent regularization terms. In this paper, we use the same constraints
used in INVRAT (Chang et al., 2020):

Ω(M) = λ1∣
∣∣M ∣∣1

l
− s∣ + λ2

l

∑
t=2
∣mt −mt−1∣. (4)

The first term encourages that the percentage of the tokens being selected as rationales is close to a
pre-defined level s. The second term encourages the rationales to be coherent.

4 Method

4.1 Motivation: how spurious correlations come into being.

In this section, we consider X as a set of variables (or a multi-dimensional variables), and the selected
rationale candidate XZ is a subset (some dimensions) of it.
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To begin with, in Figure 2(a), we posit a probabilistic graphical model to illustrate the corresponding
data-generating process for the BeerAdvocate dataset. The input X comprises comments on three
aspects: XS for Smell or Aroma, XT for Taste, and XA for Appearance, each of which can be
considered as a subset variables of X . Additionally, H signifies something that does not discuss the
sentiment tendency of X . For instance, H could include the color of a bottle. The annotators assign
the smell label YS by viewing the comments on aroma (XS Ð→ YS). Therefore, only XS serves as
the direct cause for YS . However, XS is correlated with XT due to a set of unobserved variables U
(called confounders). For example, U may include a variable indicating whether the beer originates
from a reputable brand, and a pleasant taste may imply that the beer comes from a good brand
(U Ð→ XT ). Moreover, a beer from a reputable brand is likely to have a pleasing smell (U Ð→ XS).
Consequently, XT is associated with YS via a backdoor path, as depicted by the red dotted line in
Figure 2(a). In this situation, XT is somewhat indicative of YS , but it signifies a statistical correlation
rather than causality.

U

XT XA XS

YS

H

U

XT XA XS

M-

H

YS

E

(a) feature correlation (b) mask correlation

Figure 2: A probabilistic graph for (a) the data
generating process of BeerAdvocate and (b) the
rationale (mask M ) selection process.

To have a more intuitive understanding of this
correlation, we assume a toy example where
U , XS , XT , and YS are all Bernoulli variables,
with their respective probability distributions as:
p(U = 1) = p(U = 0) = 0.5,

p(XT = 1∣U = 1) = p(XT = 0∣U = 0) = 0.9,

p(XS = 1∣U = 1) = p(XS = 0∣U = 0) = 0.9,

p(YS = 1∣XS = 1) = p(YS = 0∣XS = 0) = 0.9,
(5)

With some simple derivations, we can easily obtain (detailed derivation is in Appendix B.1):
p(XS = 1) = p(XT = 1) = p(YS = 1) = 0.5. (6)

Then, we can further get (see Appendix B.2 for the detailed derivation of Equation 8 and 9):

p(U = 1∣XT = 1) =
p(U = 1,XT = 1)

p(XT = 1)
=
p(XT = 1∣U = 1)p(U = 1)

p(XT = 1)
= 0.9. (7)

p(XS = 1∣XT = 1) = ∑
U∈{0,1}

p(XS = 1∣U)p(U ∣XT = 1) = 0.9 ∗ 0.9 + 0.1 ∗ 0.1 = 0.82. (8)

p(YS = 1∣XT = 1) = ∑
XS∈{0,1}

p(YS = 1∣XS)p(XS ∣XT = 1) = 0.82 ∗ 0.9 + 0.18 ∗ 0.1 = 0.756. (9)

Equation 8 demonstrates that XT (Taste) is highly correlated with XS (Smell), and Equation 9
indicates that XT (Taste) is also strongly indicative of YS (Smell label). This situation can result in
numerous local optima during the rationalization training process. Note that becoming trapped in
a local optimum poses a significant challenge in rationalization (Yu et al., 2021; Liu et al., 2022).
It is worth noting that the correlation between taste and smell here is merely one of the examples,
and sometimes H can also correlate with Y in a similar fashion. For instance, in LIME (Ribeiro
et al., 2016), a predictor is trained to determine whether an image contains a wolf or not based on the
presence of snow in the background.

Furthermore, the degeneration problem can also be interpreted with a kind of spurious correlation
(called mask correlation), as illustrated in Figure 2(b) with an example. Returning to the second
example in Table 1, the variable M_, denoting whether “ − ” is selected as part of the rationale
candidate, is caused by the input X (comprising subsets XA, XT , XS and H) and the explainer E.
M_ is also correlated with YS through a backdoor path, as indicated by the red line in Figure 2(b).

4.2 The conditional independent property

We first introduce an important concept in probabilistic graphical models, namely d-separation.
Subsequently, we demonstrate how d-separation contributes to the identification of causal rationales.

D-Separation (Bishop, 2006): A, B, and C denote arbitrary, non-intersecting sets of nodes (and
their union might not cover all nodes of the graph) in a given probabilistic graph. Our objective is to
determine whether a specific conditional independence statement A á B∣C is implied by this graph.
To do so, we examine all possible paths from any node in A to any node in B. A path is said to be
blocked if it includes a node o such that either (see Appendix B.4 for why such a path is blocked)
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• (a) The arrows on the path meet at node o, forming either a chain (i.e., Ð→ o Ð→) or a fork
(i.e., ←Ð oÐ→), with the node o being part of set C, or

• (b) The arrows on the path meet at node o to form a collider (i.e., Ð→ o←Ð), and neither the
node o itself nor any of its descendants are included in set C.

If all paths are blocked, then A is considered to be d-separated from B by C, meaning that A á B∣C.

Returning to our rationalization problem, the backdoor path (dotted red line) in Figure 2(a) comprises
a fork (XT ←Ð U Ð→ XS) and a chain (U Ð→ XS Ð→ YS). If either XS or U is included in
the conditioning set, the path between XS and YS becomes blocked, leading to their conditional
independence, and consequently, the eradication of corresponding feature correlation. Similarly,
the backdoor path (dotted red line) in Figure 2 (b) forms a fork (M− ←Ð XS Ð→ YS). By including
XS in the conditioning set, the path between M− and YS is blocked, resulting in their conditional
independence and consequently, the elimination of corresponding mask correlation.

We consider the general case, where the input X is a set of variables (or features). XR is a subset
of X that exclusively contains all the direct causes of the target label Y , i.e., the desiderata of the
rationale. We select a subset of X to serve as the rationale candidate (denoted as XZ), while the
remaining unselected part is referred to as X−Z . This leads us to the following properties:

Lemma 1 If X−Z and Y are d-separated by XZ , we then have that all of the direct causal features
in X must be included in XZ:

X−Z and Y are d-separated by XZ Ô⇒XR ⊂XZ . (10)

The proof is in Appendix B.5. And it’s very easy to intuitively understand it: a direct cause has a
one-hop path to the label. To block this path, this cause must be included in XZ .

Assumption 1 The label Y has no causal effect on any variables in X .

Assumption 1 is naturally valid in most real world applications due to the temporal sequence between
X and Y . We also provide some failure cases of this assumption in Appendix B.6. Assumption 1
specifies that there is no arrow pointing from Y to any nodes in X .

Lemma 2 If Assumption 1 holds, we have:

X−Z and Y are d-separated by XZ ⇐ÔXR ⊂XZ . (11)

The proof is in Appendix B.7. Combining Lemma 1 and Lemma 2, we then have:

Theorem 1 If Assumption 1 holds, then all the direct causal features to Y within X will be included
in XZ if and only if X−Z and Y are d-separated by XZ:

X−Z and Y are d-separated by XZ ⇐⇒XR ⊂XZ . (12)

Remark. In light of Theorem 1, we understand that if we aim to achieve Y á X−Z ∣XZ , we will
consequently incorporate all direct causes of Y into XZ . It should be noted that the compactness of
XZ is facilitated through the sparsity constraint expressed in Equation 4.

4.3 The proposed method

Minimum conditional dependence criterion. Although previous research tried to design various
auxiliary modules or regularizers to fix the problems of maximum mutual information criterion
(Chang et al., 2020; Yue et al., 2023; Liu et al., 2022), we do not follow them to move on this line.
Based on Theorem 1, we propose a distinct criterion for identifying the causal rationale, which
involves minimizing the dependence between Y and the unselected input X−Z , conditioned on XZ :

X∗Z = argmin
XZ

C(Y,X−Z ∣XZ), (13)

where C is a criterion for dependence. For instance, C could take the form of partial correlation
(applicable only to linear associations), mutual information, divergence, or the Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al., 2007), among others.
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Figure 3: The architecture of our proposed MCD. The
approximators for the two distributions are shared to re-
duce the model complexity (this trick is not necessary).

It then leads to the question of how we
can apply this criterion in practice. In this
study, we only present a straightforward
and practical method to validate our asser-
tion with respect to Theorem 1, leaving the
exploration of other measurements for fu-
ture work. We first rewrite Y á X−Z ∣XZ

as
P (Y ∣XZ) = P (Y ∣XZ ,X−Z) = P (Y ∣X).

(14)
Obviously, P (Y ∣XZ) = P (Y ∣X) if and only if the divergence between the two distributions is zero:

Y áX−Z ∣XZ ⇐⇒ P (Y ∣XZ) = P (Y ∣X) ⇐⇒ DKL(P (Y ∣X)∣∣P (Y ∣XZ)) = 0. (15)

Estimating divergence through approximation. The real distributions of P (Y ∣XZ) and P (Y ∣X)
are not directly accessible. So we need further efforts to approximate them. We try to approximate
them by making use of the predictor. We first approximate P (Y ∣XZ) with P (ŶZ ∣XZ) by minimizing
the cross-entropy Hc(Y, ŶZ ∣XZ), and we also approximate P (Y ∣X) with P (ŶX ∣X) by minimizing
Hc(Y, ŶX ∣X), where ŶZ , ŶX are the predictor’s outputs with the inputs being Z and X , respectively.

Thus, the training process for our MCD is depicted in Figure 3: the explainer first generates a rationale
candidate XZ from the input X . Subsequently, XZ and X are fed into the predictor to obtain two
distributions, P (ŶZ ∣XZ) and P (ŶX ∣X). By replacing XZ with fE(X) and Ŷ with fP (⋅), the
overall objective of our model becomes (The pytorch implementation is in Appendix A.2):

min
θp

E(X,Y )∼D[Hc(Y, ŶZ ∣XZ) +Hc(Y, ŶX ∣X)]

+min
θe

E(X,Y )∼D[DKL(P (ŶX ∣X)∣∣P (ŶZ ∣XZ)) +Ω(M)],

s.t., XZ = fE(X), P (ŶX ∣X) = fP (X), P (ŶZ ∣XZ) = fP (XZ).

(16)

Notably, although the first term Hc(Y, ŶZ ∣XZ) is similar to the one used in Equation 3, it is detached
from the explainer’s parameters θe. It is now only used to help the predictor approximate the real
distribution P (Y ∣XZ) rather than to guide the explainer to find a good rationale.

5 Experiments

5.1 Datasets and metrics

Datasets 1) BeerAdvocate (McAuley et al., 2012) is a multi-aspect sentiment prediction dataset
widely adopted in rationalization studies. Given the high correlation among the rating scores of
different aspects within the same review, rationale selection encounters severe feature correlation
challenges. Following INVRAT (Chang et al., 2020) and Inter_RAT (Yue et al., 2023), we utilize
the original dataset (which we refer to as correlated BeerAdvocate) to verify MCD’s effectiveness in
handling both feature correlation and mask correlation simultaneously. 2) HotelReviews (Wang et al.,
2010) is another multi-aspect sentiment classification dataset containing less feature correlation, which
is used by the latest SOTA method FR (Liu et al., 2022) to evaluate the effectiveness of addressing
degeneration. We utilize the Service aspect to further demonstrate the competitive edge of our MCD.
Among these datasets, each aspect itself can be seen as a dataset and is trained independently.

Metrics. Considering that the annotators assign the label of the target aspect by observing the causal
features, the overlap between the tokens selected by the model and those annotated by humans
provides a robust metric for rationale causality. The terms P,R,F1 denote precision, recall, and
F1 score respectively. These metrics are the most frequently used in rationalization. The term S
represents the average sparsity of the selected rationales, that is, the percentage of selected tokens in
relation to the full text. Acc stands for the predictive accuracy.

5.2 Baselines and implementation details

We compare with various recent MMI-based methods that are highly relevant to our study. These
include methods like INVRAT (Chang et al., 2020) and Inter_RAT (Yue et al., 2023), which are
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Table 2: Results on correlated BeerAdvocate. Each aspect is trained independently. “ ∗ ”: results
obtained from Inter_RAT (Yue et al., 2023). The second best F1 scores are underlined.

Methods Appearance Aroma Palate
S Acc P R F1 S Acc P R F1 S Acc P R F1

RNP∗ 10.0 - 32.4 18.6 23.6 10.0 - 44.8 32.4 37.6 10.0 - 24.6 23.5 24.0
INVRAT∗ 10.0 - 42.6 31.5 36.2 10.0 - 41.2 39.1 40.1 10.0 - 34.9 45.6 39.5
Inter-RAT∗ 11.7 - 66.0 46.5 54.6 11.7 - 55.4 47.5 51.1 12.6 - 34.6 48.2 40.2

FR 11.1 75.8 70.4 42.0 52.6 9.7 87.7 68.1 42.2 52.1 11.7 87.9 43.7 40.9 42.3
MCD(ours) 9.5 81.5 94.2 48.4 63.9 9.9 87.5 84.6 53.9 65.8 9.4 87.3 60.9 47.1 53.1

RNP∗ 20.0 - 39.4 44.9 42.0 20.0 - 37.5 51.9 43.5 20.0 - 21.6 38.9 27.8
INVRAT∗ 20.0 - 58.9 67.2 62.8 20.0 - 29.3 52.1 37.5 20.0 - 24.0 55.2 33.5
Inter-RAT∗ 21.7 - 62.0 76.7 68.6 20.4 - 44.2 65.4 52.8 20.8 - 26.3 59.1 36.4

FR 20.9 84.6 74.9 84.9 79.6 19.5 89.3 58.7 73.3 65.2 20.2 88.2 36.6 59.4 45.3
MCD(ours) 20.0 85.5 79.3 85.5 82.3 19.3 88.4 65.8 81.4 72.8 19.6 87.7 41.3 65.0 50.5

RNP∗ 30.0 - 24.2 41.2 30.5 30.0 - 27.1 55.7 36.4 30.0 - 15.4 42.2 22.6
INVRAT∗ 30.0 - 41.5 74.8 53.4 30.0 - 22.8 65.1 33.8 30.0 - 20.9 71.6 32.3
Inter-RAT∗ 30.5 - 48.1 82.7 60.8 29.4 - 37.9 72.0 49.6 30.4 - 21.8 66.1 32.8

FR 29.6 86.4 50.6 81.4 62.3 30.8 88.1 37.4 75.0 49.9 30.1 87.0 24.5 58.8 34.6
MCD(ours) 29.7 86.7 59.6 95.6 73.4 29.6 90.2 46.1 87.5 60.4 29.4 87.0 30.5 72.4 42.9

focused on addressing feature correlation, as well as methods such as FR (Liu et al., 2022) that aim to
mitigate mask correlation (i.e., degeneration). Among these, FR represents the latest SOTA approach
in addressing mask correlation, while Inter_RAT stands as the SOTA in handling feature correlation.

Both the explainer and the predictor are composed of an encoder (which can be an RNN or Trans-
former) and a linear layer. Some of the baseline methods have not provided runnable source codes.
To ensure a fair comparison, we keep the major settings consistent with those of the baselines, which
are commonly utilized in the field of rationalization (Chang et al., 2020; Yu et al., 2021; Liu et al.,
2022; Yue et al., 2023). Specifically, we employ the 100-dimensional GloVe (Pennington et al., 2014)
for word embedding and 200-dimensional GRUs (Cho et al., 2014) to obtain text representation.
The re-parameterization trick for binarized selection is Gumbel-softmax (Jang et al., 2017). The
hyperparameters of the reimplemented baselines are initialized with the values reported in their source
codes, and are then manually tuned multiple times to determine the optimal settings. We do not use
BERT (Devlin et al., 2019) in the main experiments because some recent research (Chen et al., 2022;
Liu et al., 2022; Zhang et al., 2022) has found it to be a challenging task to fine-tune large pretrained
models within the rationalization framework (see Appendix A.4 for more discussion). However, as a
supplement, we also conduct experiments with two pretrained models, ELECTRA (Clark et al., 2020)
and BERT. The optimizer is Adam (Kingma and Ba, 2015). All models are trained on a RTX3090
GPU. More details are in Appendix A.1.

5.3 Results

Table 3: Results on HotelReview. “*”: results
obtained from FR (Liu et al., 2022).

Methods S Acc P R F1
RNP* 11.0 97.5 34.2 32.9 33.5
DMR* 11.6 - 43.0 43.6 43.3
A2R* 11.4 96.5 37.3 37.2 37.2
FR* 11.5 94.5 44.8 44.7 44.8

MCD(ours) 11.8 97.0 47.0 48.6 47.8

Comparison with SOTA Methods. Table 2 shows
the results on correlated BeerAdvocate with the ratio-
nale sparsity being about 10%, 20%, and 30%. We
set the sparsity to be similar to previous methods by
adjusting the sparsity regularization term (i.e., s) in
Equation 4. Compared to MMI-based methods, we
gain significant improvements across all three aspects
and three different sparsity. In particular, we improve
the F1 score by more then 10% as compared to the previous SOTA in three settings: in the Aroma
aspect with S ≈ 10, the Palate aspect with S ≈ 10, and the Appearance aspect with S ≈ 30. We show
an visualized example of the selected rationales in Figure 4. Since our MCD criterion (Equation 13)
is not limited to a specific measurement of dependence, we also conduct experiments by replacing
KL-divergence with JS-divergence, and the results are in Appendix A.5. Table 3 shows the results on
another dataset also used in FR, where DMR (Huang et al., 2021) and A2R (Yu et al., 2021) are two
recent MMI-based methods. For this dataset, we follow FR to set the sparsity similar to that of the
human-annonated rationales. On this dataset, we still beat all the MMI-based methods. We also show
the time efficiency in Appendix A.6.

Inducing mask correlation with skewed explainer. In order to evaluate scenarios where feature
correlation is not severe and our primary concern is mask correlation, we follow FR’s approach to
conduct experiments in a synthetic setting where the explainer is specifically initialized to induce
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Table 4: Results of skewed explainer that induces degeneration (i.e., mask correlation) in the Palate
aspect of BeerAdvocate. “ ∗ ”: results obtained from the paper of FR.

Setting RNP* FR* MCD(ours)
Pre_acc S Acc R R F1 Pre_acc S Acc P R F1 Pre_acc S Acc P R F1

skew65.0 66.6 14.0 83.9 40.3 45.4 42.7 66.3 14.2 81.5 59.5 67.9 63.4 66.3 12.9 84.6 61.6 63.7 62.6
skew70.0 71.3 14.7 84.1 10.0 11.7 10.8 70.8 14.1 88.3 54.7 62.1 58.1 70.2 13.5 81.1 59.0 64.0 61.4
skew75.0 75.5 14.7 87.6 8.1 9.6 8.8 75.6 13.1 84.8 49.7 52.2 51.0 75.3 13.4 84.2 61.3 65.1 63.1

Table 5: Results of methods using pretrained ELECTRA as the encoder.
Methods Appearance Aroma Plate

S Acc P R F1 S Acc P R F1 S Acc P R F1
FR-ELECTRA 16.3 86.5 19.1 17.0 18.0 14.8 85.9 58.6 54.8 56.7 11.2 78.0 12.0 10.7 11.3

MCD-ELECTRA 18.5 90.0 84.8 85.6 85.2 14.5 86.6 86.2 78.7 82.3 12.1 85.0 63.0 60.3 61.6

mask correlation, also referred to as degeneration. The details of the initialization can be found in
Appendix A.3. Following FR, we utilize the Palate aspect of decorrelated BeerAdvocate dataset (a
subset of the original BeerAdvocate that has been filtered by Lei et al. (2016)). This subset contains
less feature correlation compared to the original dataset. The results are presented in Table 4, where
skewk and Pre_acc indicates the degree of mask correlation. In this situation, the vanilla RNP fails
to identify the causal rationales, and FR is also significantly impacted when the degree of mask
correlation is high. Our MCD is much less affected, demonstrating its robustness in such scenarios.

Table 6: The F1 scores of models trained
with different encoders. “*”: results ob-
tained from (Chen et al., 2022). “**”:
results obtained from FR. The dataset is
decorrelated Beer-Appearance.

Method GRU ELECTRA BERT
VIB* - - 20.5

SPECTRA* - - 28.6
RNP** 72.3 13.7 14.7
FR** 82.8 14.6 29.8

MCD(ours) 80.1 85.2 87.1

Experiments with pretrained language models. In the
field of rationalization, researchers generally focus on
frameworks of the models and the methodology rather than
engineering SOTA. The methods most related to our work
do not use BERT or other pre-trained encoders (Chang
et al., 2020; Yu et al., 2021; Liu et al., 2022; Yue et al.,
2023). Experiments in some recent work (Chen et al.,
2022; Liu et al., 2022) suggest that there are some unfore-
seen obstacles making it hard to finetune large pretrained
models within the rationalization framework. For example,
Table 6 shows that two improved rationalization methods (VIB (Paranjape et al., 2020) and SPECTRA
(Guerreiro and Martins, 2021)) and the latest published FR all fail to find the informative rationales
when replacing GRUs with pretrained BERT. To eliminate potential factors that could lead to an
unfair comparison, we adopt the most widely used GRUs as the encoders in our main experiments,
which can help us focus more on substantiating our claims themselves, rather than unknown tricks.
But to show the competitiveness of our MCD, we also provide some experiments with pretrained
language models as the supplement. Due to limited GPU resources, we adopt the relatively small
ELECTRA-small in all three aspects of BeerAdvocate and the relatively large BERT-base in the
Appearance aspect. We compare our MCD with the latest SOTA FR (Liu et al., 2022). We follow FR
to set the sparsity similar to human-annotated rationales. More details are in Appendix A.4.

The results with BERT are shown in Table 6 and results with ELECTRA are shown in Table 5. We
see that our method can greatly benefit from pretrained models. In fact, recent research has found
that finetuning large pretrained models can be easily affected by overfitting (Zhang et al., 2021), and
spurious correlations can exacerbate this overfitting, particularly in larger models (Zhou et al., 2022;
Lin et al., 2022a), which somewhat explains the great progress achieved by our MCD.

6 Conclusion, future work, and limitations

In this study, we first illustrate the two primary issues of feature correlation and degeneration in MMI-
based rationalization under a unified causal perspective. Subsequently, we uncover the conditional
independence relationship between the target label and non-causal and causal features. Based on this
observation, we propose a criterion of minimizing conditional dependence to concurrently address
the two aforementioned problems.

Given the versatility of the self-explaining rationalization framework, our proposed methods show
significant potential for application across diverse fields such as computer vision and graph learning.
Additionally, with the recent remarkable success of large language models (LLMs), exploring how
our MCD can aid in training trustworthy LLMs is another avenue worth pursuing.
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Label (aroma aspect): Positive. 

Prediction: Positive.

Input: got this one on tap at kelly 's olympian in portland . 

lighting made the colour difficult to ascertain , but i would be 

surprised if it were n't a very dark brown . came with a good 

head which stuck around , adding to the feel of the pint . i 'm 

useless on the sniff test in these smoky bars , so all i could 

distinguish was a malty cherry whiff . felt very smooth and 

went down very easily . was sweeter and more syrupy than i

would expect an english brown ale to be . the smell did prove 

indicative of the initial taste , although where i expected it to 

give way to a somewhat hoppy finish , a thankfully subtle 

coffee flavour kicked in instead . i detest coffee , but this was 

subtle enough to be tolerable .
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Label (aroma aspect): Positive. 

Prediction: Positive.

Input: got this one on tap at kelly 's olympian in portland . 

lighting made the colour difficult to ascertain , but i would be 

surprised if it were n't a very dark brown . came with a good 

head which stuck around , adding to the feel of the pint . i 'm 

useless on the sniff test in these smoky bars , so all i could 

distinguish was a malty cherry whiff . felt very smooth and 

went down very easily . was sweeter and more syrupy than i

would expect an english brown ale to be . the smell did prove 
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give way to a somewhat hoppy finish , a thankfully subtle 

coffee flavour kicked in instead . i detest coffee , but this was 

subtle enough to be tolerable .

(d) MCD

Figure 4: An example of selected rationales in the Aroma aspect of BeerAdvocate. The sparsity is set
to be about 10%. The underlined texts are human-annotated rationales. (a): RNP selects palate only.
(b): Inter_RAT selects aroma but also palate (“felt very smooth”). (c): FR is similar to Inter_RAT.
(d): MCD selects aroma only.

A potential limitation is that, similar to IRM-based methods, our primary focus is on identifying
rationales with causal effects, rather than quantitatively computing the precise values of these causal
effects. Although quantifying causality often relies on strong assumptions, this quantification may be a
desideratum for certain applications. We aim to explore this direction in future work to accommodate
a wider range of applications. Another limitation is that we focus on the text classification task.
Different tasks may have very different causal structures. Thus, how to extend this method to
other tasks is also a challenge that needs to be explored. The third limitation is that the obstacles in
utilizing powerful pretrained language models under the rationalization framework remain mysterious.
Although we have made some progress in this direction, we have to say that the empirical results
with pretrained models are very sensitive to hyperparameter tuning. A recent paper has also shown
that very small changes in hyperparameters can lead to significant differences in results (see Remark
6.1 and Appendix G.2 in (Zhang et al., 2023)). To avoid being distracted by irrelevant factors, until
this issue is resolved, we call for research papers to use small models to better verify their claims.
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Table 7: Statistics of datasets used in this paper. *: the decorrelated BeerAdvocate.

Datasets Train Dev Annotation
Pos Neg Pos Neg Pos Neg Sparsity

Beer
Appearance 202385 12897 28488 1318 923 13 18.5
Aroma 172299 30564 24494 3396 848 29 15.6
Palate 176038 27639 24837 3203 785 20 12.4

Beer*
Appearance 16891 16891 6628 2103 923 13 18.5
Aroma 15169 15169 6579 2218 848 29 15.6
Palate 13652 13652 6740 2000 785 20 12.4

Hotel
Location 7236 7236 906 906 104 96 8.5
Service 50742 50742 6344 6344 101 99 11.5
Cleanliness 75049 75049 9382 9382 99 101 8.9

A More Results

A.1 More implementation details

To the best of our knowledge, both datasets are sufficiently anonymized to make identification
of individuals impossible without significant effort. Both datasets are in English. For correlated
BeerAdvocate, we preprocess the data in the same way as Inter_RAT (Yue et al., 2023). For Hotel
Reviews, we preprocess them in the same way as FR (Liu et al., 2022). The maximum text length is
set to 256. More statistics of the datasets are in Table 7. The dataset of BeerAdvocate is unbalanced.
For the training data, we sample from the positive data to get same number of positive and negative
texts.

In practice, the approximators for the two distributions are shared to reduce model complexity
(Figure 3). But this trick is not necessary, if two separate nets are used to approximate the two
distributions, the performance can sometimes be even better.

Some previous methods needs very careful hyper-parameter tuning. To make fair comparisons, most
results of the baselines are copied from previous papers.

The early stopping technique is conducted according to the predictive accuracy of the development
set.

For BeerAdvocate, we use a learning rate of 0.0001 and a batchsize of 128 for our MCD. For
HotelReview, we use a learning rate of 0.0001 and a batchsize of 256.

We report the average results of our MDC by running it with five different random seeds.

A.2 Pytorch implementation of Equation 16

For a batch of (X,Y ), we first send X to the explainer to get XZ :

XZ = fe(X). (17)

Then we get a copy of XZ with the pytorch function “torch.detach()”:

X ′Z = torch.detach(XZ). (18)

Then, we get ŶX and Ŷ ′Z :
ŶX = fp(X),

Ŷ ′Z = fp(X
′
Z).

(19)

Then we update the predictor with

min
θp
[torch.nn.functional.cross_entropy(Ŷ ′Z , Y )+ torch.nn.functional.cross_entropy(ŶX , Y )], (20)

which is the first part of Equation 16. At the same time, we update the explainer with Equation 4.
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Now, we deal with the second part of Equation 16. We first freeze the predictor’s parameters and get
XZ again:

XZ = fe(X). (21)

We now do not copy XZ . Instead, we directly get ŶX and ŶZ :

ŶX = fp(X),

ŶZ = fp(XZ).
(22)

Then we update the explainer with

min
θe

F.kl_div(F.softmax(ŶZ).log(),F.softmax(ŶX)), (23)

where “F” denotes “nn.functional”. In practice, we have added Equation 4 to 23.

Now, an update round for Equation 16 is completed, and we repeat the above steps again.

A.3 Details of the skewed explainer

We pretrain the explainer separately using the text classification label as the mask label of the first
token. In other words, for texts of class 1, we force the explainer to select the first token, and for texts
of class 0, we force the explainer not to select the first token. So, the explainer learns the category
implicitly by whether the first token is chosen and the predictor only needs to learn this position
information to make a correct prediction.

k in “skewk” denotes the threshold of the skew: we pretrain the explainer as a special classifier of
the first token for a few epochs until its prediction accuracy is higher than k. Since the accuracy
increases rapidly in the first a few epochs, obtaining a model that precisely achieves the pre-defined
accuracy is almost impossible. So, we use “Pre_acc” to denote the actual prediction accuracy of
the explainer-classifier when the pre-training process stops. Higher “Pre_acc” means easier to
degenerate.

A.4 Discussion on BERT encoder

Table 8: Results with BERT. VIB: Paranjape et al.
(2020), SPECTRA: Guerreiro and Martins (2021).
The results are from Table 4 of (Chen et al., 2022).
The metric is F1 score.

Methods Beer-Appearance Hotel-Cleanliness
VIB 20.5 23.5

SPECTRA 28.6 19.5

In the field of rationalization, researchers gener-
ally focus on frameworks of the models and the
methodology. Methods most related to our work
do not use Bert or other pre-trained encoders
(Chang et al., 2020; Huang et al., 2021; Yu et al.,
2019, 2021; Yue et al., 2023). We use GRUs and
GloVe to ensure the same experimental setup as
our baselines for a fair comparison.

More importantly, how to finetune large models on the rationalization framework is still a significant
challenge. Some recent studies (Chen et al., 2022) show that the methods with BERT encoders
perform much worse than those with simple GRUs on BeerAdvocate and HotelReviews, which is
shown in Table 8. VIB and SPECTRA are two RNP-based models. When using BERT, these two
methods perform much worse than the vanilla RNP with GRUs. Table 9 shows the results of a recent
workshop paper CR (Zhang et al., 2022), which are also much worse than those with GRUs.

Table 9: The F1 scores of CR (Zhang et al., 2022)
with pretrained BERT on BeerAdvocate. The re-
sults are from Table 1 of (Zhang et al., 2022).

Method Appearance Aroma Palate
CR 27.4 39.0 22.6

We also conduct experiments with pretrained
language models and compare with previous
methods. As previous methods are not designed
to address feature correlations in the original
dataset, they typically utilize the decorrelated
BeerAdvocate) dataset where feature correlation
is manually filtered by Lei et al. (2016), focusing mainly on mask correlation. Following previous
methods (Chen et al., 2022; Liu et al., 2022; Zhang et al., 2022), we use the decorrelated BeerAdvocate
dataset. And we set the rationale sparsity to be similar to that of human-annotated rationales. The
results are in Table 6 and Table 5.

A.5 Experiments with JS-divergence
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Table 10: Results on correlated BeerAdvocate. Each aspect is trained independently. “ ∗ ”: results
obtained from Inter_RAT (Yue et al., 2023). The second best F1 scores are underlined.

Methods Appearance Aroma Palate
S Acc P R F1 S Acc P R F1 S Acc P R F1

RNP∗ 10.0 - 32.4 18.6 23.6 10.0 - 44.8 32.4 37.6 10.0 - 24.6 23.5 24.0
INVRAT∗ 10.0 - 42.6 31.5 36.2 10.0 - 41.2 39.1 40.1 10.0 - 34.9 45.6 39.5
Inter-RAT∗ 11.7 - 66.0 46.5 54.6 11.7 - 55.4 47.5 51.1 12.6 - 34.6 48.2 40.2

FR 11.1 75.8 70.4 42.0 52.6 9.7 87.7 68.1 42.2 52.1 11.7 87.9 43.7 40.9 42.3
MCD-KL 9.5 79.7 94.2 48.4 63.9 9.9 87.5 84.6 53.9 65.8 9.4 87.3 60.9 47.1 53.1
MCD-JS 9.7 80.1 95.7 50.2 65.9 10.0 86.1 79.8 51.0 62.2 10.9 85.6 62.1 54.4 58.0

RNP∗ 20.0 - 39.4 44.9 42.0 20.0 - 37.5 51.9 43.5 20.0 - 21.6 38.9 27.8
INVRAT∗ 20.0 - 58.9 67.2 62.8 20.0 - 29.3 52.1 37.5 20.0 - 24.0 55.2 33.5
Inter-RAT∗ 21.7 - 62.0 76.7 68.6 20.4 - 44.2 65.4 52.8 20.8 - 26.3 59.1 36.4

FR 20.9 84.6 74.9 84.9 79.6 19.5 89.3 58.7 73.3 65.2 20.2 88.2 36.6 59.4 45.3
MCD-KL 20.0 85.5 79.3 85.5 82.3 19.3 88.4 65.8 81.4 72.8 19.6 87.7 41.3 65.0 50.5
MCD-JS 19.9 80.8 77.7 83.4 80.5 18.8 87.2 60.5 73.1 66.2 20.2 86.0 42.3 68.5 52.3

RNP∗ 30.0 - 24.2 41.2 30.5 30.0 - 27.1 55.7 36.4 30.0 - 15.4 42.2 22.6
INVRAT∗ 30.0 - 41.5 74.8 53.4 30.0 - 22.8 65.1 33.8 30.0 - 20.9 71.6 32.3
Inter-RAT∗ 30.5 - 48.1 82.7 60.8 29.4 - 37.9 72.0 49.6 30.4 - 21.8 66.1 32.8

FR 29.6 86.4 50.6 81.4 62.3 30.8 88.1 37.4 75.0 49.9 30.1 87.0 24.5 58.8 34.6
MCD-KL 29.7 86.7 59.6 95.6 73.4 29.6 90.2 46.1 87.5 60.4 29.4 87.0 30.5 72.4 42.9
MCD-JS 29.0 89.6 60.2 94.4 73.5 28.7 86.2 47.3 87.0 61.3 27.6 84.5 26.9 59.7 37.1
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Figure 5: A comparison of convergence speed be-
tween our MCD and the latest MMI-based SOTA
FR.

Since our MCD criterion (Equation 13) is not
limited to a specific measurement of depen-
dence, we also conduct experiments by replac-
ing KL-divergence with JS-divergence. The re-
sults are in Table 10. With either KL-divergence
or JS-divergence, our MCD criterion always
beat all the MMI-based baselines, showing the
effectiveness of MCD.

A.6 Time efficiency

By avoiding many local optima, our MCD can converge much faster than MMI-based methods.
Figure 5 shows a comparison of convergence speed between our MCD and the latest MMI-based
SOTA FR on Beer-Appearance and Beer-Aroma with S ≈ 20, where FR and MCD get the similar F1,
and they use the same learning rate (0.0001) and batchsize (128).

B Proofs

B.1 Derivation of Equation 6

We use XS as an example, and the others are nothing different.
p(XS = 1) = ∑

U∈{0,1}
p(XS = 1, U) = ∑

U∈{0,1}
p(XS = 1∣U)p(U) = 0.9 ∗ 0.5 + 0.1 ∗ 0.5 = 0.5. (24)

B.2 Derivation of Equation 8 and 9

In Figure 2(a), we have XT áXS ∣U and XT á YS ∣XS (please refer to Appendix B.4). That is to say,
P (XS ∣U,XT ) = P (XS ∣U), P (YS ∣XS ,XT ) = P (YS ∣XS). (25)

Then we can easily get Equation 8:

p(XS = 1∣XT = 1) = ∑
U∈{0,1}

p(XS = 1, U ∣XT = 1)

= ∑
U∈{0,1}

p(XS = 1∣U,XT = 1)p(U ∣XT = 1)

= ∑
U∈{0,1}

p(XS = 1∣U)p(U ∣XT = 1).

(26)

And Equation 9 is similar.
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B.3 The relation between entropy and cross-entropy

It is a basic idea in information theory that the entropy of a distribution P is upper bounded by the
cross entropy of using Q to approximate it. For any two distribution P and Q, we have

Hc(P,Q) =H(P ) +DKL(P ∣∣Q) ≥H(P ), (27)

where the subscript c in Hc(P,Q) stands for cross-entropy.

We know that we get the minimum cross entropy when Q is the same as P , i.e., DKL(P ∣∣Q) = 0.
Which means

minHc(P,Q) =H(P ). (28)

B.4 Conditional independence in a probabilistic graph

A

B

C

D

E

Figure 6: A probabilistic graph that con-
tains a fork, a chain, and a collider.

In the probabilistic graph depicted in Figure 6, we have
that A á C ∣B, B áD∣C, and C á E (but note that we do
not have C á E∣D). This property is fundamental in prob-
abilistic graphical models. The proof is straightforward,
and we illustrate it using A á C ∣B as an example.

Based on the general principle of the chain rule, we can
have

P (A,B,C) =P (C ∣A,B)P (A,B)

=P (C ∣A,B)P (A∣B)P (B).
(29)

Based on the graph structure in Figure 6, we have

P (A,B,C) = P (B)P (A∣B)P (C ∣B) (30)

Combining Equation 29 and 30, we get

P (C ∣B) = P (C ∣A,B), (31)

which means A á C ∣B.

If you are seeking a more intuitive understanding of blocked path, please refer to a concept called
“Bayes ball” (Jordan, 2003).

B.5 Proof of Lemma 1

To prove this, we employ a proof by contradiction. We initially assume that XC is a variable in XR

and XC ∉XZ . Given that XC ∈XR, we deduce that XC exerts a direct causal influence on Y , i.e.,
there exists a path XC Ð→ Y :

XC ∈XR Ô⇒XC Ð→ Y.

Furthermore, since XC ∉XZ , we ascertain that XC ∈X−Z . Consequently, we understand that X−Z
and Y are not d-separated by XZ due to an unblocked path XC Ð→ Y .

With this, we complete the proof of Lemma 1.

B.6 Failure cases of Assumption 1

As far as we know, most of the real-world datasets are built in a collecting-annotating form. In
such a form, Y is given according to X , and the annotators won’t edit X after giving Y . So,
Assumption 1 holds. But there are also some cases that might break Assumption 1. One is the
synthetic data like ColorMinist. In ColorMinist, a human first annotates an image, and then edits
the image again according to the assigned label. Another scenario is the collection of time series
data, where annotators label the data based on existing information and then adjust the data collection
method according to the previous labels. This creates a cyclic causal graph. However, in the literature
of causal inference, most researchers only consider acyclic graphs. We note that in cases where
Assumption 1 doesn’t hold, we still have Lemma 1, i.e., D-separation severs as a sufficient condition
for selecting causal rationales. When Assumption 1 holds, it becomes a necessary and sufficient
condition.
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B.7 Proof of Lemma 2

To prove it, we employ a proof by contradiction. We first assume a variable XC ∈X−Z , and XC is
associated with Y conditioned on XZ . To achieve the association, there must be a path in either of
the following two forms. The first form is

XC⋯oÐ→ Y, s.t. o ∉XZ , (32)

where “⋯” denotes some arbitrary arrows and nodes, and o is a intermediate node. o ∉XZ is from
that if o ∈XZ , the path will be blocked by XZ .

Since o is a direct cause of Y , we have o ∈XR. Since XR ⊂XZ , but we have o ∉XZ , so this form of
paths do not exist.

The second form is
XC⋯Ð→ o←Ð o1 ←Ð ⋯on ←Ð Y, s.t. o ∈XZ , (33)

where o1⋯on are some nodes connected by left arrows, we do not discuss these nodes since discussing
o is enough for our proof.

This path is unblocked through a collider. Note that the way to unblock a collider path is to condition
on it, so we need to have o ∈ XZ . However, in this case, Y has a causal effect on o, which breaks
Assumption 1. So, this form of paths do not exist as well.

As a result, there is no variable in X−Z can be associated with Y conditioned on XZ . The proof of
Lemma 2 is completed.
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