
Supplementary Material for444

SOSP: Efficiently Capturing Global Correlations by445

Second-Order Structured Pruning446

A Additional Data and Experiments447

A.1 Results for Medium Pruning Rates for Comparing Global Pruning Methods448

Table 3: Comparison of SOSP to other global pruning methods for moderate pruning rates. The
setting is exactly the same as in Tab. 1. For final accuracies after fine-tuning see App. A.3. * denotes
the baseline model.

Dataset Cifar10 Cifar100

Method Test acc. Reduct. in Reduct. in Test acc. Reduct. in Reduct. in
(%) weights (%) MACs (%) (%) weights (%) MACs (%)

VGG-Net* 94.18 - - 73.45 - -
NN Slimming 92.84 80.07 42.65 71.89 74.60 38.33
NN Slim. +L1 93.79 83.45 49.23 72.78 76.53 39.92
C-OBD 94.04 ± 0.12 82.01 ± 0.44 38.18 ± 0.45 72.23 ± 0.15 77.03 ± 0.05 33.70 ± 0.04
EigenDamage 93.98 ± 0.06 78.18 ± 0.12 37.13 ± 0.41 72.90 ± 0.06 76.64 ± 0.12 37.40 ± 0.11
SOSP-I (ours) 93.99 ± 0.17 85.75 ± 0.74 45.96 ± 4.29 73.17 ± 0.11 82.68 ± 0.04 44.87 ± 0.61
SOSP-H (ours) 93.73 ± 0.16 87.29 ± 0.21 57.74 ± 2.57 73.11 ± 0.19 79.20 ± 0.35 51.61 ± 0.98
ResNet-32* 95.30 - - 76.8 - -
C-OBD 95.11 ± 0.10 70.36 ± 0.39 66.18 ± 0.46 75.70 ± 0.31 66.68 ± 0.25 67.53 ± 0.25
EigenDamage 95.17 ± 0.12 71.99 ± 0.13 70.25 ± 0.24 75.51 ± 0.11 69.80 ± 0.11 71.62 ± 0.21
SOSP-I (ours) 95.06 ± 0.07 72.33 ± 0.50 67.36 ± 0.80 75.33 ± 0.11 63.83 ± 0.17 74.28 ± 0.08
SOSP-H (ours) 95.22 ± 0.12 72.85 ± 0.40 67.85 ± 0.37 75.52 ± 0.20 69.31 ± 0.36 71.60 ± 0.38
DenseNet-40* 94.58 - - 74.11 - -
NN Slim. + L1 94.32 35.52 - 73.76 35.45 -
SOSP-I (ours) 94.42 ± 0.03 32.21 ± 0.16 22.03 ± 0.13 73.46 ± 0.05 31.38 ± 0.09 29.98 ± 0.55
SOSP-H (ours) 94.41 ± 0.12 34.78 ± 0.67 26.14 ± 0.13 73.60 ± 0.17 34.15 ± 0.13 28.23 ± 0.09

A.2 Comparison of Accuracies Achieved by SOSP-I with and without Cross-Structure449

Correlations450

0.6 0.8
Pruned Structures (in %)

91

92

93

94

95

ResNet-32

1 2 3
parameters (106)

91

92

93

94

95

ac
cu

ra
cy

ResNet-32

SOSP without correlations
SOSP with correlations

0.6 0.8
Pruned Structures (in %)

90

91

92

93

94

VGG-Net

0 2 4
parameters (106)

90

91

92

93

94

VGG-Neta) b) c) d)

Figure 5: Comparison of the accuracies achieved by vanilla SOSP-I and a variation of SOSP-I, where
all off-diagonal terms of the Hessian are set to zero, for ResNet-56 and DenseNet-40 on Cifar10. The
results on both networks suggest that cross-structure correlations can significantly improve pruning
performance.

13

A.3 Mean and Standard Deviation of Final Accuracies for the Global Pruning Comparison451

Table 4: Mean and standard deviation of the final accuracies after the full fine-tuning step of both
SOSP methods on CIFAR10 and CIFAR100 for VGG-Net, ResNet32 and Densenet40.

Dataset CIFAR10 CIFAR100
Pruning Ratio moderate high moderate high

Method Test Reduction in Reduction in Test Reduction in Reduction in Test Reduction in Reduction in Test Reduction in Reduction in
acc (%) weights (%) MACs (%) acc (%) weights (%) MACs (%) acc (%) weights (%) MACs (%) acc (%) weights (%) MACs (%)

VGG-Net(Baseline) 94.18 - - - - - 73.45 - - - - -
SOSP-I 93.88 ± 0.21 85.75 ± 0.74 45.96 ± 4.29 92.53 ± 0.13 97.79 ± 0.02 83.52 ± 0.29 72.93 ± 0.28 82.68 ± 0.04 44.87 ± 0.61 63.87 ± 0.06 97.83 ± 0.04 87.02 ± 0.20
SOSP-H 93.65 ± 0.16 87.29 ± 0.21 57.74 ± 2.57 92.59 ± 0.19 97.81 ± 0.01 86.32 ± 0.29 72.94 ± 0.28 79.20 ± 0.35 51.61 ± 0.98 64.24 ± 0.55 97.81 ± 0.01 86.32 ± 0.29
ResNet-32(Baseline) 95.30 - - - - - 76.8 - - - - -
SOSP-I 94.96 ± 0.08 72.33 ± 0.50 67.36 ± 0.80 92.19 ± 0.07 95.47 ± 0.33 94.07 ± 0.66 75.10 ± 0.10 63.83 ± 0.17 74.28 ± 0.08 65.97 ± 0.52 92.69 ± 0.07 95.63 ± 0.13
SOSP-H 95.17 ± 0.12 72.85 ± 0.40 67.85 ± 0.37 91.97 ± 0.04 95.26 ± 0.10 94.45 ± 0.40 75.39 ± 0.27 69.31 ± 0.36 71.60 ± 0.38 67.37 ± 0.26 94.08 ± 0.21 95.06 ± 0.14
Pruning Ratio moderate high moderate high
DenseNet-40(Baseline) 94.58 - - - - - 74.11 - - - - -
SOSP-I 94.29 ± 0.04 32.21 ± 0.16 22.03 ± 0.13 94.07 ± 0.07 47.00 ± 0.10 36.35 ± 0.12 72.47 ± 0.47 31.38 ± 0.09 29.98 ± 0.55 72.10 ± 0.10 45.22 ± 0.10 42.05 ± 1.16
SOSP-H 94.28 ± 0.11 34.78 ± 0.67 26.14 ± 0.13 94.15 ± 0.08 49.39 ± 0.65 38.86 ± 0.70 72.88 ± 0.43 34.15 ± 0.13 28.23 ± 0.09 72.09 ± 0.44 48.58 ± 0.22 42.05 ± 0.35

A.4 Tabular Data and Mean and Standard Deviation for Layer-Wise Pruning Comparison452

This section provides additional data complementing the results of Fig. 1. The numerical data of453

Fig. 1 is shown in Tab. 5 and the mean and standard deviation of the final accuracies for both SOSP454

algorithms is shown in Tab. 6 and Fig. 6.455

Table 5: Pruning results of ResNet-56 and DenseNet-40 on CIFAR-10. Gap denotes the difference
between the accuracy of the pruned model and the baseline accuracy. PR denotes the pruning ratio,
i.e. the percentage drop in MACs or parameters.

Model Top-1(Gap)% Parameters(PR) MACs(PR)

ResNet-56 93.88(0.0) 0.85M(0%) 125M(0%)
GAL Lin et al. (2019) 92.98(0.28) 0.75M(12%) 78M(38%)

SOSP-I (ours) 94.22(-0.44) 0.74M (13%) 110M (13%)
SOSP-H (ours) 94.25(-0.47) 0.73M (15%) 109M (14%)

HRank Lin et al. (2020) 93.52(-0.26) 0.71M(17%) 89M(29%)
SOSP-I (ours) 93.85(0.03) 0.54M (36%) 84M (33%)
SOSP-H (ours) 93.71(0.17) 0.52M (40%) 79M (37%)

FPGM He et al. (2019) 93.01(0.58) 0.49M(42%) 81M(36%)
HRank Lin et al. (2020) 93.17(0.09) 0.49M(42%) 63M(50%)

SOSP-I (ours) 93.25(0.53) 0.36M (58%) 60M (53%)
SOSP-H (ours) 93.27(0.51) 0.33M (61%) 54M (57%)

GALLin et al. (2019) 90.36(2.10) 0.29M(66%) 50M(60%)
HRank Lin et al. (2020) 90.72(2.54) 0.27M(68%) 32M(74%)

SOSP-I (ours) 92.35(1.53) 0.19M (78%) 36M (71%)
SOSP-H (ours) 91.97(1.91) 0.18M(79%) 31M (75%)
SOSP-I (ours) 90.80(3.08) 0.11M (87%) 22M (82%)
SOSP-H (ours) 90.78(3.10) 0.11M(87%) 21M (83%)

DenseNet-40 94.58(0.0) 1.04M(0%) 283M(0%)
SOSP-I (ours) 94.46(0.12) 0.88M(17%) 255M(10%)
SOSP-H (ours) 94.63(-0.05) 0.86M(19%) 245M(14%)

GAL Lin et al. (2019) 94.29(0.52) 0.67M(36%) 183M(35%)
HRank Lin et al. (2020) 94.24(0.57) 0.66M(37%) 167M(41%)

SOSP-I (ours) 94.35(0.22) 0.72M(32%) 221M(22%)
SOSP-H (ours) 94.43(0.15) 0.69M(35%) 209M(26%)
SOSP-I (ours) 94.14(0.44) 0.56M(47%) 180M(36%)
SOSP-H (ours) 94.27(0.31) 0.54M(49%) 172M(39%)

HRank Lin et al. (2020) 93.68(1.13) 0.48M(54%) 110M(61%)
GAL Lin et al. (2019) 93.53(1.28) 0.45M(57%) 128M(55%)

Zhao et al. (2019) 93.16(0.95) 0.42M(60%) 156M(45%)
SOSP-I (ours) 93.70(0.88) 0.42M(60%) 141M(50%)
SOSP-H (ours) 94.74(0.84) 0.40M(62%) 138M(51%)

14

Table 6: Mean and standard deviations of the accuracies after fine-tuning of SOSP for ResNet-56 and
DenseNet-40.

Model Top-1% Pruned Parameters (in %) Pruned MACs (in %)

ResNet-56 93.39 0 0
SOSP-I 94.22± 0.10 12.95± 0.15 12.78± 0.09
SOSP-H 94.25± 0.14 14.90± 0.12 13.11± 0.36
SOSP-I 93.85± 0.09 36.36± 0.11 33.31± 0.12
SOSP-H 93.71± 0.11 39.70± 0.39 36.86± 0.70
SOSP-I 93.25± 0.16 58.19± 0.28 52.53± 0.21
SOSP-H 93.27± 0.06 60.95± 0.29 56.74± 0.31
SOSP-I 92.35± 0.25 77.98± 0.46 71.04± 0.21
SOSP-H 91.97± 0.11 79.29± 0.17 75.07± 0.62
SOSP-I 90.8± 0.18 86.68± 0.14 81.79± 0.23
SOSP-H 90.78± 0.14 87.31± 0.29 83.42± 0.15

DenseNet-40 94.16 0 0
SOSP-I 94.46± 0.11 16.59± 0.22 10.00± 0.72
SOSP-H 94.63± 0.15 18.57± 0.63 13.52± 2.13
SOSP-I 94.35± 0.04 32.21± 0.16 22.03±0.13
SOSP-H 94.43± 0.11 34.78± 0.67 26.14± 1.16
SOSP-I 94.14±0.07 47.00± 0.10 36.35±0.12
SOSP-H 94.27± 0.08 49.39± 0.65 38.86± 0.70
SOSP-I 94.70±0.08 60.32± 0.31 50.24± 0.80
SOSP-H 94.74± 0.08 62.24± 0.74 51.28± 1.07

0.25 0.50 0.75
parameters (106)

92

94

ac
cu

ra
cy

ResNet-56

SOSP-I
SOSP-H

50 100
MACs (106)

92

94

ResNet-56

0.50 0.75
parameters (106)

93.5

94.0

94.5

DenseNet-40

SOSP-I
SOSP-H

100 200
MACs (106)

93.5

94.0

94.5

DenseNet-40a) b) c) d)

Figure 6: Mean and standard deviation plots of the accuracies after fine-tuning of SOSP for ResNet-56
and DenseNet-40 on Cifar10.

A.5 Pruning at Initialization vs Pruning a Pretrained Neural Network456

In this section we investigate further why pruning a randomly initialized network tends to achieve457

lower accuracies compared to pruning a pretrained network (Lee et al., 2018; van Amersfoort et al.,458

2020). We compare the final accuracies of pruning and fine-tuning a randomly initialized and459

pretrained network (see Fig. 7). While pruning a pretrained network leads to considerably higher460

accuracies compared to pruning a randomly initialized network, the random baseline curves show the461

same difference. Thus, to be able to compare pruning before and after training one needs to device462

settings that enable a fair comparison, ensuring similar accuracies for random pruning accross both463

settings.464

15

0.2 0.4 0.6
pruned structures (%)

91

92

93

94

Re
sN

et
-5

6
ac

cu
ra

cy

SOSP-I
SOSP-H
random

0.2 0.4 0.6
pruned structures (%)

91

92

93

94

Figure 7: Comparison of pruning and fine-tuning a randomly initialized (left) and a pretrained (right)
network for ResNet-56 on Cifar10. Random pruning is a baseline which selects uniformly at random
structures s and adds them to the mask M until the predefined pruning ratio is reached.

A.6 Expand-init data465

This section provides the experimental results of the corresponding expand-procedure at initialization466

(see Sec. 3.4). The results of Fig. 3 indicate that architectural bottlenecks exist not only for pretrained467

networks but also for randomly initialized networks. Therefore, we device also an expand scheme468

before training. In this scheme the mask for the expand-procedure is not calculated for a pretrained469

network but for a randomly initialized network. Following the expand scheme the network is pruned470

and then only fine-tuned once. The results are displayed in Fig. 8.471

0.1 0.2 0.3

88

90

92

Re
sN

et
-5

6
ac

cu
ra

cy

init-pr.
expand-init-pr.
widen_init-pr.

0 25 50
0.0

0.2

0.4

0.6

0.8

pr
un

in
g

ra
tio

0 25 50

0 2 4
parameters (106)

90

91

92

93

94

VG
G1

9
ac

cu
ra

cy

0 10
layer index

0.0

0.2

0.4

0.6

0.8

pr
un

in
g

ra
tio

0 10
layer index

0.0

0.5

1.0

1.5

2.0

wi
dt

h
m

ul
tip

lie
r

0.0

0.5

1.0

1.5

2.0

wi
dt

h
m

ul
tip

lie
r

a) b) c)

d) e) f)

Figure 8: We remove architectural bottlenecks found by SOSP starting with a randomly initalized
network. The width of blocks and layers with low pruning ratios in the train-pruning scheme (Fig. 3e
and h) are expanded by a width multiplier of 2 (b, e). As a baseline, we again uniformly expand all
layers in the network by a factor 1.1 (c, f). The layer-wise pruning ratios of the enlarged network
models are shown as bar plots in (b, c, e, f). The average and standard deviation of the test accuracy
across 3 trials are shown over the number of model parameters (a, d). Note that the full ResNet-56
and VGG models have 0.86 · 106 and 20 · 106 parameters, respectively.

16

B Approximative Second-Order Derivatives472

Here we derive our approximations of the second-order loss derivatives, see Eq. (6) which is based473

on Eq. (5), and especially the particular matrix structures of Rn in these expressions, which allow for474

a more efficient matrix multiplication.475

Recall that our approximation is based on omitting from the exact loss derivative those terms that476

involve the (expensive) second-order derivatives ∇2
θfθ(xn) of the NN outputs fθ(xn) ∈ RD. We477

however still include second-order couplings due to the loss function `. Our approximation is thus to478

approximate the NN output479

fθ′(x) ≈ f linθ′ (x) := fθ(x) + φ(x) · (θ′ − θ) (10)

to first order, where φ(x) := ∇θfθ(x) ∈ RD×P is the first-order derivative of the NN output, and480

then to approximate the second-order derivatives of the NN loss as follows:481

∇2
θ` (fθ(xn), yn) ≈ ∇2

θ`
(
f linθ (xn), yn

)
. (11)

We now compute this approximation ∇2
θ`
(
f linθ (xn), yn

)
for both the squared loss `(f, y) :=482

1
2 ‖f − y‖

2 as well as for the cross-entropy loss `(f, y) := − log σ(f)y, where σ : RD → RD483

denotes the softmax function. In this computation we use the following facts:484

f linθ (xn) = fθ(xn), (12)

∇θf linθ (xn) := ∇θ′f linθ′ (xn)
∣∣
θ′=θ

= φ(xn) = ∇θfθ(xn), (13)

∇2
θf
lin
θ (xn) := ∇2

θ′f
lin
θ′ (xn)

∣∣
θ′=θ

= 0, (14)

which follow directly from (10).485

B.1 Second-Order Approximation for Squared Loss486

For the squared loss, we obtain:487

∇2
θ`
(
f linθ (xn), yn

)
= ∇2

θ

[
1

2
(f linθ (xn)− yn)T (f linθ (xn)− yn)

]
(15)

= (f linθ (xn)− yn)T (∇2
θf
lin
θ (xn)) + (∇θf linθ (xn))

T (∇θf linθ (xn)) (16)

= φ(xn)
Tφ(xn) (17)

= φ(xn)
TRnφ(xn), (18)

where Rn := 1D×D is here the D ×D-identity matrix. This is Eq. (5) for the squared loss.488

Due to this diagonal form of Rn, the matrix multiplication (φ(xn)θs)
TRn(φ(xn)θs′) in Eq. (6) has,489

for each pair (s, s′), a computational complexity linear in the dimension D (which is the number of490

NN outputs), rather than quadratic:491

(φ(xn)θs)
TRn(φ(xn)θs′) = (φ(xn)

T θs)(φ(xn)θs′) (19)

=

D∑
j=1

(φ(xn)jθs)j(φ(xn)θs′)j , (20)

where (φ(xn)θs)j ∈ R denotes the j-th component of the vector φ(xn)θs ∈ RD.492

It is for this reason that the overall computational complexity of SOSP-I is linear in D (see Sect. 2.1),493

rather than of order O(D2).494

B.2 Second-Order Approximation for Cross-Entropy Loss495

Note that the first derivatives of the softmax-function σ : RD → RD, defined by σ(f)i :=496

efi/
∑D
k=1 e

fk are:497

∂

∂fj
σ(f)i = −σ(f)i(σ(f)j − δij). (21)

17

We can thus compute for the cross-entropy loss, where δy· ∈ RD denotes the vector with entry 1 in498

component y and entries 0 everywhere else:499

∇2
θ`
(
f linθ (xn), yn

)
= −∇2

θ

[
log σ(f linθ (xn))yn

]
(22)

= ∇θ
[
(∇θf linθ (xn))

T (σ(f linθ (xn))− δy·)
]

(23)

= (∇θf linθ (xn))
T (∇θσ(f linθ (xn))) + (∇2

θf
lin
θ (xn))

T (σ(f linθ (xn))− δy·)
(24)

= (∇θf linθ (xn))
T ·

(
∇θ σ(f linθ (xn))

)
. (25)

To compute ∇θσ(f linθ (xn) in (25), we consider its i-th component:500

∇θ σ
(
f linθ (xn)

)
i
=

D∑
j=1

∂σ(f)i
∂fj

∣∣∣∣
f=f linθ (xn)

· ∇θ(f linθ (xn))j (26)

=

D∑
j=1

σ(f linθ (xn))i
(
δij − σ(f linθ (xn))j

)
· ∇θ

(
f linθ (xn)

)
j

(27)

=

D∑
j=1

(Rn)ij · ∇θ
(
f linθ (xn)

)
j

(28)

=
(
Rn · ∇θ f linθ (xn)

)
i
, (29)

where Rn ∈ RD×D is the matrix with entries501

(Rn)ij = σ(f linθ (xn))iδij − σ(f linθ (xn))i σ(f
lin
θ (xn))j (30)

= σ (fθ(xn))i δij − σ(fθ(xn))i σ(fθ(xn))j . (31)

Thus, plugging back into (25),502

∇2
θ`
(
f linθ (xn), yn

)
=
(
∇θf linθ (xn)

)T
Rn

(
∇θf linθ (xn)

)
(32)

= φ(xn)
T Rn φ(xn), (33)

which is Eq. (5) for the cross-entropy loss.503

Note that Rn is a sum of a diagonal matrix Rdiag
n (first part in Eq. (31)) and a rank-1 matrix504

Rrank-1
n (second part in Eq. (31)). Due to this special matrix form, the matrix multiplication505

(φ(xn)θs)
TRn(φ(xn)θs′) in Eq. (6) has, for each pair (s, s′), a computational complexity linear506

in the dimension D (the number of NN outputs), rather than quadratic. For the diagonal part507 (
Rdiag
n

)
ij
= σ (fθ(xn))i δij , the reason for this is similar to the one for the squared error:508

(φ(xn)θs)
TRdiag

n (φ(xn)θs′) =

D∑
i,j=1

(φ(xn)θs)i
(
Rdiag
n

)
ij

(φ(xn)θs′)j (34)

=

D∑
j=1

(φ(xn)θs)i σ (fθ(xn))i (φ(xn)θs′)i. (35)

For the rank-1 part
(
Rrank-1
n

)
ij
= −σ(fθ(xn))i σ(fθ(xn))j , the O(D)-efficient computation is509

(φ(xn)θs)
TRdiag

n (φ(xn)θs′) =
∑
ij

(φ(xn)θs)i
(
Rdiag
n

)
ij

(φ(xn)θs′)j (36)

=−
D∑
ij=1

(φ(xn)θs)i σ(fθ(xn))i (φ(xn)θs′)j σ(fθ(xn))j (37)

=−

(
D∑
i=1

(φ(xn)θs)i σ(fθ(xn))i

)
·

 D∑
j=1

(φ(xn)θs′)j σ(fθ(xn))j

 .

(38)

18

Again, for these reasons, the overall computational complexity of SOSP-I is linear inD (see Sect. 2.1),510

instead of quadratic in D. This can make a significant difference for some datasets (e.g. D = 1000511

classes on ImageNet).512

An alternative O(D)-efficient way of computing our second-order approximation follows by continu-513

ing from Eq. (25), noting that ∇θf linθ (xn) = ∇θfθ(xn) by (13):514

∇2
θ`
(
f linθ (xn), yn

)
= (∇θfθ(xn))T · (∇θ σ(fθ(xn))) (39)

= φ(xn)
T · φσ(xn), (40)

where we defined φσ(xn) := ∇θ (σ(fθ(xn))) ∈ RD×P . Thus, each term in the sum (6) can be515

written as516

(φ(xn)θs)
T (φσ(xn)θs′) =

D∑
j=1

(φ(xn)θs)j (φ
σ(xn)θs′)j , (41)

which again has complexity O(D). For this it is necessary to pre-compute each φσ(xn) in addition517

to φ(xn), but both have the same complexity.518

We finally note that our approximation of the second-order derivatives (i.e., of the Hessian) is519

somewhat different from the approximation made in (Peng et al., 2019) for the cross-entropy case:520

While we dropped all second-order derivatives ∇2
θfθ(xn) of the pre-softmax activations, Peng521

et al. (2019) dropped all second-order derivatives of the post-softmax activiations, i.e. all terms522

∇2
θ (σ(fθ(xn)). A consequence of this difference is that our approximation (33) (or (41)) does not523

depend on the labels yn (this is already apparent from our intermediate step Eq. (25)), whereas524

the approximation made in (Peng et al., 2019) does depend on the labels yn. The fact that our525

second-order approximation is independent of the yn is similar to the second-order approximation in526

the squared-loss case (see App. B.1 above, and also (Peng et al., 2019)). Note furthermore that the527

first-order terms in the loss approximation (see e.g. in Eq. (2) or (3)) are the same in our method as in528

(Peng et al., 2019)), and these do depend on the labels yn (cf. the expression in square bracket in Eq.529

(23)).530

C Second-Order Approximation Corresponds to Output-Correlation531

The purpose of this section is to provide a better intuition of the second-order components of our loss532

approximation. First, we reformulate the expression for the second-order terms in Eq. 6. We use the533

fact that for any ReLU-NN without batch normalization layers it holds almost everywhere that534

∇θfθ(x)θs = fθs(x), (42)

where θs is the weight vector, where all structures of the layer that contains structure s are set to zero535

expect for the weights of structure s itself. The identity is straightforward to derive, therefore we536

show the relation for a feed-forward neural network with zero biases, but the proof for a convolutional537

neural network is almost identical .538

Let fθ be a fully-connected neural network with L layers and fθ(x) =539

WLlhL−1(x)≥0WL−1...lh1(x)≥0W1x, where Wl are the weight-matrices and hl(x) the output540

functions of the l-th layer and lhl(x)≥0 the diagonal matrix with the step function on the diagonal541

elements corresponding to the components of hl(x) ≥ 0. Now assuming that structure s is contained542

in the i-th layer, the only non-vanishing components of the vector θs are the once associated with543

structure s. Thus, one can evaluate the gradient to get544

∇θfθ(x)θs =WLlhL−1(x)≥0WL−1...lhi(x)≥0W
s
i ...lh1(x)≥0W1x, (43)

where W s
i is the weight matrix of layer i where all components are set to zero except for those545

belonging to structure s. Using this, one directly receives∇θfθ(x)θs = fθs(x)546

19

Next, applying this identity to Eq. 6 gives547

θTs H(θ)θs′ ≈
1

N ′

N ′∑
n=1

(φ(xn)θs)
T
Rn (φ(xn)θs′)

=
1

N ′

N ′∑
n=1

(∇θfθ(xn)θs)T Rn (∇θfθ(xn)θs′)

=
1

N ′

N ′∑
n=1

fθs(xn)Rnfθs′ (xn),

where the explicit form of the Rn matrix is provided in the previous section. From this relation548

one can now see that the second-order components of our pruning objective correspond to output-549

correlations. This connection could also explain, why our second-order pruning methods do not550

improve the pruning performance at initialization, but do improve performance after training, since at551

initialization different structures may not have as strong output-correlations as the learned features552

after training.553

D Counting of Parameters and MACs554

Here we provide details on how we compute the number of parameters of our pruned NNs, and the555

number of MACs required for the evaluation of a pruned NN on one input point. The description is556

specific to the ResNets and DenseNets used in our work; the main complication arises for the ResNet557

architecture (in particular for the residual connections), as we describe below.558

While our parameter and MAC counting is exact, it is somewhat intricate. We do not know whether559

this exact counting has been implemented in other papers on pruning as well (see the comparisons560

in Tables 1 and 2), since these other works did not elaborate on their counting. Therefore, the561

comparability with the counts from other papers is not necessarily given. When we compare our exact562

counting to a more straightforward but approximative counting, we find that our exact counts for563

ResNet50 (Table 2) yield substantially higher parameter and MAC numbers than the straightforward564

approximate counting. The straightforward approximate counting would yield MAC-pruning-ratios565

that are 12-18 percentage points higher (better) than our exact numbers. We now explain our exact566

counting first.567

The number of parameters of a convolutional layer l equals the number F inl of input filters of the568

layer times the number F outl of output filters times the kernel size Kwh
l (which equals the kernel569

width times the kernel height): Cl = F inl · F outl ·Kwh
l . In addition to this count, there are 2F outl570

parameters for the batchnorm layer following each convolutional layer (our networks do not have571

bias terms in the convolutional layers, which would add another F outl).572

The subtlety is now that, within the chain of convolutional layers in the ResNet architecture, the573

number F inl+1 of input filters into the following convolutional layer l + 1 does not necessarily equal574

the number of output filters F outl of the present convolutional layer l. Namely, this can happen if575

the output of layer l is added to the output of a residual connection to compute the input into l + 1.576

At such a point in the chain of convolutional layers, the number of input filters F inl+1 into layer l + 1577

depends on both the output filters of layer l as well as on the output filters of the residual connection.578

More precisely, only those filters can be removed from the input into layer l + 1 which are absent579

from both the output of layer l as well as from the output of the residual connection. (Note, thus,580

that the number F inl+1 of input filters into layer l + 1 cannot be determined by only knowing the581

number of output filters F outl and the number of output filters of the residual connection. Rather, the582

answer depends on which output filters have been pruned.) To determine F inl+1, two kinds of residual583

connections have to be distinguished:584

(a) Residual connection is an identity skip connection. In this case, the output filters of the585

residual connection are exactly the output filters of a previous layer: either the output filters586

of layer l′ := l − 2 (when the skip connection is in a “BasicBlock”) or of layer l′ := l − 3587

(when the skip connection is in a “BottleneckBlock”). F inl+1 thus equals the number of filters588

that are un-pruned in the output of both layer l′ and un-pruned in the output of layer l.589

20

(b) Residual connection is a downsampling layer. As we exclude downsampling layers from590

pruning (see Sec. 3), the number of output filters of a downsampling layer in the pruned591

network equals the number of outputs of the downsampling layer in the original network.592

Therefore, if the output of layer l is added to the output of a downsampling layer, then F inl+1593

in the pruned network takes the same value as in the original (un-pruned) network, i.e. F inl+1594

is the original number of input filters into layer l + 1.595

The same reasoning and procedure applies to determining the number of input filters into any596

downsampling layer (i.e., this number is the same as the number of inputs into the convolutional layer597

that has the same input as the downsampling layer; note, a downsampling layer is a convolutional598

layer as well, but not part of the “chain of convolutional layers”), and also to determine the number of599

inputs (“input neurons”) into the final fully-connected layer (i.e., the number of “input neurons” into600

the last fully-connected layer is the same as would be the number of input filters into a convolutional601

layer at this stage).602

Having determined the number of input and output filters (neurons) into all channels in this way, our603

parameter count sums up the parameter numbers for all convolutional layers (incl. downsampling604

layers), batchnorm layers, and fully-connected layers (incl. bias terms). This is the exact number of605

parameters needed to specify the pruned NN and also to build the pruned NN, since these parameters606

specify all surviving filters (and the fully-connected layers).607

Our exact MAC count is similar, also based on the “true” F inl and F outl as just determined. The608

MAC count of a convolutional layer is Ml = Cl · Swl · Shl , where Swl and Shl are the numbers of609

width-wise and height-wise applications of each filter; for our networks, Swl equals the spatial picture610

width at layer l divided by the width-stride, and similarly for Shl .611

Finally – and as mentioned above – we briefly describe the more straightforward but approximate612

counting method, that would yield pruning ratios that can appear quite a bit better. In this approximate613

way of counting, we take, within the chain of convolutional layers in the ResNet architecture, as614

input filters into layer l + 1 exactly the output filters from layer l, i.e. F inl+1 := F outl . Consequently615

for any downsampling layer, we take as its number of input filters the number of output filters of its616

preceding convolutional layer, and as its number of output filters we take the number of input filters617

into the following convolutional layer (as determined by the previous sentence). We compute the618

number of parameters and MACs then according to the same formulas as in the exact method, but619

with potentially other values for F inl and F outl for all convolutional layers (incl. the downsampling620

layers, and the number of input nodes into the last fully-connected layer). Note, this approximate621

count is actually the exact count for a version of the pruned network where the size of the residual622

connections (identity skip connections and downsampling layers) has been adapted in a “natural” way623

to the sizes of the pruned convolutional layers in the chain of convolutional layers. In particular, this624

count can therefore be computed by just knowing the numbers of pruned filters in each convolutional625

layer, instead of knowing exactly which of the filters in each convolutional layer have been pruned.626

It is apparent from the way of approximate counting just described that its parameter and MAC count627

will be smaller or equal to the exact count (described futher above); both counts conincide for the628

original (un-pruned) network. For pruned networks, however, the difference in both counts can be629

substantial, esp. for the ResNet50 network (Table 2). For example, whereas the MAC-pruning-ratio630

of our SOSP-I(0.3) method is 15% (see Table 2), its MAC-pruning-ratio according to the approximate631

counting would equal 27%. In case that the competitor papers used this simpler approximate counting632

(which we do not know), we should also use this approximate counting to evaluate our method,633

which would thus appear more favorable, especially on the ImageNet experiments and especially on634

ResNet-50 (Table 2).635

On a final note, we remark that the paper Tang et al. (2020) introducing the SCOP method, mentioned636

a discrepancy between the theoretically computed number of MACs and the experimentally measured637

value for this quantity, hinting at least at some inconsistency in the counting.638

21

	Additional Data and Experiments
	Results for Medium Pruning Rates for Comparing Global Pruning Methods
	Comparison of Accuracies Achieved by SOSP-I with and without Cross-Structure Correlations
	Mean and Standard Deviation of Final Accuracies for the Global Pruning Comparison
	Tabular Data and Mean and Standard Deviation for Layer-Wise Pruning Comparison
	Pruning at Initialization vs Pruning a Pretrained Neural Network
	Expand-init data

	Approximative Second-Order Derivatives
	Second-Order Approximation for Squared Loss
	Second-Order Approximation for Cross-Entropy Loss

	Second-Order Approximation Corresponds to Output-Correlation
	Counting of Parameters and MACs

