Published as a conference paper at ICLR 2024

UNDERSTANDING WHEN DYNAMICS-INVARIANT DATA
AUGMENTATIONS BENEFIT MODEL-FREE REINFORCE-
MENT LEARNING UPDATES

Nicholas E. Corrado Josiah P. Hanna

Department of Computer Sciences Department of Computer Sciences

University of Wisconsin — Madison University of Wisconsin — Madison

ncorrado@wisc.edu jphannal@cs.wisc.edu
ABSTRACT

Recently, data augmentation (DA) has emerged as a method for leveraging domain
knowledge to inexpensively generate additional data in reinforcement learning
(RL) tasks, often yielding substantial improvements in data efficiency. While prior
work has demonstrated the utility of incorporating augmented data directly into
model-free RL updates, it is not well-understood when a particular DA strategy
will improve data efficiency. In this paper, we seek to identify general aspects of
DA responsible for observed learning improvements. Our study focuses on sparse-
reward tasks with dynamics-invariant data augmentation functions, serving as an
initial step towards a more general understanding of DA and its integration into
RL training. Experimentally, we isolate three relevant aspects of DA: state-action
coverage, reward density, and the number of augmented transitions generated
per update (the augmented replay ratio). From our experiments, we draw two
conclusions: (1) increasing state-action coverage often has a much greater impact
on data efficiency than increasing reward density, and (2) decreasing the augmented
replay ratio substantially improves data efficiency. In fact, certain tasks in our
empirical study are solvable only when the replay ratio is sufficiently low.

1 INTRODUCTION

Reinforcement learning (RL) algorithms are often data inefficient and often produce policies that
fail to generalize outside of a narrow state distribution. Recently, a number of RL algorithms and
applications have been published that leverage data augmentation to enhance convergence and gener-
alization (Mitrano and Berenson, 2022; Pitis et al., 2020; Qiao et al., 2021). Data augmentation (DA)
is a technique in which agents generate additional synthetic experience by applying transformations to
their observed experience. Since augmented data can be generated without the expense of additional
interaction with the environment, it is an attractive technique for improving the data efficiency of RL
algorithms (i.e., the number of environment interactions needed to solve a task).

Much of the prior work in DA for RL (Hansen and Wang, 2021; Laskin et al., 2020; Raileanu
et al., 2021; Wang et al., 2020; Yarats et al., 2020; 2021) builds off of DA techniques used in
computer vision (Chen et al., 2020). Other works have used domain-dependent DA strategies for
non-visual tasks (Abdolhosseini et al., 2019; Mikhail Pavlov and Plis, 2018), including DeepMind’s
AlphaTensor (Fawzi et al., 2022) which uses RL to discover more efficient matrix multiplications.
These works introduce methods for generating augmented data and frameworks for integrating it into
RL that demonstrably improve training performance. To the best of our knowledge, most prior work
on DA has focused on introducing new types of data augmentation functions and demonstrating that
they can boost the data efficiency of RL. What is missing from the literature is a clear understanding
of which aspects of DA yield improvements. Rather than adding to existing work by introducing new
DA strategies, our main contribution is an investigation into the following question:

When and why does data augmentation improve data efficiency in reinforcement learning?

Published as a conference paper at ICLR 2024

As a motivating example, consider using an off-policy
RL algorithm to solve a 2D navigation task in which an
agent must reach a random goal position (Fig. 1a). In this
task, transitions observed by the agent can be augmented
through either random translations of the agent (Fig. 1b)
or random rotations of the agent and goal (Fig. 1c). As
shown in Fig. 1d, if we double the agent’s learning data
via DA and double the batch size used for updates, we
achieve significant improvements in data efficiency com-
pared to learning without DA. Furthermore, agents that
learn from extra augmented data even surpass the perfor-
mance of agents that learn from an equal amount of extra
real data collected through additional environment inter-
actions. More concretely, we double the amount of policy
data collected between updates and double the batch size
used for updates so that non-augmented agents learn from
the same amount of data and perform the same number
of updates as the augmented agents. As shown in Fig. 1d,
additional augmented data leads to faster learning than
simply collecting an equal amount of additional data from
the agent’s policy. In fact, doubling the learning data via
the translation augmentation is nearly as good as learn-
ing from 8 times as much policy-generated data. Thus,
these augmentations must offer benefits beyond what addi-
tional policy-generated data can offer. An understanding
of which aspects of DA yield these benefits will serve as an
initial step towards guiding practitioners on how to more
effectively incorporate DA into RL.

DA has taken many forms in the RL literature (Andrychow-
icz et al., 2017; Hansen and Wang, 2021; Laskin et al.,
2020; Pitis et al., 2020; Qiao et al., 2021), and a compre-
hensive analysis of different DA frameworks, tasks, and
data augmentation functions is beyond the scope of a sin-
gle study. Thus, in this work, we instead aim to better

*

*
(c) Rotate

(a) Observed (b) Translate

N
o

x1 policy data (no DA)
X2 policy data

------ x4 policy data

------ x8 policy data

x2 data via rotate

X2 data via translate

IQM Success Rate
o
[}

0.0 0.5 1.0 1.5 2.0 2.5
Updates 1e5

(d) Training curves

Figure 1: Visualizations of two augmen-
tations — translation (1b) and rotation
(1c) — for a 2D navigation task in which
an agent (black dot) must reach a goal
(gold star). In 1d, “x/V policy data” cor-
responds to collecting N times as many
transitions with the agent’s current pol-
icy between updates, and “x2 via ro-
tate/translate” corresponds to generating
one augmented transition per observed
transition. We increase the batch size
and replay buffer sizes proportionally to
the amount of extra data to keep the re-
play ratio and replay age fixed across all
experiments. We plot the interquartile
mean success rate over 50 seeds with
95% bootstrap confidence belts.

understand the benefits of integrating dynamics-invariant augmented data directly into model-free
off-policy RL updates. With this focus in mind, we must leave studies on DA frameworks with
auxiliary tasks (Hansen and Wang, 2021; Hansen et al., 2021; Raileanu et al., 2021; Wang et al.,
2020), and studies on data augmentation functions that generate unrealistic data — such as visual data
augmentations (Laskin et al., 2020) — for future work.

Our investigation focuses on three aspects of DA that we hypothesize influence learning in sparse-
reward tasks: an increase in state-action coverage via DA, the amount of additional reward signal
generated via DA (reward density), and the number of augmented transitions generated per update
(the augmented replay ratio). State-action coverage and reward density relate to how DA affects the
agent’s distribution of learning data, whereas the augmented replay ratio relates to how augmented
data is incorporated into RL training. We empirically ablate the effects of these factors using a simple
and controllable DA framework similar to frameworks found in existing work (Laskin et al., 2020;
Pitis et al., 2020).! In summary, our contributions are:

1. We introduce a framework for studying DA in RL that is amenable to analysis.

2. While it is widely understood that high state-action coverage and discovery of reward signal
are critical to data efficient RL, our experiments show that increasing state-action coverage
via DA often has a much greater impact on data efficiency than increasing reward density.

3. We show that the success of DA depends strongly on the augmented replay ratio. In fact,
certain tasks in our empirical study are solvable only when the augmented replay ratio is
sufficiently low.

!Code available at https://github.com/Badger-RL/UnderstandingDataAugmentationForRL

https://github.com/Badger-RL/UnderstandingDataAugmentationForRL

Published as a conference paper at ICLR 2024

2 RELATED WORK

In this section, we provide an overview of data augmentation techniques and applications in RL.

Dynamics-based Augmentation: Several prior works use data augmentation functions that affect the
agent’s current state, action, and next state. Pitis et al. (2020; 2022) stitch together locally independent
features of different transitions to generate additional data and provides a method for identifying
local independence. Many model-based algorithms learn from synthetic data generated by a learned
dynamics model and can be viewed as DA methods (Gu et al., 2016; Racaniere et al., 2017; Sutton,
1990; Venkatraman et al., 2016).

Hindsight Experience Replay: In goal-conditioned RL, Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017; Fang et al., 2018; Liu et al., 2019; Rauber et al., 2017) counter-
factually relabels the goal of a trajectory to generate additional data. This technique can be applied
when transition dynamics are independent of the agent’s goal, as is often the case. Follow-up work
on HER has demonstrated that hindsight bias caused by changing the distribution of observed goals
many hinder learning (Lanka and Wu, 2018; Li et al., 2020).

Applications of Domain-Specific Data Augmentation: Several recent works have leveraged
domain-knowledge to create new data augmentation functions. Mikhail Pavlov and Plis (2018) and
Abdolhosseini et al. (2019) apply DA to locomotion problems in which an optimal policy has a
symmetric gait, and Mitrano and Berenson (2022) focus on augmenting trajectories of poses and
movable objects relevant in robot manipulation. Qiao et al. (2021) consider DA in the context of
differentiable simulation to generate additional approximately correct transitions (a method they refer
to as sample enhancement). DeepMind’s AlphaTensor (Fawzi et al., 2022) exploits two invariances:
tensor decompositions are commutative, and tensor rank is invariant to the ordering of rows and
columns. They exploit commutativity by generating additional augmented transitions and rank
invariance using a network that disregards the row and column ordering of input tensors.

State-based Augmentation: Much of the prior work in DA for RL focuses on augmenting visual
observations (Guan et al., 2021; Wang et al., 2020; Yarats et al., 2021). Laskin et al. (2020) train
RL agents on multiple views of visual states (crops, recolorations, rotations, etc.). Raileanu et al.
(2021) introduce regularizers to ensure an agent’s policy and value function are both invariant under
augmentation. Sinha et al. (2022) ensure small perturbations of non-visual states state have similar
state-action values. Hansen and Wang (2021) learn a state representation that is invariant under
augmentation rather than directly using the augmented data for policy optimization. Hansen et al.
(2021) identify sources of instability when performing visual DA. This line of work relates to domain
randomization (Peng et al., 2018; Tobin et al., 2017), as agents are trained to be robust to randomized
augmentations of observations. Visual augmentations are beyond the scope of our study; we focus
on integrating augmented data that respects the environment’s dynamics into model-free updates,
but visual augmentations generate unrealistic data and are typically used for auxiliary representation
learning tasks. We provide further discussion on visual augmentations in Appendix A.

Invariant Model Architectures: DA often — though not always — exploits known invariances within
the environment’s state space and/or dynamics. In this case, an alternative to DA is to simply hard-
code these invariances into the agent’s policy model (van der Pol et al., 2020; 2021; Wang et al.,
2022). Residual Pathway Priors (RPPs) (Finzi et al., 2021) capture invariances using a soft prior,
biasing agents toward invariant policies without constraining them.

While these prior works focus on developing data augmentation functions or methods for incorporating
augmented data into RL training, our work introduces a framework to investigate when and why DA
improves learning.

3 PRELIMINARIES
In this section, we formalize the RL setting and the class of data augmentation functions we use.

3.1 REINFORCEMENT LEARNING

We consider finite horizon Markov decision processes (MDPs) (Puterman, 2014) defined by
(S, A, p,r,dy,~) where S and A denote the state and action space, respectively, p(s’ | s, a) denotes

Published as a conference paper at ICLR 2024

the probability density of the next state s’ after taking action a in state s, and 7(s, a) denotes the
reward for taking action a in state s. We write dy as the initial state distribution, v € [0, 1) as the
discount factor, and H the length of an episode. We consider stochastic policies 7y : S x A — [0, 1]
parameterized by 6. The RL objective is to find a policy that maximizes the expected sum of

discounted rewards J(0) = By somdo | Sorg V7 (50, ar) |-

3.2 DATA AUGMENTATION FUNCTIONS

In the literature, data augmentation functions (DAFs) have taken different forms and served different
purposes. We introduce a few important definitions to help classify the DAFs we focus on.

Definition 1. A transition (s, a,r, s’) is valid if it is possible under the transition dynamics and
reward function, i.e. p(s’ | s,a) > 0, and r = r(s, a).

Definition 2. Let 7 C S X AxR xS denote the set of possible transitions and let A(7") denote the set
of distributions over 7. A data augmentation function (DAF) is a stochastic function f : T — A(T)
mapping a transition (s, a,r, 8") to an augmented transition (3, a, 7, §).

Definition 3. A DAF is dynamics-invariant if it is closed under valid transitions.

We focus on dynamics-invariant DAFs so that augmented data agrees with the underlying MDP, since
learning from data that does not match the MDP’s dynamics can harm learning (Moerland et al.,
2023). This focus includes methods such as HER (Andrychowicz et al., 2017) and CoDA (Pitis
et al., 2020) which provide domain-independent DAFs. However, we do not restrict ourselves to
domain-independent DAFs as, in practice, domain-experts may be able to produce dynamics-invariant
DAFs even though they cannot identify an optimal domain policy (Abdolhosseini et al., 2019; Fawzi
et al., 2022; Mikhail Pavlov and Plis, 2018). Our focus does exclude some recent works on DA —
especially those focusing on visual augmentations (Laskin et al., 2020; Raileanu et al., 2021) — that
produce augmented states that would never be observed in simulation such that p(§'|3, a) = 0, since
these augmentations do not satisfy our definition of valid. We note that dynamics-invariant DAFs
will not necessarily preserve transition probabilities in tasks with stochastic dynamics. We elaborate
on the widespread applicability of dynamics-invariant DAFs in Appendix A.

4 A FRAMEWORK FOR STUDYING DATA AUGMENTATION IN RL

Prior work on DA in RL not only considers
- - - different DAFs but also various methods
Inputs: Data augmentation function f, augmentation for integrating the augmented data into RL

Algorithm 1 Off-Policy RL with Data Augmentation

ratio mn, update ratio «, batch size b algorithms. To focus our study, we intro-
Initialize policy my, replay buffer R, and augmented duce a specific framework (Algorithm 1)
replay buffer R for incorporating augmented data into the
fort=1,2,... do training loop of any off-policy RL algo-
Collect transition (s, at, ¢, S¢41) using 7y rithm. An off-policy algorithm is essential,
Append (s¢, @, 74, S¢41) tO R as augmented data may not be distributed
fori=1,...,mdo according to the state-action distribution
(8, a4, 7, 8¢41) ~ f(St,ae,7t, St41) of the current policy. We focus on the ef-
Append f(3;, @y, 7, 8,41) to R fects integrating augmented data directly

if update then into policy and/or value function updates.

Sample mini-batch D of b transitions from R \within our framework, the agent observes
Sample mini-batch D of ba transitions from R 4 transition, applies a given DAF f to that
Update policy and/or value function using DUD transition to generate some number of aug-
mented transitions, and then stores the ob-
served and augmented transitions in separate replay buffers — the observed and augmented replay
buffers, respectively. When performing policy and/or value function updates, the agent samples data
from both buffers and combines the data for the updates. To control how much augmented data we
generate and use in each update, we introduce a few parameters into the framework.

The augmentation ratio, m, specifies the number of augmented transitions generated per observed
transition. Some DAFs, such as the translation augmentation in Fig. 1b, can produce multiple unique
augmentations from the same input transition. Each time the agent observes one real transition,

Published as a conference paper at ICLR 2024

m augmented transitions are sampled from the DAF. We use this parameter to study whether it is
beneficial to produce multiple augmentations to diversify the augmented replay buffer. When the
augmentation ratio is increased, we increase the augmented replay buffer size proportionally such
that the age of the oldest observed and augmented transitions remain equal.”

The update ratio, o, denotes the the ratio of augmented to observed data used for updates, e.g., o = 1
denotes that half of the data used for each update is augmented data. With access to large amounts
of augmented data, it may be beneficial to increase the amount of augmented data used in updates.
However, a large update ratio may exacerbate the tandem effect (Ostrovski et al., 2021), a decrease in
performance when learning predominantly from data not collected by the agent.

The augmentation ratio modulates a third relevant quantity: the number of updates per augmented
transition generated, or augmented replay ratio.® In the absence of DA, Fedus et al. (2020) found that
found that decreasing the replay ratio of observed data (the observed replay ratio) can improve data
efficiency, though other works have improved data efficiency by developing techniques that enable
learning with large replay ratios (Chen et al., 2021; D’Oro et al., 2023; Nikishin et al., 2022; Scheller
et al., 2020). One can decrease the augmented replay ratio by increasing the augmentation ratio (m)
while keeping the frequency of policy and/or value function updates fixed.

Though a variety of methods exist for incorporating augmented data into RL, our framework offers
several core benefits for our study:

1. Control: One can easily control the replay ratio and update ratio. Having control over the
update ratio is especially important to ensure the agent uses a sufficient amount of observed
data in each update to mitigate the tandem effect. Moreover, since augmented data is stored
in a replay buffer and not sampled online, it is possible to keep the replay ratio of the
augmented data equal to that of the observed data.

2. Lower Systematic Variance: Each update uses the same ratio of augmented to observed
data (i.e. update ratio), and the same number of augmented transitions are generated for
every observed transition, eliminating a possible source of training variation.

3. Computational Efficiency: By storing and reusing augmented data, we improve computa-
tional efficiency. While some DAFs can produce multiple unique augmentations of the same
input transition, many can only produce a single augmentation — such as a reflection — in
which case it is more efficient to reuse augmented data rather than generate new samples
online every update.

Our framework is similar to those used in CoDA (Pitis et al., 2020), RAD (Laskin et al., 2020),
and HER (Andrychowicz et al., 2017), as all three incorporate augmented data directly into updates
without auxiliary tasks. We note that RAD as well as popular implementations (Raffin et al., 2021;
Weng et al., 2022) of HER generate augmented samples during updates and discard them after use,
whereas we save augmented data for reuse. Since we focus on using augmented data for model-free
updates, Algorithm 1 is not intended to capture methods that use augmented data for auxiliary tasks
but easily extends to include such methods (Hansen and Wang, 2021; Raileanu et al., 2021).

5 DISENTANGLING PROPERTIES OF DATA AUGMENTATION

We identify aspects of DA that we hypothesize may impact its effectiveness within our framework.

State-Action Coverage: DAFs can generate data that the current policy otherwise might not observe,
increasing state-action coverage. Greater state-action coverage via DA may aid exploration. However,
it may also generate data that is very off-policy with respect to the current policy and hence increase
the variance of learning due to the tandem effect (Ostrovski et al., 2021).

>The age of a transition is the number of gradient steps taken by the agent since that transition was
generated (Fedus et al., 2020).

3Prior works (D’Oro et al., 2023; Fedus et al., 2020; Nikishin et al., 2022; Scheller et al., 2020) define the
replay ratio as the number of updates per environment interaction, characterizing how much the agent learns
from existing data versus new experience. However, augmented data is generated by a DAF and can produce
multiple augmentations per observed transition. Thus, for our analysis, the number of updates per augmented
transition generated is a more appropriate metric.

Published as a conference paper at ICLR 2024

Reward Density: Long horizon, sparse reward tasks are notoriously difficult since an RL agent is
unlikely to discover reward signal through random exploration. A DAF that can produce transitions
with additional reward signal could improve data efficiency. However, it is also known that reward-
generating DA strategies such as HER (Andrychowicz et al., 2017) can bias learning and lead to
overestimation of state-action values (Lanka and Wu, 2018) . For sparse reward tasks, we define
reward density as the fraction of transition data in both observed and augmented replay buffers which
successfully solve the task and thus contain reward signal.*

Augmented Replay Ratio: Some DAFs (such as the translation DAF in Fig. 1b) can generate
multiple augmented transitions given a single input transition, substantially increasing the amount of
data available to the agent. We hypothesize that it may be beneficial to generate as many augmented
transitions as possible to lower the augmented replay ratio (Fedus et al., 2020).

While it is widely understood that high coverage and discovery of reward signal are critical to solving
sparse-reward RL tasks (Andrychowicz et al., 2017; Tang et al., 2017), the degree to which increasing
state-action coverage and reward density via DA individually contribute to data efficient RL is less
clear. These factors are be difficult to completely isolate; since the reward function r(s, a) depends
on s and a, altering reward density necessarily changes state-action coverage. In our experiments,
we attempt to isolate all three aspects of DA to determine how much each affects data efficiency.

5.1 EXPERIMENTS

We focus our experiments on four sparse-reward, continuous action
panda—gym tasks (Gallouédec et al., 2021): PandaPush-v3, PandaSlide-
v3, PandaPickAndPlace-v3, and PandaFlip-v3 (Fig. 2), which we hence-
forth refer to as the Push, Slide, PickAndPlace, and Flip tasks, respectively.
We consider two DAFs:

1. TRANSLATEGOAL: Relabel the goal with a new goal sampled

uniformly at random from the goal distribution. Figure 2: PandaPush-

) v3. A robotic arm
2. TRANSLATEGOALPROXIMAL(p): Relabel the goal with a new muyst push a block to

goal sampled from the goal distribution. With probability p, the 4 goal location.
new goal is sufficiently close to the object to generate reward signal.

We also consider a toy 2D navigation task Goal2D-v0 (Fig. 1a) in which an agent must reach a
random goal. The agent receives reward 41 when it is sufficiently close to the goal and reward —0.1
otherwise. Agent and goal positions are initialized uniformly at random. We consider three DAFs:
3

2

2. TRANSLATE: Translate the agent to a random position.

1. ROTATE: Rotate the agent and goal by 6 € {7, 7,

3. TRANSLATEPROXIMAL(p): Translate the agent to a random position. With probability p,
the agent’s new position is sufficiently close to the goal to generate reward signal.

These DAFs offer an avenue to investigate the role of reward density and state-action coverage in
DA. For instance, one can modify reward density through p in TRANSLATEGOALPROXIMAL(p).
Moreover, these DAFs are extremely general can be applied to many tasks, e.g. most navigation tasks.
We include full descriptions of each environment and DAF in Appendices B and C, respectively. We
use DDPG (Lillicrap et al., 2015) for Panda tasks and TD3 (Fujimoto et al., 2018) for Goal2D. Further
training details are in Appendix G. We include experiments studying how all three factors affect an
agent’s generalization ability in Appendix E and include experiments studying the augmented replay
ratio for dense reward MuJoCo tasks (Brockman et al., 2016) in Appendix F.

5.1.1 BENCHMARKING DATA AUGMENTATION

We first benchmark the performance of DA against simply collecting more policy data to establish
how much our chosen DAFs improve data efficiency. Prior work has demonstrated that learning with
augmented data is often more data efficient than learning without it, though it is unclear how learning

*With dense rewards, one may need to consider the full distribution of rewards in the replay buffer instead.

Published as a conference paper at ICLR 2024

------ x1 policy data X2 policy data <+ x4 policy data —— X2 data via TranslateGoal x4 data via TranslateGoal

PandaPush-v3 1,00 PandaSlide-v3 PandaPickAndPlace-v3 PandaFlip-v3

075

0.50
0.2

0.25

IGM Success Rate

000 000 0.0 .
0 1 2 3 0 2 4 0.0 25 5.0 7.5 0 2 4
Updates 1e5 Updates 1e5 Updates 1e5 Updates 1e5

Figure 3: “x2 policy data" agents double their learning data by collecting twice as many samples
between updates, and “x2 data via TranslateGoal" agents double their learning data by generating
one augmented transition per observed transition. Note that the horizontal axis shows the number
of updates rather than timesteps. Each curve shows the interquartile mean over 10 seeds. Shaded
regions denote 95% bootstrap confidence belts.

from augmented data compares to learning from additional policy-generated data, as policy-generated
data and augmented data are distributed differently in general. In these experiments, we increase
the available learning data using DA or by collecting more data with the agent’s current policy
between updates. We label agents according to how many additional environment interactions they
perform, e.g. “x2 policy data” corresponds to one extra environment interaction, and “x2 data via
TRANSLATEGOAL” corresponds to generating one augmented transition per observed transition
(m = 1). When collecting or generating extra data, we increase the batch size and replay buffer
size proportionally so that all agents learn with the same amount of data, the same observed and
augmented replay ratios, and the same replay age. Thus, augmented and observed data are treated
equally in training.

From Fig. 3, we see that TRANSLATEGOAL offers significant improvement over no additional data.
For instance, in Push, doubling the learning data via TRANSLATEGOAL doubles data efficiency.
Though, additional policy-generated data generally yields equal or better performance. Having
established that TRANSLATEGOAL improves data efficiency, in the following sections, we study the
degree to which reward density and state-action coverage are responsible for these improvements.

5.1.2 STATE-ACTION COVERAGE

In this section, we study how increasing state-action coverage via DA affects data efficiency. Since the
reward is a function of the agent’s state and action, it is difficult to completely isolate the effects of in-
creased coverage; a change in coverage affects reward density. Nevertheless, we can better understand
the effect of increasing coverage by comparing agents trained using TRANSLATE and TRANSLATE-
GOAL with agents trained using TRANSLATEPROXIMAL(0) and TRANSLATEGOALPROXIMAL(0)
— DAFs that increase state-action coverage without generating additional reward signal. Early in
training when there is little to no reward signal in the observed replay buffer, TRANSLATEGOAL(0)
and TRANSLATEGOALPROXIMAL(O) have little affect on reward density. As the policy learns and
more reward signal is added to the observed replay buffer, the lack of reward signal in the augmented
replay buffer reduces the overall reward density. Thus, we can attribute any performance boost
provided by TRANSLATEPROXIMAL(0) and TRANSLATEGOALPROXIMAL(O) to an increase in
state-action coverage and/or a decrease in reward density. To better separate the effects of increased
coverage and decreased reward density, we double the agent’s training data using different ratios
of augmented data to observed data (1:5, 1:2, and 1:1). A smaller split of TRANSLATEPROX-
IMAL(0)/TRANSLATEGOALPROXIMAL(0) data corresponds to less coverage but also a smaller
decrease in reward density. We report results for ratios yielding the largest improvements to data
efficiency (i.e. ratios that best balances the increase in coverage with the decrease in reward density).

As shown in Fig. 4, TRANSLATEGOALPROXIMAL(0) in Slide, PickAndPlace, and Flip is as data effi-
cient as TRANSLATEGOAL; increased coverage alone explains the benefits of TRANSLATEGOAL in
these tasks. In Goal2D and Push, TRANSLATEPROXIMAL(0) and TRANSLATEGOALPROXIMAL(0)
are more data efficient than no DA but less data efficient than TRANSLATE and TRANSLATEGOAL.
Thus, although increased state-action coverage is the primary benefit in most tasks, we see that
increased reward density can also play a role. In the following section, we further disentangle
state-action coverage and reward density to assess how critical high reward density is for these tasks.

Published as a conference paper at ICLR 2024

—— x1 policy data (no augmentation) TranslateGoalProximal(0) / TranslateProximal(0) —— TranslateGoal / Translate

Goal2D-v0 PandaPush-v3 PandasSlide-v3 PandaPickAndPlace-v3 PandaFlip-v3

L

1 2 0 1 2 3 0 2 4 0.0 25 5.0 7.5 0 2 4
Updates 1e5 Updates 1e5 Updates 1e5 Updates 1e5 Updates 1e5

=}
S}
o
S
=)
©

e
3
a

o
3
a
o
>

o
=)
=]
o
=)
3
o
o

QM Success Rate
o o
Noo@
& 3
1QM Success Rate
o o
Nooo
& 3
\
1QM Success Rate
o o
N oo
a 3
1QM Success Rate
o © o o o
© 3 v w
IQM Success Rate
o o
[T

0.00
0

Figure 4: Learning with TRANSLATEGOAL, TRANSLATEGOALPROXIMAL(0), TRANSLATE, and
TRANSLATEPROXIMAL(0). We plot the IQM success rate over 10 seeds for Panda experiments and
50 for Goal2D. Shaded regions denote 95% bootstrap confidence belts.

—— x1 policy data (no augmentation) p=0 —— p=0.05 — p=0.1 — p=025
Goal2D-v0 PandaPush-v3 PandasSlide-v3 PandaPickAndPlace-v3 PandaFlip-v3

o
>

3
— xipolicydata § 0.50
p=0 3

— p=0.001
o 3025

— p=01 =4

1QM Success Rate
o o
[N

QM Success Rate
)
@
3
1QM Success Rate
1QM Success Rate

‘,v‘-\.,;«'wwww

0.00

1 2 2 4
Updates 1e5 Updates 1e5 Updates 1e5 Updates 1e5 Updates 1e5

0 2 0 1 2 3 0 4 0.0 25 5.0 7.5 0

Figure 5: Learning with TRANSLATEGOALPROXIMAL(p) for various p. Darker colors correspond to
larger p values. The dashed red line for PickAndPlace denotes the final IQM success rate achieved by
TRANSLATEGOALPROXIMAL(O) in Fig. 4. We plot the IQM success rate over 10 seeds for Panda
experiments and 50 for Goal2D. Shaded regions denote 95% bootstrap confidence belts.

5.1.3 REWARD DENSITY

We now strive to further disentangle state-action coverage from reward density by studying how
changes to reward density affect learning. In the following experiment, we modify reward den-
sity by varying the probability p of generating reward signal with TRANSLATEPROXIMAL(p) and
TRANSLATEGOALPROXIMAL(p) while keeping the update ratio and augmentation ratio fixed at
a = 1 and m = 1, respectively. This setup does not completely isolate reward density from
state-action coverage; changing reward density (increasing p) also affects state-action coverage, as
it increases the amount of learning data in which the goal is near the object. Nevertheless, this
experiment enables us to answer the following question: how critical is it that DA generates data with
high reward density?

As shown in Fig. 5, changing p has little effect on data efficiency in Slide and Flip, further supporting
that increased coverage is the primary benefit of TRANSLATEGOAL in these tasks. In Push and
PickAndPlace, p = 0.05 is most data efficient®, while in Goal2D, data efficiency increases signifi-
cantly as with p = 0.01, and increasing to p = 0.1 offers marginal additional improvement. In these
three tasks, the largest p values decrease data efficiency, since changes to the distribution of reward
signal and can bias updates (i.e. hindsight bias (Lanka and Wu, 2018; Li et al., 2020)). Since the most
data efficient learning occurs when DA contributes no reward signal or a relatively small amount, we
conclude that high reward density is not critical to successful DA.

Collectively, our state-action coverage and reward density experiments suggest that increasing state-
action coverage via DA often has a much greater impact on data efficiency than increasing reward
density. Thus, our results suggest that RL practitioners choosing among candidate DAFs or designing
new DAFs should focus on increasing state-action coverage more so than increasing reward density.

5.1.4 AUGMENTED REPLAY RATIO

Our previous experiments study how two properties of DAFs affect RL, though performance may be
sensitive to how augmented data is incorporated into RL training. In this section, we study how the
number of updates per augmented transition generated affects data efficiency.

Existing DA strategies often incorporate multiple augmentations of the same observed transition into
policy optimization. For instance, HER (Andrychowicz et al., 2017) generates 4 hindsight transitions

SIn Fig. 4, TRANSLATEPROXIMALGOAL(0) achieves an IQM success rate of 0.3 (red dashed line), outper-
forming all PickAndPlace agents in Fig. 5; high reward density augmented data is not critical in this task.

Published as a conference paper at ICLR 2024

—— x3 policy data TranslateGoal, B = 0.5 —— TranslateGoal, B = 0.25 —— TranslateGoal, 8 = 0.125 —— TranslateGoal, 8 = 0.0625

PandaPush-v3 PandaSlide-v3 PandaPickAndPlace-v3 PandaFlip-v3

N
o
o

o
o
o

IQM Success Rate
o o«
N (%))
a o

IQM Success Rate

IQM Success Rate
o
(%))
S

IQM Success Rate

,z
:
:

0 2 4 6 0.0 0.5 1.0 0.0 0.5 1.0 1.5 0.0 0.5 1.0
Updates 1e5 Updates 1e6 Updates 1e6 Updates 1e6

Figure 6: Decreasing the augmented replay ratio with the update ratio fixed at & = 2 markedly
improves learning. Darker colors correspond to smaller replay ratios. We plot the IQM success rate
over 10 seeds. Shaded regions denote 95% bootstrap confidence belts.

per observed transition, and CoDA (Pitis et al., 2020) generates up to 16 augmentations per observed
transition. Generating additional augmentations decreases the augmented replay ratio, the number of
updates per augmented transition generated. We hypothesize that decreasing the augmented replay
ratio can provide a similar benefit to decreasing the replay ratio of observed data noted by Fedus et al.
(2020). Decreasing the replay ratio of observed data can be expensive — requiring more environment
interactions between updates — while decreasing the augmented replay ratio is comparatively cheap.

In this experiment, we decrease the augmented replay ratio 5 by generating more augmentations per
observed transition (i.e., increasing m). We scale the augmented replay buffer size proportionally and
keep the ratio of augmented to observed data used in updates fixed at &« = 2. As shown in Fig. 6, a
lower augmented replay ratio alone substantially improves data efficiency and overall performance
across all panda tasks. Moreover, a low replay ratio is necessary to solve PickAndPlace within our
training budget; 100% success rate can be achieved with 5 = 0.0625, while no learning occurs with
B = 0.5. A lower replay ratio also increases data efficiency in Goal2D with both TRANSLATE and
ROTATE DAFs; due to space constraints, we include these figures in Appendix D.3. Decreasing the
replay ratio is a preferable alternative to increasing the amount of augmented data used in updates, as
the latter may exacerbate the tandem effect (Ostrovski et al., 2021) in which RL from passive data
fails. We support this claim with additional experiments provided in Appendix D.1.

Empirically, we have demonstrated that a DAF’s success may depend strongly on how we integrate
its augmented data into training. To effectively apply DA, one must understand desirable properties
of DAFs and relevant implementation details.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

While prior work has demonstrated that incorporating augmented data in model-free off-policy
reinforcement learning (RL) updates can improve the data efficiency of RL algorithms, we lack
a clear understanding of which aspects of data augmentation (DA) yield such improvements. In
this paper, we isolated three aspects of DA in sparse reward tasks with dynamics-invariant data
augmentation functions (DAFs) — state-action coverage, reward density, and the replay ratio of
augmented data (the number of augmented samples generated per timestep) — to understand how each
affects performance. Empirically, we showed how increasing state-action coverage often has a much
greater impact on data efficiency than increasing reward density. Moreover, we demonstrated that the
decreasing the augmented replay ratio can yield dramatic improvements to data efficiency. In fact,
certain tasks are unsolvable unless the replay ratio is sufficiently small.

Our work has provided an initial study analyzing the benefits of DA. To better leverage DA, further
work should study (1) how other properties of DAFs influence RL training, such as relevancy (Mitrano
and Berenson, 2022), (2) how hyperparameters within a DA framework affect performance, and (3)
how different RL algorithms affect performance. Our analysis focused on relatively low-dimensional
sparse reward tasks with continuous actions, and findings may differ for tasks with dense rewards,
discrete actions, or high-dimensional visual observations. Since our DA framework only integrates
augmented data into model-free updates, it would be beneficial to extend this analysis to frameworks
that use augmented data for auxiliary tasks such as representation learning rather than — or in addition
to — policy optimization (Hansen and Wang, 2021; Raileanu et al., 2021).

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

Thanks to Brahma Pavse and to the anonymous reviewers for feedback that greatly improved our work.
This research is supported in part by American Family Insurance through a research partnership with
the University of Wisconsin-Madison’s Data Science Institute and the Office of the Vice Chancellor
for Research and Graduate Education at the University of Wisconsin — Madison with funding from
the Wisconsin Alumni Research Foundation.”

REFERENCES

Farzad Abdolhosseini, Hung Yu Ling, Zhaoming Xie, Xue Bin Peng, and Michiel Van de Panne. On
learning symmetric locomotion. In Motion, Interaction and Games. 2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in Neural Information Processing Systems (NeurIPS), 30, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,

2020.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double g-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In
International Conference on Learning Representations, 2023.

Meng Fang, Cheng Zhou, Bei Shi, Boging Gong, Jia Xu, and Tong Zhang. Dher: Hindsight experience
replay for dynamic goals. In International Conference on Learning Representations, 2018.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 2022.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International
Conference on Machine Learning, 2020.

Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance
constraints. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, 2018.

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-
Source Goal-Conditioned Environments for Robotic Learning. 4th Robot Learning Workshop:
Self-Supervised and Lifelong Learning at NeurIPS, 2021.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep g-learning with
model-based acceleration. In International conference on machine learning, 2016.

L. Guan, Mudit Verma, Sihang Guo, Ruohan Zhang, and Subbarao Kambhampati. Widening
the pipeline in human-guided reinforcement learning with explanation and context-aware data
augmentation. In NeurlPS, 2021.

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data augmen-
tation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021.

10

Published as a conference paper at ICLR 2024

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep g-learning with convnets and vision
transformers under data augmentation. Advances in Neural Information Processing Systems
(NeurlIPS), 2021.

IEEE Spectrum. Kiva systems: Three engineers, hundreds of robots, one warehouse., 2008. URL
https://spectrum.ieee.org/three-engineers-hundreds-of-robots-one-warehouse. [Online; accessed
September 11, 2023].

Innovation Matrix Inc. Fetch mobile manipulator robot, 2023. URL https://innovation-matrix.com/
imj-fetch-manipulator-robot-annoucement/. [Online; accessed September 11, 2023].

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sameera Lanka and Tianfu Wu. ARCHER: aggressive rewards to counter bias in hindsight experience
replay. CoRR, 2018.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in Neural Information Processing Systems
(NeurlIPS), 2020.

Alexander Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience replay. arXiv
preprint arXiv:1902.00528, 2019.

Sergey Kolesnikov Mikhail Pavlov and Sergey M. Plis. Run, skeleton, run: skeletal model in a
physics-based simulation. AAAI Spring Symposium Series, 2018.

Peter Mitrano and Dmitry Berenson. Data augmentation for manipulation. arXiv preprint
arXiv:2205.02886, 2022.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based reinforce-
ment learning: A survey. Foundations and Trends® in Machine Learning, 2023.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning.
PMLR, 2022.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems (NeurlPS), 2021.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), 2018.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: Model-based coun-
terfactual data augmentation. Advances in Neural Information Processing Systems (NeurIPS),
2022.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for research. arXiv preprint arXiv:1802.09464,
2018.

Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

11

https://spectrum.ieee.org/three-engineers-hundreds-of-robots-one-warehouse
https://innovation-matrix.com/imj-fetch-manipulator-robot-annoucement/
https://innovation-matrix.com/imj-fetch-manipulator-robot-annoucement/

Published as a conference paper at ICLR 2024

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C Lin. Efficient differentiable simulation of
articulated bodies. In International Conference on Machine Learning, 2021.

Sébastien Racaniere, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adria Puigdomeénech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 2021.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
data augmentation for generalization in reinforcement learning. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Juergen Schmidhuber. Hindsight policy
gradients. arXiv preprint arXiv:1711.06006, 2017.

Christian Scheller, Yanick Schraner, and Manfred Vogel. Sample efficient reinforcement learning
through learning from demonstrations in minecraft. In NeurIPS 2019 Competition and Demonstra-
tion Track. PMLR, 2020.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision for
offline reinforcement learning in robotics. In Aleksandra Faust, David Hsu, and Gerhard Neumann,
editors, Proceedings of the 5th Conference on Robot Learning, Proceedings of Machine Learning
Research, 2022.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine learning proceedings 1990. 1990.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAl Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS),
2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2017.

Oregon State University. Bipedal robot developed at oregon state achieves guin-
ness world record in 100 meters, 2022. URL https://today.oregonstate.edu/news/
bipedal-robot-developed-oregon-state-achieves-guinness-world-record- 100-meters. [Online; ac-
cessed September 11, 2023].

Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp
homomorphic networks: Group symmetries in reinforcement learning. Advances in Neural
Information Processing Systems (NeurlIPS), 2020.

Elise van der Pol, Herke van Hoof, Frans A Oliehoek, and Max Welling. Multi-agent mdp homomor-
phic networks. arXiv preprint arXiv:2110.04495, 2021.

Arun Venkatraman, Roberto Capobianco, Lerrel Pinto, Martial Hebert, Daniele Nardi, and J Andrew
Bagnell. Improved learning of dynamics models for control. In International Symposium on
Experimental Robotics, 2016.

Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant g learning in spatial action
spaces. In Conference on Robot Learning, 2022.

Dian Wang, Jung Yeon Park, Neel Sortur, Lawson L.S. Wong, Robin Walters, and Robert Platt. The
surprising effectiveness of equivariant models in domains with latent symmetry. In International
Conference on Learning Representations, 2023.

12

https://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters
https://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters

Published as a conference paper at ICLR 2024

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforce-
ment learning with mixture regularization. Advances in Neural Information Processing Systems

(NeurlIPS), 2020.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 2022.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,

2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

13

Published as a conference paper at ICLR 2024

Appendix

Table of Contents

A

B

Dynamics-Invariant Data Augmentation Functions
Primary Environments for OQur Emprical Analysis
Data Augmentation Functions

Additional Experiments

D.1 Increasing the Update Ratio
D.2 Increasing the Batch Size
D.3 Goal2D Augmented Replay Ratio

Generalization Experiments

E.1 State-Action Coverage
E.2 RewardDensity
E.3 Augmented Replay Ratio

MuJoCo Experiments

F.1 Environment Modifications
F.2 Data Augmentation Functions
F3 Augmented Replay Ratio

Training Details

15

16

17

18
18
18
19

20
20
20
20

22
22
23
24

25

14

Published as a conference paper at ICLR 2024

(a) Navigation (b) Locomotion (c) Manipulation

Figure 7: Common data augmentation functions. (7a, Amazon warehouse robots (2008)): If a robot
is moving in free space, transition dynamics are often invariant to the agent’s position. (7b, OSU’s
Cassie robot (2022)) Since robots are often symmetric about their sagittal axis, we can reflect the
robot’s left and right movements. (7c, Fetch robot (2023)) Objects move only if the agent contacts it.
Thus, if the agent and object are not in contact, their dynamics are independent.

A DYNAMICS-INVARIANT DATA AUGMENTATION FUNCTIONS

In this section, we further motivate our focus on dynamics-invariant data augmentation functions.
Specifying a dynamics-invariant data augmentation function requires knowledge of domain-specific
invariances or symmetries. While domain knowledge may seem like a limitation, we observe in
the literature and real-world RL applications that such invariances and symmetries are incredibly
common and often require very little prior knowledge to specify. We provided a few examples:

1. Transition dynamics are often independent of the agent’s goal state (Andrychowicz et al.,
2017).

2. Objects often have independent dynamics if they are physically separated (Pitis et al., 2020;
2022), which implies that objects exhibit translational invariance conditioned on physical
separation.

3. Several works focus on rotational symmetry of 3D scenes in robotics tasks (Wang et al.,
2022; 2023), and many real-world robots are symmetric in design and thus have symmetries
in their transition dynamics (Abdolhosseini et al., 2019; Mikhail Pavlov and Plis, 2018).

We include real-world tasks that exhibit one or more of these invariances in Fig. 7. We choose to
focus on dynamics-invariant data augmentations because they have already appeared so widely in
the literature. As RL becomes an increasingly widely used tool, we anticipate that domain experts
will be able to identify new domain-specific augmentations and use them to further lower the data
requirements of RL. These observations underscore the importance of identifying when and why
different general properties of data augmentation will benefit RL.

While visual DAFs are also commonly used in RL, a study on such DAFs is beyond the scope of
this analysis. Such studies will likely need to focus on different aspects of DA than the ones we
considered in our work. Visual DAFs generate augmented data with the same semantic meaning as
the original data, and this point has three implications:

1. It may be imprecise to say that visual DAFs increase coverage, because the observed and
augmented data have the same semantic meaning.

2. Because the original and augmented observation have the same semantic meaning, the
augmented reward will often be the same as the original reward. Thus, the concept of
“reward density” does not apply to these augmentations.

3. Moreover, because these DAFs produce data which could never be observed through environ-
ment interaction (e.g. an agent would never receive a cropped, recolored, and rotated image
from the environment), they primarily aid representation learning. In contrast, dynamics-
invariant DAFs aid exploration.

15

Published as a conference paper at ICLR 2024

(a) Push (b) Slide (c) PickAndPlace (d) Flip

Figure 8: Renderings of various Panda tasks. In PandaPush-v3 and Slide, the agent must move an
object to a goal position. In PandaFlip-v3, the agent must rotate an object to a goal orientation.

B PRIMARY ENVIRONMENTS FOR OUR EMPRICAL ANALYSIS

We use four tasks from panda—-gym (Gallouédec et al., 2021) as the core environments in the main
paper. Fig. 8 shows renderings for each task.

* PandaPush-v3 (Push): The robot must push an object to a goal location on the table.
The goal and initial object positions are sampled uniformly at random from (x,y) €
[-0.15,0.15]2, z = 0.02.

* PandaSlide-v3 (Slide): The robot must slide a puck to a goal location on the table. The
initial object position is sampled uniformly at random from [—0.15,0.15]2, while the goal
(x,y, z) is sampled from x € [0.25,0.55],y € [—0.15,0.15], z = 0.015.

* PandaPickAndPlace-v3 (PickAndPlace): The robot must pick up an object and move
it to a goal location. With probability 0.3, the goal is on the table (z = 0.02), and with
probability 0.7, the goal is in the air (z € (0.02,0.2]).

* PandaFlip-v3 (Flip): The robot must pick up an object and rotate it to a goal orientation.
The initial object position is sampled uniformly at random from [—0.15, 0.15)2, while the
goal is a uniformly sampled orientation expressed a quaternion.

In Push, PickAndPlace, and Flip, the object is a cube with side length 0.04. In Slide, the object is a
cylindrical puck with height 0.03 and radius 0.03. The object’s z coordinate measures the distance
between the center of the object and the table (e.g., In Push, Slide, and PickAndPlace, z = 0.02
means the object is on the table).

Push, Slide, and PickAndPlace share a similar sparse reward structure. The agent receives a reward
of 0 if the object is within 0.05 units of the goal and a reward of —1 otherwise. In Flip, the agent
receives a reward of 0 if the object’s orientation q is within 0.2 units from the goal orientation g,
under the following angle distance metric:

d(g,q,) =1—(q-q,)%= 1—+OS(H)

where 6 is the angle of rotation required to rotate q to q,. Otherwise, the agent receives a reward of
—1.

In the toy 2D navigation task Goal2D, an agent must reach a fixed goal within 100 timesteps. The
agent’s state (z,y, x4, y,) contains the coordinates of agent’s positions (x, y) and the goal’s position
(x4,Y4). At each timestep, the agent chooses an action (r,) and transitions to a new position:

Ti41 = ¢ + 0.057 cos(6)

1
Ye+1 = y¢ + 0.057 sin(6) 0

Thus, the agent moves at most 0.05 units in any direction. The goal position is fixed throughout
an episode. The agent receives reward +1 when it is within 0.05 units of the goal and reward —0.1
otherwise. Agent and goal positions are initialized uniformly at random in [—1, +1]2.

16

Published as a conference paper at ICLR 2024

C DATA AUGMENTATION FUNCTIONS

In this section, we provide further details on the data augmentation functions introduced in Section 5.1.

* TRANSLATEGOAL: Goals are relabeled using a new goal sampled uniformly at random
from the goal distribution. Reward signal is generated when the new goal is sufficiently
close to the object’s current position. To approximate the probability of this augmentation
generating reward signal in each task, we sample 10M object and goal positions uniformly
at random and report the empirical probability of the goal being sufficiently close to the
object to generate reward signal.

— PandaPush-v3 (Push): Reward signal is generated with probability approximately
0.075.

— PandaSlide-v3 (Slide): The probability of generating reward signal depends on the
current policy. The initial object and goal distributions are disjoint, so this augmentation
can only generate reward signal if the agent pushes the object into the region x €
[0.25,0.55],y € [—0.15,0.15]. If the object is in this region, this augmentation will
generate reward signal with probability approximately 0.075.

— PandaPickAndPlace-v3 (PickAndPlace): Reward signal is generated with probability
approximately 0.04.

— PandaFlip-v3 (Flip): Reward signal is generated with probability approximately 0.04.

* TRANSLATEGOALPROXIMAL(p): Goals are relabeled using a new goal sampled from the
goal distribution. With probability p, the new goal generates a reward signal, and with
probability 1 — p, no reward signal is generated. When generating an augmented sample
with reward signal, the goal is set equal to the object’s position plus a small amount of noise.
and with probability 1 — p, the object is moved to a random location sufficiently far from
the goal that no reward signal is generated.

All Panda augmentation functions relabel the goal and reward. For Goal2D, we consider three data
augmentation functions:

1. TRANSLATE: Translate the agent to a random position in [—1,+1]2. This augmentation
generates reward signal with probability approximately 0.019. We obtained this approxima-
tion by sampling 10M agent and goal positions uniformly at random and then computing
the empirical probability of the goal being with 0.05 units of the agent.

2. ROTATE: Rotate both the agent and goal by 6 € {x/2,7,37/2}. When sampling mul-
tiple augmentations of the sample observed transition, it is possible to sample duplicate
augmentations.

3. TRANSLATEPROXIMAL(p): Translate the agent to a random position in [—1, +1]%. With
probability p, agent’s new position is within 0.05 units of the goal and generates reward
signal, and with probability 1 — p, agent’s new position is more than 0.05 units from the
goal and generates no reward signal.

All Goal2d augmentations modify the agent’s state. TRANSLATE and TRANSLATEPROXIMAL(p)

modify the agent’s position and reward but do not modify the goal. ROTATE affects the agent’s
position, the goal position, and agent’s action, but does not change the reward.

17

Published as a conference paper at ICLR 2024

----- x3 policy data —— x3 data via TranslateGoal —— x5 data via TranslateGoal —— x9 data via TranslateGoal —— x17 data via TranslateGoal

PandaPush-v3 PandasSlide-v3 PandaPickAndPlace-v3 PandaFlip-v3

0.8 0.8

o
Y

o
S
Success Rate

Success Rate

o
N

00 0.0 00 ;
0o 1 2 4 5 00 02 04 06 08 10 00 02 04 06 0.8 10 12 14 00 02 04 06 08 10

3 6
Updates 1e5 Updates 1e6 Updates 1e6 Updates 1e6

(a) Push (b) Slide (c) PickAndPlace (d) Flip

Figure 9: Increasing the update ratio while keeping the augmented replay ratio fixed at 3 = 1 may
harm performance. We plot the mean over 10 seeds expect for agents that use very large batch sizes:
“x9 data" and “x17 data" curves show 5 seeds; “x17 data" for PickAndPlace shows 3 seeds. Shaded
regions are 95% confidence belts. These agents are trained using the same hyperparameters as those
used in Fig. 6, though the hyperparameters are slightly different than those used in other figures. See
Appendix G for further details.

PandaPush-v3 Pandaslide-v3 PandaFlip-v3 PandaPickAndPlace-v3

o

0.8

o
®

o

=)
[=4
>

.
o il

L A ke
%260 05 10 15 20 25 30 To 1 2 3 4 5 0% 1 2 3 4 5 6 7
Updates 1e5 Updates 1e5 Updates 1e5 Updates 1e5
(a) Push (b) Slide (c) PickAndPlace (d) Flip

Success Rate
o
S

A

o
=
Success Rate

Success Rate

o

)
o
N

Figure 10: Increasing the batch size without increasing the amount of learning data available to the
agent harms performance. We train agents using the hyperparameters listed in Table 2 with various
batch sizes, e.g., “x2 batch size" corresponds to learning with a batch size twice as large the batch

size listed in Table 2.

D ADDITIONAL EXPERIMENTS

In this appendix, we provide additional experiments supporting the core claims in the main paper.

D.1 INCREASING THE UPDATE RATIO

In Section 5.1.4, we demonstrate that generating more augmented data to decrease the augmented
replay ratio can drastically improve data efficiency. If we generated more augmented data by
increasing the augmentation ratio, we could alternatively incorporate the additional augmented data
by using more augmented data in each update (i.e., increasing the update ratio). Fig. 9 shows agent
performance as the augmentation ratio and update ratio increase proportionally. We additionally keep
the replay age fixed by increasing the augmented buffer size proportionally. Learning is generally
more data efficient with a larger update ratio, though it may harm performance as seen in Slide.
Notably, the improvements in data efficiency from decreasing the replay ratio (Fig. 6) are similar
or better than those produced from an increased update ratio and can be achieved at a much lower
computational cost per update.

D.2 INCREASING THE BATCH SIZE

In Fig. 3, agents with more training data available to them use larger batch sizes for updates, giving
these agents a seemingly unfair advantage over agents that learn from less data. However, Fig. 10
shows that increasing the batch size without increasing the amount of data available to the agent

18

Published as a conference paper at ICLR 2024

Goal2D-v0 Goal2D-v0
1.0 oy 1.0
0.8 0.8
2 2
[0] ©
X 06 @ 06
» %)
7] [72]
8 8
o 04 S04
a ----- X2 policy data 5 - x2 policy data
0.2 Translate, 8 = 0.5 0.2 Rotate, 8 = 0.5
= Translate, f = 0.25 —— Rotate, B =0.25
—— Translate, B =0.0625 —— Rotate, B =0.0625
0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 15 2.0 2.5
Updates 1e5 Updates 1e5
(a) Goal2D: TRANSLATE (b) Goal2D: ROTATE

Figure 11: (50 seeds) Decreasing the replay ratio while keeping the update ratio fixed at a = 1
improves data efficiency.

harms performance, due to an increase in the expected number of times a transition is sampled for a
gradient update (Fedus et al., 2020). By scaling the batch size with the amount of available learning
data in Fig. 3, we keep the expected number of gradient updates per observed/augmented transition
fixed across all experiments, providing a fairer comparison.

D.3 GoAL2D AUGMENTED REPLAY RATIO

As in Section 5.1.4, we decrease the augmented replay ratio 5 by generating more augmentations
per observed transition. We scale the augmented replay buffer size proportionally and keep the
ratio of augmented to observed data used in updates fixed at « = 1. As shown in Fig. 11, a lower
augmentation replay ratio increases data efficiency.

19

Published as a conference paper at ICLR 2024

Goal2D-v0 PandaPush-v3 PandaSlide-v3

o
o
o

o
o
o
@
o
@

13
=Y
o
o
o
=

I
~
I
~

o
=
IQM Success Rate

o
N}
o
)

o
N
IQM Success Rate

IQM Success Rate

o
o
o
o
o
o

0.0 0.5 1.0 15 20 25 00 05 10 15 20 25 3.0
Updates Updates

(a) (b) (©

Updates

Figure 12: Learning with various mixtures of additional policy-generated data and TRANSLATEPROX-
IMAL(0) or TRANSLATEGOALPROXIMAL(0) data. Each mixture doubles the agent’s learning data.
Solid lines denote averages over 10 seeds in Panda tasks and 50 seeds in Goal2D, and shaded regions
denote 95% confidence intervals. The upper legend refers to Panda tasks results. We use an update
ratio of aw = 1. Panda tasks use the same hyperapameters listed in Table 2.

E GENERALIZATION EXPERIMENTS

In this section, we investigate how state-action coverage, reward density, and the augmentated replay
ratio affect an agent’s generalization ability. For Push, Slide, and PickAndPlace, we train agents over
one quadrant of the goal distribution and evaluate agents over the full distribution. For Flip, An agent
that generalizes well will achieve a high success rate over the full goal distribution. In general, our
observations regarding data efficiency in the main body of this work also apply to generalization.

E.1 STATE-ACTION COVERAGE

State-action coverage results are shown in Fig. 12. An increase in state-action coverage via augmen-
tation increases generalization. In the Panda tasks, using 50% TRANSLATEGOALPROXIMAL(0O) data
yields similar performance compared to increased using a 50% TRANSLATEGOAL data, indicating
that coverage alone can largely explain the generalization improvements with TRANSLATEGOAL.
In Goal2D, increased coverage yields better generalization, though a considerable gap nevertheless
exists between TRANSLATEPROXIMAL(0) and TRANSLATE. Thus, reward density must play a larger
role in Goal2D. We further investigate this point in the following section.

E.2 REWARD DENSITY

Reward density results are shown in Fig. 13. In Goal2D, a relatively small increase in reward density
dramatically improves generalization; TRANSLATEPROXIMAL(0) is roughly on-par with using twice
as much policy-generated data, while TRANSLATEPROXIMAL(0.05) outperforms agents with x8 as
much policy-generated data. In the Panda tasks, increasing reward density has little effect on data
generalization. Just

E.3 AUGMENTED REPLAY RATIO

Augmented replay ratio results are shown in Fig. 14. In Goal2D with TRANSLATE and both Panda
tasks with TRANSLATEGOAL, reducing the augmented replay ratio 3 improves generalization
performance at convergence. ROTATE achieves 100% success for all values of 3.

20

Published as a conference paper at ICLR 2024

Goal2D-v0
1.0
2
Sos
1
$06
Q
s e o i
@ 04 *% B polcy data
= | irmminaio
go2 T Tttty
- A 4 TranslateProximal(0.25)
0.0
00 05 10 15 20 25
Updates b
(@)

PandaPush-v3

1.0
2
£ os
[
© 06 =
8
S oa ety sen
. 22 ol ca
2] —— TranslateGoalProximal(0)
2 = TranslateGoalProximal(0.05)
O 02 = TranslateGoalProximal(0.1)
- = TranslateGoalProximal(0.25)
0.0
00 05 10 15 20 25 30
Updates e
(b)

IQM Success Rate

PandaSlide-v3

1.0
0.8
0.6
+x1 policy data
0.4 + %2 policy data
= TranslateGoalProximal(0)
= TranslateGoalProximal(0.05)
02 TranslateGoalPr 1l
—— TranslateGoalProximal(0.1)

—— TranslateGoalProximal(0.25)

0.0
0 1 2 3 4 5
Updates e
©

Figure 13: Learning with TRANSLATEGOALPROXIMAL(p) and TRANSLATEPROXIMAL(p) for
various settings of p. Solid lines denote averages over 10 seeds in Panda tasks and 50 seeds in
Goal2D, and shaded regions denote 95% confidence intervals. We use an update ratio of o = 1.
Panda tasks use the same hyperapameters listed in Table 2.

Goal2D-v0
1.0 1.0
% B %
r 0.8 i x 0.8
(7)) 7]
B o6 B o6
s 4 . = x1 policy data s
O : o - x2 policy data O
304 S + 8 policy data 304
(93] - —— Translate, = 0.5 (93]
> ". === Translate, = 0.25 >
(@] 0.2 D —— Translate, B = 0.125 (@] 0.2
- Translate, B =0.0625 -
0.0 0.0
0.0 0.5 1.0 1.5 2.0 25
Updates 8
(@)
PandaPush-v3 PandaSlide-v3
1.0 1.0
2 -]
@ O
g os g o8
@ 3
806 $06
S e g Pty
5’) 0.4 + X3 policy data 03) 0.4 ¥3 policy data
= = TranslateGoal, B =1.0 s = TranslateGoal, = 1.0
= TranslateGoal, B = 0.5 = TranslateGoal, 8 =0.5
Q 02 —_— Tvans\:eﬁoal.ﬁ:O.ZS C_J 02 —_— Trans\a:eGoz\ B=025
—— TranslateGoal, § =0.125 —— TranslateGoal, B =0.125
0.0 00 ©
0 1 2 3 4 5 6 00 02 04 06 08 10
5 pes
(© (d)

Success Rate

Goal2D-v0

& =s= x1policy data

d == x2policy data

ot == x8 policy data
=== Rotate, B = 0.5
== Rotate, 8 = 0.25

Rotate, B = 0.125

Rotate, B = 0.0625

20 25

1e5

10 15
Updates

(b)

PandaFlip-v3

o
[

o
)

©
~

o
N

o
S}

0.6

0.8

00 02 04

©)]

Figure 14: Decreasing the augmented replay ratio with various augmentations. Solid lines denote
averages over 10 seeds in Panda tasks and 50 seeds in Goal2D, and shaded regions denote 95%
confidence intervals. We use an update ratio of o = 1 for Goal2D and o = 2 for Panda tasks. Panda
tasks use the same hyperapameters used to in Fig. 6.

21

Published as a conference paper at ICLR 2024

Environment \ Modifications
InvertedPendulum, cpole from_to changed from
InvertedDoublePendulum (0,0,0,0.001,0,0.6) to (0,0,0,0,0,0.6).

foot_left_geom friction changed from 1.9 to 0.9
so that it matches the foot_right_geom friction.
right_hip_y armature changed from 0.0080 to 0.010
so that it matches 1eft_hip_y armature.

Humanoid Specify right_knee stiffness of 1
so that it matches 1eft_knee stiffness.
Change solver from PGS to Newton.

Walker2d

Table 1: Modifications to MuJoCo environments to ensure intuitive symmetries. We include modi-
fications to InvertedPendulum tasks even though we do not consider them in our experiments. We
leave them here as a reference for future work in data augmentation that may require symmetric
InvertedPendulum dynamics.

F MuJoCo EXPERIMENTS

In this appendix, we include additional experiments on the following dense reward, continuous
state and action MuJoCo environments: Swimmer-v4, Walker2d-v4, Ant-v4, and Humanoid-v4.
These experiments focus on the augmented replay ratio; the state-action coverage and reward density
analysis provided in the main paper is tailored toward sparse reward tasks. With dense reward tasks,
we may need to consider the full distribution of rewards in the replay buffer, not just the average.

F.1 ENVIRONMENT MODIFICATIONS

Some of the common MuJoCo environments do not exhibit symmetries that should exist intuitively
(e.g. reflection symmetry, gait symmetry, etc.). We found two causes:

1. Asymmetric physics are explicitly hard-coded in the robot descriptor files. We believe these
to be typos, and simply update values such that intuitive symmetries exist.

2. Symmetry-breaking numerical optimization algorithms are sometimes used to compute
constraint forces and constrained accelerations. In particular, some environments use the
Projected Gauss-Seidel (PGS) algorithm which performs sequential updates and therefore
breaks symmetries where physics should be symmetric. To address this issue, we use
Newton’s method, which performs parallel updates and therefore preserves symmetric
physics. We note that while Newton’s method is MuJoCo’s default algorithm, some robot
descriptor files originally specify the use of PGS.

Table 1 describes all modifications made to environments to ensure intuitive symmetry. To simplify
the creation of augmentation functions, we additionally exclude constraint forces and center-of-mass
quantities from the agent’s observations, since their interpretations are not well-documented and
difficult to ascertain.

22

Published as a conference paper at ICLR 2024

(a) Ant-v4: ROTATE (b) Ant-v4: REFLECT

(c) Humanoid-v4: ROTATE

Figure 15: Visualizations of some augmentations in MuJoCo environments.

F.2 DATA AUGMENTATION FUNCTIONS
We consider the following dynamics-invariant augmentations:

e Swimmer-v4

— REFLECT: Reflect joint angles and velocities about the agent’s central axis. The reward
is unchanged.

e Walker2d-v4

— REFLECT: Swap the observations dimensions of the left and right legs. The reward is
unchanged.

e Ant-v4

— REFLECT: Swap the observations dimensions of the front and back legs. Unlike the
other reflections, this augmentation affects the reward. In particular, if the observed
transition moves forward with velocity v, the reflected transition will move backwards
with velocity —v. Thus, this reflection flips the sign of the “forward progress" reward
term in the reward function.

— ROTATE: Rotate the agent’s orientation by ¢ sampled uniformly at random from
[—7/6,7/6].

* Humanoid-v4

— REFLECT: Swap the observations dimensions of the left and right arms/legs, and reflect
torso joint angles, velocities, and orientation about the agent’s central axis. The reward
is unchanged.

— ROTATE: Rotate the agent’s orientation by 6 sampled uniformly at random from

[—7/3,m/3].

23

Published as a conference paper at ICLR 2024

x1 policy data x1.25 policy data Reflect, f=1.0 = Reflect,=0.5 Reflect, B =0.25

Swimmer-v4 Walker2d-v4 Ant-v4 Humanoid-v4

5000

4000

3000

Return

2000

1000

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Updates 1e6 Updates 1e6 Updates 1e6 Updates 1e6

Figure 16: Lowering the augmented replay ratio for the REFLECT augmentation. Solid lines denote
averages over 10 seeds, and shaded regions denote 95% confidence intervals.

x1 policy data x2 policy data - Rotate, 3=1.0 =—— Rotate, =05 —— Rotate, B =0.25

Ant-v4 Humanoid-v4
6000

5000 5000

4000 4000

3000 3000

Return
Return

2000 2000

1000 1000

0 0
00 02 04 06 08 10 00 02 04 06 08 10
Updates 1e6 Updates 1e6

Figure 17: Lowering the augmented replay ratio for the TRANSLATE and ROTATE augmentations.
Solid lines denote averages over 10 seeds, and shaded regions denote 95% confidence intervals.

F.3 AUGMENTED REPLAY RATIO

We repeat the same augmented replay ratio experiments detailed in Section 5.1.4 for MuJoCo tasks.
We decrease the replay ratio S by generating more augmentations per observed transition while
keeping the amount of augmented data used in policy/value function updates fixed, i.e., we increase
the augmentation ratio m while fixing the update ratio . We consider all augmentations listed in
Appendix F.2.

For the ROTATE augmentation, we fix the update ratio at « = 1 and generate m = 1, 2, 4 augmented
transitions per observed transition, corresponding to augmented replay ratios § = 1,0.5,0.25,
respectively. Even though REFLECT can only generate a single augmented transition per observed
transition, we can nevertheless study the augmented replay ratio as follows. Rather than generating an
augmenting every observed transition, we instead augment transitions with some probability p such
that the augmented replay ratio is 1/p in expectation. We can think of p as a fractional augmentation
ratio. We fix the update ratio at « = 0.25 and consider p = 0.25,0.5, 1, again corresponding to
augmented replay ratios 5 = 1, 0.5, 0.25, respectively.

Results are shown in Fig. 16 and 17. A lower augmented replay ratio with REFLECT yields slight
improvements in data efficiency for all environments except Humanoid-b4, where performance is
largely unchanged. We observe much larger improvements with a lower augmented replay ratio in
our core sparse reward tasks (Section 5.1.4).

24

Published as a conference paper at ICLR 2024

Episode length at most 50 timesteps

Evaluation frequency 10,000 timesteps

Number of evaluation episodes 80

Number of environment interactions 600K (Push), 1M (Slide, Flip), 1.5M (PickAndPlace)
Random action probability 0.3

Gaussian action noise scale 0.2

of random actions before learning 1000

Observed replay buffer size (default) 1-108
Augmented replay buffer size (default) | 1-10°

Batch size (default) 256 (Push, Slide), 512 (Flip, PickAndPlace)

Update frequency Every 2 timesteps (observed replay ratio of 0.5)

Network Multi-layer perceptron with hidden layers (256, 256, 256)
Optimizer Adam (Kingma and Ba, 2014)

Learning rate 0.001

Polyak averaging coefficient (1) 0.95

Table 2: Default hyperparameters used in all Panda tasks.

G TRAINING DETAILS

We use the Stable Baselines3 (Raffin et al., 2021) implementation of DDPG (Lillicrap et al., 2015)
and TD3 (Fujimoto et al., 2018) with modifications to incorporate augmentation into the RL training
loop. In Panda tasks, we use DDPG since we found that it performs substantially better than TD3.
This observation was also made by Gallouédec et al. (2021). All Panda experiments use the default
hyperparameters presented in Table 2. These parameters are nearly identical to the those used
by Plappert et al. (2018) and Gallouédec et al. (2021). The augmented replay ratio experiments in
Fig. 6 and update ratio experiments in Fig. D.1 use different values for two hyperparameters specified
below:

* Random action probability: 0
» Update frequency: Every timestep (observed replay ratio of 1)

We ran all experiments on a compute cluster using a mix of CPU-only and GPU jobs. This cluster
contains a mix of Tesla P100-PCIE, GeForce RTX 2080 Ti, and A100-SXM4 GPUs. Due to limited
GPU access, we only used GPUs for the augmented replay ratio experiments in Section 5.1.4, since
these were our most computationally demanding experiments. We ran state-coverage, reward density,
and generalization experiments on CPU only. CPU jobs took 12-36 hours each depending on the
training budget, and GPU jobs took up to 16 hours each.

25

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Data Augmentation Functions

	A Framework for Studying Data Augmentation in RL
	Disentangling Properties of Data Augmentation
	Experiments
	Benchmarking Data Augmentation
	State-Action Coverage
	Reward Density
	Augmented Replay Ratio

	Conclusions, Limitations, and Future Work
	Appendix
	 Appendix
	Dynamics-Invariant Data Augmentation Functions
	Primary Environments for Our Emprical Analysis
	Data Augmentation Functions
	Additional Experiments
	Increasing the Update Ratio
	Increasing the Batch Size
	Goal2D Augmented Replay Ratio

	Generalization Experiments
	State-Action Coverage
	Reward Density
	Augmented Replay Ratio

	MuJoCo Experiments
	Environment Modifications
	Data Augmentation Functions
	Augmented Replay Ratio

	Training Details

