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Figure 7: Common data augmentation functions. @ Amazon warehouse robots ): If a robot
is moving in free space, transition dynamics are often invariant to the agent’s position. (7b} OSU’s
Cassie robot (2022)) Since robots are often symmetric about their sagittal axis, we can reflect the
robot’s left and right movements. Fetch robot (2023)) Objects move only if the agent contacts it.
Thus, if the agent and object are not in contact, their dynamics are independent.

A  DYNAMICS-INVARIANT DATA AUGMENTATION FUNCTIONS

In this section, we further motivate our focus on dynamics-invariant data augmentation functions.
Specifying a dynamics-invariant data augmentation function requires knowledge of domain-specific
invariances or symmetries. While domain knowledge may seem like a limitation, we observe in
the literature and real-world RL applications that such invariances and symmetries are incredibly
common and often require very little prior knowledge to specify. We provided a few examples:

1. Transition dynamics are often independent of the agent’s goal state (Andrychowicz et al.|
2017).

2. Objects often have independent dynamics if they are physically separated (Pitis et al., 2020
2022)), which implies that objects exhibit translational invariance conditioned on physical
separation.

3. Several works focus on rotational symmetry of 3D scenes in robotics tasks (Wang et al.|
2022;2023), and many real-world robots are symmetric in design and thus have symmetries
in their transition dynamics (Mikhail Pavlov and Plis| 2018}, [Abdolhosseini et al., 2019).

We include real-world tasks that exhibit one or more of these invariances in Fig.[7] We choose to
focus on dynamics-invariant data augmentations because they have already appeared so widely in
the literature. As RL becomes an increasingly widely used tool, we anticipate that domain experts
will be able to identify new domain-specific augmentations and use them to further lower the data
requirements of RL. These observations underscore the importance of identifying when and why
different general properties of data augmentation will benefit RL.

B PRIMARY ENVIRONMENTS FOR OUR EMPRICAL ANALYSIS

We use four tasks from panda—gym (Gallouédec et al., [2021)) as the core environments in the main
paper. Fig. [8|shows renderings for each task.

* PandaPush-v3 (Push): The robot must push an object to a goal location on the table.
The goal and initial object positions are sampled uniformly at random from (z,y) €
[-0.15,0.15]2, z = 0.02.

» PandaSlide-v3 (Slide): The robot must slide a puck to a goal location on the table. The
initial object position is sampled uniformly at random from [—0.15,0.15]2, while the goal
(x,y, z) is sampled from x € [0.25,0.55],y € [-0.15,0.15], z = 0.015.

* PandaPickAndPlace-v3 (PickAndPlace): The robot must pick up an object and move
it to a goal location. With probability 0.3, the goal is on the table (z = 0.02), and with
probability 0.7, the goal is in the air (z € (0.02,0.2]).
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(a) Push (b) Slide (c) PickAndPlace (d) Flip

Figure 8: Renderings of various Panda tasks. In PandaPush-v3 and Slide, the agent must move an
object to a goal position. In PandaFlip-v3, the agent must rotate an object to a goal orientation.

Episode length at most 50 timesteps

Evaluation frequency 10,000 timesteps

Number of evaluation episodes 80

Number of environment interactions 600K (Push), 1M (Slide, Flip), 1.5M (PickAndPlace)
Random action probability 0.3

Gaussian action noise scale 0.2

# of random actions before learning 1000

Observed replay buffer size (default) 1-108
Augmented replay buffer size (default) | 1-10°

Batch size (default) 256 (Push, Slide), 512 (Flip, PickAndPlace)

Update frequency Every 2 timesteps (observed replay ratio of 0.5)

Network Multi-layer perceptron with hidden layers (256, 256, 256)
Optimizer Adam (Kingma and Ba| 2014)

Learning rate 0.001

Polyak averaging coefficient (1) 0.95

Table 1: Default hyperparameters used in all Panda tasks.

* PandaFlip-v3 (Flip): The robot must pick up an object and rotate it to a goal orientation.
The initial object position is sampled uniformly at random from [—0.15,0.15]2, while the
goal is a uniformly sampled orientation expressed a quaternion.

In Push, PickAndPlace, and Flip, the object is a cube with side length 0.04. In Slide, the object is a
cylindrical puck with height 0.03 and radius 0.03. The object’s z coordinate measures the distance
between the center of the object and the table (e.g., In Push, Slide, and PickAndPlace, z = 0.02
means the object is on the table).

Push, Slide, and PickAndPlace share a similar sparse reward structure. The agent receives a reward
of 0 if the object is within 0.05 units of the goal and a reward of —1 otherwise. In Flip, the agent
receives a reward of 0 if the object’s orientation q is within 0.2 units from the goal orientation g,
under the following angle distance metric:

d(q,q,) =1—(q-q,)° = 1—CTOS(9)

where 6 is the angle of rotation required to rotate g to q,. Otherwise, the agent receives a reward of
—1.

In the toy 2D navigation task Goal2D, an agent must reach a fixed goal within 100 timesteps. The
agent’s state (z,y, x4, y,) contains the coordinates of agent’s positions (x, y) and the goal’s position
(24,Y4). At each timestep, the agent chooses an action (7, ) and transitions to a new position:

41 = ¢ + 0.05r cos()

1
Yr+1 = Yyt + 0.057 sin(0) (D

Thus, the agent moves at most 0.05 units in any direction. The goal position is fixed throughout
an episode. The agent receives reward 41 when it is within 0.05 units of the goal and reward —0.1
otherwise. Agent and goal positions are initialized uniformly at random in [—1, +1]2.
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C AUGMENTATION FUNCTIONS

In this section, we provide further details on the data augmentation functions introduced in Section[5.1]

* TRANSLATEGOAL: Goals are relabeled using a new goal sampled uniformly at random
from the goal distribution. Reward signal is generated when the new goal is sufficiently
close to the object’s current position. To approximate the probability of this augmentation
generating reward signal in each task, we sample 10M object and goal positions uniformly
at random and report the empirical probability of the goal being sufficiently close to the
object to generate reward signal.

— PandaPush-v3 (Push): Reward signal is generated with probability approximately
0.075.

— PandaSlide-v3 (Slide): The probability of generating reward signal depends on the
current policy. The initial object and goal distributions are disjoint, so this augmentation
can only generate reward signal if the agent pushes the object into the region x €
[0.25,0.55],y € [—0.15,0.15]. If the object is in this region, this augmentation will
generate reward signal with probability approximately 0.075.

— PandaPickAndPlace-v3 (PickAndPlace): Reward signal is generated with probability
approximately 0.04.

— PandaFlip-v3 (Flip): Reward signal is generated with probability approximately 0.04.

* TRANSLATEGOALPROXIMAL(p): Goals are relabeled using a new goal sampled from the
goal distribution. With probability p, the new goal generates a reward signal, and with
probability 1 — p, no reward signal is generated. When generating an augmented sample
with reward signal, the goal is set equal to the object’s position plus a small amount of noise.
and with probability 1 — p, the object is moved to a random location sufficiently far from
the goal that no reward signal is generated.

All Panda augmentation functions relabel the goal and reward. For Goal2D, we consider three data
augmentation functions:

1. TRANSLATE: Translate the agent to a random position in [—1,+1]2. This augmentation
generates reward signal with probability approximately 0.019. We obtained this approxima-
tion by sampling 10M agent and goal positions uniformly at random and then computing
the empirical probability of the goal being with 0.05 units of the agent.

2. ROTATE: Rotate both the agent and goal by 6 € {x/2,7,37/2}. When sampling mul-
tiple augmentations of the sample observed transition, it is possible to sample duplicate
augmentations.

3. TRANSLATEPROXIMAL(p): Translate the agent to a random position in [—1, +1]%. With
probability p, agent’s new position is within 0.05 units of the goal and generates reward
signal, and with probability 1 — p, agent’s new position is more than 0.05 units from the
goal and generates no reward signal.

All Goal2d augmentations modify the agent’s state. TRANSLATE and TRANSLATEPROXIMAL(p)

modify the agent’s position and reward but do not modify the goal. ROTATE affects the agent’s
position, the goal position, and agent’s action, but does not change the reward.
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Figure 9: Increasing the update ratio while keeping the augmented replay ratio fixed at 3 = 1 may
harm performance. We plot the mean over 10 seeds expect for agents that use very large batch sizes:
“x9 data" and “x17 data" curves show 5 seeds; “x17 data" for PickAndPlace shows 3 seeds. Shaded
regions are 95% confidence belts. These agents are trained using the same hyperparameters as those
used in Fig. [6] though the hyperparameters are slightly different than those used in other figures. See
Appendix ﬁor further details.
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Figure 10: Increasing the batch size without increasing the amount of learning data available to the
agent harms performance. We train agents using the hyperparameters listed in Table[I| with various
batch sizes, e.g., “x2 batch size" corresponds to learning with a batch size twice as large the batch

size listed in Table E

D ADDITIONAL EXPERIMENTS

D.1 INCREASING THE UPDATE RATIO

In Section[5.1.4] we demonstrate that generating more augmented data to decrease the augmented
replay ratio can drastically improve data efficiency. If we generated more augmented data by
increasing the augmentation ratio, we could alternatively incorporate the additional augmented data
by using more augmented data in each update (i.e., increasing the update ratio). Fig.[9]shows agent
performance as the augmentation ratio and update ratio increase proportionally. We additionally keep
the replay age fixed by increasing the augmented buffer size proportionally. Learning is generally
more data efficient with a larger update ratio, though it may harm performance as seen in Slide.
Notably, the improvements in data efficiency from decreasing the replay ratio (Fig. [6) are similar
or better than those produced from an increased update ratio and can be achieved at a much lower

computational cost per update.

D.2 INCREASING THE BATCH SIZE

In Fig.[3] agents with more training data available to them use larger batch sizes for updates, giving
these agents a seemingly unfair advantage over agents that learn from less data. However, Fig.[I0]
shows that increasing the batch size without increasing the amount of data available to the agent
harms performance, due to an increase in the expected number of times a transition is sampled for a
gradient update (Fedus et al.;,2020). By scaling the batch size with the amount of available learning
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Figure 11: (50 seeds) Decreasing the replay ratio while keeping the update ratio fixed at a = 1
improves data efficiency.

data in Fig. 3] we keep the expected number of gradient updates per observed/augmented transition
fixed across all experiments, providing a fairer comparison.

D.3 GoAL2D AUGMENTED REPLAY RATIO

As in Section[5.1.4] we decrease the augmented replay ratio 3 by generating more augmentations
per observed transition. We scale the augmented replay buffer size proportionally and keep the
ratio of augmented to observed data used in updates fixed at &« = 1. As shown in Fig. [IT] a lower
augmentation replay ratio increases data efficiency.
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Figure 12: Learning with various mixtures of additional policy-generated data and TRANSLATEPROX-
IMAL(0) or TRANSLATEGOALPROXIMAL(Q) data. Each mixture doubles the agent’s learning data.
Solid lines denote averages over 10 seeds in Panda tasks and 50 seeds in Goal2D, and shaded regions
denote 95% confidence intervals. The upper legend refers to Panda tasks results. We use an update
ratio of & = 1. Panda tasks use the same hyperapameters listed in Tablem

E GENERALIZATION EXPERIMENTS

In this section, we investigate how state-action coverage, reward density, and the augmentated replay
ratio affect an agent’s generalization ability. For Push, Slide, and PickAndPlace, we train agents over
one quadrant of the goal distribution and evaluate agents over the full distribution. For Flip, An agent
that generalizes well will achieve a high success rate over the full goal distribution. In general, our
observations regarding data efficiency in the main body of this work also apply to generalization.

E.1 STATE-ACTION COVERAGE

State-action coverage results are shown in Fig.[I2] An increase in state-action coverage via augmen-
tation increases generalization. In the Panda tasks, using 50% TRANSLATEGOALPROXIMAL(0Q) data
yields similar performance compared to increased using a 50% TRANSLATEGOAL data, indicating
that coverage alone can largely explain the generalization improvements with TRANSLATEGOAL.
In Goal2D, increased coverage yields better generalization, though a considerable gap nevertheless
exists between TRANSLATEPROXIMAL(0) and TRANSLATE. Thus, reward density must play a larger
role in Goal2D. We further investigate this point in the following section.

E.2 REWARD DENSITY

Reward density results are shown in Fig.[I3] In Goal2D, a relatively small increase in reward density
dramatically improves generalization; TRANSLATEPROXIMAL(0) is roughly on-par with using twice
as much policy-generated data, while TRANSLATEPROXIMAL(0.05) outperforms agents with x8 as
much policy-generated data. In the Panda tasks, increasing reward density has little effect on data
generalization. Just

E.3 AUGMENTED REPLAY RATIO

Augmented replay ratio results are shown in Fig.[T4] In Goal2D with TRANSLATE and both Panda
tasks with TRANSLATEGOAL, reducing the augmented replay ratio /3 improves generalization
performance at convergence. ROTATE achieves 100% success for all values of /.
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Figure 13: Learning with TRANSLATEGOALPROXIMAL(p) and TRANSLATEPROXIMAL(p) for
various settings of p. Solid lines denote averages over 10 seeds in Panda tasks and 50 seeds in
Goal2D, and shaded regions denote 95% confidence intervals. We use an update ratio of o = 1.
Panda tasks use the same hyperapameters listed in TableE
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Figure 14: Decreasing the augmented replay ratio with various augmentations. Solid lines denote
averages over 10 seeds in Panda tasks and 50 seeds in Goal2D, and shaded regions denote 95%
confidence intervals. We use an update ratio of & = 1 for Goal2D and a = 2 for Panda tasks. Panda

tasks use the same hyperapameters used to in Fig. @
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Environment \ Modifications
InvertedPendulum, cpole from_to changed from
InvertedDoublePendulum (0,0,0,0.001,0,0.6) to (0,0,0,0,0,0.6).

foot_left_geom friction changed from 1.9 to 0.9
so that it matches the foot_right_geom friction.
right_hip_y armature changed from 0.0080 to 0.010
so that it matches 1eft_hip_y armature.

Humanoid Specify right_knee stiffness of 1
so that it matches 1eft_knee stiffness.
Change solver from PGS to Newton.

Walker2d

Table 2: Modifications to MuJoCo environments to ensure intuitive symmetries. We include modi-
fications to InvertedPendulum tasks even though we do not consider them in our experiments. We
leave them here as a reference for future work in data augmentation that may require symmetric
InvertedPendulum dynamics.

F MuJoCo EXPERIMENTS

In this appendix, we include additional experiments on the following dense reward, continuous state
and action MuJoCo environments: Swimmer-v4, Walker2d-v4, Ant-v4, and Humanoid-v4. These
experiments focus on state-action coverage and the augmented replay ratio, since reward density is
more relevant to sparse reward tasks. With dense reward tasks, we may need to consider the full
distribution of rewards in the replay buffer, not just the average.

F.1 ENVIRONMENT MODIFICATIONS

Some of the common MuJoCo environments do not exhibit symmetries that should exist intuitively
(e.g. reflection symmetry, gait symmetry, etc.). We found two causes:

1. Asymmetric physics are explicitly hard-coded in the robot descriptor files. We believe these
to be typos, and simply update values such that intuitive symmetries exist.

2. Symmetry-breaking numerical optimization algorithms are sometimes used to compute
constraint forces and constrained accelerations. In particular, some environments use the
Projected Gauss-Seidel (PGS) algorithm which performs sequential updates and therefore
breaks symmetries where physics should be symmetric. To address this issue, we use
Newton’s method, which performs parallel updates and therefore preserves symmetric
physics. We note that while Newton’s method is MuJoCo’s default algorithm, some robot
descriptor files originally specify the use of PGS.

Table 2] describes all modifications made to environments to ensure intuitive symmetry. To simplify
the creation of augmentation functions, we additionally exclude constraint forces and center-of-mass
quantities from the agent’s observations, since their interpretations are not well-documented and
difficult to ascertain.

F.2 AUGMENTATION FUNCTIONS
We consider the following dynamics-invariant augmentations:

e Swimmer-v4

— REFLECT: Reflect joint angles and velocities about the agent’s central axis. The reward
is unchanged.

e Walker2d-v4

— REFLECT: Swap the observations dimensions of the left and right legs. The reward is
unchanged.

e Ant-v4
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(a) Ant-v4: ROTATE (b) Ant-v4: REFLECT

(c) Humanoid-v4: ROTATE

Figure 15: Visualizations of some augmentations in MuJoCo environments.

— REFLECT: Swap the observations dimensions of the front and back legs. Unlike the
other reflections, this augmentation affects the reward. In particular, if the observed
transition moves forward with velocity v, the reflected transition will move backwards
with velocity —wv. Thus, this reflection flips the sign of the “forward progress" reward
term in the reward function.

— ROTATE: Rotate the agent’s orientation by 6 sampled uniformly at random from
[—7/6,7/6].
* Humanoid-v4

— REFLECT: Swap the observations dimensions of the left and right arms/legs, and reflect
torso joint angles, velocities, and orientation about the agent’s central axis. The reward
is unchanged.

— ROTATE: Rotate the agent’s orientation by ¢ sampled uniformly at random from
[—7/3,m/3].

F.3 AUGMENTED REPLAY RATIO

We repeat the same augmented replay ratio experiments detailed in Section [5.1.4]for MuJoCo tasks.
We decrease the replay ratio § by generating more augmentations per observed transition while
keeping the amount of augmented data used in policy/value function updates fixed, i.e., we increase
the augmentation ratio m while fixing the update ratio «. We consider all augmentations listed in

Appendix [F.2]

For the ROTATE augmentation, we fix the update ratio at « = 1 and generate m = 1, 2, 4 augmented
transitions per observed transition, corresponding to augmented replay ratios 8 = 1,0.5,0.25,
respectively. Even though REFLECT can only generate a single augmented transition per observed
transition, we can nevertheless study the augmented replay ratio as follows. Rather than generating an
augmenting every observed transition, we instead augment transitions with some probability p such
that the augmented replay ratio is 1/p in expectation. We can think of p as a fractional augmentation
ratio. We fix the update ratio at « = 0.25 and consider p = 0.25,0.5, 1, again corresponding to
augmented replay ratios 5 = 1, 0.5, 0.25, respectively.

Results are shown in Fig. ??. A lower augmented replay ratio with REFLECT yields slight improve-
ments in data efficiency for all environments considered. ROTATE improves data efficiency in Ant-v4.
We observe much larger improvements with a lower augmented replay ratio in our core sparse reward

tasks (Section [5.1.4).
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Figure 16: Lowering the augmented replay ratio for the REFLECT augmentation. Solid lines denote
averages over 10 seeds, and shaded regions denote 95% confidence intervals.
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Figure 17: Lowering the augmented replay ratio for the TRANSLATE and ROTATE augmentations.
Solid lines denote averages over 10 seeds, and shaded regions denote 95% confidence intervals.
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G TRAINING DETAILS

We use the Stable Baselines3 (Raffin et al.,|2021) implementation of DDPG (Lillicrap et al.,[2015))
and TD3 (Fujimoto et al.,|2018]) with modifications to incorporate augmentation into the RL training
loop. In Panda tasks, we use DDPG since we found that it performs substantially better than TD3.
This observation was also made by |Gallouédec et al.|(2021)). All Panda experiments use the default
hyperparameters presented in Table [Il These parameters are nearly identical to the those used
by [Plappert et al.| (2018)) and |Gallouédec et al.| (2021). The augmented replay ratio experiments in
Fig.[6|and update ratio experiments in Fig.|[D.I|use different values for two hyperparameters specified
below:

* Random action probability: O
* Update frequency: Every timestep (observed replay ratio of 1)

We ran all experiments on a compute cluster using a mix of CPU-only and GPU jobs. This cluster
contains a mix of Tesla P100-PCIE, GeForce RTX 2080 Ti, and A100-SXM4 GPUs. Due to limited
GPU access, we only used GPUs for the augmented replay ratio experiments in Section [5.1.4] since
these were our most computationally demanding experiments. We ran state-coverage, reward density,
and generalization experiments on CPU only. CPU jobs took 12-36 hours each depending on the
training budget, and GPU jobs took up to 16 hours each.
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