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ABSTRACT

We study reinforcement learning (RL) with linear function approximation, un-
known transition, and adversarial losses in the bandit feedback setting. Specifically,
the unknown transition probability function is a linear mixture model (Ayoub
et al., 2020; Zhou et al., 2021; He et al., 2022) with a given feature mapping, and
the learner only observes the losses of the experienced state-action pairs instead
of the whole loss function. We propose an efficient algorithm LSUOB-REPS
which achieves Õ(dS2

√
K +

√
HSAK) regret guarantee with high probability,

where d is the ambient dimension of the feature mapping, S is the size of the
state space, A is the size of the action space, H is the episode length and K
is the number of episodes. Furthermore, we also prove a lower bound of order
Ω(dH

√
K+

√
HSAK) for this setting. To the best of our knowledge, we make the

first step to establish a provably efficient algorithm with a sublinear regret guarantee
in this challenging setting and solve the open problem of He et al. (2022).

1 INTRODUCTION

Reinforcement learning (RL) has achieved significant empirical success in the fields of games,
control, robotics and so on. One of the most notable RL models is the Markov decision process
(MDP) (Feinberg, 1996). For tabular MDP with finite state and action spaces, the nearly minimax
optimal sample complexity is achieved in discounted MDPs with a generative model (Azar et al.,
2013). Without the access of a generative model, the nearly minimax optimal sample complexity is
established in tabular MDPs with finite horizon (Azar et al., 2017) and in tabular MDPs with infinite
horizon (He et al., 2021b; Tossou et al., 2019). However, in real applications of RL, the state and
action spaces are possibly very large and even infinite. In this case, the tabular MDPs are known to
suffer the curse of dimensionality. To overcome this issue, recent works consider studying MDPs
under the assumption of function approximation to reparameterize the values of state-action pairs
by embedding the state-action pairs in some low-dimensional space via given feature mapping. In
particular, linear function approximation has gained extensive research attention. Amongst these
works, linear mixture MDPs (Ayoub et al., 2020) and linear MDPs (Jin et al., 2020b) are two of
the most popular MDP models with linear function approximation. Recent works have attained the
minimax optimal regret guarantee Õ(dH

√
KH) in both linear mixture MDPs (Zhou et al., 2021)

and linear MDPs (Hu et al., 2022) with stochastic losses.

Though significant advances have emerged in learning tabular MDPs and MDPs with linear function
approximation under stochastic loss functions, in real applications of RL, the loss functions may not
be fixed or sampled from some certain underlying distribution. To cope with this challenge, Even-Dar
et al. (2009); Yu et al. (2009) make the first step to study learning adversarial MDPs, where the loss
functions are chosen adversarially and may change arbitrarily between each step. Most works in
this line of research focus on learning adversarial tabular MDPs (Neu et al., 2010a;b; 2012; Arora
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Table 1: Comparisons of regret bounds with most related works studying adversarial tabular and
linear mixture MDPs with unknown transitions. K is the number of episodes, d is the ambient
dimension of the feature mapping, S is the size of the state space, A is the size of the action space,
and H is the episode length.

Algorithm Model Feedback Regret

Shifted Bandit UC-O-REPS
(Rosenberg & Mansour, 2019a)

Tabular MDPs Bandit
Feedback

Õ
(
H3/2SA1/4K3/4

)
UOB-REPS
(Jin et al., 2020a)

Tabular MDPs Bandit
Feedback

Õ
(
HS

√
AK

)
OPPO
(Cai et al., 2020)

Linear Mixture
MDPs

Full-
information

Õ
(
dH2

√
K
)

POWERS
(He et al., 2022)

Linear Mixture
MDPs

Full-
information

Õ
(
dH3/2

√
K
)

LSUOB-REPS
(Ours)

Linear Mixture
MDPs

Bandit
Feedback

Õ
(
dS2

√
K +

√
HSAK

)
Ω
(
dH

√
K +

√
HSAK

)
et al., 2012; Zimin & Neu, 2013; Dekel & Hazan, 2013; Dick et al., 2014; Rosenberg & Mansour,
2019a;b; Jin & Luo, 2020; Jin et al., 2020a; Shani et al., 2020; Chen et al., 2021; Ghasemi et al., 2021;
Rosenberg & Mansour, 2021; Jin et al., 2021b; Dai et al., 2022; Chen et al., 2022a). In contrast, most
recent advances regarding learning adversarial MDPs with linear function approximation require
some stringent assumptions and we are still far from understanding it well. Specifically, Cai et al.
(2020); He et al. (2022) study learning episodic adversarial linear mixture MDPs with unknown
transition but under full-information feedback and Neu & Olkhovskaya (2021) study learning episodic
adversarial linear MDPs under bandit feedback but with known transition. In the more challenging
setting with both unknown transition and bandit feedback, Luo et al. (2021b) make the first step to
establish a sublinear regret guarantee Õ(K6/7) in adversarial linear MDPs under the assumption that
there exists an exploratory policy and Luo et al. (2021a) (an improved version of Luo et al. (2021b))
obtain a regret guarantee Õ(K14/15) in the same setting but without access to an exploratory policy.
Therefore, a natural question remains open:

Does there exist a provably efficient algorithm with Õ(
√
K) regret guarantee for RL with linear

function approximation under unknown transition, adversarial losses and bandit feedback?

In this paper, we give an affirmative answer to this question in the setting of linear mixture MDPs
and hence solve the open problem of He et al. (2022). Specifically, we propose an algorithm
termed LSUOB-REPS for adversarial linear mixture MDPs with unknown transition and bandit
feedback. To remove the need for the full-information feedback of the loss function required by policy-
optimization-based methods (Cai et al., 2020; He et al., 2022), LSUOB-REPS extends the general
ideas of occupancy-measure-based methods for adversarial tabular MDPs with unknown transition
(Jin et al., 2020a; Rosenberg & Mansour, 2019a;b; Jin et al., 2021b). Specifically, inspired by the
UC-O-REPS algorithm (Rosenberg & Mansour, 2019b;a), LSUOB-REPS maintains a confidence
set of the unknown transition and runs online mirror descent (OMD) over the space of occupancy
measures induced by all the statistically plausible transitions within the confidence set to handle the
unknown transition. The key difference is that we need to build some sort of least-squares estimate
of the transition parameter and its corresponding confidence set to leverage the transition structure
of the linear mixture MDPs. Previous works studying linear mixture MDPs (Ayoub et al., 2020;
Cai et al., 2020; He et al., 2021a; Zhou et al., 2021; He et al., 2022; Wu et al., 2022; Chen et al.,
2022b; Min et al., 2022) use the state values as the regression targets to learn the transition parameter.
This method is critical to construct the optimistic estimate of the state-action values and attain the
final regret guarantee. In this way, however, it is difficult to control the estimation error between the
occupancy measure computed by OMD and the one that the learner really takes.

To cope with this issue, we use the transition information of the next-states as the regression targets to
learn the transition parameter. In particular, we pick a certain next-state, which we call the imaginary
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next-state, and use its transition information as the regression target (see Section 4.1 for details). In
this manner, we are able to control the occupancy measure error efficiently. Besides, since the true
transition is unknown, the true occupancy measure taken by the learner is also unknown and it is
infeasible to construct an unbiased loss estimator using the standard importance weighting method.
To this end, we use the upper occupancy measure (Jin et al., 2020a) together with a hyperparameter to
conduct implicit exploration (Neu, 2015) to construct an optimistically biased loss estimator. Finally,
we prove the Õ(dS2

√
K +

√
HSAK) high probability regret guarantee of LSUOB-REPS, where

S is the size of the state space, A is the size of the action space, H is the episode length, d is the
dimension of the feature mapping, and K is the number of the episodes. Further, we also prove
a lower bound of order Ω(dH

√
K +

√
HSAK), which matches the upper bound in d, K and A

up to logarithmic factors (please see Table 1 for the comparisons between our results and previous
ones). Though the upper bound does not match lower bounds in S, we establish the first provably
efficient algorithm with Õ(

√
K) regret guarantee for learning adversarial linear mixture MDPs under

unknown transition and bandit feedback.

2 RELATED WORK

RL with Linear Function Approximation To permit efficient learning in RL with large state-action
space, recent works have focused on RL algorithms with linear function approximation. In general,
these works can be categorized into three lines. The first line uses the low Bellman-rank assumption
(Jiang et al., 2017; Dann et al., 2018; Sun et al., 2019; Du et al., 2019; Jin et al., 2021a), which assumes
the Bellman error matrix has a low-rank factorization. Besides, Du et al. (2021) consider a similar
but more general assumption called bounded bilinear rank. The second line considers the linear MDP
assumption (Yang & Wang, 2019; Jin et al., 2020b; Du et al., 2020; Zanette et al., 2020a; Wang et al.,
2020; 2021; He et al., 2021a; Hu et al., 2022), where both the transition probability function and
the loss function can be parameterized as linear functions of given state-action feature mappings. In
particular, Jin et al. (2020b) propose the first statistically and computationally efficient algorithm
with Õ(H2

√
d3K) regret guarantee. Hu et al. (2022) further improve this result by using a weighted

ridge regression and a Bernstein-type exploration bonus and obtain the minimax optimal regret bound
Õ(dH

√
KH). Zanette et al. (2020b) consider a weaker assumption called low inherent Bellman

error, where the Bellman backup is linear in the underlying parameter up to some misspecification
errors. The last line of works considers the linear mixture MDP assumption (Ayoub et al., 2020;
Zhang et al., 2021; Zhou et al., 2021; He et al., 2021a; Zhou & Gu, 2022; Wu et al., 2022; Min et al.,
2022), in which the transition probability function is linear in some underlying parameter and a given
feature mapping over state-action-next-state triples. Amongst these works, Zhou et al. (2021) obtain
the minimax optimal regret bound Õ(dH

√
KH) in the inhomogeneous episodic linear mixture MDP

setting. In this work, we also focus on linear mixture MDPs.

RL with Adversarial Losses Learning tabular RL with adversarial losses has been well-studied
(Neu et al., 2010a;b; 2012; Arora et al., 2012; Zimin & Neu, 2013; Dekel & Hazan, 2013; Dick
et al., 2014; Rosenberg & Mansour, 2019a;b; Jin & Luo, 2020; Jin et al., 2020a; Shani et al., 2020;
Chen et al., 2021; Ghasemi et al., 2021; Rosenberg & Mansour, 2021; Jin et al., 2021b; Dai et al.,
2022; Chen et al., 2022a). Generally, these results fall into two categories. The first category studies
adversarial RL using occupancy-measure-based methods. In particular, with known transition, Zimin
& Neu (2013) propose the O-REPS algorithm, which achieves (near) optimal regret Õ(H

√
K) with

full-information feedback and Õ(
√
HSAK) with bandit feedback respectively. With unknown

transition and full-information feedback, Rosenberg & Mansour (2019b) propose UC-O-REPS
algorithm, and achieve Õ(HS

√
AK) regret guarantee. When the transition is unknown, and only

the bandit feedback is available, Rosenberg & Mansour (2019a) propose the bounded bandit UC-O-
REPS algorithm and achieve Õ(HS

√
AK/α) regret bound with the assumption that all states are

reachable with probability α. Without this assumption, Rosenberg & Mansour (2019a) only achieve
Õ(H3/2SA1/4K3/4) regret bound. Under the same setting but without the strong assumption of
Rosenberg & Mansour (2019a), Jin et al. (2020a) develop the UOB-REPS algorithm, which uses a
tight confidence set for transition function and a new biased loss estimator and achieves Õ(HS

√
AK)

regret bound. Besides, we remark that the existing tightest lower bound is Ω(H
√
SAK) for the

unknown transition and full-information feedback setting (Jin et al., 2018). The second category
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for learning adversarial RL is the policy-optimization-based method (Neu et al., 2010a; Shani et al.,
2020; Luo et al., 2021b; Chen et al., 2022a), which aims to directly optimize the policies. In this
line of research, with known transition and bandit feedback, Neu et al. (2010b) propose OMDP-BF
algorithm and achieve a regret of order Õ(K2/3). Recently, Shani et al. (2020) establish the POMD
algorithm and attain a Õ(

√
S2AH4K2/3) regret bound for unknown transition and bandit feedback

setting, which is further improved to Õ
(
H2S

√
AK +H4

)
by Luo et al. (2021b) in the same setting.

Recent advances have also emerged in learning adversarial RL with linear function approximation
(Cai et al., 2020; He et al., 2022; Neu & Olkhovskaya, 2021; Luo et al., 2021a;b). Most of these
works study this problem using policy-optimization-based methods (Cai et al., 2020; Luo et al.,
2021a;b; He et al., 2022). Remarkably, He et al. (2022) achieve the (near) optimal Õ(dH3/2

√
K)

regret bound in adversarial linear mixture MDPs in unknown transition but full-information feedback
setting. With bandit feedback but known transition, Neu & Olkhovskaya (2021) obtain a Õ(

√
dHK)

regret guarantee in linear MDPs by using an occupancy-measure-based algorithm called Q-REPS.
Luo et al. (2021a) make the first step to establish a sublinear regret guarantee Õ

(
d2H4K14/15

)
in

adversarial linear MDPs with unknown transition and bandit feedback.

3 PRELIMINARIES

In this section, we present the preliminaries of episodic linear mixture MDPs under adversarial losses.

Inhomogeneous, episodic adversarial MDPs An inhomogeneous, episodic adversarial MDP
is denoted by a tuple M = (S,A, H, {Ph}H−1

h=0 , {ℓk}Kk=1), where S is the finite state space with
cardinality |S| = S, A is the finite action space with cardinality |A| = A, H is the length of
each episode, Ph : S × A × S → [0, 1] is the transition probability function with Ph(s

′|s, a)
being the probability of transferring to state s′ from state s and taking action a at stage h, and
ℓk : S × A → [0, 1] is the loss function for episode k chosen by the adversary. Without loss of
generality, we assume that the MDP has a layered structure, satisfying the following conditions:

• The state space S is constituted by H + 1 disjoint layers S0, . . . ,SH satisfying S =
⋃H

h=0 Sh and
Si

⋂
Sj = ∅ for i ̸= j.

• S0 and SH are singletons, i.e., S0 = {s0} and SH = {sH}.

• Transitions can only occur between consecutive layers. Formally, let h(s) represent the index of
the layer to which state s belongs, then ∀s′ /∈ Sh(s)+1 and ∀a ∈ A, Ph(s)(s

′|s, a) = 0.

These assumptions are standard in previous works (Zimin & Neu, 2013; Rosenberg & Mansour,
2019b;a; Jin et al., 2020a; Jin & Luo, 2020; Jin et al., 2021b; Neu & Olkhovskaya, 2021). They are
not necessary for our analysis but can simplify the notations. However, we remark that our layer
structure assumption is slightly more general than it in previous works, which assume homogeneous
transition functions (i.e., P0 = P1 = . . . = PH−1). Hence they require ∀s′ /∈ Sh(s)+1 and ∀a ∈ A,
Ph(s

′|s, a) = 0 for all h = 0, . . . ,H − 1. Besides, in our formulation, due to the layer structure,
Ph(·|s, a) will actually never affect the transitions in the MDP if h ̸= h(s). Hence, with slightly
abuse of notation, we define P := {Ph}H−1

h=0 and write P (·|s, a) = Ph(s)(·|s, a).
The interaction protocol between the learner and the environment is given as follows. Ahead of time,
the environment decides an MDP, and the learner only knows the state space S, the layer structure,
and the action space A. The interaction proceeds in K episodes. At the beginning of episode k,
the adversary chooses a loss function ℓk probably based on the history information before episode
k. Meanwhile, the learner chooses a stochastic policy πk : S × A → [0, 1] with πk(a|s) being the
probability of taking a at state s. Starting from the initial state sk,0 = s0, the learner repeatedly
selects action ak,h sampled from πk(·|sk,h), suffers loss ℓk(sk,h, ak,h) and transits to the next state
sk,h+1 which is drawn from P (·|sk,h, ak,h) for h = 0, ...,H − 1, until reaching the terminating state
sk,H = sH . At the end of episode k, the learner only observes bandit feedback, i.e., the learner only
observes the loss for each visited state-action pair: {ℓk(sk,h, ak,h)}H−1

h=0 . For any (s, a) ∈ S × A,
the state-action value Qk,h(s, a) and state value Vk,h(s) are defined as follows: Qk,h(s, a) =

E
[∑H−1

j=h ℓk(sk,j , ak,j)
∣∣∣π, P, (sk,h, ak,h) = (s, a)

]
and Vk,h(s) = Ea∼π(·|s) [Qk,h(s, a)].
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We denote the expected loss of an policy π in episode k by ℓk(π) = E
[∑H−1

h=0 ℓk (sk,h, ak,h) |P, π
]
,

where the trajectory {(sk,h, ak,h)}H−1
h=0 is generated by executing policy π under transition function

P . The goal of the learner is to minimize the regret compared with π∗, defined as

R(K) =

K∑
k=1

ℓk(πk)−
K∑

k=1

ℓk(π
∗) ,

where π∗ ∈ argminπ∈Π

∑K
k=1 ℓk(π) is the optimal policy and Π is the set of all stochastic policies.

Linear mixture MDPs We consider a special class of MDPs called linear mixture MDPs (Ayoub
et al., 2020; Cai et al., 2020; Zhou et al., 2021; He et al., 2022) where the transition probability
function is linear in a known feature mapping ϕ : S ×A× S → Rd. The formal definition of linear
mixture MDPs is given as follows.

Definition 1. M = (S,A, H, {Ph}H−1
h=0 , {ℓk}Kk=1) is called an inhomogeneous, episodic B-bounded

linear mixture MDP if ∥ϕ(s′|s, a)∥2 ≤ 1 and there exist vectors θ∗
h ∈ Rd such that Ph (s

′|s, a) =
⟨ϕ (s′|s, a) ,θ∗

h⟩, and ∥θ∗
h∥2 ≤ B, ∀ (s, a, s′) ∈ S ×A× S and h = 0, 1, . . . ,H − 1.

We note that the regularity assumption on the feature mapping ϕ(·|·, ·) in this work is slightly different
from it of Zhou et al. (2021); He et al. (2022). In particular, they assume ∥ϕG(s, a)∥2 ≤ 1 for any
(s, a) ∈ S × A and any bounded function G : S → [0, 1], where ϕG(s, a) =

∑
s′ ϕ(s

′|s, a)G(s′).
One can see that our assumption is slightly more general than theirs.

Notation For a vector x and a matrix A, we use x(i) to denote the i-th coordinate of x and
use A(i, :) to denote the i-th row of A. Let oi,j = (si,j , ai,j , ℓi(si,j , ai,j)) be the observa-
tion of the learner at episode i and stage j. We denote by Fk,h the σ-algebra generated by
{o1,0, . . . , o1,H−1, o2,0, . . . , ok,0, . . . , ok,h}. For simplicity, we abbreviate E[·|Fk,h] as Ek,h[·]. The
notation Õ(·) in this work hides all the logarithmic factors.

3.1 OCCUPANCY MEASURES

To solve the MDPs with online learning techniques, we consider using the concept of occupancy
measures (Altman, 1998). Specifically, for some policy π and a transition probability function P ,
the occupancy measure qP,π : S × A → [0, 1] induced by P and π is defined as qP,π (s, a) =
Pr [(sh, ah) = (s, a)|P, π], where h = h(s) is the index of the layer of state s. Hence qP,π (s, a)
indicates the probability of visiting state-action pair under policy π and transition P . In what follows,
we drop the dependence of an occupancy measure on P and π when it is clear from the context.

Due to its definition, a valid occupancy measure q satisfies the following two conditions. First,
since one and only one state in each layer will be visited in an episode in a layered MDP,
∀h = 0, . . . ,H − 1,

∑
(s,a)∈Sh×A q (s, a) = 1. Second, ∀h = 1, . . . ,H − 1, and ∀s ∈ Sh,∑

(s′,a′)∈Sh−1×A q (s′, a′)P (s|s′, a′) =
∑

a∈A q(s, a). With slightly abuse of notation, we write
q(s) =

∑
a∈A q (s, a). For a given occupancy measure q, one can obtain its induced policy by

πq(a|s) = q(s, a)/q(s). Fixing a transition function P of interest, we denote by ∆(P ) the set of all
the valid occupancy measures induced by P and some policy π. Then the regret can be rewritten as

R(K) =

K∑
k=1

〈
qP,πk − q∗, ℓk

〉
, (1)

where q∗ = qP,π∗ ∈ ∆(P ) is the optimal occupancy measure induced by π∗.

4 ALGORITHM

In this section, we introduce the proposed LSUOB-REPS algorithm, detailed in Algorithm 1. In
general, LSUOB-REPS maintains a ellipsoid confidence set of the unknown transition parameter
(Section 4.1). Meanwhile, it constructs an optimistically biased loss estimator and runs OMD over
the space of the occupancy measures induced by the ellipsoid confidence set to update the occupancy
measure (Section 4.2).
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Algorithm 1 Least Squares Upper Occupancy Bound Relative Entropy Policy Search (LSUOB-REPS)

1: Input: state space S , action space A, episode number K, learning rate η, exploration parameter
γ, regression regularization parameter λ, and confidence parameter δ

2: Initialization: Initialize confidence set P1 as the set of all transition functions. For all h =
0, ...,H−1 and all (s, a) ∈ Sh×A, initialize M0,h = λI , occupancy measure q̂1 (s, a) = 1

Sk×A

and policy π1 = πq̂1 .
3: for k = 1, 2, . . . ,K do
4: for h = 0, 1, . . . ,H − 1 do
5: Take action ak,h ∼ πk(·|sk,h).
6: Set the imaginary next state s′k,h+1 ∈ argmaxs∈Sh+1

∥ϕ(s|sk,h, ak,h)∥M−1
k−1,h

.
7: Observe true next state sk,h+1 ∼ Ph(·|ss,h, ak,h) and loss ℓk(sk,h, ak,h).
8: Mk,h = Mk−1,h + ϕ(s′k,h+1|sk,h, ak,h)ϕ(s′k,h+1|sk,h, ak,h)⊤.
9: bk,h = bk−1,h + ϕ(s′k,h+1|sk,h, ak,h)δsk,h+1

(s′k,h+1).
10: θk,h = M−1

k,hbk,h.
11: end for
12: Compute upper occupancy bound: uk(sk,h, ak,h) = COMP-UOB (πk, sk,h, ak,h,Pk), ∀h.
13: Construct loss estimators for all (s, a): ℓ̂k(s, a) =

ℓk(s,a)
uk(s,a)+γ Ik {s, a}.

14: Update transition confidence set Pk+1 based on Eq. (3).
15: Compute occupancy measure: q̂k+1 = argmin

q∈∆(Pk+1)

η
〈
q, ℓ̂k

〉
+DF (q, q̂k).

16: Update policy πk+1 = πq̂k+1 .
17: end for

4.1 CONFIDENCE SETS

One of the main difficulties in learning MDPs comes from the unknown transition P . To deal
with this problem, a natural way is to construct its estimator together with the corresponding con-
fidence set. Let ϕV (s, a) =

∑
s′ ϕ(s

′|s, a)V (s′). With the observation that Ph(·|s, a)⊤Vk,h+1 =∑
s′∈S Vk,h+1(s

′)⟨ϕ(s′|s, a),θ∗
h⟩ = ⟨ϕVk,h+1

(s, a),θ∗
h⟩, existing works studying linear mixture

MDPs seek to learn θ∗
h using ϕVk,h+1

(sk,h, ak,h) as feature and Vk,h+1(sk,h+1) as the regression
target (Ayoub et al., 2020; Cai et al., 2020). Particularly, they construct the estimator θk,h of θ∗

h as

θk,h = argmin
θ∈Rd

k∑
i=1

[〈
ϕVi,h+1

(si,h, ai,h) ,θ
〉
− Vi,h+1 (si,h+1)

]2
+ λ∥θ∥22 .

Zhou et al. (2021); He et al. (2022) also use a similar method but further incorporate the estiamted
variance information to gain a sharper confidence set. This method is termed as the value-targeted
regression (VTR) (Ayoub et al., 2020; Cai et al., 2020; Zhou et al., 2021; He et al., 2022), which is
critical to construct the optimistic estimator Qk+1,h(·, ·) of the optimal action-value function Q∗(·, ·)
and lead to the final regret guarantee.

However, though VTR is popular in previous works studying linear mixture MDPs (Ayoub et al.,
2020; Cai et al., 2020; He et al., 2021a; Zhou et al., 2021; He et al., 2022; Wu et al., 2022; Chen
et al., 2022b; Min et al., 2022), including the information of the state-value function Vi,h(·) in the
regression makes this method hard to control the estimation error of the occupancy measure coming
from the unknown transition P . To overcome this challenge, we seek a different way, in which θ∗

h is
learned by directly using the vanilla transition information.

Specifically, let Φs,a ∈ Rd×S with Φs,a(:, s
′) = ϕ(s′|s, a) and δs ∈ {0, 1}S be the Dirac measure

at s (i.e., an one-hot vector with the one entry at s). To learn θ∗
h from the transition information, one

may consider using Φsk,h,ak,h
as feature and δsk,h+1

as the regression target. Specifically, θk,h could
be taken as the solution of the following regularized linear regression problem:

θk,h = argmin
θ∈Rd

k∑
i=1

∥Φ⊤
si,h,ai,h

θ − δsi,h+1
∥22 + λ∥θ∥22 .
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However, one obstacle still remains to be solved. Particularly, let ηi,h = Ph(·|si,h, ai,h)− δsi,h+1

be the noise at episode i and stage h. Then it is clear that ηi,h ∈ [−1, 1]S , Ei,h[ηi,h] = 0 and∑
s∈S ηi,h(s) = 0. Therefore, conditioning on Fi,h, the noise ηi,h(s) at each state s is 1-subgaussian

but they are not independent. In this way, one is still not able to establish an ellipsoid confidence set
for θk,h using the self-normalized concentration for vector-valued martingales (Abbasi-Yadkori et al.,
2011). To further address this issue, we propose to use the transition information of only one state
s′i,h+1 in the next layer, which we call the imaginary next state. Note that the imaginary next state
s′i,h+1 is not necessary to be the true next state si,h+1 experienced by the learner. More specifically,
we construct the estimator θk,h of θ∗

h via solving

θk,h = argmin
θ∈Rd

k∑
i=1

[〈
ϕ
(
s′i,h+1|si,h, ai,h

)
,θ
〉
− δsi,h+1

(s′i,h+1)
]2

+ λ∥θ∥22 .

The closed-form solution of the above display is θk,h = M−1
k,hbk,h, where Mk,h =∑k

i=1 ϕ(s
′
i,h+1|si,h, ai,h)ϕ(s′i,h+1|si,h, ai,h)⊤ + λI is the feature covariance matrix at episode

k and stage h and bk,h =
∑k

i=1 ϕ(s
′
i,h+1|si,h, ai,h)δsi,h+1

(s′i,h+1). The choice of s′k,h+1 may be
determined by the learner based on the information of previous steps up to observing (sk,h, ak,h). In
particular, we choose s′k,h+1 as

s′k,h+1 ∈ argmaxs∈Sh+1
∥ϕ(s|sk,h, ak,h)∥M−1

k−1,h
, (2)

where the intuition is that the learner chooses to estimate the uncertainties of most uncertain states
and hence controls the uncertainties of all the states in next layer. Based on the above construction of
θk,h, we have its ellipsoid confidence set guaranteed by the following lemma.
Lemma 1. Let δ ∈ (0, 1). Then for any k ∈ N, and simultaneously for all h = 0, . . . ,H − 1, with
probability at least 1− δ, it holds that θ∗

h ∈ Ck,h, where Ck,h = {θ ∈ Rd : ∥θ − θk−1,h∥Mk−1,h
≤

βk,h} with βk,h = B
√
λ+

√
2 ln(Hδ ) + ln(

det(Mk−1,h)
λd ).

Note that the above lemma immediately implies that with probability 1 − δ, P ∈ Pk, where
Pk = {Pk,h}H−1

h=0 and

Pk,h = {P̂h : ∃θ ∈ Ck,h s.t. ∀(s, a, s′) ∈ Sh ×A× Sh+1, P̂h(s
′|s, a) = θ⊤ϕ(s′|s, a)} . (3)

4.2 LOSS ESTIMATORS AND ONLINE MIRROR DESCENT

Loss Estimators When learning the MDPs with known transition P , existing works consider
constructing a conditionally unbiased estimator ℓ̂k(s, a) =

ℓk(s,a)
qk(s,a)

Ik {s, a} of the true loss function
ℓk (Zimin & Neu, 2013; Jin & Luo, 2020), where Ik {s, a} = 1 if (s, a) is visited in episode k and
Ik {s, a} = 0 otherwise. To further gain a high-probability bound, Ghasemi et al. (2021) extend
the idea of implicit exploration in multi-armed bandits (Neu, 2015) and propose an optimistically
biased loss estimator ℓ̂k(s, a) =

ℓk(s,a)
qk(s,a)+γ Ik {s, a} with γ > 0 as the implicit exploration parameter.

When transition P is unknown, the true occupancy measure qk taken by the learner is also unknown,
and the above loss estimators are no longer applicable. To tackle this problem, we use a loss
estimator defined as ℓ̂k(s, a) =

ℓk(s,a)
uk(s,a)+γ Ik {s, a} with uk(s, a) = maxP̂∈Pk

qP̂ ,πk(s, a) termed as
the upper occupancy bound, which is first proposed by Jin et al. (2020a). This loss estimator is also
optimistically biased since uk(s, a) ≥ qk(s, a) given P ∈ Pk with high probability. Note that uk can
be efficiently computed using COMP-UOB procedure of Jin et al. (2020a).

Online Mirror Descent To compute the updated occupancy measure in each episode, our algorithm
follows the standard OMD framework. Since ∆(P ) is unknown, following previous works (Rosenberg
& Mansour, 2019b;a; Jin et al., 2020a), LSUOB-REPS runs OMD over the space of occupancy
measures ∆(Pk+1) induced by the transition confidence set Pk+1. Specifically, at the end of episode
k, LSUOB-REPS updates the occupancy measure by solving

q̂k+1 = argmin
q∈∆(Pk+1)

η
〈
q, ℓ̂k

〉
+DF (q, q̂k) , (4)

7



Published as a conference paper at ICLR 2023

where ℓ̂k is the biased loss estimator introduced above, η > 0 is the learning rate to be tuned later,
DF (q, q′) =

∑
s,a q (s, a) ln

q(s,a)
q′(s,a)−

∑
s,a (q (s, a)− q′ (s, a)) is the unnormalized KL-divergence,

and the potential function F (q) =
∑

s,a q(s, a) ln q(s, a)−
∑

s,a q(s, a) is the unnormalized negative
entropy. Besides, we note that Eq. (4) can be efficiently solved following the two-step procedure of
OMD (Lattimore & Szepesvári, 2020). The concrete discussions are postponed to Appendix E. More
comparisons between our method and previous methods are detailed in Appendix A.

5 ANALYSIS

In this section, we present the regret upper bound of our algorithm LSUOB-REPS, and a regret lower
bound for learning adversarial linear mixture MDPs with unknown transition and bandit feedback.

5.1 REGRET UPPER BOUND

The regret upper bound of our algorithm LSUOB-REPS is guaranteed by the following theorem.
Recall d is the dimension of the feature mapping, H is the episode length, K is the number of
episodes, S and A are the state and action space sizes, respectively.
Theorem 1. For any adversarial linear mixture MDP M = (S,A, H, {Ph}H−1

h=0 , {ℓk}Kk=1) satis-
fying Definition 1, by setting learning rate η and implicit exploration parameter γ as η = γ =√

H ln(HSA/δ)
KSA , with probability at least 1− 5δ, the regret of LSUOB-REPS is upper bounded by

R(K) = O
(
dS2

√
K ln2(K/δ) +

√
HSAK ln(HSA/δ) +H ln(H/δ)

)
.

Proof sketch. Let qk = qP,πk . Following Jin et al. (2020a), we decompose the regret as

R(K) =

K∑
k=1

〈
q̂k − q∗, ℓ̂k

〉
︸ ︷︷ ︸

REG

+

K∑
k=1

⟨qk − q̂k, ℓk⟩︸ ︷︷ ︸
ERROR

+

K∑
k=1

〈
q̂k, ℓk − ℓ̂k

〉
︸ ︷︷ ︸

BIAS1

+

K∑
k=1

〈
q∗, ℓ̂k − ℓk

〉
︸ ︷︷ ︸

BIAS2

.

We bound each term in the above display as follows (see Appendix C.2 and Appendix C.3 for
details). First, the REG term is the regret of the corresponding online optimization problem, which is
directly controlled by the OMD and can be bounded by O

(√
HSAK ln(HSA/δ) +H ln(H/δ)

)
.

Further, the BIAS2 term measures the overestimation of the true losses by the constructed loss
estimators, which can be bounded by O

(√
HSAK ln(SA/δ)

)
via the concentration of the implicit

exploration loss estimator (Lemma 1, Neu (2015); Lemma 11, Jin et al. (2020a)). Finally, the
ERROR and BIAS1 terms are closely related to the estimation error of the occupancy measure, which
can be bounded by O

(
S2d

√
K ln2(K/δ)

)
and O

(
S2d

√
K ln2(K/δ) +

√
HSAK ln(HSA/δ)

)
respectively. Applying a union bound over the above bounds finishes the proof.

Remark 1. Ignoring logarithmic factors, LSUOB-REPS attains an Õ(dS2
√
K +

√
HSAK) regret

guarantee when K ≥ H . Compared with the regret bound Õ(dH3/2
√
K) of He et al. (2022) for the

full-information feedback, our bound introduces the dependence on S and A and is worse than theirs
since S ≥ H by the layered structure of MDPs. However, as we shall see in Section 5.2, incorporating
the dependence on S and A into the regret bounds is inevitable at the cost of changing from the
full-information feedback to the more challenging bandit feedback. Besides, when dS ≤ H

√
A, the

regret bound of LSUOB-REPS improves the regret bound Õ(HS
√
AK) of Jin et al. (2020a).

5.1.1 BOUNDING THE OCCUPANCY MEASURE DIFFERENCE

To bound the ERROR and BIAS1 terms, it is critical to control (a) the estimation error between q̂k and
qk; and (b) the estimation error between uk and qk, both of which can be bounded by the following
key technical lemma. We defer its proof to Appendix C.1.
Lemma 2 (Occupancy measure difference for linear mixture MDPs). For any collection of transition
functions {P s

k}s∈S such that P s
k ∈ Pk for all s, let qsk = qP

s
k ,πk . If λ ≥ δ, with probability at least

1− 2δ, it holds that
∑K

k=1

∑
(s,a)∈S×A |qsk(s, a)− qk(s, a)| = O

(
dS2

√
K ln2(K/δ)

)
.
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Remark 2. Comparing with the occupancy measure difference Õ
(
HS

√
AK

)
for tabular MDPs in

Lemma 4 of Jin et al. (2020a), our bound Õ
(
dS2

√
K
)

dose not have the dependence on A, though
it is worse by a factor of S. The main hardness of simultaneously eliminating the dependence of
the occupancy measure difference on S and A is that though the transition P of a linear mixture
MDP admits a linear structure, its occupancy measure still has a complicated recursive form:
qk(s, a) = πk(a|s)

〈
θ∗
h(s)−1,

∑
(s′,a′)∈Sh(s)−1×A qk(s

′, a′)ϕ(s|s′, a′)
〉

. We leave the investigation
on whether it is possible to also eliminate the dependence on S as our future work. Besides, we
note that our bound for occupancy measure difference is not a straightforward extension of its
tabular version of Jin et al. (2020a). Specifically, let qsk (s, a|sm) be the probability of visiting
(s, a) under the event that sm is visited in layer m. Jin et al. (2020a) decompose qsk (s, a|sm) as
(qsk (s, a|sm) − qk (s, a|sm)) + qk (s, a|sm) and (qsk (s, a|sm) − qk (s, a|sm)) will only contribute
an O(H2S2A ln(KSA/δ)) term. However, in the linear function approximation setting, the above

term will become a leading term with an Õ
(
H2dS2

√
(d+ S)K

)
order. Hence we do not follow

the decomposition of Jin et al. (2020a) and directly bound qsk (s, a|sm) instead.

5.2 REGRET LOWER BOUND

In this subsection, we provide a regret lower bound for learning adversarial linear mixture MDPs
with bandit feedback and unknown transition.
Theorem 2. Suppose A(H/2−1) ≥ S−2−3H/4, (S−2−3H/4)A ≥ 2(H/2−1), S ≥ 4+3H/2,

2K ≥ d, B ≥ d/
√
48K, and H ≥ 8. Further assume H/4 and S−2−3H/4

H/2−1 are integers. Then for
any algorithm, there exists an inhomogeneous, episodic B-bounded adversarial linear mixture MDP
M = (S,A, H, {Ph}H−1

h=0 , {ℓk}Kk=1) satisfying Definition 1, such that the expected regret for this
MDP is lower bounded by Ω(dH

√
K +

√
HSAK).

Proof sketch. At a high level, we construct an MDP instance such that it simultaneously makes
the learner suffer regret by the unknown transition and the adversarial losses with bandit feedback.
Specifically, we divide an episode into two phases, where the first and the second phase include
the first H/2 + 1 layers and the last H/2 + 1 layers (layer H/2 belongs to both the first and the
second phase). In the first phase, due to the unknown linear mixture transition functions, we can
translate learning in this phase into simultaneously learning H/4 d-dimensional stochastic linear
bandit problems with lower bound of order Ω(dH

√
K). In the second phase, due to the adversarial

losses with bandit feedback, we show that learning in this phase can be regarded as learning a
combinatorial multi-armed bandit (CMAB) problem with semi-bandit feedback, the lower bound of
which is Ω(

√
HSAK). The proof is concluded by combining the bounds of the two phases. Please

see Appendix D for the formal proof.
Remark 3. The regret upper bound in Theorem 1 matches the lower bound in d, K, and A up to
logarithmic factors but looses a factor of S2/H . The dependence of regret lower bound on S and A
is inevitable since only the bandit feedback information of the adversarial losses is revealed to the
learner and the loss function is nonstructural.

6 CONCLUSIONS

In this work, we consider learning adversarial linear mixture MDPs with unknown transition and
bandit feedback. We propose the first provably efficient algorithm LSUOB-REPS in this setting
and prove that with high probability, its regret is upper bound by Õ(dS2

√
K +

√
HSAK), which

only losses an extra S2/H factor compared with our proposed lower bound. To achieve this result,
we propose a novel occupancy measure difference lemma for linear mixture MDPs by leveraging
the transition information of the imaginary next state as the regression target, which might be of
independent interest. One natural open problem is how to close the gap between the existing upper and
lower bounds. Besides, our lower bound suggests that it is not possible to eliminate the dependence
of the regret bound on S and A without any structural assumptions on the loss function. Generalizing
the definition of linear mixture MDPs by further incorporating the structural assumption on the loss
function (e.g., the loss function is linear in the other unknown parameter) to eliminate the dependence
on S and A also seems like an interesting future direction. We leave these extensions as future works.
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Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on the
sample complexity of reinforcement learning with a generative model. Mach. Learn., 91(3):
325–349, 2013.
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A MORE COMPARISONS WITH PREVIOUS METHODS

Previous works studying adversarial linear mixture MDPs (Cai et al., 2020; He et al., 2022) use policy
optimization-based methods and require full-information feedback, while our algorithm is the first
occupancy measure-based method and can work under the bandit feedback setting. Moreover, our
imaginary next-state-based regression scheme significantly departs from their VTR scheme because
we use different regression targets and features. Besides, both our algorithm and previous occupancy
measure-based methods for adversarial tabular RL (Jin et al., 2020a; Rosenberg & Mansour, 2019a;b)
share the similar idea that running OMD over the set of all the statistically plausible occupancy
measures induced by the transitions within the confidence set. The main difference is that we
maintain an ellipsoid confidence set by leveraging the linear structure of the transitions, and previous
methods are all tailored to the tabular case. Besides, since the occupancy measure in this paper is
for state-action pairs, and theirs are for state-action-next-state triples, our optimization procedure of
OMD slightly differs from theirs (see Appendix E for details).

B AUXILIARY LEMMAS

In this section, we present some auxiliary lemmas, which will be useful in our subsequent proofs. We
start by giving the proof of Lemma 1, which shows that with a high probability, θ∗

h in its ellipsoid
confidence set Ck,h.
Lemma 1. Let δ ∈ (0, 1). Then for any k ∈ N, and simultaneously for all h = 0, . . . ,H − 1, with
probability at least 1− δ, it holds that θ∗

h ∈ Ck,h, where Ck,h = {θ ∈ Rd : ∥θ − θk−1,h∥Mk−1,h
≤

βk,h} with βk,h = B
√
λ+

√
2 ln(Hδ ) + ln(

det(Mk−1,h)
λd ).

Proof. Since the feature ϕ(s′i,h+1|si,h, ai,h) is Fi,h-measurable, the noise ηi,h(s
′
i,h+1) =

δsi,h+1
(s′i,h+1) − Ph(s

′
i,h+1|si,h, ai,h) is Fi,h+1-measurable and 1-subgaussian conditioning on

Fi,h, by the self-normalized concentration for vector-valued martingales (Abbasi-Yadkori et al.,
2011), we have for all δ > 0, with probability at least 1− δ/H , for all k ≥ 1,∥∥∥∥∥

k−1∑
i=1

ηi,h(s
′
i,h+1)ϕ(s

′
i,h+1|si,h, ai,h)

∥∥∥∥∥
2

M−1
k−1,h

≤ 2 ln

(
det(Mk−1,h)

1/2 det(I)−1/2

δ/H

)
.

The above display together with the fact that θk−1,h = θ∗
h − λM−1

k−1,hθ
∗
h +

M−1
k−1,h

∑k−1
i=1 ηi,h(s

′
i,h+1)ϕ(s

′
i,h+1|si,h, ai,h) shows that with probability at least 1 − δ/H ,

we have θ∗
h ∈ Ck,h. Applying a union bound over h = 0, . . . ,H − 1 concludes the proof.

The following lemma bounds the error between the transition function P̂k,h ∈ Pk,h and Ph.

Lemma 3. Let P̂k = {P̂k,h}H−1
h=0 with P̂k,h ∈ Pk,h such that P̂k,h(s

′|s, a) = θ̂⊤
k,hϕ(s

′|s, a),
∀(s, a, s′) ∈ Sh ×A× Sh+1, for some θ̂k,h ∈ Ck,h. Then for any δ ∈ (0, 1) and simultaneously for
all h = 0, . . . ,H − 1, with probability at least 1− δ, it holds that,∣∣∣P̂k,h(s

′|s, a)− Ph(s
′|s, a)

∣∣∣ ≤ βk,h(1 ∧ ∥ϕ(s′|s, a)∥M−1
k−1,h

) .

Proof. Let a ∧ b = min(a, b). Due to the definition of linear mixture MDPs, simultaneously for all
h = 0, . . . ,H − 1, ∀k ∈ [K], ∀(s, a, s′) ∈ Sh ×A× Sh+1, we have∣∣∣P̂k,h(s

′|s, a)− Ph(s
′|s, a)

∣∣∣ = ∣∣∣〈ϕ(s′|s, a), θ̂k,h − θ∗
h

〉∣∣∣
≤ ∥ϕ(s′|s, a)∥M−1

k−1,h
∥θ̂k,h − θ∗

h∥Mk−1,h

≤ βk,h∥ϕ(s′|s, a)∥M−1
k−1,h

≤ 1 ∧ βk,h∥ϕ(s′|s, a)∥M−1
k−1,h

≤ βk,h(1 ∧ ∥ϕ(s′|s, a)∥M−1
k−1,h

) ,
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where the second inequality is by Lemma 1, and the third inequality comes from the fact that∣∣∣P̂k,h(s
′|s, a)− Ph(s

′|s, a)
∣∣∣ ≤ 1.

The following lemma is useful to bound the estimation error by the summation of the quadratic forms,
which is often termed as the elliptical potential lemma.
Lemma 4 (Lemma 19.4, Lattimore & Szepesvári (2020)). Let M0,h ∈ Rd×d be positive definite and
x1,h, . . . ,xK,h ∈ Rd be a sequence of vectors with ∥xk,h∥2 ≤ L for all k ∈ [K], h = 0, . . . ,H − 1,
Mk,h = M0,h +

∑
i≤k xi,hx

⊤
i,h. Then, ∀h = 0, . . . ,H − 1,

K∑
k=1

(
1 ∧ ∥xk,h∥2M−1

k−1,h

)
≤ 2d ln

(
traceM0,h +KL2

ddet (M0,h)
1/d

)
.

The following is a Bernstein-type concentration inequality for martingales.
Lemma 5 (Theorem 1, Beygelzimer et al. (2011)). Let Y1, . . . , YK be a martingale difference
sequence with respect to a filtration F1, . . . ,FK . Assume Yk ≤ R a.s. for all k ∈ [K]. Then for any
δ ∈ (0, 1) and λ ∈ [0, 1/R], with probability at least 1− δ, we have

K∑
k=1

Yk ≤ λ

K∑
k=1

E
[
Y 2
k

∣∣Fk−1] +
ln(1/δ)

λ
.

At last, we introduce the following lemma, which guarantees that the summation of the optimistically
biased loss estimators will not overestimate the summation of the true losses too much. This lemma
is an adaptation of Lemma 1 of Neu (2015).
Lemma 6 (Lemma 11, Jin et al. (2020a)). For any sequence of functions α1, . . . , αK such that
αk ∈ [0, 2γ]S×A is Fk−1,H−1-measurable for all k, we have with probability at least 1− δ,

K∑
k=1

∑
(s,a)∈S×A

αk(s, a)

(
ℓ̂k(s, a)−

qk(s, a)

uk(s, a)
ℓk(s, a)

)
≤ H ln

H

δ
.

C OMITTED ANALYSIS OF THE REGRET UPPER BOUND

In this section, we give the detailed analysis of the regret upper bound of our algorithm.

C.1 PROOF OF LEMMA 2

First, we prove the occupancy measure difference lemma for linear mixture MDPs.
Lemma 2 (Occupancy measure difference for linear mixture MDPs). For any collection of transition
functions {P s

k}s∈S such that P s
k ∈ Pk for all s, let qsk = qP

s
k ,πk . If λ ≥ δ, with probability at least

1− 2δ, it holds that
∑K

k=1

∑
(s,a)∈S×A |qsk(s, a)− qk(s, a)| = O

(
dS2

√
K ln2(K/δ)

)
.

Proof. Recall q(s) =
∑

a∈A q(s, a). For any occupancy q and any (s, a) pair, we have

q(s, a) = πq(a|s)q(s) = πq(s|a)
∑

s′∈Sh(s)−1

q(s′)
∑
a′∈A

πq(a′|s′)P q(s|a′, s′)

= πq(s|a)
∑

{si,ai}h(s)−1
i=0 ∈

∏h(s)−1
i=0 Si×A

h(s)−1∏
h=0

πq(ah|sh)
h(s)−1∏
h=0

P q(sh+1|sh, ah) ,

where the last equality follows from expressing q(si+1) using q(si) recursively for i = h(s)−1, . . . , 0.
In the following, we drop

∏h(s)−1
i=0 Si × A in the subscript to which {si, ai}h(s)−1

i=0 belongs for
simplicity. Further, we have

|qsk(s, a)− qk(s, a)| = πk(s|a)
∑

{si,ai}h(s)−1
i=0

h(s)−1∏
h=0

πk(ah|sh)

h(s)−1∏
h=0

P s
k (sh+1|sh, ah)−

h(s)−1∏
h=0

P (sh+1|sh, ah)

 .
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Note that the term in the parentheses of the above can be rewritten as

h(s)−1∏
h=0

P s
k (sh+1|sh, ah)−

h(s)−1∏
h=0

P (sh+1|sh, ah)

=

h(s)−1∏
h=0

P s
k (sh+1|sh, ah)−

h(s)−1∏
h=0

P (sh+1|sh, ah)±
h(s)−1∑
m=1

m−1∏
h=0

P (sh+1|sh, ah)
h(s)−1∏
h=m

P s
k (sh+1|sh, ah)

=

h(s)−1∑
m=0

(P s
k (sm+1|sm, am)− P (sm+1|sm, am))

m−1∏
h=0

P (sh+1|sh, ah)
h(s)−1∏
h=m+1

P s
k (sh+1|sh, ah) ,

which can be bounded as follows using Lemma 3:

h(s)−1∑
m=0

βk,m(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)

m−1∏
h=0

P (sh+1|sh, ah)
h(s)−1∏
h=m+1

P s
k (sh+1|sh, ah) .

For the sake of brevity, we define ϵk,m (sm+1|sm, am) = βk,m(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

).
Therefore, we have

|qsk(s, a)− qs(s, a)|

≤πk(s|a)
∑

{si,ai}h(s)−1
i=0

h(s)−1∏
h=0

πk (ah|xh)

h(s)−1∑
m=0

ϵk,m (xm+1|xm, am)

m−1∏
h=0

P (sh+1|sh, ah)
h(s)−1∏
h=m+1

P s
k (sh+1|sh, ah)

=

h(s)−1∑
m=0

∑
{si,ai}h(s)−1

i=0

ϵk,m (sm+1|sm, am)

(
πk (am|sm)

m−1∏
h=0

πk (ah|sh)P (sh+1|sh, ah)

)

·

πk(s|a)
h(s)−1∏
h=m+1

πk (ah|xh)P
s
k (sh+1|sh, ah)


=

h(s)−1∑
m=0

∑
sm,am,sm+1

ϵk,m (sm+1|sm, am)

 ∑
{si,ai}m−1

i=0

πk (am|xm)

m−1∏
h=0

πk (ah|sh)P (sh+1|sh, ah)


·

∑
am+1

∑
{si,ai}h(s)−1

i=m+2

πk(s|a)
h(s)−1∏
h=m+1

πk (ah|sh)P s
k (sh+1|sh, ah)


=

h(s)−1∑
m=0

∑
sm,am,sm+1

ϵk,m (sm+1|sm, am) qk (sm, am)πk (a|s) qsk (s|sm+1)

≤πk (a|s)
h(s)−1∑
m=0

∑
sm,am,sm+1

ϵk,m (sm+1|sm, am) qk (sm, am) ,

where the last inequality follows from qsk (s|sm+1) ≤ 1.

Let wm = (sm, am, sm+1). With the above displays, summing over k ∈ [K] and (s, a) ∈ S × A
leads to

K∑
k=1

∑
(s,a)∈S×A

|qsk(s, a)− qk(s, a)|

≤
∑
k,s,a

πk (a|s)
h(s)−1∑
m=0

∑
wm

ϵk,m (sm+1|sm, am) qk (sm, am)
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=
∑
k

∑
h<H

h−1∑
m=0

∑
wm

ϵk,m (sm+1|sm, am) qk (sm, am)
∑

(s,a)∈Sh×A

πk (a|s)

=
∑

0≤m<h<H

∑
k,wm

ϵk,m (sm+1|sm, am) qk (sm, am) |Sh|

≤S
∑

0≤m<H

∑
k,wm

ϵk,m (sm+1|sm, am) qk (sm, am)

=S
∑

0≤m<H

∑
k,wm

βk,m(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)qk (sm, am)

≤S
∑

0≤m<H

βK

∑
k,wm

(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)qk (sm, am) ,

where βK = B
√
λ+

√
2 ln(Hδ ) + d ln(dλ+K

dλ ) and the last inequality comes from the determinant-
trace inequality (Lemma 10, Abbasi-Yadkori et al. (2011)) together with Definition 1.

At this step, we first focus on
∑

k,wm
(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1

k−1,m
)qk (sm, am) with a fixed m:∑

k,wm

(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)qk (sm, am)

=
∑
k,wm

Ik{sm, am}(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)︸ ︷︷ ︸
TERM1

+
∑
k,wm

Sm+1

(
qk (sm, am)

Sm+1
− Ik{sm, am}

Sm+1

)
(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1

k−1,m
)︸ ︷︷ ︸

TERM2

TERM1 can be bounded by Lemma 4 as:

TERM1 ≤
∑
k

∑
sm+1

(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)

≤
∑
k

Sm+1(1 ∧ ∥ϕ(s′m+1|sm, am)∥M−1
k−1,m

)

≤ Sm+1

√√√√K

K∑
k=1

(1 ∧ ∥ϕ(s′m+1|sm, am)∥2
M−1

k−1,m

)

≤ Sm+1

√
2Kd ln(

dλ+K

dλ
) ,

where the second inequality is due to choice of the imaginary next state in Eq. (2), the third inequality
uses Cauchy-Schiwarz inequality, and the last inequality comes from applying Lemma 4 with L = 1.

To bound TERM2, we use Lemma 5 to build the bridge between TERM1 and TERM2. Let

Yk,m =
∑
wm

(
qk (sm, am)

Sm+1
− Ik{sm, am}

Sm+1

)
(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1

k−1,m
) .

It is straightforward to verify that Yk,m ≤ 1. Further, we have the fact that

Ek−1,H−1[Y
2
k,m] ≤

Ek−1,H−1

[(∑
wm

Ik(sm, am)
(
1 ∧ ∥ϕ(sm+1|sm, am)∥M−1

k−1,m

))2]
S2
m+1

=

Ek−1,H−1

[∑
wm

Ik(sm, am)
(
1 ∧ ∥ϕ(sm+1|sm, am)∥M−1

k−1,m

)2]
S2
m+1
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≤

∑
wm

qk(sm, am)(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)

Sm+1
,

where the equality comes from Ik(sm, am)Ik(s′m, a′m) = 0 for sm ̸= s′m ∈ Sm, and the last
inequality is by the fact that 1 ∧ ∥ϕ(sm+1|sm, am)∥M−1

k−1,m
is Fk−1,H−1-measurable. By choosing

λ = 1
2 and using Lemma 5, with probability at least 1− δ

H , we have
K∑

k=1

∑
wm

(
qk (sm, am)

Sm+1
− Ik{sm, am}

Sm+1

)
(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1

k−1,m
)

≤ 1

2Sm+1

K∑
k=1

∑
wm

qk (sm, am) (1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

) + 2 ln(
H

δ
) .

By using a union bound, with probability at least 1− δ, the above inequality holds for any m ∈ [H].
Hence we have

K∑
k=1

∑
wm

(qk (sm, am)− Ik{sm, am}) (1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)

≤1

2

K∑
k=1

∑
wm

qk (sm, am) (1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

) + 2Sm+1 ln(
H

δ
) .

The above inequality shows that

TERM2 ≤
K∑

k=1

∑
wm

Ik{sm, am}(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k,m

) + 4Sm+1 ln(
H

δ
)

≤ TERM1 + 4Sm+1 ln(
H

δ
) .

Therefore, with probability at least 1− δ, we have
K∑

k=1

∑
(s,a)∈S×A

|qsk(s, a)− qk(s, a)|

≤S
∑

0≤m<H

βK

∑
k,wm

(1 ∧ ∥ϕ(sm+1|sm, am)∥M−1
k−1,m

)qk (sm, am)

≤SβK

∑
0≤m<H

(
2Sm+1

√
2Kd ln(

dλ+K

dλ
) + 4Sm+1 ln(

H

δ
)

)

=O

(
S2

(
d ln

K

δ

√
K ln

(
dλ+K

dλ

)
+

√
d ln2

K

δ

))

=O

(
S2d

√
K ln2

K

δ

)
,

where the second inequality is due to that δ ≤ λ. Finally, noting that the above analysis conditions on
the events that Lemma 1 and Lemma 3 hold concludes the proof.

C.2 BOUNDING ERROR AND BIAS1 TERMS

We now present the proofs for bounding the ERROR and BIAS1 terms, which follow the similar ideas
of Jin et al. (2020a).
Lemma 7. With probability at least 1 − 2δ, LSUOB-REPS guarantees that ERROR =

O
(
S2d

√
K ln2 K

δ

)
.

Proof. Let P s
k = P q̂k ∈ Pk for all s such that q̂k = qPk,πk . Since ℓk(s, a) ∈ [0, 1],

∀k ∈ [K], (s, a) ∈ S × A, it is clear that ERROR ≤
∑K

k=1

∑
s,a |q̂k(s, a)− qk(s, a)| =∑K

k=1

∑
s,a

∣∣qP s
k ,πk(s, a)− qk(s, a)

∣∣. The proof is concluded by applying Lemma 2.
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Lemma 8. With probability at least 1 − 3δ, LSUOB-REPS guarantees that BIAS1 =

O
(
S2d

√
K ln2 K

δ + γSAK
)

.

Proof. We first consider bounding
∑

k

〈
q̂k, ℓk − Ek−1,H−1

[
ℓ̂k

]〉
:∑

k

〈
q̂k, ℓk − Ek−1,H−1

[
ℓ̂k

]〉
=
∑
k,s,a

q̂k(s, a)ℓk(s, a)

(
1− Ek−1,H−1 [Ik {s, a}]

uk(s, a) + γ

)

=
∑
k,s,a

q̂k(s, a)ℓk(s, a)

(
1− qk(s, a)

uk(s, a) + γ

)

=
∑
k,s,a

q̂k(s, a)

uk(s, a) + γ
(uk(s, a)− qk(s, a) + γ)

≤
∑
k,s,a

|uk(s, a)− qk(s, a)|+ γSAK .

Note that
∑

k,s,a |uk(s, a)− qk(s, a)| can be controlled using Lemma 2 by rewriting uk = qP
s
k ,πk ,

where P s
k = argmaxP̂∈Pk

q
̂̂
P,πk(s). It remains to deal with

∑K
k=1

〈
q̂k,Ek−1,H−1

[
ℓ̂k

]
− ℓ̂k

〉
.

Because P q̂k ∈ Pk and uk(s, a) = maxP̂∈Pk
qP̂ ,πk(s, a), it holds that∑

s,a

q̂k(s, a)ℓ̂k(s, a) ≤
∑
s,a

uk(s, a)ℓ̂k(s, a)

=
∑
s,a

uk(s, a)
ℓk(s, a)

uk(s, a) + γ
Ik {s, a}

≤
∑
s,a

Ik {s, a}

= H .

Further, using Azuma’s inequality, with high probability 1 − δ, we have∑K
k=1

〈
q̂k,Ek−1,H−1

[
ℓ̂k

]
− ℓ̂k

〉
≤ H

√
2K ln 1

δ Applying the union bound over the above
bounds finishes the proof.

C.3 BOUNDING REG AND BIAS2 TERMS

Using standard analysis of OMD together with the effect of the implicit exploration of the optimisti-
cally biased loss estimator, we can bound the REG term as follows.
Lemma 9. With probability at least 1 − 2δ, LSUOB-REPS guarantees that REG =

O
(

H ln(SA)
η + ηSAK + ηH ln(H/δ)

γ

)
.

Proof. The update process of the occupancy measure Eq. (4) can be solved by the following two-step
procedure (Lattimore & Szepesvári, 2020):

q̃k+1 = argmin
q∈RSA

+

η⟨q, ℓ̂k⟩+DF (q, q̂k) and (5)

q̂k+1 = argmin
q∈∆(Pk+1)

DF (q, q̃k+1) , (6)

which together with the first-order optimality condition shows that

ℓ̂k = −1

η
(∇F (q̃k+1)−∇F (q̂k)) . (7)
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The above display implies that q̃k+1(s, a) = q̂k(s, a) exp(−ηℓ̂k(s, a)), and q̃k+1(s, a) ≤ q̂k(s, a).

Further, one can see that

⟨q̂k − q∗, ℓ̂k⟩ =
1

η
⟨q∗ − q̂k,∇F (q̃k+1)−∇F (qk)⟩

=
1

η
(DF (q

∗, q̂k) +DF (q̂k, q̃k+1)−DF (q
∗, q̃k+1))

≤ 1

η
(DF (q

∗, q̂k) +DF (q̂k, q̃k+1)−DF (q
∗, q̂k+1)) ,

where the first equality is by Eq. (7), the second equality is by the three point lemma, and the last
inequality comes from the generalized Pythagorean theorem. Hence, we have:

K∑
k=1

⟨q̂k − q∗, ℓ̂k⟩ ≤
1

η
(DF (q

∗, q̂1)−DF (q
∗, q̂K+1) +

K∑
k=1

DF (q̂k, q̃k+1)) .

The first two terms in the above display can be bounded as follows:
H−1∑
h=0

∑
s∈Sh

∑
a∈A

q∗ (s, a) ln
q̂T+1 (s, a, )

q̂1 (s, a)
≤

H−1∑
h=0

∑
s∈Sh

∑
a∈A

q∗ (s, a) ln(ShA)

=

H−1∑
h=0

ln(ShA) ≤ H ln(SA) ,

where the first inequality is due to the definition of q̂1.

It remains to bound
∑K

k=1 DF (qk, q̃k+1):
K∑

k=1

DF (q̂k, q̃k+1) =

K∑
k=1

(−DF (q̃k, q̂k+1) + ⟨∇F (q̂k)−∇F (q̃k+1), q̂k − q̃k+1⟩)

≤
K∑

k=1

(
−DF (q̃k, q̂k+1) +

1

2
∥∇F (q̂k)−∇F (q̃k+1)∥2∇−2F (zk)

+
1

2
∥q̂k − q̃k+1∥2∇2F (zk)

)

=

K∑
k=1

(
−DF (q̃k, q̂k+1) +

1

2
∥ηℓ̂k∥2∇−2F (zk)

+
1

2
∥q̂k − q̃k+1∥2∇2F (zk)

)

=

K∑
k=1

(
−1

2
∥q̂k − q̃k+1∥2∇2F (ξk)

+
1

2
∥ηℓ̂k∥2∇−2F (zk)

+
1

2
∥q̂k − q̃k+1∥2∇2F (zk)

)

=
η2

2

K∑
k=1

∑
(s,a)∈S×A

zk(s, a)ℓ̂k(s, a)
2

≤ η2
∑
k,s,a

q̂k(s, a)ℓ̂k(s, a)
2 ,

where the second line is by the Young-Fenchel inequality for all zk ∈ [q̃k+1, q̂k] arbitrarily, the
third line is due to Eq. (7), the forth line is by the mean value theorem of the second derivative for
some ξk ∈ [q̃k+1, q̂k], the fifth line is by fixing zk = ξk, and the last line comes from the fact that
zk(s, a) ≤ q̂k(s, a).

Therefore, it holds that
K∑

k=1

〈
q̂k − q∗, ℓ̂k

〉
≤ H ln (SA)

η
+ η

∑
k,s,a

q̂k(s, a)ℓ̂k(s, a)
2 .

Note that due to the definition of ℓ̂k(s, a):

q̂k(s, a)ℓ̂k(s, a)
2 =

q̂k(s, a)ℓk(s, a)Ik{s, a}
uk(s, a) + γ

ℓ̂k(s, a) ≤ ℓ̂k(s, a) ,
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which is due to the fact that q̂k(s, a) ≤ uk(s, a) and ℓk(s, a)Ik{s, a} ≤ 1. Furthermore, using
Lemma 6 by setting αk(s, a) = 2γ, with probability at least 1− δ, we have∑

k,s,a

q̂k(s, a)ℓ̂k(s, a)
2 ≤

∑
k,s,a

qk(s, a)

uk(s, a)
ℓk(s, a) +

H ln H
δ

2γ
≤ SAK +

H ln H
δ

2γ
,

where the last inequality comes from that under the event of Lemma 1, it holds that qk(s, a) ≤
uk(s, a), and ℓk(s, a) ≤ 1. Applying a union bound over the above bounds concludes the final
proof.

Applying the concentration of the biased loss estimator again, the BIAS2 term can be bounded by the
following Lemma 10.
Lemma 10. With probability at least 1 − 2δ, LSUOB-REPS guarantees that BIAS2 =

O
(

H ln(SA/δ)
γ

)
.

Proof. The proof follows the similar procedure of Jin et al. (2020a). Specifically, for some (s, a) ∈
S ×A, using Eq. (18) in Lemma 11 of Jin et al. (2020a) with αk (s

′, a′) = 2γI {(s′, a′) = (s, a)},
one can see that with probability at least 1− δ

SA ,

K∑
k=1

(
ℓ̂k(s, a)−

qk(s, a)

uk(s, a)
ℓk(s, a)

)
≤ 1

2γ
ln

(
SA

δ

)
.

It is clear that the above inequality holds for all (s, a) ∈ S ×A simultaneously with probability 1− δ
by taking a union bound over all state-action pairs. Also, under the event that Lemma 1 happens, we
have qk(s, a) ≤ uk(s, a), which implies that

K∑
k=1

〈
q∗, ℓ̂k − ℓk

〉
≤
∑
k,s,a

q∗(s, a)ℓk(s, a)

(
qk(s, a)

uk(s, a)
− 1

)
+
∑
s,a

q∗(s, a) ln SA
δ

2γ

=
∑
k,s,a

q∗(s, a)ℓk(s, a)

(
qk(s, a)

uk(s, a)
− 1

)
+

H ln SA
δ

2γ

≤
H ln SA

δ

2γ
.

The proof is concluded by applying the union bound.

D OMITTED ANALYSIS OF THE REGRET LOWER BOUND

Theorem 2. Suppose A(H/2−1) ≥ S−2−3H/4, (S−2−3H/4)A ≥ 2(H/2−1), S ≥ 4+3H/2,

2K ≥ d, B ≥ d/
√
48K, and H ≥ 8. Further assume H/4 and S−2−3H/4

H/2−1 are integers. Then for
any algorithm, there exists an inhomogeneous, episodic B-bounded adversarial linear mixture MDP
M = (S,A, H, {Ph}H−1

h=0 , {ℓk}Kk=1) satisfying Definition 1, such that the expected regret for this
MDP is lower bounded by Ω(dH

√
K +

√
HSAK).

Proof. We consider constructing a hard linear mixture MDP instance such that the regret of learning
on this instance will satisfy the regret lower bound. The MDP instance is divided into two phases,
in which the first and second phase will make the learner suffer regret due to the unknown linear
mixture transition probability functions, and suffer regret due to the adversarial losses with bandit
feedback respectively.

In what follows, we prove that learning in this phase can be translated into simultaneously learning
H/4 stochastic linear bandit problems. Specifically, the first phase incorporates the first H/2 + 1
layers. In this phase, we use each three layers to construct a block. Note that the third layer of block i
is also the first layer of block i+ 1 and hence there are total H/4 blocks in the first phase. In each
block, both the first and third layers of this block only have one state, and the second layer has two
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states. Here we take block i as an example. The first two layers of this block are associated with
transition probability function Pi,0 and Pi,1. Denote by si,0 the only state in the first layer of this
block. In the second layer of block i, we assume there exist two states s∗i,1 and si,1. Let si,2 be the
only state in the third layer. Further, for any a ∈ A, the probability of transferring to state s∗i,1 when
executing action a in state si,0 is ρa. In particular,

Pi,0(s
∗
i,1|a, si,0) = ϕ(s∗i,1|a, si,0)⊤θ∗

i,0 = ρa ,

Pi,0(si,1|a, si,0) = ϕ(si,1|a, si,0)⊤θ∗
i,0 = 1− ρa .

Further, for the second layer, the MDP instance satisfies that ∀s = s∗i,1, si,1, and ∀a ∈ A,
Pi,1(si,2|s, a) = ϕ(si,2|s, a)⊤θ∗

i,1 = 1. The loss function satisfies ℓk(si,0, a) = 0 for the first layer,
ℓk(s

∗
i,1, a) = 0 and ℓk(si,1, a) = 1 for the second layer for all a ∈ A and k ∈ [K]. Therefore, learn-

ing in this block can be regarded as learning a d-dimensional stochastic linear bandit problem with A
arms, where the arm set is {ϕ(s∗i,1|a, si,0)}a∈A and the expected reward of each arm is ρa. It is also
clear that the optimal policy at state si,0 is to select action a∗i,0 = argmaxa∈A ϕ(s∗i,1|a, si,0)⊤θ∗

i,0.

If d ≤ 2K and d2

48K ≤ B2, following the proof of Theorem 24.2 of Lattimore & Szepesvári (2020),
there exists a lower bound of order Ω(d

√
K) for block i. Further, since there are H/4 blocks in the

first phase, the lower bound for learning in the first phase is Ω(dH
√
K).

The construction of the second phase of the MDP instance follows the similar lower bound analysis
of Zimin & Neu (2013). More specifically, the second phase of this MDP involves the last H/2 + 1
layers satisfying SH/2 = 1 (since layer H/2 is also the third layer of the last block in the first phase),
and Sh = S−2−3H/4

H/2−1 for h = H
2 + 1, ...,H − 1. Then we assume that layers H/2 + 1, . . . ,H − 1

consist of S−2−3H/4
H/2−1 chains, in which only the transitions between the states in the same chain are

possible. Formally, it holds that Ph(s
i
h+1|sih, a) = 1, for all a ∈ A, i = 1, . . . , S−2−3H/4

H/2−1 , with

sih being the state at layer h and the i-th chain. Further assume A ≥ S−2−3H/4
H/2−1 and ∀s ∈ SH/2+1

there exists a ∈ A such that PH/2(s|sH/2, a) = 1, where sH/2 is the only state in layer H/2. In
other words, the learner can deterministically choose to transfer to any chain of the second phase.
Further, given that the learner will observe the losses of each state-action pair of the chosen chain,
the learner actually faces an adversarial combinatorial multi-armed bandit (CMAB) problem with
semi-bandit feedback, in which there are S−2−3H/4

H/2−1 superarms and (S − 2 − 3H/4)A base arms.
Also, we assume (S − 2− 3H/4)A ≥ 2(H2 − 1). Under this assumption together with H ≥ 8 and
S − 2− 3H/4 ≥ S

2 , applying Theorem 10 of Audibert et al. (2014) shows that there exists a lower
bound Ω(

√
(H/2− 1)(S − 2− 3H/4)AK) = Ω(

√
HSAK) for this adversarial CMAB problem.

Finally, the proof is concluded by combining the bounds of both the first and second phases.

E COMPUTATION ISSUE

The main computation issue arises in the computation of Eq. (4) when implementing OMD. In
what follows, we show that this can be efficiently computed. Our solution of this computation
is similar with it used by Rosenberg & Mansour (2019b); Jin et al. (2020a). However, since the
occupancy measure q(sh, a, sh+1) of Rosenberg & Mansour (2019b); Jin et al. (2020a) is for triples
(s, a, s′) ∈ S × A × S but the occupancy measure used in this work is for pairs (s, a) ∈ S × A,
the constraints of the update process of the occupancy measure will be slightly different. The other
difference is that they use the confidence set for the tabular case while we consider the elliptical
confidence set for the linear case.

Specifically, as aforementioned in Appendix C.3, the optimization of Eq. (4) can be computed by
solving an unconstrained optimization problem in Eq. (5) and a projection problem in Eq. (6), where
the closed-form solution of Eq. (5) is given by q̃k+1(s, a) = q̂k(s, a) exp(−ηℓ̂k(s, a)). To solve Eq.
(6), we explicitly write its constraint set, which consists of the following linear constraints:

∀h :
∑

(s,a)∈Sh×A

q(s, a) = 1,
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∀h,∀s ∈ Sh :
∑

(s′,a′)∈Sh−1×A

q(s′, a′)
[
P̄k,h−1(s|s′, a′) + ϵk,h−1(s|s′, a′)

]
≥
∑
a∈A

q(s, a),

∑
(s′,a′)∈Sh−1×A

q(s′, a′)
[
P̄k,h−1(s|s′, a′)− ϵk,h−1(s|s′, a′)

]
≤
∑
a∈A

q(s, a),

∀s ∈ S, a ∈ A : q(s, a) ≥ 0 . (8)

where recall that P̄k,h−1(s|s′, a′) = θ⊤
k−1,h−1ϕ(s|s′, a′) is the empirical transition function and

ϵk,h−1 (s|s′, a′) = βk,h−1(1 ∧ ∥ϕ(s|s′, a′)∥M−1
k−1,h−1

) is the elliptical confidence radius. Hence, Eq.
(6) is a convex optimization problem with linear constraints and thus can be solved in polynomial
time (Jin et al., 2020a). To more efficiently solve this problem, we seek to solve its dual problem,
which is also a convex optimization problem with only non-negativity constraints guaranteed by
the following lemma. Hence the dual problem can be efficiently solved using iterative methods
(Rosenberg & Mansour, 2019b; Boyd et al., 2004).
Lemma 11. The dual problem of Eq. (6) is to solve

µk = argmin
µ≥0

H−1∑
h=0

lnZh
k (µ) ,

where µ := {µ+(s), µ−(s)} is dual variable and

Zh
k (µ) =

∑
(s,a)∈Sh×A

q̂k(s, a) exp{Bµ
k (s, a)},

Bµ
k (s, a) =

(
µ− − µ+

)
(s)− ηℓ̂k(s, a)

+
∑

s′∈Sh(s)+1

((
µ+ − µ−) (s′)P̄k,h(s)(s

′|s, a) +
(
µ+ + µ−) (s′)ϵk,h(s)(s′|s, a)) .

Furthermore, the optimal solution to Eq. (6) is given by

q̂k+1 (s, a) =
q̂k (s, a)

Z
h(s)
k (µk)

exp (Bµk

k (s, a)) .

Proof. In the following, we ignore the non-negativity constraint of the primal problem in Eq. (8)
since the optimal solution of the primal problem without the non-negativity constraint always satisfies
this constraint as we shall see.

To begin with, note that the Lagrangian of Eq. (6) is

L(q, λ, µ+, µ−)

=DF (q∥q̃k+1) +

H−1∑
h=0

λh

 ∑
s∈Sk,a∈A

q (s, a)− 1


+

H−1∑
h=0

∑
s∈Sh

µ+ (s)

∑
a∈A

q (s, a)−
∑

(s′,a′)∈Sh−1×A

q(s′, a′)
[
P̄k,h−1(s|s′, a′) + ϵk,h−1(s|s′, a′)

]
+

H−1∑
h=0

∑
s∈Sh

µ− (s)

−
∑
a∈A

q (s, a) +
∑

(s′,a′)∈Sh−1×A

q(s′, a′)
[
P̄k,h−1(s|s′, a′)− ϵk,h−1(s|s′, a′)

] ,

(9)

where λ := {λh}h and µ := {µ+ (s) , µ− (s)}(s) are Lagrange multipliers. For notational conve-
nience, we define µ+(s) = µ−(s) = 0 if s = s0 or s = sH . Now taking the derivative of Eq. (9)
with respect to q(s, a) leads to

∂L
∂q (s, a)

= ln q (s, a)− ln q̃k+1 (s, a) + λh(s) +
(
µ+ − µ−) (s)
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−
∑

s′∈Sh(s)+1

[(
µ+ − µ−) (s′)P̄k,h(s)(s

′|s, a) +
(
µ+ + µ−) (s′)ϵk,h(s)(s′|s, a)]

= ln q (s, a)− ln q̃k+1 (s, a) + λh(s) − ηℓ̂k(s, a)−Bµ
k (s, a) . (10)

One can get optimal q∗ by setting the above derivative to zero:

q∗ (s, a) = q̃k+1 (s, a) exp
(
−λh(s) + ηℓ̂k(s, a) +Bµ

k (s, a)
)

= q̂k (s, a) exp
(
−λh(s) +Bµ

k (s, a)
)
,

where the second equality is due to the fact that q̃k+1 (s, a) = q̂k (s, a) exp
(
−ηℓ̂k(s, a)

)
.

Besides, taking the derivative of Eq. (9) with respect to λh and setting it to zero shows that∑
(s,a)∈Sh×A

q∗(s, a) =
∑

(s,a)∈Sh×A

q̂k (s, a) exp
(
−λ∗

h(s) +Bµ
k (s, a)

)
= 1 ,

which implies that the optimal λ∗ satisfies

exp(λ∗
h(s)) =

∑
(s,a)∈Sh×A

q̂k (s, a) exp (B
µ
k (s, a)) =: Zh

k (µ) .

Since the primal problem is a convex optimization problem and it is clear that the Slater’s condition
holds, the strong duality holds and the optimal dual variables are given by

µ∗ = argmax
µ≥0

max
λ

min
q

L(q, λ, µ) = argmax
µ≥0

L (q∗, λ∗, µ) .

Also, we remark that substituting Eq. (10) into Eq. (9) and rearranging shows that

L(q, λ, µ) = D (q∥q̃k+1) +

H−1∑
h=0

∑
(s,a)∈Sh×A

(
∂L

∂q (s, a)
− ln q (s, a) + ln q̃k+1 (s, a)

)
q (s, a)−

H−1∑
h=1

λh

=

H−1∑
h=0

∑
(s,a)∈Sh×A

((
∂L

∂q (s, a)
− 1

)
q(s, a) + q̃k+1 (s, a)

)
q (s, a)−

H−1∑
h=1

λh ,

which together with ∂L/∂q∗ (s, a) = 0 implies that

L (q∗, λ∗, µ) = −H +

H−1∑
h=0

∑
(s,a)∈Sh×A

q̃k+1 (s, a)−
H−1∑
h=0

lnZh
k (µ) .

Observing that the first two terms in the above display are independent of µ, we have

µ∗ = argmax
µ≥0

L (q∗, λ∗, µ) = argmin
µ≥0

H−1∑
h=0

lnZh
k (µ) .

Finally, the proof is concluded by combining all the equations for (q∗, λ∗, µ∗).
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