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SUPPLEMENT

Notation. For vectors in R? or R”, the Euclidean norm is || - || and || - ||, is the ¢;,-norm for
1 < g < +oo. For matrices, || - ||, is the operator norm (largest singular value), || - ||  the Frobenius
norm. We use index 7 only to loop or sum over [n] = {1,...,n} and j only to loop or sum over
[p] = {1, ...,p}, so that e; € R™ refers to the i-th canonical basis vector in R™ and e; € R? the j-th
canonical basis vector in RP. Positive absolute constants are denoted Cyy, C7, Cs, ...,, constants that
depend on ~y only are denoted Cy(7y), C1 (), ... and constant that depend on ~,  only are denoted by
Co(y, 1), C1(v, ), ... If f:R? — R™ is differentiable at z € R?, we denote the Jacobian matrix

in R"*4 by % or O f /0z. For an event (2, its indicator function is denoted by I, or I{2}.

Organization of the proofs. Section [/| provides the proof of the main results from the main text

(Theorems [3.1] 3.2} .1} [5.1) and [5.3] and Corollaries [4.2]and[4.3)) and the overall proof strategy. Sec-
tion[8| gives the proof of the probabilistic tools used in Section[7| Section[9|proves the differentiability

formulae in Theorem 2.1]and Remark 2.2]

Additional simulations. Additional simulations and figures are given in Section [I0]for Gaussian
designs and in Section[IT]for non-Gaussian Rademacher design. The simulations for Rademacher
design suggests that our results generalize to non-Gaussian design, although it is unclear at this point
how to extend the proofs to non-Gaussian X.

Simulations were run on an Amazon EC2 c5.4xlarge instance for about 40 hours.

7 Proof of the main results

We perform the following change of variable to reduce the anisotropic design regression problem to
an isotropic one, G = X X~ /? € R"*P a Gaussian matrix with iid N (0, 1) entries and

h(e, G) = argmin 1 Z plei — e Gu) + g(B" + 27 %u) (20)

n
ueRP i—1

and denote by (h;),=1,..., the components of (20). Then »2(B(y, X) — B*) = h(e, X) with
B(y, X) the M-estimator in (T). With y = GX'/23* + €, by the chain rule and @D,

»12(9/8g;)h(e, G)
= (0/09:)B(GE'*B" +¢,GE'/?)
= AX Te )/ (r))(ZV2B%)e; + ASV2e,0h(r;) — AX et (1) (2% B)e;.

Define ¥ (e, G) = ¢(e — Gh). With e; € R", e; € RP denoting canonical basis vectors,

(8/&9@‘)’1(6, G) = Aejw(ri) — AGTeil/)/(Ti)hj (21)
(0/0gij)¥ (e, G) = — diag{y)'(r)}G Ae;3(ri) — Veih; (22)

where the second line follows by the chain rule for Lipschitz functions in in [20, Theorem 2.1.11].
The crux of the argument is that the quantities of interest appearing in our results, ||h|? = ||='/?(8—

B2, 1(r)|12, tr[AX] = tr[A], tr[V] and df naturally appear from tensor contractions involving
the derivatives in 2I)-(22). For instance, denoting D = diag{¢’(r)} € R™*™ if h;, ¢); are the j-th
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and i-th component of (20) and 4(e, G) and denoting 3", >0 by >, for brevity,

P
Oh; = tr[A]y; — h" AGT De; foragiveni =1,...,n, (23)
= 9ij
Z gjz = —¢TDGAej — tr[V]h, foragivenj =1,....p, (24)
i=1 "7
S g2 4] - BTG DY - ¢ DG AR — B V), 03)

ij K
el N
> c'm]?c:m = tr[A]p'Gh — h' AG"Gh + n||h|? + ¢ GAh — ||h|*df, (26)
ij i
3 O(ie] GT o)

; = -y 'DGAG ¢ —tr[V]sp ' Gh — h G Vap + (p — df)||ob]|2  (27)
ij

ij
where we used that df = S" e/ GAG' De; = tr[GAG' D] in the fourth line and df =
?:1 ejTGTDGAej — tr[G " DGA] in the fifth thanks to the commutation property of the
trace. The terms in colored purple indicate terms that will be proved to be negligible later on. The
probabilistic tool that leads to asymptotic normality of the residuals is the following.
Proposition 7.1. [Variant of [S]]] Let z € N(0,1,) and f := f(z) : R? — R?\ {0} be locally
Lipschitz in z with E[|| 1|72 0, | 2L )1?] < +o00. Then

dzy

flz—=39_(8)0z) [ 2 L of
B[ (A T - 2) | s e 2vBE (i i < e 9

Proposition[7.1]is proved in Section[8] From here, asymptotic normality of the residuals in the square
loss case is readily obtained using the explicit formulae for the derivatives and the contraction (23).
We start with the square loss and the proof of Theorem 3.2}

Proof of Theorem[3.2] Apply Proposition [7.1|with ¢ = p + 1 and z = (g;,£:/0) ~ N(0,I,11)
conditionally on (g;,&;)ic()\{i}» and with f = (h,—0) € RP*!. Note that the last compo-
nent of f is constant and ||f||> = |k||> + 0> By @3) and D = I,, for the square loss,
tr[0f/0z] = tr|AJy; — h' AG"e; and by symmetry in i = 1,...,n, E[|[h" AG "e;|?/|| f|?] =
S E[RTAG e /IIFIP] = SIGATRIP/IFIP] < JENGIZIAIZ] < n2Ca(y. p)
thanks to ||All,, < 1/(np) and E[||G||§p] < C5(7)n. Similarly, for the square loss r; = ¥; =
g; — g, hand
IFI-H10F /0zllr = (IRl + o) 7| Av; — AGT e;h ||

< |Allop[v/Pleil /o + DIRI~ g Bl + [|G]lop)-
By the triangle inequality, || A||,, < 1/(nu) and p < yn,
E[|l £ 20 /0|7 < YE(E[} /o) + El(g] h)*/|[B]°]/?) + LEI G2,
By symmetry ini = 1,....n, E[(g] h)*/[h[[2] = £ Y30 El(g] h)*/[h[[?] < LE[|G2,). Since
%E[HG ng] < Cg(7), the right-hand side in the previous display is bounded from above by

Cr(y, p)n~1/2. Since f 'z = —r; we obtain —r; — tr[A]r; = (||h||2 + 62)Y2(Z + Op(n~1/2))
which completes the proof of (T4). O

Proof of Theorem[3.1] Let U ~ N(0,1) be independent of everything else. We apply the pre-
vious proposition with z = (g,,U) ~ N(0,I,;+1) conditionally on (g,g;,l € [n] \ {i}) to
Ff = (h,n"Y%)(e;)). Note that the last component of f is constant. By @3), tr[0f/0z] =
tr[AJy; — h" AGT De; and by Z1)),

IF17H 108 /0z]F = (IRI* +n~"29()*) 72| Avs — AGT De;h'||r (29)

< [Allopln* /b + VBRI gl Bl + Gllop) (30)
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ss  where we used || Al p < \/p||Allop and [¢;] < ¥(e;) + |g; h| thanks to 1 being 1-Lipschitz. We
w5 have || Ao, < 1/(np) and E[|[R]|72|g] k%] = . 311 ElllR]"?lg] BI°] = SE[|R]?|GR]?] <
w6 ~E[|G||2,] by symmetry ini = 1, ...,n, so thatIE[HfH 2|0f /0z||%] < n~'/2Cs(v, p). Thus by
417 Proposition

(=ri — tr[AJys) + (ei = |R]|Z) = g h — tr[A]e); — |h]|Z
= —Un~""(e;) + [| £l = |hl]Z + | f| Rem ~h" AG De;

s18 where E[Rem?] < CoE[||£||72[10F/0z)%] < n~'/2C1o(y, p). By properties of the operator norm
419 and symmetry ini =1, ..., n,
E[|h]~?[h" AG De,|] = LE[|h| 2| DGATR|?] < 1E[|GI2, A2, < <254 3D

By the triangle inequality, ||| f|| — ||k|| < n~'/4|1b(¢;)]| so that the right-hand side is of the form
Op(n’1/4~)(\z/1(5i)| + ||R]|) as desired. The previous display can be rewritten as r; + tr[A]y; =
€l + ||h||Z} for

e =, +Un"Y4%(e) = [IfIl = |RI](Z + Rem),  Z = —Z —Rem+|h|'h" AG' De;.

420 If &; has a fixed distribution F', then [¢(¢;)| < [¢(0)] + |e;] = |e;] = Op(1) thanks to ¥(0) = 0 and
421 1 being 1-Lipschitz so that (7, Z!") = (€i,=Z) + Op(n~1/*). Since (¢;, — Z) are independent, by
22 Slutsky’s theorem this proves that (£, Z!*) converges weakly to the product measure FQN (0,1). O

423 Proposition 7.2. Let h : R™"*P — RP, 1) : R"*P — R" be locally Lipschitz functions. If G € R™"*P
424 has iid N(0,1) entries then

6 ieTGT
EK,(/JTGh > 8(#};?)) . HGh”Q_E W)QJr(GTlPHQ—ZijW)?}
[RI? + [11[?/n [R]I* + [l91*/n nllh|[? + |42

< CuE[n +p+ G2, + (n +p)zn:§p: T L [Glop/m (H )] (32)
i=1 j=1

(IR]1? + [I12p[12/n)? A1 Dgs 7H89U

425  for some positive absolute constant in the second line.

426 Proposition[7.2]is proved in Section[8] By Proposition[7.2]combined with the identities (23)-(26)-27),
427 and by showing that the colored terms in purple (23)-(26)-(27) are negligible, we obtain the following.

a8 Proposition 7.3. Let Assumption[I1)be fulfilled. Then

1

E[{n 2 (Rl + [[w]?/n) 7" (¥ Gh — tlA][|9]2 + t[V][[R]|%) }*] < Crs (7, ), (33)
E[{n=3 (Il + [¢]2/n) 7 (RIGT 2 — 252y |2 + 2T GR) }] < Cra(y,0), (34
E[{n=3 (Il + [¢]2/n) "  (IG|? — tr[Aly " Gh — (n — df)[[A]*) }*] < Cis(7, ). (35)
429 Proof. We bound from above the derivatives in (32)). For the norm of (0/9g;;)h and (0/0g;; )%, by

w0 (22)-@1) and 3(a + b)? < a® + b2,

m

M\»—l

‘ IDGA|EII” + [VIEIRI*

" < 1A4Iw1? + 1AGT DI IR, Y .

sl il

431 Usmg | Allop < 1/(nu), |Dllop <1,p/n <~vyand V in , it follows that in (32)) we have

1RI + [[5]]/n ||¢H2/n Z Z(H 9gij

432 Since E[\\n*1/2G||Op] < C17(7) [10, Theorem I1.13], this shows that (32) is bounded from above

433 by Cig(7, p)n. The contractions appearing in the left-hand side of (32) are given in (23)-26)-(27),
434 so that it remains to bound from above the purple colored terms in these three equations. This is
435 done by using the upper bounds on the operator norms || Al|,, < 1/(nu), || D|lop < 1 and again that

a6 E[n~Y2G||1] < Cio(7), so that (32) yields the three inequalities in Proposition O

‘ ’Hag” ‘ ) < Gl (1+1GIE/m). (36)
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437 The next result is another probabilistic result where the contractions in (23)-(24) appear.
438 Proposition 7.4. Let h : R"*P — RP, 1) : R"*P — R"™ be locally Lipschitz functions. If G € R"*P

439 has iid N (0, 1) entries then
E{‘z”d’”Q _% ?:1(1/’TG‘3J‘ - Z?:1 %)2’} L E ‘th”Z - E? l(gz h — Zj 1 6g”) ’]
1Rl + [19]]2/n

1R+ lI112/n
as0  The proof of Proposition[7.4]is given in Section[§] Using the contractions (23)-(24) in the left-hand
4a1  side of Proposition[7.4] and by showing that the purple colored terms are negligible, we obtain the
442 following two inequalities.

a3 Proposition 7.5. Let Assumption[I1)be fulfilled. Then

Eln=2 (IRl + 411 /n) ™ (2l19])* = 2IG T4 + tr[VIR|*)| < Car (3, ), 37
Eln=2 (lR]]” + 117 /n) ™ (nllR|)* = |Gh — tr[AJ$]*)| < Coa(y. r)- (38)

< Cy (m@ + 51/2) + E) where = = [||h||2 ol /n ZZ(H@g” ‘ —Hagw

444 Proof. For Z in Proposition[7.4] the fact that = < Ca3(7, 1) is already proved in (36). For the first
445 inequality we use Proposition[7.4]and the contraction (24)). To control the purple terms in (24) inside
446 the left-hand side of Proposition|/7.5]

‘ zp: ¥ Ge; — . §¢J 2 |G+ tr[V}h||2‘ - ‘z/:TDGA (2GT¢ +2t[V]h+ ATGTsz) ‘

< (l9l*/n + thl )@nlGIIZ, | Allop + 22| Gllopl| Allop + nl| AIISIGIIZ,)

447 thanksto [tr V| < nin Theorem With the bound obtained by multiplying the previous display
a8 by n=3/2(||h||? + ||9||>/n) ", and using the previous bounds on || A||,, and E[|[n~1/2G|2,], we
as9  obtain (37) from Proposition [7.4]and (Z4). The second claim is obtained by Propositior@ the
450 contraction (23) and an argument similar to the previous display bound the purple term in O

451 We are now ready to prove Theorem 5.1}

452 Proof of Theorem[5.1] Define

& =4 Gh—ulA]|¢| + u[V]|A|? (bounded in (33)),
&= LG = ) + “g T Gh (bounded in (),
& = ||Gh|)? — tr[Alyp ' Gh — (n — df)[|R||? (bounded in (33)),
v = EI¢l* = LIG ¢ + u[V]h|? (bounded in (37)),
¢y = n||h|]? — |Gh — tr[A]p]? (bounded in (3g)).

Then by expanding the square in &7y and &y, and simple algebra (for instance by computing first
&rr + &rv and ;77 + &y separately),

(tr[V]/n — tr A)ér + &1 + Errr + Evr + & = (917 /n + [|b]*)(df — te[A] tx[V]).

a53 Since | tr[V]/n < 1, tr[A] < v/ by Theorem . the previous display divided by n'/?(||3||?/n +
a4 ||h||?) and the bounds (33), (34), (33), (37) and (38) complete the proof. O

455 To prove Theorem[4.T} we need this extra proposition whose proof is closely related to Proposition
456

457 Proposition 7.6. Let Assumption[I1]be fulfilled. Then

E[{([B]2 + 192 /n) 2 el 6vi}] < Caslrom)  for &vi=e' (Gh—tr[Alp). (39)
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458 Proposition[7.6]is proved in Section[8] We are now ready to prove Theorem [4.1]

489 Proof of Theorem[.1} We have n||h|? + ||e|> — ||r + tr[A]4||*> = & + 21 by simple algebra
40 and the definitions of £y and £y ;. Hence

B2 + llel2/n — v + el Al 2/ iy
| 1 9T, (TR T ) el rey) 7 /Gt 40)

a6t thanks to (39) and (38). O

a2 Proof of Corollary We perform the change of variable (20) to 3 as well, giving h (the counterpart
463 of h), 1 (counterpart of 1)) and A (counterpart of A). Let (2 be the event defined in the theorem, i.e,

Q2= {lIGllop < 2V + v/p} N {[le]* < n Y, (41)

ss4  Then P(Q2°) — 0 by [10, Theorem 2.13] for the first event and [[13] to show that ||g||2/n?/(1+9) =P @
a5 under the assumption that E[|¢;|1+9] is bounded.

s66 Under Assumption - 1.2L Io(||lv|1?/n + ||h|| ) is bounded by a constant. Indeed, since the penalty
467 ¢ is minimized at 0, (3 — O)TXT1/J € n(B — 0)T(dg(B) — dg(0)) since 0 € dg(0). By strong
468 convexity of g in Assumpt10n (B 0)"X Ty > ﬂHEl/Q,BHz In ©, this implies ||21/2,8H
w9 ol Glopllwll < Cas(, )6l /v and 4]l v < M in Assumption[1.2] Since || %'/23"|?
470 M in Assumptlonn this yields Io (||h]|% + ||[40]|2/n) < Caz (7, i1, M) and the same holds for h, %
ot Ta([R]?+ |9]%/n) < Cos(y, 1, M).

s72  Inequality (@0) thus implies

VIN A

ElLo(|IR]* + llel*/n — [l + te[AJgp|* /n| + [|BI* + lle]* /n — |7 + tr[ AJ3p|* /n])]
< Co9(7, 1, M)(rfl/2 Vi n*q/(1+q)).

Since ¢ € (0,1) we have n= /2 n~¢/(1+40) — p=4/(1+9) i the right-hand side. Let Q = {||h||? —

B2 > 0, |7 + tr[A]p||2 < |7 + tr[A]4p||2} be the event for which we are trying to control the
probability. By the triangle inequality,

E(lo||R]* — [B]* = |l + t[AJp|*/n + |7 + tr[A]$]|* /n]] < Caoly, u, M)n=9/O+0).

73 In ), the random variable in the expectation sign is larger than nlo. Thus nE[Iglgs] <
aa Csy (7, p, M)n=9 4D and P(Q) < 51 Csa(y, pr, M)n=7/ (140 4 P(QF). O

475 Proof of Corollary[d.3] We follow the same strategy. Let {2 be the same event as in the previous
a76  proof, so that P(Q¢) — 0 as before. We perform the change of variable (20) for each k = 1, ..., K
a77 giving hy, ¥, and Ag. We have Ig maxg—1, x (||he||* + |14]1%/n) < Cs3(y, u, M) as explained
478 in the previous proof.

79 Summing over k the inequality @0) gives B[l Sor |||l + |lel|2 — [lre + tr[Ar]eb,|I2]] <
w0 KCs4(y, p, M)n=7/ (149, Let k be the minimizer of |7y, + tr[A;]e,||? as defined in the statement
a1 of Corollary 4.3[and let k € {1,..., K} be such that ||h;||* > ||h;]|* + 7 in the event  where
s82  such k exists. Then by the triangle inequality, nE[IqI5] < Css(7, p, M)n~9/(+9 Tt follows that
a3 P(Q) < n~1C36(7, pt, M)n~9 040 £ P(Q°) — 0 as desired. O
s8¢ Proof of Theorem[5.3} Using |a|> — ||b]|> = (a — b) " (a + b) we have
IGh — tr[A]y||* — |Gh — (df/ tx[V])|]* = (df/ tx[V] — tz[A])9p " (2Gh — (t2[A] + df/ t2[V])3p).
485 Hence using | tr[A]| < ~/u, |df| < n and the Cauchy-Schwarz inequality
|Gh — tr[A]||* - |G — (df/ tr[V])||
< Car(7, 1) (8% V DIdf/n — tr[V]tr[A] /0] (1)1 + [ Glop I RII*).
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Let Q) be the event in Corollary Using the bound on the operator norm of G in 2, for any
deterministic 7 > 0 we have proved

}|HGh — tr[AJ|* — |Gh — (df/ tr[V])Hzl} < Oss(11) 1y
IRl + lI11?/n nAl
thanks to Theorem By (56), in the event Q2 where the operator norm of ||n~'/2G/|,,, is bounded

by a constant, tr[V] > tr[diag{v’(r)}]/Cs9 (7, pt). Hence combining the previous display with (@0},
we have proved

{I{Q}I{ZL W'(ri) > nn} |12 + [le]*/n = |Ir + 25 /n|} < Caoly,11m)
max{[|k||* + [[[?/n, (IR]? + 9] /n)' 2 (el /n)} /21— Voo

At this point the proof is similar to th;lt of Corollary We perform the change of variable

foreach k = 1,..., K giving hy, ¢, dfj, and V. We have Ig max,—1,._ x (|[Ri||* + |95 ]|?/n) <

C41(7, 1, M) as explained in the previous proofs. Summing over k = 1, ..., K the previous display,

using Io maxg—1__ g (||hr]|® + |94 ]12/n) < Caz(y, u, M) and Ig||e]|? < n?/ (19 we find

E {I{Q}I{tr[V]n >

dfk KC43(77:“’777)

d’kH / H nq/(1+q)

Let 2 be the event that there exists & with L 7" | Y (r7;) > satisfying [[hg]|? +7 < ||k |[%, then

K n
E[Z HQ{LY i, (rwa) = nnd |l + [le])/n = [Ir +1
k=1 i=1

by the previous display and the triangle inequality, using ||7;, + %@b il <llrg + trd 3,; Pi||? by

definition of &, we obtain iP(Iols) = O(K/n?/(1+9). Since 7 is a constant independent of n, p
and P(2) — 1, the probability P(Q) converge to 0 if K = o(n4/(1+4)), O

8 Probabilistic results and their proofs

Proposition 7.1. [Variant 0f[5]] Let z € N(0,1,)and f := f(z) : R? — R9\ {0} be locally

Lipschitz in z with E[|| £]| 72 >0 _, || Dzn H ] < +o00. Then

(LT iG] < cm

Proof. Letg :=g(z) =

f(z) _ (=)
IF )l E[ Hf(z)\l] and set

— T f(z) o
Z==TBl /Y ”E[

1 (= II]||

so that Z ~ N(0, 1) and V is deterministic with V' < 1 by Jensen’s inequality. As a first step, we
proceed to prove inequality

Flz— 11 (0/02) fi 2 & of
E . —VVZ) | <6E 9F 2] 0
(5. V] <osliseyighe] @

Then at any point z where f is differentiable we have

99 _ pof p_r _If'
8zk_”'f(z)” Pazk’ where P=1, T

This implies that almost surely,

Fz = 541(0/0) fr N 0/00ven T (0F/02)F
171 ~VVZ =gz =) (@/0a)m — g

where 0 f /0z is the matrix with entries (I, k) entry (0/0z) f; forall, k,1 =1, ....¢q
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By the triangle inequality and swa 2 < 2a? + 202, this implies that the left-hand side of @2) is
bounded from above by 2EE(( - tr [0g/02))%] + 2E||| f||72|10f/0z||%]. The first term can be
bounded using the main result of [4] and the Gaussian Poincaré inequality [6, Theorem 3.20]

E[(z"g - tr[0g/02))*] = Elllg|*] + Etr[(9g/02)%] < 2E[|0g/0||%]-
This proves (@2). To bound |v/V' — 1|, we have by the triangle inequality
_ f f || =
\\/‘7*1\*\\/‘7*HWH\ H]E ‘f” WH*HQ||~
By another application of the Gaussian Poincaré inequality,
VV =11 <E[llgl3] < E[llog/0=(|F] < E[ll £ 10 /0=]%]. (43)

Combining Equations and using (a + b)? = a® + 2ab + b < a® + 1/v/6a> + V60 + b2,
we obtain the constant 7 4+ 2+/6.

O

Proposition 7.2. Let h : R"*P — RP, 1) : R™"*P — R" be locally Lipschitz functions. If G € R"*P
has iid N (0, 1) entries then

9gij

; jel d(pie] G
% Gh—Y,, 6“{;”)2 IGR|? — 3, 2ei €M 0y G Ty |2 - 3, P T

9i
Rl + [19]]2/n ) +( n||h||2+|\¢||2

) o

B (rEs o

P14 Gl2,/n
§c44E[n+p+HGII3p (n+p) ZZ ||h||2+||¢ﬁ2/n (H
=1 j=1

i ‘ n H Dgij

for some positive absolute constant in the second line.

Proof of Proposition We prove the claim separately for the three terms in the left-hand side of
Proposition we start with the first of the three terms. We will apply the probabilistic result
given in Proposition 6.3 in [3]]: if 7 : R"*P — RP and p : R"*P — R" are locally Lipschitz and
G € R"*? has iid N(0, 1) entries,

E[(pTGn_ZW)Q} <E||ol?* ||n|\}+zE[Z||nn 15, \|2+||p|| [ gl]” 2|, @4

]

The proof only relies on Gaussian integration by parts to transform the left-hand side. Let f :
R™XP — R™*P be locally Lipschitz. For any i, j and at a point where both h and 1 are differentiable

and f # 0,

9 1 T\ o 0
a0 i) = 171 e~ ) a0y () < il
Agi; ML/ ISl I£11?/ 9gi 9gi; M £l ||f|| 9gij
We use this inequality applied with
- 1 -1 P - h
F=Zw),  P=7mmm TS0 43)
To bound from above the right-hand side of ({@4), the inequality in the previous display can be
rewritten 5 5 ) L ow
n P 2 ( )
+ < (46)
19,1 Vo = T Tz g, 1™+ 212,

Since ||p]] < 1 and ||77H < 1 by deﬁnition the right-hand side of (@4) is bounded from above by

1+ QE[W(H Do hj2 41 || I |2)]. Thus the proof of Proposition [7.2|for the first term in
ij ij

the left-hand side is almost complete it remains to control inside the parenthesis of the left-hand side,

)]

T oh 1T 0%

9gi;

—1/27 n—1/2p h' 7+ + -
S e e (T o) = 23 o s oo
= IRIZ+11l2/n Ogi 9gij \||h|1* +[[9]12/n i’ (IR + [l%[12/n)
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By multiple applications of the Cauchy-Schwartz inequality, the absolute Value of the previous display
is bounded from above by 2(||h||? + [|¢]|? /n) ~/2(3,; || 2 dec Il + 12 Do |)1/2. This completes the
proof of Proposition [7.2]for the first term in the left-hand side.

For the second and third term in the left-hand side of Proposition apply instead {@4) to p = Gn
and ) = G'' p to obtain

d(njef Gn)\?
EKH%P—%)QM)l<EUGnHmnpmq%mn|Mm+G nummu|g
d(pip' Ge;
]EKHGTMP_EZ‘iQEf‘Eﬁ)T‘<E“anmlWH}+%ﬂ§:HGTPHH " | lel st
- gz]

ij
Setting p = ﬁw /N fllsm = h/|| f|| we obtain the claim in Equation (44) by bounding the right-hand
side of the previous displays using the operator norm of G and arguments similar to (@6)). The term
involving %M_ (W) in the left-hand side is controlled similarly to the previous paragraph.

O

Proposition 7.4. Let h : R"*P — RP, 4p : R"*P — R" be locally Lipschitz functions. If G € R"*P
has iid N (0, 1) entries then

(JEIOIP — 50,07 Gy o )Yy el YL TS g
1R[Z + [l /n [R[? + [4p]]2/n

E

)

Proof of Proposition[7.4] We first focus on the first term in the left-hand side. Theorem 7.1 in [3]]
provides that of p : R™*? is locally Lipschitz with ||p|| < 1 then

2 - T Ipi 2 1/2
Elpllol Z( Gej~ Zag”) ‘<C46\[(1+2H8gw ) 472“8 ™

Let p = n=/24)/||f|| as in @3). Inequality (#6) lets us bound from above the right-hand side
of the prev1ous d1splay by the right-hand side of Proposition n In the left-hand side, p||p||? =
Ellp|2/(|R||*> + ||0]|?/n) as desired. For the left-hand side, using some algebra in [3, Section 7],
for any random vectors a, b € RP by the triangle and Cauchy-Schwarz inequalities we have

pllol> ~ llall?l - [pllel? - 16l < lla — bl + b]
< fla - b| +2a — b 3]
< fla - b +2a — bl (\/[T8IP = plel? + V/plol?)
< 3la—b|? + L[1b]2 = pllpl?| + 2]la — bll/plo]?
so that [p]pf2 — lall2 < Z[plpl2 — 8l + 3lla — b2 + 2]la — b]|\/p]AIP. Applying this

tob; = p'Ge; — >, gg’?? we use [@7) to bound |p|p||*> — ||b]|?| and ||p|| < 1 to bound
”

Vplpl? < /p. It remains to specify a so that [p||p|* — ||a||?| coincides with the first term
in the left-hand side of Proposition[7.4jand bound ||a — b|. Consequently, we set

T R no Oy n o

Y Gej — ) ., 99 _ pTGe- - D1 dgi; _ Z

Va([[hl? + [[]?/n)/? Tva(lhlE A+ )2 )t f 6gu

where D = (||h||2 + |lb||?/n)*/? so that by the Cauchy-Schwarz inequality ||a — b||> <
L2 5, (X212 ang

oD~ oh o Ty Lo,
Z( dgi; ) DGZ( Tag” /n 59”) _D4ZH H2 n‘a”H' (48)

j

< Ca(VAFp(1+E1/%) + Z) where = =B [||h||2+||wu2/nzz(Hagu *Hagu

2
‘ @7

aj:
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using again the Cauchy- Schwarz inequality and max{||h||?, ||4||?>/n} < D?. We obtain ||a — b||?> <
2y ; |2 89 |2+ L || vy 2 which completes the proof for the first term in the left-hand side of

Proposmon For the second term in the left-hand side, the proof is similar with by exchanging the
role of n and p in (@7) and applying (&7) to h/D instead of v /(y/nD).

Proposition 7.6. Let Assumption[I1|be fulfilled. Then
E[{(Ih]? + I9]2/n) "2 lell " ¢vi}’] < Cas(yop)  for Evr=e  (Gh—t[Alg). (39)

Proof of Proposition[/.6] Apply @4) with p = ¢/||e|| and n = h/D where D = (||h||? +
l4]|2/n)*/? as in the previous proof (this scalar D is not related to the diagon matrix D =
diag{¢’(r)}). Since & has 0 derivative with respect to G we find

e"'Gh gi O(h;D™1)\2 on
B[ (Tap - z:kn 90, )]§1+2%;EWQUW]

The right-hand side is bounded from above by C'4g(y, ) thanks to (@6) and (36). For the second term
above we use product rule and (23),

Z DY) tr[A]y e B h'AG" diag(v Z gihj (D)
HEH 3913 D]l Dlell el dqu '

To complete the proof we need to bound from above the expectation of the square of the second
and third terms colored in purple are bounded by Cs¢(7, u). Since ||h|| < D, the second term is
bounded from above by [ Al|op[|Glop since [¢'| < 1 and E[|| A]|2,|G|Z,] < Cs1(~, i) thanks to

I-A]op g 1/(nw) and [10, Theorem I1.13]. For the third term, we use the Cauchy-Schwarz inequality

(X, 52092 < [R)2 Y2, (%2 1)2, @8) and G9). O

9 Proof of differentiability results
Theorem 2.1. Let Assumptionbefulﬁlled. For almost every (y, X)) the map (y, X ) — B(y, X)
is differentiable at (y, X) and there exists a matrix A € RP*P with ||21/2;121/2||0p < (nu)~Ls.t
(0/0y:)B(y. X) = AX T et (1),
(0/07:,)B(y, X) = Aejih(r;) — AX Teq)/ (r:)B;,
e; € R", e; € R? are canonical basis vectors , 1\ := p' and ¢’ denote the derivatives. Furthermore,
df = tr[X (8/9y)B] = tr[ X AX diag{y/'()}], 6)
V = diag{s/ (r) NI, — X (0/0y)B) = diag{y/(r)} — diag{e (r)} X AX diag{y/(r)}. (7
satisfy 0 < df <nand0 < tr[V] < n.

where r; = y; — CEIB, (®)]

The first part of the following proof is similar to the argument using the KKT conditions in [3]]. After
(5T), the argument is novel and lets us derive the convenient formula () and the existence of matrix

A which plays a central role in the contractions 23)-(27).

Proof of Theorem2.1} X; = X + tU and y, = y + tv with ¢ € R where U € R™™? and
v € R" are fixed. Let 8, = ,B(yta/\Xt) and 7y = y, — X:B(y,, X) and P (y,, X1) = (7).
By convention, without arguments 3, ¢ refer to (y, X ) which is (y,, X) at t = 0. By the KKT
conditions, X "1 € ndg(B3) and X;r@bt € ndg(3,), by strong convexity of g, we have

nul| V2B, - B2 < (B, - B) (X[ ¥, — X 9). (49)

By the fact that ¢ is non-decreasing and 1-Lipschitz, for any two real numbers a < b, 0 < ¥(b) —

¥(a) < b — a. Multiplying ¥(b) — 1 (a), we have ()(b) — ¥(a))? < (¥(b) — (a))(b — a). Thus
|, — 9[> < (b, — ) (70 — 7).
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Adding up the above two displays we have
| V2B, = B + 19, — 11> < (B, = B) (X by — X ") + (b, — )T (7e — 7). (50)

By X, ¢~ X ¢ = (X~ X) 9+ X/ (¢,—%) and X, (8,~B)+7+—7 = y,—y—(X,— X) B,
we have

nul|ZV2B, - B+ 10, — 9P < (B, —B) (X — X) P+ (y, —y — (X — X)'B) T (4,

By the Cauchy-Schwartz inequality, the above implies

(| =28, = B + 1, — B11*)? < (np) 2= VA(X = X) T lls + [y —y — (Ko —

Since t, U, v are arbitrary, for (y,, X) and (y, X ) both in a compact subset K of R? x R"*?, the
above display also implies

~ 5 ~ o012 _
(nul| V2B, — B> + b, — 91?) " < const(K) (|72 Xt — X)lop + [y — yll2),
where const(K) = sup(y,x)eK{(nu)_l/Q|\1Ap||2 + 1 + |=Y28|,}. This says that

B(y,X ),{ZJ(y,X ) are locally Lipschitz in (y, X ). By Rademacher’s Theorem, 8@/8% and
0B/0x;; exist almost everywhere.

Taking the limit ¢ — 0™ in (@9) and using the chain rule, where the derivatives exist we have

w2 G+ SO
(gi +57§( )) (UTiAb-l-XTdiag(’lZ/)( UB - X(%‘é( )+(In—Xg—§)v))
(gﬂ +§7§(U)) B(U,v) —‘dlag (%) X(Z_f aﬂ )H

(5D
where (08/0y)v := 3_,c(,,(08/0y;)v;, the Jacobian with respect to X' and the linear map B :
R™*P x R™ — RP? are defined as

oB - - .
ax U= > 9B . eR?, BU,0) =U $+ X dag@)(~-UB +v) € R?
ijemixtp) O
where (w;;)i=1,... n,j=1,...p are the entries of U. By the Cauchy-Schwartz inequality, (5I) provides

us the following two main ingredients:

8ﬁ oB B _
(9y v+ X (U) = 0 for all (U,w) such that B(U,v) = 0, (52)
HE”Z(% B (0], < wn =B 0l (53)

Since both @v + @(U) and B(U 'u) are linear in (U v) € R"XP x R™ into R?, Proposition
implies that there exists a matrix A € RP*? such that v + ( ) = AB(U,v) forall (U, v),

and by (33)), A can be chosen such that ||El/2A21/2|| < (nu) ! thanks to the operator norm
identity in Proposition With (U, v) = (ee; )for (z Jj)E€n ] x [p] and (U, v) = (0, ey) for

k € [n], we obtain the stated formulae for (Ox;; / )/ and (dy;/0)B in @D.

Now we show that both tr[V] := tr[D — DXAX ' D] and df := tr[XAX ' D] are in [0,7]
where D := diag{¢’(r)}. Using the symmetric part of A defined as A:=(A+AT)/2 we have
tr[V] = tr[D - DXAX " D] and df = tr[D'/?2X AX " D'/?) by property of the trace. In 1),
take U = 0 so that aﬁv + (U) AB(U,v) = AX " Dv and we have with G = XX /2

(1+ |ID'2XAX" Dv|?> <nu|AX "Dv|? + |DY?XAX "Dv|> (54

Wﬂ
<v'DXAX "'Dv=v'DXAX' Dv (55)
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for all v. This implies the positive semi-definite property of the symmetric matrix DX AX'D,
and thus df > 0 and tr[V] < tr[D] < n. With @ = DY?v, it also implies (1 +
nu/| DY G2 )HDl/zXAXTDl/21~;H2 < %' DY?XAX"D'?%, which implies by the
Cauchy-Schwartz inequality (1 + nu/||D1/2G|| )HD1/2XAX D1/2|| < 1. The same op-
erator norm inequality with A replaced by A thanks to the triangle inequality. Thus df <

tr[D](1 + nu/|DY2G||2,)~" < nas well as
tr[V] = t2[DV*(I, - D'*XAX " D"?)D"?| > z[D](1 - (1 + nu/||D*G|?,) ")
= tr[D]/(|D'*G|?,/(np) + 1)
> tr[D]/(|GIl5,/(np) +1) (56)
>0

(
(

thanks to ¢’ € [0, 1]. Inequality (33) with @ = D'/?v and M = I,, — DY?X AX " D*/? implies
[(M —I,)0)2 <% (I, — M)v. As the left-hand side is | Mo||2 — 20 ' M© + ||o||%, this yields

| M3||> <" M% < ||5||| M3||. If & has unit norm and is such that | M%|| = || M]||,, this gives
| M||op < 1 so that |V, = |[DY?MDY?||,, < ||D|lo, < 1. This gives another proof of
tr[V] < n. O

Proof of Remark[2.2] The proof for the intercept term included is the same to that of Theorem [2.1]
The only difference is that when computing the derivatives,

i oY 0P op 96 0B
St = UT¢+XT(8 v+ 2 (U)), 5" — diag(¥h )(I,, — 15, X5,
bS] ~1 0 0
a;‘g )= (@122 0) - vB - x Lo
= %h:o 111 dﬁo ¢ lt=0 — dlag(z,b )X %h:o + diag({b/)v — diag(;/\zl)UB

We have an additional KKT conditions providing us 0 = 17 (d4, /dt)|,—o. Multiplying 17 on both
sides of the above display, we have

~ T ~1T ~IT o~
doe @ XdB, 4o 4 UB
dt t=0 ]_T;L/ dt t=0 1T17Jl ]_T;L/ )

di -

— 7;|t:0 —‘I’ X |t o+ ‘I’ v — ‘I’/U,B,

/. . ~1 A1 ~1T TA/ . . . . .
where @' := diag(y) ) — ¢ ¢ /1) . By taking limit of ¢ — 0 in Equation (50},

By |2 _dByr dX9 dB, 7 d
o el = e g o = G O(UT‘“XT o)
_d ~
- 5t|t o(UT+XT(- lIfX \t 0+ ¥'v — WUB))

_ d5t|t o(UT"b L XTw XT‘I"U[A3> B H‘I’ll/QXdﬁt| —on-

O

Proposition 9.1 (A lemma on linear transformations). Let A and B be two real matrices with
shape n by p. Assume that Bv = 0 for all v such that Av = 0 with v € RP. Then the matrix
C := BA" where A" is the Moore-Penrose pseudoinverse of A satisfies B = C A and ||C||,, =
maxyepn: Auzo{ [ Bulla/[| Awll2}.
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Proof. Let r be the rank of A. We let A = UDV " be the SVD of A, where V has orthonormal
columns vy, ..., v, with the first  columns spanning the row space of A, and the last p — r columns
spanning the nullspace of A. Let u; denote the i-th column of U. Let

C:=BA":=) d;'Bvu/

1€[r]

where AT is the Moore-Penrose pseudoinverse of A. Notice that AT Av = Diel] viv]v =
Prow(a)v project v € RP onto the row space of A. So BA"Av = Bvif v € row(A), and
BATAv = 0if v € Ker(A). By the assumption that Bv = 0 for all v such that Av = 0, we have

BA" Av = Bv holds for all v € R? = row(A) @ Ker(A).

For | BA™||,,, we notice that A" maps any u € col(A)* to 0. The ratio || BAtul2/||u|2 for
u € R™ is maximized only when u € col(A): Otherwise, we can replace u with the projection of u
onto col(A), denoted by Av := Peoi(ayu, and we will have a ratio with the same numerator, but a
smaller denominator and thus a larger ratio:

IBA ullz _ |BAT(Av+u— Av)[s _ [|[BATAv|, _ |Bvl

ulla lAv + u — Av||o = JAv],  |Av|s
This implies | BA™||,, = maxyegn Hﬁz‘\l\? -
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s0 10 Additional Figures (anisotropic Gaussian design)

tr{EA] tr[V]|/n

B/n

0011
0.016-
0.024-

> 0036

Figure 4: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
A = 0.054n"/? and (X, 7) where A € [0.0032,0.41] and 7 € [10~1°,0.1]. Each cell is the average
over 100 repetitions. See the simulation setup in Section 6 in the paper for more details.
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Figure 5: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
A = 0.024n'/2 and (), 7) where A € [0.00062,0.081] and 7 € [107°,0.1]. Each cell is the average
over 50 repetitions. See the simulation setup in Section 6 in the paper for more details.
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11 Additional Figures (non-Gaussian, Rademacher design)

10 e == di/n = w(EA]
Py =3 p/n g == df/tv]
- & 1 == i/n = | tr[EA] - df/ V]|
08 & & B3 ulv)/n
& 0 |df — t[EA] tr[V]|/n 5
0.6 ﬁ ? % ? %
%% ? § 4
: , =
L]
02 ;. t &
% = =5
- =
00 & & + e - o o . o e __. 0 T @ = = - - e
0.0032 0011 0.036 012 0.41 00032 0011 0036 012 041
A A

Figure 6: Boxplots for df, p, 7, tr[V], tr[SA] and | tr[SA] — df/tr[V]| in Huber Elastic-Net
regression with 7 = 10719 and \ € [0.0032, 0.41]. The data are generated with X having iid entries
taking value +1 each with probability 0.5 (so that 3 = I,). Each box contains 30 data points.
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Figure 7: Histogram and QQ-plot for ¢; in (13])) under Huber Elastic-Net regression for different
choices of tuning parameters (A, 7). Left Top: (0.036,10719), Right Top: (0.054,0.01), Left
Bottom: (0.036,0.01), Right Bottom: (0.024, 0.1). Each figure contains 100 data points generated

with Rademacher design matrix (each entry has value 1 with probability 0.5) and iid ¢; from the
t-distribution with 2 degrees of freedom.
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