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Abstract

This paper studies M-estimators with gradient-Lipschitz loss function regularized
with convex penalty in linear models with Gaussian design matrix and arbitrary
noise distribution. A practical example is the robust M-estimator constructed with
the Huber loss and the Elastic-Net penalty and the noise distribution has heavy-tails.
Our main contributions are three-fold. (i) We provide general formulae for the
derivatives of regularized M-estimators 3(y, X ) where differentiation is taken with
respect to both y and X; this reveals a simple differentiability structure shared by
all convex regularized M-estimators. (ii) Using these derivatives, we characterize
the distribution of the residual r; = y; — . B in the intermediate high-dimensional
regime where dimension and sample size are of the same order. (iii) Motivated
by the distribution of the residuals, we propose a novel adaptive criterion to select
tuning parameters of regularized M-estimators. The criterion approximates the
out-of-sample error up to an additive constant independent of the estimator, so
that minimizing the criterion provides a proxy for minimizing the out-of-sample
error. The proposed adaptive criterion does not require the knowledge of the
noise distribution or of the covariance of the design. Simulated data confirms the
theoretical findings, regarding both the distribution of the residuals and the success
of the criterion as a proxy of the out-of-sample error. Finally our results reveal
new relationships between the derivatives of 3(y, X ) and the effective degrees of
freedom of the M-estimator, which are of independent interest.

1 Introduction

This paper studies properties of robust estimators in linear models y = X 3" + ¢ with response
y € R™, unknown regression vector 3* where X is a design matrix with n rows @1, ..., &, each row

x; being a high-dimensional feature vector in RP with covariance 3. Throughout, let B = B(y, X)
be a regularized M -estimator given as a solution of the convex minimization problem

By, X) = argming g, %L 2?21 oy — a:jb) +g(b) (1)
where p : R — R is a convex data-fitting loss function and g : R? — R a convex penalty. We
may write 3, ,(y, X) for (I) to emphasize the dependence on the loss-penalty pair (p, g); if the

argument (y, X ) is dropped then Bis implicitly understood at the observed that (y, X ). Typical

examples of losses include the square loss p(u) = u?/2, the Huber loss H(u) = 0‘"' min(1, ¢)dt
or its scaled version p = A2H (u/A) for some tuning parameter A > 0, while typical examples of
penalty functions include the Elastic-Net g(b) = A||b||1 + w||b||?/2 for tuning parameters A, p > 0.

The paper introduces the following criterion to select a loss-penalty pair (p, g) with small out-of-
sample error ||X1/2(3 — 8%)||%: for a given set of candidate loss-penalty pairs {(p, g)} and the
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corresponding M -estimator B pg i (T), select the pair (p, g) that minimizes the criterion

df 2 f:y_XBp,g R € R,
Crit(p, ) = Hr + Ww(r) H with { df = tx[X (9/0y)B,,] eR, ()

V = diag{y/(r)}(I, — X(9/0y)B,,) €R™"

where tr[-] is the trace, ¢ : R — R is the derivative of p, ¢’ the derivative of ) and we extend 1)
and ¢’ to functions R™ — R™ by componentwise application of the univariate function of the same
symbol. Above, (9/ 8y),5’ p.g € RPX™ denotes the Jacobian of () with respect to y for X fixed,
at the observed data (y, X). As we will see while studying particular examples, for pairs (p, g)
commonly used in robust high-dimensional statistics such as the square loss, Huber loss with the
{1 -penalty or Elastic-Net penalty, the ratio df /tr[V'] in () admits simple, closed-form expressions
and can be computed at a negligible computational cost once B p,9(Y, X) itself has been computed.
The criterion (2) has an appealing adaptivity property: it does not require any knowledge of the noise
€ or its distribution, nor any knowledge of the covariance X of the design.

Figure 1: Heatmaps for | £'/2(3 — 8%)||2, its approximation ||r + (df /tr[V])y(7)||2/n — |l€]|2/n
and the approximation error ||ZY/2(8 — 8%)||2 — ||r + (df /tx[V])w(r)||2/n — ||e]|?/n]| for the
Huber loss and Elastic-Net penalty on a grid of tuning parameters (A, 7) where A € [0.0032, 0.41]
and 7 € [10719,0.1]. Each cell is the average over 100 repetitions. See Section|§|for more details.

1.1 Contributions

1. The end goal of paper is to provide theoretical justification and theoretical guarantees for the
criterion (2) in the high-dimensional regime where the ratio p/n has a finite limit and X has
anisotropic Gaussian distribution. The theoretical results will justify the approximation

[+ (df/ te[V]) e (r)||*/n = lle]]/n + 12128 — 8912 3)

Figure [T]illustrates the accuracy of (3) on simulated data. To study the criterion (2)) and derive the
approximation (3), we develop novel results of independent interest regarding M -estimators in (T):

2. The paper derives general formula for the derivatives (8/0y;)3 and (9/ 0x;j) (3. This sheds light
on the differentiability structure of M -estimators for general loss-penalty pairs: for any p, g with g

strongly convex, there exists A € RP*? depending on (y, X)) such that for almost every (y, X),
(9/0y:)Bly. X) = AX Te!(r)), (9/02:;)Bly, X) = Aeji(rs) — AX "ei!(ri) ),
forr; = y; — x; B, Vi € [n],j € [p] where e; € R” and e; € R™ are canonical basis vectors.

3. The paper obtains a stochastic representation for the residual y; —x,” ,@ for some fixedi = 1, ..., n,
extending some results of [12] on unregularized M -estimators to penalized ones as in (). In

short, for each ¢ = 1, ..., n the i-th residual satisfies r; = y; — m;r B

v+ (df/ tr V)(r) ~ &+ 2|2V (B - 87| ©)
where Z; ~ N(0,1) is independent of ;. This stochastic representation is the motivation for
the criterion (2)) as the amplitude of the normal part in the right-hand side is proportional to the

out-of-sample error | $'/2(8 — 8*)|| that we wish to minimize, while the variance of the noise
¢; does not depend on the choice of (p, g).
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Simulated data in Figure [2] confirms that the stochastic representation for the i-th residual r; =
yi; — x; B is accurate. Our working assumption throughout the paper is the following.

Assumption 1.1. For constants v, i > 0 independent of n, p we have p/n < ~, the loss p : R — R
is convex with a unique minimizer at 0, continuously differentiable and its derivative ¢ = p' is
1-Lipschitz. The design matrix X has iid N(0,X) rows for some invertible covariance X and the
noise € is independent of X with continuous distribution. The penalty g : RP — R is p-strongly
convex w.r.t. X in the sense that b — g(b) — (11/2)b' Xb is convex in b € RP.

Throughout the paper, we consider a sequence (say, indexed by n) of regression problems with p,
3", 3 and the loss-penalty pair (p, g) depending implicitly on n. For some deterministic sequence
(an), the stochastically bounded notation Op(a,,) in this context may hide constants depending on
~, w only, that is, Op(a,,) denotes a sequence of random variables W, such that for any € > 0 there
exists K depending on (¢, 7y, p1) satisfying P(|W,,| > Ka,) <e.

Since Assumptionrequires p/n < -, the Bolzano-Weierstrass theorem lets us extract a subse-
quence of regression problems such that p/n — ~' along this subsequence, for some constant . This
is the asymptotic regime we have in mind throughout the paper, although our results do not require a
specific limit for the ratio p/n. For some results, we will require the following additional assumption
which is satisfied by robust loss functions and penalty that shrink towards 0.

Assumption 1.2. The penalty is minimized at 0, that is, g(0) = mingecgs g(b); the loss is Lipschitz as
in || < M for some constant M independent of n, p; the signal is bounded as in ||21/2,8* |2 < M.

1.2 Related works

The context of the present work is the study of M -estimators in the regime £ has a finite limit. This
literature pioneered in [2,[12] [11} 18] typically describes the subtle behavior of 3 in this regime by
solving a system of nonlinear equations. This system typically depends on a prior distribution for the
components of 3", and either depends on the covariance X [8]] or assume X = I p [12L119,17, among
many others]. Solutions to the nonlinear system are a powerful tool to understand 3 in theory, e.g.,
to characterize the deterministic limit of | £/2(8 — 3%)]|, see e.g., the general results in [[7] for the
square loss and [19]] for general loss-penalty pairs. However, since the system and its solution depend
on unobservable quantity (32 and prior on 3%), the system solution is not directly usable for practical
purposes such as parameter tuning.

The present work distinguishes itself from most of this literature as the goal is to describe the behavior

of 3 using observable quantities that only depend on the data (y, X ) (and not unobservable ones such
as X or a prior distribution on 3 that appear in the aforementioned nonlinear system of equations).
As we will see this view lets us perform adaptive tuning of parameters in a fully adaptive manner
using the criterion (2). The criterion (2)) appeared in previous works for the square loss only: [T} [13]
studied @) for the Lasso with ¥ = I, and [3] Section 3] for the square loss and general penalty
(note that for the square loss p(u) = u2/2, (@) reduces to n2||r||2/(n — df)? due to ¢(u) = u and
tr[V] = n — df. The property ¢(u) = u of the square loss hides the subtle interplay between
7,1(r), df and tr[V] in (@) for p different than the square loss). A criterion different from (2) is
studied in [[15} 3] to estimate the out-of-sample error. That criterion has the drawback to require the
knowledge of X, unlike (Z)) which is fully adaptive.

This work leverages probabilistic results on functions of standard normal random variables [S]][3}
§6, §7] which are consequences of Stein’s formula [17]]. Consequently, the main limitation of our
work is that it currently requires Gaussian design for the probabilistic results (on the other hand, the
differentiability result (3)) is deterministic and does not rely on any probabilistic assumption).

2 Differentiability of regularized M-estimators

The first step towards the study of the criterion () is to justify the almost sure existence of the
derivatives of 3 that appear in (2)) through the scalar scalar df and the matrix V" in (2. Although the
criterion (2) only involves the derivatives of 3(y, X ) with respect to y for a fixed X, the proof of
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our results rely on the interplay between the derivatives with respect to y and with respect to X: this
differentiability structure of M -estimators is the content of the following result.

Theorem 2.1. Let Assumptlonbefulﬁlled For almost every (y, X) the map (y, X ) — B(y, X)
is differentiable at (y, X) and there exists a matrix A € RP*P with | SY/2ASY?|, op < (nu) ™t st

(0/0y:)B(y, X) = AX " et/ (r1),
(0/02:;)B(y, X) = Aejip(ri) — AX "e!(r)B;,
€ R", e; € R? are canonical basis vectors , 1) := p' and 1)’ denote the derivatives. Furthermore,
df = tr[X (9/0y)B] = [ X AX diag{y/(r)}], (©6)
V = diag{¢/(r)}(I,, — X(9/0y)B) = diag{¢)'(r)} — diag{' (r)} X AX diag{y'(r)}. (7)
satisfy 0 < df <nand0 < tr[V] < n.

where r; = y; — x:ﬁ, 5)

Since the same matrix A appears in both the derivatives with respect to y; and to x;;, (5) provides
relationship between (8/8%)@ and (8/8%]-)3, for instance (8/8%—]-)3 = 26%&(73) — Bj (8/8%),@
Although the matrix A is not explicit for arbitrary loss-penalty pair, closed-form expressions are
available for particular examples such as the Elastic-Net penalty as discussed in Section [6]
Remark 2.1. For the square loss p(u) = u?/2, the differentiability formulae () reduce to

(0/0y)B(y, X) = AX Ter,  (0/0xi)Bly. X) = Ae;(y; — x/ B) — AX "eiy;
for most every (y, X ) and some matrix A € RP*P depending on (y, X)), since in this case ' = 1.

In the simple case where g is twice continuously differentiable, (3) follows [5] with

A= (X diag{¢/(r)} X +nV?(B)) " (®)
by differentiating the KKT conditions X "¢ (y — X B) = an(ﬁ). To illustrate why this is true,
provided that B(y, X) is differentiable, if (y(¢), X (t)) are smooth perturbations of (y, X ) with
(y(0),X(0)) = (y,X) and %(y(t),X(t))h:O = (g, X), differentiation of X (t) T (y(t) —
X(H)B(y(t), X () = nVg(B(y(t), X (t))) at t = 0 and the chain rule yields

XTp(r) - X T diag{e/(r)}(5 — XB(y, X)) = A LB(y(t), X (1))],_,

with A in (8). This gives (B) if the penalty g is twice-differentiable. Theorem reveals that for
arbitrary convex penalty functions including non-differentiable ones, the differentiability structure
(&) always holds, as in the case of twice differentiable penalty g, even for penalty functions such as
g(b) = p||b]|?/2 + A||mat(b )HnuC where mat : RP — R%1*92 5 a linear isomorphism to the space of
d1 X dg matrices and || + ||puc is the nuclear norm: in this case by Theorem-there exists a matrix

A € RP*P such that (@) holds although no closed-form expression for A is known.

The representation (3)) is a powerful tool as it provides explicit derivatives of quantities of interest

suchas r =y — X3, [[¢(r)||? or | Z2(8 — B*)||2. These explicit derivatives can then be used in
probabilistic identities and inequalities that involve derivatives, for instance Stein’s formulae [[17]],
the Gaussian Poincaré inequalty [6} Theorem 3.20], or normal approximations [9} 3]

Remark 2.2. Similar derivative formulae hold if an intercept is included in the minimization, as in

(Bo(y, X), Bly, X)) = argmin — Zp — by —z b) + g(b) ©)
boER,beRP TV <

Let Assumptionbefulﬁlled, and assume further |’ (7)||2 > O with r := y — 1,30 — :cjf)' where
1, = (1,..,1)T € R™ For almost every (y, X) the map (y, X) — B(y, X) is differentiable at
(y, X), and there exists A € RP*P depending on (y, X ) with ||21/2A21/2||0p < (nu)~! such that

(0/0y)B(y. X) = AX T We;,  (0/0x:)B(y, X) = Aeju(ri) - AX Weif;,  (10)
where e; € R",e; € RP are canonical basis vectors, v = p' and ®' = diag{y'(r)} —

G ()T S e ¥ (10)
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3 Distribution of individual residuals

We now turn to the distribution of a single residual r; = y; — :cjf)’ for some fixed observation
i € {1,...,n} (for instance, fix i = 1). By leveraging the differentiability structure (3)) and the normal
approximation from [J5], the following result provides a clear picture of the distribution of r;.

Theorem 3.1. Let Assumptionbe fulfilled and let A € RPXP pe given by Theorem Then for
everyi = 1,...,n there exists Z; ~ N(0, 1) such that
|(ri+ = AJ(r)) — (2 I=Y2(B=BY)112:) | < Op (/) ()| +IZ2(B-8)]) ()
Furthermore, if €; has a fixed distribution F, there exists a bivariate variable (€7, Zz") converging in
distribution to the product measure F' @ N(0,1) such that
ri+ u[SAR(r) = & + |Z12(B - 8712 (12)
If €; has a fixed distribution F andAssumptionholds then [1(g;)| + | ZY2(8 — 8%)|| = Op(1).

Sample Quantiles
|

mple

30

10

Figure 2: Histogram and QQ-plot for ¢; in under Huber Elastic-Net regression for different
choices of tuning parameters (\, 7). Left Top: (0.036,1071), Right Top: (0.054,0.01), Left
Bottom: (0.036,0.01), Right Bottom: (0.024, 0.1). Each figure contains 600 data points generated
with anisotropic design matrix and iid ; from the ¢-distribution with 2 degrees of freedom. A detailed
setup is provided in Section [6]

Theorem [3.1]is a formal statement regarding the informal normal approximation
i + e[S AY(r;) — &
Go=1 1”1[/2 o) = e no,1). (13)
=58 = B
Simulations in Figure |2| confirm the normality of (; for the Huber loss with Elastic-Net penalty

and four combinations of tuning parameters. For the square loss p(u) = u?/2, because ¥(u) = u,
asymptotic normality of the residuals hold in the following form.

Theorem 3.2. Let Assumption|I.1|hold with p(u) = u?/2 and € ~ N(0,0>I,). Then fori =1,
(@ + =B - 8121 + u[SA]) (g — 2] B) > N(0,1)  asn— +oo.  (14)

It is informative to provide a sketch of the proof of Theorem explain the appearance of ¢ (r;) and
tr[3A] in the normal approximation results and (13). A variant of the normal approximation
of [3] proved in the supplement states that for a differentiable function f : R? — R?\ {0} and
z ~ N(0,1I,), there exists Z ~ N(0,1) such hat

IEHf(Z)TZ — 2 i=1(0/0z) fi(2) Zm < CIE[ k=1 ||(5/5Zk2)f(Z)H2]

)] 1)l

Some technical hurdles aside, the proof sketch is the following: Apply the previous display to ¢ = p,
z = ©7Y/2g; conditionally on (e, (x1)iepm)\{i}) and to f(z) = »/2(3 — B%) in the simple case

(15)

where 3* = 0 (this amounts to performing a change of variable by translation of B to 3 — B%). Then
the right-hand side of the previous display is negligible in probability compared to Z, and in the
left-hand side f(2) "z =z (B — 8*) and >_1_,(9/0z1) fr(2) ~ tr[E AJt(r;) as the second term
in (B) is negligible. This completes the sketch of the proof of (T3).
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Proximal operator representation. From the above asymptotic normality results, a stochastic
representation for the i-th residual r; = y; — T8 can be obtained as follows: With prox [tp](u) the
proximal operator of x — tp(x) defined as the' unique solution z € R of equation z + t(z) = u,

ri = yi —a] B =prox[ip] (57 + |[ZY2(B - 8" Z)  withi = tz[SA]

where (&7, ZI") converges in distribution to product measure F @ N (0, 1) where F is the law of &;.

4 A proxy of the out-of-sample error if 3 is known

The approximations of the previous sections for r; + tr[E:&]w(ri) and the fact that ¢; is independent
of Z; ~ N(0,1) in (TI) suggest that (r; + tr[SAJ(r;))2 ~ 2 + I=Y2(8 = 8)||222; and
averaging over {1, ...,n} one can hope for the approximation || + tr[Ez]w(r)Hz/n ~ |le||?/n +
|/ 2([3 — B%)||. The following result makes this heuristic precise.

Theorem 4.1. Let Assumption be fulfilled and A be given by TheOrem Then
> X - 2 _
I=Y2(8 = BY)IP + lell?/n = || + te[SAJ(r)||"/n + Op(n~"/%) Rem,
where Rem := | £Y2(8 = 87) | + L|v(r) > + (IZV2(8 = B) 1 + £l () %) /|| el Thus

ISV2(B = B + lle]?/n = (1 + Op(n=72)|[r + [ SA)p(r)||*/n.

T) H2/n to estimate

ISY2(8 - 8|12 + |lel|?/n. (16)

Estimation of (T6)) is useful as ||€||? /n is independent of the choice of the estimator ( and in particular
independent of the chosen loss-penalty pair in (I). Given two or more estimators (T), choosing the

one with smallest ||r + tr[Eﬁ]w(r) H2 is thus a good proxy for minimizing the out-of-sample error.

Corollary 4.2. Let B, B be two M-estimators (1)) Assumption with loss-penalty pair (p, g) and
(p, g) respectively. Assume that both satisfy Assumption and let ) = p' and 1) = p'. Let

r=vy— XB,7 =y — X0 be the residuals, A, A be the corresponding matrices of size p X p
given by Theorem 2.1} Further assume that both estimators satisfy Assumption[I.2 and that € has iid
coordinates independent with E||e;|' 79 < M for constants q € (0,1), M > 0 independent of n, p.
Let Q = {|| XX~ 1/2||Op <2yn+p}N{|le|? < n*+DY. Then for any n > 0 independent of
n, p there exists C(vy, u,n,q, M) > 0 depending only on {v, u,n,q, M} such that

(|23 - 8912 = =B - B >0, v+ 6[SAL(r)|? < |7 + u[SAF)| )
< Cy, 1, 4, M=/ D 1 P(Q°) —

Provided that the noise random variables ¢; have at least 1 + ¢ moments, Corollary [£.2] implies
that with probability approaching one given two M -estimators 3 and 3, choosing the estimator

corresponding to the smallest criteria among ||r + tr[SA]r||2 and |7 + tr[SA]7|2 leads to the
smallest out-of-sample error, up to any small constant 7 > 0. This allows noise random variables ¢;
with infinite variance. A similar result can be obtained to select among K different M -estimators (TJ).

Corollary 4.3. As in Corollary{d.2| assume E[|e;|'*49] < M and let Bl, . ,31{ be M-estimators of
the form (1)) with loss-penalty pair (py, gk) satisfying Assumptlons-and - 1.2| Foreachk =1,..., K,
letr k=Y X ﬁ i be the residuals and Ak be the corresponding matrix of size p X p from Theorem

Let k € argmin,_; x|lrx + tr[EAk]dJk(rk)H where ), = pj.. Then if (v, u,n,q, M) are
constants independent of n, p

P(|SY2(8; — BY)% > mingor, x [|Z2(By — B> +1) =0 if K = o(n?/(1+9),
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Given K different loss-penalty pairs and the corresponding M -estimators in (IJ), minimizing the
criterion ||r + tr[3A]r|| thus provably selects a loss-penalty pair that leads to an optimal out-
of-sample error, up to an arbitrary small constant > 0 independent of n,p. The requirement
K = o(n9/(1+9)) means that the cardinality of the collection of M -estimators to select from should
grow more slowly than a power of n. This is typically satisfied for default tuning parameter grids in
popular libraries (e.g., sklearn.linear_model.Lasso [[16]) with tuning parameters evenly spaced
in a log-scale that consequently have cardinality logarithmic in the parameter range. The major

drawback of the criterion ||r + tr[E;l]rH is the dependence through tr[E;l] on the covariance X

of the design, which is typically unknown. The next section introduces an estimator of tr[EZ&] that
does not require the knowledge of 3.

5 Degrees of freedom and estimating tr[Eﬁ] without the knowledge of 3

This section focuses on estimating tr[E;\l]. The matrix A from Theorem [2.1|can estimated from

the data (y, X) in the sense that A is a measurable function of (y, X) (thanks to the observation
that derivatives are limits, and limits of measurable functions are again measurable). The difficulty

is thus to estimate tr[Ef&] without the knowledge of 3. To illustrate this difﬁculty, consider
Ridge regression with square loss p(u) = u?/2 and penalty g(b) = T”b” /2 Then B(y, X) =
(X" X +7nI,)"'X "y and Ain Theoremls given explicitly by A = (X" X +7nI,)"" and

tr[TA] = tr[(GTG + nrx )7, where G = XX 71/2,

Above, G is a random matrix with iid N (0, 1) entries the value of tr[Z?l] is highly dependent on the
spectrum of 7. In this particular case, the limit of tr[(G "G + nT3X~')~!] can be obtained using
random matrix theory [14]] as the limiting behavior of the Stieltjes transform of G' G /n+ 71871
and its spectral distribution is known; however the limit of the spetral distribution depends on the
spectrum of 73!, This is not desirable here as we wish to construct estimators that require no
knowledge on X. For more involved loss-penalty palrs such as the Elastic-Net in Example [6.1] such

random matrix theory results do not apply as tr[EA] depends on the random support of ,8

Instead, we do not rely on known random matrix theory results. With the matrix A c Rp*P given by
Theorem , our proposal to estimate tr[X A] is the ratio df / tr[V'] with df and V" in (6)-(7). Both
the scalar df and the matrix V' € R™*™ are observable; in particular they do not depend on X.

Theorem 5.1. Let Assumption be fulfilled and A be given by Theorem Then
E[| tr[$A] tr[V]/n — df /n|] < Ca(y, p)n~ /2. (17)

Simulations in Figureand TablelIIconﬁrm that the approximation tr[$A] ~ df/ tr[V] is accurate
for the Huber loss with Elastic-Net penalty. For the square loss, ¢/’ = 1 and tr[V] = n — df so that
becomes E|(1 — df /n)(1 + tr[Eﬁ]) — 1| < C3(v, p)n~'/? and the following result holds.

Corollary 5.2. Let Assumption be fulfilled with p(u) = u?/2 and € ~ N(0,0%I,). Then
(1—df /n)(1+tr[ZA]) =P 1 and the normality (T4) holds with 1+tr[SA] replaced by (1—df /n) !

For general loss p, the criterion () replaces tr[SA] by df/ tr[V] in the proxy of the out-of-sample
error || + tr[SAJyh(r)||? studied in the previous section. Thanks to 1[Ii thls replacement preserves
the good properties of || + tr[XA]t)(r)||2 proved in Corollaries ¢

Theorem 5.3. Fork = 1,..., K, let (pi, gr.) be a loss-penalty pair sansfymg Assumpttons-and -
with Yy, = pj,, let ﬁ 5Tk Ak be the corresponding M -estimator residual vector and matrix of size
p X p given by Theorem as in Corollary and let dfj, = tr[XAk.XT diag{yy,(rk)}] and

V), = diag{e, (r1)}(I, — X A, X " diag{¢); (r)}). For a small constant n) > 0 independent of
n,p, say n = 0.05, define

k € argmin Hrk +
k=1,....K

dfy, 2 , I~
mﬂ%(ﬁc)” subject to o ; Yi(rki) =1



LY = df/n 3 t[zA]
£ i i =3 p/n s 3 dr/ V]
4 F = #A/n | tr[EA] - df/ tr{V]|
038 & = [V]/n
& 1 |df — t[EA][V]|/n 5
0.6 # %' .
# y i
. 3! y 8
¢ § L
; } # 8 b
02 i ] &=
L] # 1 =%
# =

0.0032 0.011 0.036 0.12 041 0.0032 0.011 0.036 0.12 0.41
A A

Figure 3: Above: Boxplots for df, p, 7, tr[V],tr[Eﬁ] and |tr[22] — df/ tr[V]| in Huber Elastic-
Net regression with 7 = 1071 and A € [0.0032, 0.41]. Each box contains 200 data points. Below:

heatmaps for df /n, tr[V]/n and 7i/n = Y7 4’ (r;)/n under the simulation setup in Figure The
detailed simulation setup is given in Section [6]
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221 If &; has 1 + q moments in the sense that E||e;|*T9] < M for constants ¢ € (0,1), M > 0. If
222 (M, q,n, u1,v) and 7] > 0 are independent of n, p then

P13, -6 > min IS2B=B)147) 50 i K = o(nt/(+0),
k=1, K5 320 ¥ (rei)>n
223 Figure[I]illustrates on simulations the success of the criterion (2) over a grid of tuning parameters
224 for M-estimators with the Huber loss and Elastic-Net penalty. The criterion (2) is thus successful
225 at selecting a M -estimator with smallest out-of-sample error up to an additive constant 7), among
226 those M-estimators indexed in {1, ..., K} that are such that + >-" | ¢/ (r};) > 1. On the one hand
227 it is unclear to us whether the restriction % >t ¥, (ki) > m; on the other hand there is a practical
228 meaning in excluding M-estimators with small = 37" | 4} (ry;): For the Huber loss H (u) := u?/2
220 for |u| < 1and |u| — 1/2 for |u| > 1 the quantity + 3" | v} (ry;) is the number of of data points

230 in {1,...,n} such that the residual y; — =, Bk fall within the quadratic regime of the loss function.
231 Observations 7 € {1, ...,n} that fall in the linear regime of the loss are excluded from the fit, in the
232 sense that for some i with ry; = y;—x, B, > 1, replacing y; by §; = y;+1000 (or any positive value)
233 does not change the M -estimator solution 3,, (this can be seen from the KKT conditions directly,
234 Or by integration the derivative with respect to y; in @). Thus the constraint % S U (r;ﬂ) >n
235 requires that at most a constant fraction of the observations are excluded from the fit (or equivalently,
236 at least a constant fraction of the n observations participate in the fit). For scaled versions of the
237 Huber loss, pi(u) = a*H(a"'u) for some a > 0, the value 7 = L+ 3" | 4} (rg;) again counts
238 the number of residuals falling in the quadratic regime of the loss, i.e., the number of observations
230 participating in the fit. The heatmaps of Figure [3]illustrate 7 in a simulation for a wide range of
240 parameters. Similarly, for smooth robust loss functions such as p(u) = /1 + u?, the constraint
241 L3 4} (rg;) > 7 requires that at most a constant fraction of the n observations are such that
242 (i) < n/2, i.e., such that the second derivative 1}, is too small (and the loss pj, too flat).

243 Theorems [2.1] [3:2] 4.1 and [5.1] provide our general results applicable to a single regularized M-
244 estimator (1)) while corollaries such as Theorem [5.3|are obtained using the union bound. The next
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section specializes our results and notation to the Huber loss with Elastic-Net penalty and details the
simulation setup used in the figures.

6 Example and simulation setting: Huber loss with Elastic-Net penalty

In simulations and in the example below, we focus on the loss-penalty pair
plu; A) = NH(AT ), g(bsA,7) = Alblly + (7/2)][b]3 (18)

for tuning parameters A, A\, 7 > 0 where H (u) := u?/2 for |u| < 1 and |u| — 1/2 for |u| > 1.
Example 6.1. With (p,g) in (I8), matrix A in () matrix V in () and df in () we have

;155 = (X [ diag{y/(r)} X g +n7l;)"", A ;=0ifi ¢ Sorjés,

V = diag{¢/(r)} — diag{y/(r)} X g(X § diag{y)(r)} X g + n7I;) "' X | diag{y)'(r)}, (19)

df = tr[X g(X  diag{e/(r)} X g + nrI;) " X [ diag{¢/(r)}],
where S is the active set {j € [p] : Bl # 0} and p is the size of S; X ¢ is the submatrix of X
selecting columns with index in S and A §.6 s the submatrix of A with entries indexed in S x S.

(A7) (0.036,1071%)  (0.054,0.01)  (0.036,0.01)  (0.024,0.1)
df/n 0.31+0.012  0.21+0.0095 0.3+0.011 0.37 +0.0093
p/n 0.314£0.012  0.224+0.0098 0.31+£0.012  0.47+0.014
n/n 0.83+£0.011  0.76+0.014  0.83+£0.012  0.84+0.012
tr[ZA] 0.58+0.039  0.39+0.027  0.5840.038  0.840.038
|tr[ZA] — df/ tr[V]| 0.0019 4 0.0015 0.0015 +0.0012 0.0021 & 0.0016 0.0023 + 0.0017
I=Y2(B-B%)2 1.3+0.18 1.740.25 1.340.19 1.94+0.21

G 0.056 + 1 0.021 + 1 0.0044 + 1 0.042 4 0.97

Table 1: Simulation for Huber Elastic-Net regression under different choices of (A, 7). (n,p) =
(1001, 1000). For each choice of (A, 7), 600 data points are simulated with anisotropic design matrix
and i.i.d. t-distributed noises with 2 degrees of freedom. A detailed setup is provided in Section[6]

The identities (T9) are proved in [3} §2.6]. Simulations in Figures [T]to[3]and Table ]illustrate typical
values for df, tr[V], tr[X A], the out-of-sample error and the criterion @), 7 = >_"" ; ¢/(r;) and
P = |S| under anisotropic Gaussian design and heavy-tailed ;. The simulation setup is as follows.

Data Generation Process. Simulation data are generated from a linear model y = X 8" + € with
anisotropic Gaussian design 3 and heavy-tail noise vector €. The design matrix X has n = 1001
rows and p = 1000 columns. Each row of X is i.i.d. N(0,X), with the same X across all
repetitions, generated once by ¥ = R' R/(2p) with R € R?’*P being a Rademacher matrix with
iid. entries P(R;; = £1) = % The true signal vector 3° € RP has its first 100 coordinates set to
p'/2/100 = v/10/10 and the rest 900 coordinates set to 0. The noise vector € € R” has i.i.d. entries
from the t-distribution with 2 degrees of freedom (so that Var[e;] = oo, i.e., ; is heavy-tailed).

Estimation Process. Each dataset (y, X)) is fitted by a Huber Elastic-Net estimator with
loss-penalty pair in (I8). We focus on 2d heatmaps with respect to the two penalty parame-
ters (X, 7) of the penalty; to this end the Huber loss parameter A is set to A = 0.054n'/?
and a grid for (A, 7) in then set so that df /n varies on the grid from 0 to 1 (cf. the mid-
dle heatmap in Figure [3). The Elastic-Net penalty g(b;\,7) = A||b|l1 + (7/2)]|b||3 is used
with (A, 7) € {(0.036,10719), (0.054,0.01), (0.036,0.01), (0.024,0.1)} in Figure [2| and Table |1}
(X, 7) €[0.0032,0.41] x {107°} in Figure and (A, 7) € [0.0032,0.041] x [1071°,0.1] in Figurel]
More simulation results are provided in the supplementary materials.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Assumptions [I.T]and[I.2]and
the limitations mentioned in Section [I.2]

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-
tions[T.dland [T.2]

(b) Did you include complete proofs of all theoretical results? [Yes] See supplementary
material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] See code in
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The code is also provided.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] It takes an Amazon EC2 server
approximately 40 hours to generate all our simulation results. This is also mentioned
in supplementary.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A] Simulations are
implemented using Python.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A| Simulated data only.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A ]
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SUPPLEMENT

Notation. For vectors in R? or R”, the Euclidean norm is || - || and || - ||, is the ¢;,-norm for
1 < g < +oo. For matrices, || - ||, is the operator norm (largest singular value), || - ||  the Frobenius
norm. We use index 7 only to loop or sum over [n] = {1,...,n} and j only to loop or sum over
[p] = {1, ...,p}, so that e; € R™ refers to the i-th canonical basis vector in R™ and e; € R? the j-th
canonical basis vector in RP. Positive absolute constants are denoted Cyy, C7, Cs, ...,, constants that
depend on ~y only are denoted Cy(7y), C1 (), ... and constant that depend on ~,  only are denoted by
Co(y, 1), C1(v, ), ... If f:R? — R™ is differentiable at z € R?, we denote the Jacobian matrix

in R"*4 by % or O f /0z. For an event (2, its indicator function is denoted by I, or I{2}.

Organization of the proofs. Section [/| provides the proof of the main results from the main text

(Theorems [3.1] 3.2} .1} [5.1) and [5.3] and Corollaries [4.2]and[4.3)) and the overall proof strategy. Sec-
tion[8| gives the proof of the probabilistic tools used in Section[7| Section[9|proves the differentiability

formulae in Theorem 2.1]and Remark 2.2]

Additional simulations. Additional simulations and figures are given in Section [I0]for Gaussian
designs and in Section[IT]for non-Gaussian Rademacher design. The simulations for Rademacher
design suggests that our results generalize to non-Gaussian design, although it is unclear at this point
how to extend the proofs to non-Gaussian X.

Simulations were run on an Amazon EC2 c5.4xlarge instance for about 40 hours.

7 Proof of the main results

We perform the following change of variable to reduce the anisotropic design regression problem to
an isotropic one, G = X X~ /? € R"*P a Gaussian matrix with iid N (0, 1) entries and

h(e, G) = argmin 1 Z plei — e Gu) + g(B" + 27 %u) (20)

n
ueRP i—1

and denote by (h;),=1,..., the components of (20). Then »2(B(y, X) — B*) = h(e, X) with
B(y, X) the M-estimator in (T). With y = GX'/23* + €, by the chain rule and @D,

»12(9/8g;)h(e, G)
= (0/09:)B(GE'*B" +¢,GE'/?)
= AX Te )/ (r))(ZV2B%)e; + ASV2e,0h(r;) — AX et (1) (2% B)e;.

Define ¥ (e, G) = ¢(e — Gh). With e; € R", e; € RP denoting canonical basis vectors,

(8/&9@‘)’1(6, G) = Aejw(ri) — AGTeil/)/(Ti)hj (21)
(0/0gij)¥ (e, G) = — diag{y)'(r)}G Ae;3(ri) — Veih; (22)

where the second line follows by the chain rule for Lipschitz functions in in [20, Theorem 2.1.11].
The crux of the argument is that the quantities of interest appearing in our results, ||h|? = ||='/?(8—

B2, 1(r)|12, tr[AX] = tr[A], tr[V] and df naturally appear from tensor contractions involving
the derivatives in 2I)-(22). For instance, denoting D = diag{¢’(r)} € R™*™ if h;, ¢); are the j-th

12
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and i-th component of (20) and 4(e, G) and denoting 3", >0 by >, for brevity,

P
Oh; = tr[A]y; — h" AGT De; foragiveni =1,...,n, (23)
= 9ij
Z gjz = —¢TDGAej — tr[V]h, foragivenj =1,....p, (24)
i=1 "7
S g2 4] - BTG DY - ¢ DG AR — B V), 03)

ij K
el N
> c'm]?c:m = tr[A]p'Gh — h' AG"Gh + n||h|? + ¢ GAh — ||h|*df, (26)
ij i
3 O(ie] GT o)

; = -y 'DGAG ¢ —tr[V]sp ' Gh — h G Vap + (p — df)||ob]|2  (27)
ij

ij
where we used that df = S" e/ GAG' De; = tr[GAG' D] in the fourth line and df =
?:1 ejTGTDGAej — tr[G " DGA] in the fifth thanks to the commutation property of the
trace. The terms in colored purple indicate terms that will be proved to be negligible later on. The
probabilistic tool that leads to asymptotic normality of the residuals is the following.
Proposition 7.1. [Variant of [S]]] Let z € N(0,1,) and f := f(z) : R? — R?\ {0} be locally
Lipschitz in z with E[|| 1|72 0, | 2L )1?] < +o00. Then

dzy

flz—=39_(8)0z) [ 2 L of
B[ (A T - 2) | s e 2vBE (i i < e 9

Proposition[7.1]is proved in Section[8] From here, asymptotic normality of the residuals in the square
loss case is readily obtained using the explicit formulae for the derivatives and the contraction (23).
We start with the square loss and the proof of Theorem 3.2}

Proof of Theorem[3.2] Apply Proposition [7.1|with ¢ = p + 1 and z = (g;,£:/0) ~ N(0,I,11)
conditionally on (g;,&;)ic()\{i}» and with f = (h,—0) € RP*!. Note that the last compo-
nent of f is constant and ||f||> = |k||> + 0> By @3) and D = I,, for the square loss,
tr[0f/0z] = tr|AJy; — h' AG"e; and by symmetry in i = 1,...,n, E[|[h" AG "e;|?/|| f|?] =
S E[RTAG e /IIFIP] = SIGATRIP/IFIP] < JENGIZIAIZ] < n2Ca(y. p)
thanks to ||All,, < 1/(np) and E[||G||§p] < C5(7)n. Similarly, for the square loss r; = ¥; =
g; — g, hand
IFI-H10F /0zllr = (IRl + o) 7| Av; — AGT e;h ||

< |Allop[v/Pleil /o + DIRI~ g Bl + [|G]lop)-
By the triangle inequality, || A||,, < 1/(nu) and p < yn,
E[|l £ 20 /0|7 < YE(E[} /o) + El(g] h)*/|[B]°]/?) + LEI G2,
By symmetry ini = 1,....n, E[(g] h)*/[h[[2] = £ Y30 El(g] h)*/[h[[?] < LE[|G2,). Since
%E[HG ng] < Cg(7), the right-hand side in the previous display is bounded from above by

Cr(y, p)n~1/2. Since f 'z = —r; we obtain —r; — tr[A]r; = (||h||2 + 62)Y2(Z + Op(n~1/2))
which completes the proof of (T4). O

Proof of Theorem[3.1] Let U ~ N(0,1) be independent of everything else. We apply the pre-
vious proposition with z = (g,,U) ~ N(0,I,;+1) conditionally on (g,g;,l € [n] \ {i}) to
Ff = (h,n"Y%)(e;)). Note that the last component of f is constant. By @3), tr[0f/0z] =
tr[AJy; — h" AGT De; and by Z1)),

IF17H 108 /0z]F = (IRI* +n~"29()*) 72| Avs — AGT De;h'||r (29)

< [Allopln* /b + VBRI gl Bl + Gllop) (30)

13



ss  where we used || Al p < \/p||Allop and [¢;] < ¥(e;) + |g; h| thanks to 1 being 1-Lipschitz. We
w5 have || Ao, < 1/(np) and E[|[R]|72|g] k%] = . 311 ElllR]"?lg] BI°] = SE[|R]?|GR]?] <
w6 ~E[|G||2,] by symmetry ini = 1, ...,n, so thatIE[HfH 2|0f /0z||%] < n~'/2Cs(v, p). Thus by
417 Proposition

(=ri — tr[AJys) + (ei = |R]|Z) = g h — tr[A]e); — |h]|Z
= —Un~""(e;) + [| £l = |hl]Z + | f| Rem ~h" AG De;

s18 where E[Rem?] < CoE[||£||72[10F/0z)%] < n~'/2C1o(y, p). By properties of the operator norm
419 and symmetry ini =1, ..., n,
E[|h]~?[h" AG De,|] = LE[|h| 2| DGATR|?] < 1E[|GI2, A2, < <254 3D

By the triangle inequality, ||| f|| — ||k|| < n~'/4|1b(¢;)]| so that the right-hand side is of the form
Op(n’1/4~)(\z/1(5i)| + ||R]|) as desired. The previous display can be rewritten as r; + tr[A]y; =
€l + ||h||Z} for

e =, +Un"Y4%(e) = [IfIl = |RI](Z + Rem),  Z = —Z —Rem+|h|'h" AG' De;.

420 If &; has a fixed distribution F', then [¢(¢;)| < [¢(0)] + |e;] = |e;] = Op(1) thanks to ¥(0) = 0 and
421 1 being 1-Lipschitz so that (7, Z!") = (€i,=Z) + Op(n~1/*). Since (¢;, — Z) are independent, by
22 Slutsky’s theorem this proves that (£, Z!*) converges weakly to the product measure FQN (0,1). O

423 Proposition 7.2. Let h : R™"*P — RP, 1) : R"*P — R" be locally Lipschitz functions. If G € R™"*P
424 has iid N(0,1) entries then

6 ieTGT
EK,(/JTGh > 8(#};?)) . HGh”Q_E W)QJr(GTlPHQ—ZijW)?}
[RI? + [11[?/n [R]I* + [l91*/n nllh|[? + |42

< CuE[n +p+ G2, + (n +p)zn:§p: T L [Glop/m (H )] (32)
i=1 j=1

(IR]1? + [I12p[12/n)? A1 Dgs 7H89U

425  for some positive absolute constant in the second line.

426 Proposition[7.2]is proved in Section[8] By Proposition[7.2]combined with the identities (23)-(26)-27),
427 and by showing that the colored terms in purple (23)-(26)-(27) are negligible, we obtain the following.

a8 Proposition 7.3. Let Assumption[I1)be fulfilled. Then

1

E[{n 2 (Rl + [[w]?/n) 7" (¥ Gh — tlA][|9]2 + t[V][[R]|%) }*] < Crs (7, ), (33)
E[{n=3 (Il + [¢]2/n) 7 (RIGT 2 — 252y |2 + 2T GR) }] < Cra(y,0), (34
E[{n=3 (Il + [¢]2/n) "  (IG|? — tr[Aly " Gh — (n — df)[[A]*) }*] < Cis(7, ). (35)
429 Proof. We bound from above the derivatives in (32)). For the norm of (0/9g;;)h and (0/0g;; )%, by

w0 (22)-@1) and 3(a + b)? < a® + b2,

m

M\»—l

‘ IDGA|EII” + [VIEIRI*

" < 1A4Iw1? + 1AGT DI IR, Y .

sl il

431 Usmg | Allop < 1/(nu), |Dllop <1,p/n <~vyand V in , it follows that in (32)) we have

1RI + [[5]]/n ||¢H2/n Z Z(H 9gij

432 Since E[\\n*1/2G||Op] < C17(7) [10, Theorem I1.13], this shows that (32) is bounded from above

433 by Cig(7, p)n. The contractions appearing in the left-hand side of (32) are given in (23)-26)-(27),
434 so that it remains to bound from above the purple colored terms in these three equations. This is
435 done by using the upper bounds on the operator norms || Al|,, < 1/(nu), || D|lop < 1 and again that

a6 E[n~Y2G||1] < Cio(7), so that (32) yields the three inequalities in Proposition O

‘ ’Hag” ‘ ) < Gl (1+1GIE/m). (36)
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437 The next result is another probabilistic result where the contractions in (23)-(24) appear.
438 Proposition 7.4. Let h : R"*P — RP, 1) : R"*P — R"™ be locally Lipschitz functions. If G € R"*P

439 has iid N (0, 1) entries then
E{‘z”d’”Q _% ?:1(1/’TG‘3J‘ - Z?:1 %)2’} L E ‘th”Z - E? l(gz h — Zj 1 6g”) ’]
1Rl + [19]]2/n

1R+ lI112/n
as0  The proof of Proposition[7.4]is given in Section[§] Using the contractions (23)-(24) in the left-hand
4a1  side of Proposition[7.4] and by showing that the purple colored terms are negligible, we obtain the
442 following two inequalities.

a3 Proposition 7.5. Let Assumption[I1)be fulfilled. Then

Eln=2 (IRl + 411 /n) ™ (2l19])* = 2IG T4 + tr[VIR|*)| < Car (3, ), 37
Eln=2 (lR]]” + 117 /n) ™ (nllR|)* = |Gh — tr[AJ$]*)| < Coa(y. r)- (38)

< Cy (m@ + 51/2) + E) where = = [||h||2 ol /n ZZ(H@g” ‘ —Hagw

444 Proof. For Z in Proposition[7.4] the fact that = < Ca3(7, 1) is already proved in (36). For the first
445 inequality we use Proposition[7.4]and the contraction (24)). To control the purple terms in (24) inside
446 the left-hand side of Proposition|/7.5]

‘ zp: ¥ Ge; — . §¢J 2 |G+ tr[V}h||2‘ - ‘z/:TDGA (2GT¢ +2t[V]h+ ATGTsz) ‘

< (l9l*/n + thl )@nlGIIZ, | Allop + 22| Gllopl| Allop + nl| AIISIGIIZ,)

447 thanksto [tr V| < nin Theorem With the bound obtained by multiplying the previous display
a8 by n=3/2(||h||? + ||9||>/n) ", and using the previous bounds on || A||,, and E[|[n~1/2G|2,], we
as9  obtain (37) from Proposition [7.4]and (Z4). The second claim is obtained by Propositior@ the
450 contraction (23) and an argument similar to the previous display bound the purple term in O

451 We are now ready to prove Theorem 5.1}

452 Proof of Theorem[5.1] Define

& =4 Gh—ulA]|¢| + u[V]|A|? (bounded in (33)),
&= LG = ) + “g T Gh (bounded in (),
& = ||Gh|)? — tr[Alyp ' Gh — (n — df)[|R||? (bounded in (33)),
v = EI¢l* = LIG ¢ + u[V]h|? (bounded in (37)),
¢y = n||h|]? — |Gh — tr[A]p]? (bounded in (3g)).

Then by expanding the square in &7y and &y, and simple algebra (for instance by computing first
&rr + &rv and ;77 + &y separately),

(tr[V]/n — tr A)ér + &1 + Errr + Evr + & = (917 /n + [|b]*)(df — te[A] tx[V]).

a53 Since | tr[V]/n < 1, tr[A] < v/ by Theorem . the previous display divided by n'/?(||3||?/n +
a4 ||h||?) and the bounds (33), (34), (33), (37) and (38) complete the proof. O

455 To prove Theorem[4.T} we need this extra proposition whose proof is closely related to Proposition
456

457 Proposition 7.6. Let Assumption[I1]be fulfilled. Then

E[{([B]2 + 192 /n) 2 el 6vi}] < Caslrom)  for &vi=e' (Gh—tr[Alp). (39)
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458 Proposition[7.6]is proved in Section[8] We are now ready to prove Theorem [4.1]

489 Proof of Theorem[.1} We have n||h|? + ||e|> — ||r + tr[A]4||*> = & + 21 by simple algebra
40 and the definitions of £y and £y ;. Hence

B2 + llel2/n — v + el Al 2/ iy
| 1 9T, (TR T ) el rey) 7 /Gt 40)

a6t thanks to (39) and (38). O

a2 Proof of Corollary We perform the change of variable (20) to 3 as well, giving h (the counterpart
463 of h), 1 (counterpart of 1)) and A (counterpart of A). Let (2 be the event defined in the theorem, i.e,

Q2= {lIGllop < 2V + v/p} N {[le]* < n Y, (41)

ss4  Then P(Q2°) — 0 by [10, Theorem 2.13] for the first event and [[13] to show that ||g||2/n?/(1+9) =P @
a5 under the assumption that E[|¢;|1+9] is bounded.

s66 Under Assumption - 1.2L Io(||lv|1?/n + ||h|| ) is bounded by a constant. Indeed, since the penalty
467 ¢ is minimized at 0, (3 — O)TXT1/J € n(B — 0)T(dg(B) — dg(0)) since 0 € dg(0). By strong
468 convexity of g in Assumpt10n (B 0)"X Ty > ﬂHEl/Q,BHz In ©, this implies ||21/2,8H
w9 ol Glopllwll < Cas(, )6l /v and 4]l v < M in Assumption[1.2] Since || %'/23"|?
470 M in Assumptlonn this yields Io (||h]|% + ||[40]|2/n) < Caz (7, i1, M) and the same holds for h, %
ot Ta([R]?+ |9]%/n) < Cos(y, 1, M).

s72  Inequality (@0) thus implies

VIN A

ElLo(|IR]* + llel*/n — [l + te[AJgp|* /n| + [|BI* + lle]* /n — |7 + tr[ AJ3p|* /n])]
< Co9(7, 1, M)(rfl/2 Vi n*q/(1+q)).

Since ¢ € (0,1) we have n= /2 n~¢/(1+40) — p=4/(1+9) i the right-hand side. Let Q = {||h||? —

B2 > 0, |7 + tr[A]p||2 < |7 + tr[A]4p||2} be the event for which we are trying to control the
probability. By the triangle inequality,

E(lo||R]* — [B]* = |l + t[AJp|*/n + |7 + tr[A]$]|* /n]] < Caoly, u, M)n=9/O+0).

73 In ), the random variable in the expectation sign is larger than nlo. Thus nE[Iglgs] <
aa Csy (7, p, M)n=9 4D and P(Q) < 51 Csa(y, pr, M)n=7/ (140 4 P(QF). O

475 Proof of Corollary[d.3] We follow the same strategy. Let {2 be the same event as in the previous
a76  proof, so that P(Q¢) — 0 as before. We perform the change of variable (20) for each k = 1, ..., K
a77 giving hy, ¥, and Ag. We have Ig maxg—1, x (||he||* + |14]1%/n) < Cs3(y, u, M) as explained
478 in the previous proof.

79 Summing over k the inequality @0) gives B[l Sor |||l + |lel|2 — [lre + tr[Ar]eb,|I2]] <
w0 KCs4(y, p, M)n=7/ (149, Let k be the minimizer of |7y, + tr[A;]e,||? as defined in the statement
a1 of Corollary 4.3[and let k € {1,..., K} be such that ||h;||* > ||h;]|* + 7 in the event  where
s82  such k exists. Then by the triangle inequality, nE[IqI5] < Css(7, p, M)n~9/(+9 Tt follows that
a3 P(Q) < n~1C36(7, pt, M)n~9 040 £ P(Q°) — 0 as desired. O
s8¢ Proof of Theorem[5.3} Using |a|> — ||b]|> = (a — b) " (a + b) we have
IGh — tr[A]y||* — |Gh — (df/ tx[V])|]* = (df/ tx[V] — tz[A])9p " (2Gh — (t2[A] + df/ t2[V])3p).
485 Hence using | tr[A]| < ~/u, |df| < n and the Cauchy-Schwarz inequality
|Gh — tr[A]||* - |G — (df/ tr[V])||
< Car(7, 1) (8% V DIdf/n — tr[V]tr[A] /0] (1)1 + [ Glop I RII*).
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486
487
488

489

491
492

494

495
496

497

498
499

500
501

502

Let Q) be the event in Corollary Using the bound on the operator norm of G in 2, for any
deterministic 7 > 0 we have proved

}|HGh — tr[AJ|* — |Gh — (df/ tr[V])Hzl} < Oss(11) 1y
IRl + lI11?/n nAl
thanks to Theorem By (56), in the event Q2 where the operator norm of ||n~'/2G/|,,, is bounded

by a constant, tr[V] > tr[diag{v’(r)}]/Cs9 (7, pt). Hence combining the previous display with (@0},
we have proved

{I{Q}I{ZL W'(ri) > nn} |12 + [le]*/n = |Ir + 25 /n|} < Caoly,11m)
max{[|k||* + [[[?/n, (IR]? + 9] /n)' 2 (el /n)} /21— Voo

At this point the proof is similar to th;lt of Corollary We perform the change of variable

foreach k = 1,..., K giving hy, ¢, dfj, and V. We have Ig max,—1,._ x (|[Ri||* + |95 ]|?/n) <

C41(7, 1, M) as explained in the previous proofs. Summing over k = 1, ..., K the previous display,

using Io maxg—1__ g (||hr]|® + |94 ]12/n) < Caz(y, u, M) and Ig||e]|? < n?/ (19 we find

E {I{Q}I{tr[V]n >

dfk KC43(77:“’777)

d’kH / H nq/(1+q)

Let 2 be the event that there exists & with L 7" | Y (r7;) > satisfying [[hg]|? +7 < ||k |[%, then

K n
E[Z HQ{LY i, (rwa) = nnd |l + [le])/n = [Ir +1
k=1 i=1

by the previous display and the triangle inequality, using ||7;, + %@b il <llrg + trd 3,; Pi||? by

definition of &, we obtain iP(Iols) = O(K/n?/(1+9). Since 7 is a constant independent of n, p
and P(2) — 1, the probability P(Q) converge to 0 if K = o(n4/(1+4)), O

8 Probabilistic results and their proofs

Proposition 7.1. [Variant 0f[5]] Let z € N(0,1,)and f := f(z) : R? — R9\ {0} be locally

Lipschitz in z with E[|| £]| 72 >0 _, || Dzn H ] < +o00. Then

(LT iG] < cm

Proof. Letg :=g(z) =

f(z) _ (=)
IF )l E[ Hf(z)\l] and set

— T f(z) o
Z==TBl /Y ”E[

1 (= II]||

so that Z ~ N(0, 1) and V is deterministic with V' < 1 by Jensen’s inequality. As a first step, we
proceed to prove inequality

Flz— 11 (0/02) fi 2 & of
E . —VVZ) | <6E 9F 2] 0
(5. V] <osliseyighe] @

Then at any point z where f is differentiable we have

99 _ pof p_r _If'
8zk_”'f(z)” Pazk’ where P=1, T

This implies that almost surely,

Fz = 541(0/0) fr N 0/00ven T (0F/02)F
171 ~VVZ =gz =) (@/0a)m — g

where 0 f /0z is the matrix with entries (I, k) entry (0/0z) f; forall, k,1 =1, ....¢q
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504
505

506

507
508

509

510
511

512

513
514
515

517
518
519

520

521
522

By the triangle inequality and swa 2 < 2a? + 202, this implies that the left-hand side of @2) is
bounded from above by 2EE(( - tr [0g/02))%] + 2E||| f||72|10f/0z||%]. The first term can be
bounded using the main result of [4] and the Gaussian Poincaré inequality [6, Theorem 3.20]

E[(z"g - tr[0g/02))*] = Elllg|*] + Etr[(9g/02)%] < 2E[|0g/0||%]-
This proves (@2). To bound |v/V' — 1|, we have by the triangle inequality
_ f f || =
\\/‘7*1\*\\/‘7*HWH\ H]E ‘f” WH*HQ||~
By another application of the Gaussian Poincaré inequality,
VV =11 <E[llgl3] < E[llog/0=(|F] < E[ll £ 10 /0=]%]. (43)

Combining Equations and using (a + b)? = a® + 2ab + b < a® + 1/v/6a> + V60 + b2,
we obtain the constant 7 4+ 2+/6.

O

Proposition 7.2. Let h : R"*P — RP, 1) : R™"*P — R" be locally Lipschitz functions. If G € R"*P
has iid N (0, 1) entries then

9gij

; jel d(pie] G
% Gh—Y,, 6“{;”)2 IGR|? — 3, 2ei €M 0y G Ty |2 - 3, P T

9i
Rl + [19]]2/n ) +( n||h||2+|\¢||2

) o

B (rEs o

P14 Gl2,/n
§c44E[n+p+HGII3p (n+p) ZZ ||h||2+||¢ﬁ2/n (H
=1 j=1

i ‘ n H Dgij

for some positive absolute constant in the second line.

Proof of Proposition We prove the claim separately for the three terms in the left-hand side of
Proposition we start with the first of the three terms. We will apply the probabilistic result
given in Proposition 6.3 in [3]]: if 7 : R"*P — RP and p : R"*P — R" are locally Lipschitz and
G € R"*? has iid N(0, 1) entries,

E[(pTGn_ZW)Q} <E||ol?* ||n|\}+zE[Z||nn 15, \|2+||p|| [ gl]” 2|, @4

]

The proof only relies on Gaussian integration by parts to transform the left-hand side. Let f :
R™XP — R™*P be locally Lipschitz. For any i, j and at a point where both h and 1 are differentiable

and f # 0,

9 1 T\ o 0
a0 i) = 171 e~ ) a0y () < il
Agi; ML/ ISl I£11?/ 9gi 9gi; M £l ||f|| 9gij
We use this inequality applied with
- 1 -1 P - h
F=Zw),  P=7mmm TS0 43)
To bound from above the right-hand side of ({@4), the inequality in the previous display can be
rewritten 5 5 ) L ow
n P 2 ( )
+ < (46)
19,1 Vo = T Tz g, 1™+ 212,

Since ||p]] < 1 and ||77H < 1 by deﬁnition the right-hand side of (@4) is bounded from above by

1+ QE[W(H Do hj2 41 || I |2)]. Thus the proof of Proposition [7.2|for the first term in
ij ij

the left-hand side is almost complete it remains to control inside the parenthesis of the left-hand side,

)]

T oh 1T 0%

9gi;

—1/27 n—1/2p h' 7+ + -
S e e (T o) = 23 o s oo
= IRIZ+11l2/n Ogi 9gij \||h|1* +[[9]12/n i’ (IR + [l%[12/n)
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523
524

525

526
527

528

529

530

532

533
534

535
536

538
539
540

541

542

By multiple applications of the Cauchy-Schwartz inequality, the absolute Value of the previous display
is bounded from above by 2(||h||? + [|¢]|? /n) ~/2(3,; || 2 dec Il + 12 Do |)1/2. This completes the
proof of Proposition [7.2]for the first term in the left-hand side.

For the second and third term in the left-hand side of Proposition apply instead {@4) to p = Gn
and ) = G'' p to obtain

d(njef Gn)\?
EKH%P—%)QM)l<EUGnHmnpmq%mn|Mm+G nummu|g
d(pip' Ge;
]EKHGTMP_EZ‘iQEf‘Eﬁ)T‘<E“anmlWH}+%ﬂ§:HGTPHH " | lel st
- gz]

ij
Setting p = ﬁw /N fllsm = h/|| f|| we obtain the claim in Equation (44) by bounding the right-hand
side of the previous displays using the operator norm of G and arguments similar to (@6)). The term
involving %M_ (W) in the left-hand side is controlled similarly to the previous paragraph.

O

Proposition 7.4. Let h : R"*P — RP, 4p : R"*P — R" be locally Lipschitz functions. If G € R"*P
has iid N (0, 1) entries then

(JEIOIP — 50,07 Gy o )Yy el YL TS g
1R[Z + [l /n [R[? + [4p]]2/n

E

)

Proof of Proposition[7.4] We first focus on the first term in the left-hand side. Theorem 7.1 in [3]]
provides that of p : R™*? is locally Lipschitz with ||p|| < 1 then

2 - T Ipi 2 1/2
Elpllol Z( Gej~ Zag”) ‘<C46\[(1+2H8gw ) 472“8 ™

Let p = n=/24)/||f|| as in @3). Inequality (#6) lets us bound from above the right-hand side
of the prev1ous d1splay by the right-hand side of Proposition n In the left-hand side, p||p||? =
Ellp|2/(|R||*> + ||0]|?/n) as desired. For the left-hand side, using some algebra in [3, Section 7],
for any random vectors a, b € RP by the triangle and Cauchy-Schwarz inequalities we have

pllol> ~ llall?l - [pllel? - 16l < lla — bl + b]
< fla - b| +2a — b 3]
< fla - b +2a — bl (\/[T8IP = plel? + V/plol?)
< 3la—b|? + L[1b]2 = pllpl?| + 2]la — bll/plo]?
so that [p]pf2 — lall2 < Z[plpl2 — 8l + 3lla — b2 + 2]la — b]|\/p]AIP. Applying this

tob; = p'Ge; — >, gg’?? we use [@7) to bound |p|p||*> — ||b]|?| and ||p|| < 1 to bound
”

Vplpl? < /p. It remains to specify a so that [p||p|* — ||a||?| coincides with the first term
in the left-hand side of Proposition[7.4jand bound ||a — b|. Consequently, we set

T R no Oy n o

Y Gej — ) ., 99 _ pTGe- - D1 dgi; _ Z

Va([[hl? + [[]?/n)/? Tva(lhlE A+ )2 )t f 6gu

where D = (||h||2 + |lb||?/n)*/? so that by the Cauchy-Schwarz inequality ||a — b||> <
L2 5, (X212 ang

oD~ oh o Ty Lo,
Z( dgi; ) DGZ( Tag” /n 59”) _D4ZH H2 n‘a”H' (48)

j

< Ca(VAFp(1+E1/%) + Z) where = =B [||h||2+||wu2/nzz(Hagu *Hagu

2
‘ @7

aj:

19
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544
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555
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557

558

559
560

562

563
564

565

566
567
568
569

570
571

using again the Cauchy- Schwarz inequality and max{||h||?, ||4||?>/n} < D?. We obtain ||a — b||?> <
2y ; |2 89 |2+ L || vy 2 which completes the proof for the first term in the left-hand side of

Proposmon For the second term in the left-hand side, the proof is similar with by exchanging the
role of n and p in (@7) and applying (&7) to h/D instead of v /(y/nD).

Proposition 7.6. Let Assumption[I1|be fulfilled. Then
E[{(Ih]? + I9]2/n) "2 lell " ¢vi}’] < Cas(yop)  for Evr=e  (Gh—t[Alg). (39)

Proof of Proposition[/.6] Apply @4) with p = ¢/||e|| and n = h/D where D = (||h||? +
l4]|2/n)*/? as in the previous proof (this scalar D is not related to the diagon matrix D =
diag{¢’(r)}). Since & has 0 derivative with respect to G we find

e"'Gh gi O(h;D™1)\2 on
B[ (Tap - z:kn 90, )]§1+2%;EWQUW]

The right-hand side is bounded from above by C'4g(y, ) thanks to (@6) and (36). For the second term
above we use product rule and (23),

Z DY) tr[A]y e B h'AG" diag(v Z gihj (D)
HEH 3913 D]l Dlell el dqu '

To complete the proof we need to bound from above the expectation of the square of the second
and third terms colored in purple are bounded by Cs¢(7, u). Since ||h|| < D, the second term is
bounded from above by [ Al|op[|Glop since [¢'| < 1 and E[|| A]|2,|G|Z,] < Cs1(~, i) thanks to

I-A]op g 1/(nw) and [10, Theorem I1.13]. For the third term, we use the Cauchy-Schwarz inequality

(X, 52092 < [R)2 Y2, (%2 1)2, @8) and G9). O

9 Proof of differentiability results
Theorem 2.1. Let Assumptionbefulﬁlled. For almost every (y, X)) the map (y, X ) — B(y, X)
is differentiable at (y, X) and there exists a matrix A € RP*P with ||21/2;121/2||0p < (nu)~Ls.t
(0/0y:)B(y. X) = AX T et (1),
(0/07:,)B(y, X) = Aejih(r;) — AX Teq)/ (r:)B;,
e; € R", e; € R? are canonical basis vectors , 1\ := p' and ¢’ denote the derivatives. Furthermore,
df = tr[X (8/9y)B] = tr[ X AX diag{y/'()}], 6)
V = diag{s/ (r) NI, — X (0/0y)B) = diag{y/(r)} — diag{e (r)} X AX diag{y/(r)}. (7
satisfy 0 < df <nand0 < tr[V] < n.

where r; = y; — CEIB, (®)]

The first part of the following proof is similar to the argument using the KKT conditions in [3]]. After
(5T), the argument is novel and lets us derive the convenient formula () and the existence of matrix

A which plays a central role in the contractions 23)-(27).

Proof of Theorem2.1} X; = X + tU and y, = y + tv with ¢ € R where U € R™™? and
v € R" are fixed. Let 8, = ,B(yta/\Xt) and 7y = y, — X:B(y,, X) and P (y,, X1) = (7).
By convention, without arguments 3, ¢ refer to (y, X ) which is (y,, X) at t = 0. By the KKT
conditions, X "1 € ndg(B3) and X;r@bt € ndg(3,), by strong convexity of g, we have

nul| V2B, - B2 < (B, - B) (X[ ¥, — X 9). (49)

By the fact that ¢ is non-decreasing and 1-Lipschitz, for any two real numbers a < b, 0 < ¥(b) —

¥(a) < b — a. Multiplying ¥(b) — 1 (a), we have ()(b) — ¥(a))? < (¥(b) — (a))(b — a). Thus
|, — 9[> < (b, — ) (70 — 7).
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Adding up the above two displays we have
| V2B, = B + 19, — 11> < (B, = B) (X by — X ") + (b, — )T (7e — 7). (50)

By X, ¢~ X ¢ = (X~ X) 9+ X/ (¢,—%) and X, (8,~B)+7+—7 = y,—y—(X,— X) B,
we have

nul|ZV2B, - B+ 10, — 9P < (B, —B) (X — X) P+ (y, —y — (X — X)'B) T (4,

By the Cauchy-Schwartz inequality, the above implies

(| =28, = B + 1, — B11*)? < (np) 2= VA(X = X) T lls + [y —y — (Ko —

Since t, U, v are arbitrary, for (y,, X) and (y, X ) both in a compact subset K of R? x R"*?, the
above display also implies

~ 5 ~ o012 _
(nul| V2B, — B> + b, — 91?) " < const(K) (|72 Xt — X)lop + [y — yll2),
where const(K) = sup(y,x)eK{(nu)_l/Q|\1Ap||2 + 1 + |=Y28|,}. This says that

B(y,X ),{ZJ(y,X ) are locally Lipschitz in (y, X ). By Rademacher’s Theorem, 8@/8% and
0B/0x;; exist almost everywhere.

Taking the limit ¢ — 0™ in (@9) and using the chain rule, where the derivatives exist we have

w2 G+ SO
(gi +57§( )) (UTiAb-l-XTdiag(’lZ/)( UB - X(%‘é( )+(In—Xg—§)v))
(gﬂ +§7§(U)) B(U,v) —‘dlag (%) X(Z_f aﬂ )H

(5D
where (08/0y)v := 3_,c(,,(08/0y;)v;, the Jacobian with respect to X' and the linear map B :
R™*P x R™ — RP? are defined as

oB - - .
ax U= > 9B . eR?, BU,0) =U $+ X dag@)(~-UB +v) € R?
ijemixtp) O
where (w;;)i=1,... n,j=1,...p are the entries of U. By the Cauchy-Schwartz inequality, (5I) provides

us the following two main ingredients:

8ﬁ oB B _
(9y v+ X (U) = 0 for all (U,w) such that B(U,v) = 0, (52)
HE”Z(% B (0], < wn =B 0l (53)

Since both @v + @(U) and B(U 'u) are linear in (U v) € R"XP x R™ into R?, Proposition
implies that there exists a matrix A € RP*? such that v + ( ) = AB(U,v) forall (U, v),

and by (33)), A can be chosen such that ||El/2A21/2|| < (nu) ! thanks to the operator norm
identity in Proposition With (U, v) = (ee; )for (z Jj)E€n ] x [p] and (U, v) = (0, ey) for

k € [n], we obtain the stated formulae for (Ox;; / )/ and (dy;/0)B in @D.

Now we show that both tr[V] := tr[D — DXAX ' D] and df := tr[XAX ' D] are in [0,7]
where D := diag{¢’(r)}. Using the symmetric part of A defined as A:=(A+AT)/2 we have
tr[V] = tr[D - DXAX " D] and df = tr[D'/?2X AX " D'/?) by property of the trace. In 1),
take U = 0 so that aﬁv + (U) AB(U,v) = AX " Dv and we have with G = XX /2

(1+ |ID'2XAX" Dv|?> <nu|AX "Dv|? + |DY?XAX "Dv|> (54

Wﬂ
<v'DXAX "'Dv=v'DXAX' Dv (55)
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for all v. This implies the positive semi-definite property of the symmetric matrix DX AX'D,
and thus df > 0 and tr[V] < tr[D] < n. With @ = DY?v, it also implies (1 +
nu/| DY G2 )HDl/zXAXTDl/21~;H2 < %' DY?XAX"D'?%, which implies by the
Cauchy-Schwartz inequality (1 + nu/||D1/2G|| )HD1/2XAX D1/2|| < 1. The same op-
erator norm inequality with A replaced by A thanks to the triangle inequality. Thus df <

tr[D](1 + nu/|DY2G||2,)~" < nas well as
tr[V] = t2[DV*(I, - D'*XAX " D"?)D"?| > z[D](1 - (1 + nu/||D*G|?,) ")
= tr[D]/(|D'*G|?,/(np) + 1)
> tr[D]/(|GIl5,/(np) +1) (56)
>0

(
(

thanks to ¢’ € [0, 1]. Inequality (33) with @ = D'/?v and M = I,, — DY?X AX " D*/? implies
[(M —I,)0)2 <% (I, — M)v. As the left-hand side is | Mo||2 — 20 ' M© + ||o||%, this yields

| M3||> <" M% < ||5||| M3||. If & has unit norm and is such that | M%|| = || M]||,, this gives
| M||op < 1 so that |V, = |[DY?MDY?||,, < ||D|lo, < 1. This gives another proof of
tr[V] < n. O

Proof of Remark[2.2] The proof for the intercept term included is the same to that of Theorem [2.1]
The only difference is that when computing the derivatives,

i oY 0P op 96 0B
St = UT¢+XT(8 v+ 2 (U)), 5" — diag(¥h )(I,, — 15, X5,
bS] ~1 0 0
a;‘g )= (@122 0) - vB - x Lo
= %h:o 111 dﬁo ¢ lt=0 — dlag(z,b )X %h:o + diag({b/)v — diag(;/\zl)UB

We have an additional KKT conditions providing us 0 = 17 (d4, /dt)|,—o. Multiplying 17 on both
sides of the above display, we have

~ T ~1T ~IT o~
doe @ XdB, 4o 4 UB
dt t=0 ]_T;L/ dt t=0 1T17Jl ]_T;L/ )

di -

— 7;|t:0 —‘I’ X |t o+ ‘I’ v — ‘I’/U,B,

/. . ~1 A1 ~1T TA/ . . . . .
where @' := diag(y) ) — ¢ ¢ /1) . By taking limit of ¢ — 0 in Equation (50},

By |2 _dByr dX9 dB, 7 d
o el = e g o = G O(UT‘“XT o)
_d ~
- 5t|t o(UT+XT(- lIfX \t 0+ ¥'v — WUB))

_ d5t|t o(UT"b L XTw XT‘I"U[A3> B H‘I’ll/QXdﬁt| —on-

O

Proposition 9.1 (A lemma on linear transformations). Let A and B be two real matrices with
shape n by p. Assume that Bv = 0 for all v such that Av = 0 with v € RP. Then the matrix
C := BA" where A" is the Moore-Penrose pseudoinverse of A satisfies B = C A and ||C||,, =
maxyepn: Auzo{ [ Bulla/[| Awll2}.
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Proof. Let r be the rank of A. We let A = UDV " be the SVD of A, where V has orthonormal
columns vy, ..., v, with the first  columns spanning the row space of A, and the last p — r columns
spanning the nullspace of A. Let u; denote the i-th column of U. Let

C:=BA":=) d;'Bvu/

1€[r]

where AT is the Moore-Penrose pseudoinverse of A. Notice that AT Av = Diel] viv]v =
Prow(a)v project v € RP onto the row space of A. So BA"Av = Bvif v € row(A), and
BATAv = 0if v € Ker(A). By the assumption that Bv = 0 for all v such that Av = 0, we have

BA" Av = Bv holds for all v € R? = row(A) @ Ker(A).

For | BA™||,,, we notice that A" maps any u € col(A)* to 0. The ratio || BAtul2/||u|2 for
u € R™ is maximized only when u € col(A): Otherwise, we can replace u with the projection of u
onto col(A), denoted by Av := Peoi(ayu, and we will have a ratio with the same numerator, but a
smaller denominator and thus a larger ratio:

IBA ullz _ |BAT(Av+u— Av)[s _ [|[BATAv|, _ |Bvl

ulla lAv + u — Av||o = JAv],  |Av|s
This implies | BA™||,, = maxyegn Hﬁz‘\l\? -
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s0 10 Additional Figures (anisotropic Gaussian design)

tr{EA] tr[V]|/n

B/n

0011
0.016-
0.024-

> 0036

Figure 4: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
A = 0.054n"/? and (X, 7) where A € [0.0032,0.41] and 7 € [10~1°,0.1]. Each cell is the average
over 100 repetitions. See the simulation setup in Section 6 in the paper for more details.
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000062

|56 - ) (I1E272(8 ~ )| = lIr + 7 (r)|2/n + el

.

Figure 5: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
A = 0.024n'/2 and (), 7) where A € [0.00062,0.081] and 7 € [107°,0.1]. Each cell is the average
over 50 repetitions. See the simulation setup in Section 6 in the paper for more details.
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11 Additional Figures (non-Gaussian, Rademacher design)

10 e == di/n = w(EA]
Py =3 p/n g == df/tv]
- & 1 == i/n = | tr[EA] - df/ V]|
08 & & B3 ulv)/n
& 0 |df — t[EA] tr[V]|/n 5
0.6 ﬁ ? % ? %
%% ? § 4
: , =
L]
02 ;. t &
% = =5
- =
00 & & + e - o o . o e __. 0 T @ = = - - e
0.0032 0011 0.036 012 0.41 00032 0011 0036 012 041
A A

Figure 6: Boxplots for df, p, 7, tr[V], tr[SA] and | tr[SA] — df/tr[V]| in Huber Elastic-Net
regression with 7 = 10719 and \ € [0.0032, 0.41]. The data are generated with X having iid entries
taking value +1 each with probability 0.5 (so that 3 = I,). Each box contains 30 data points.
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Figure 7: Histogram and QQ-plot for ¢; in (13])) under Huber Elastic-Net regression for different
choices of tuning parameters (A, 7). Left Top: (0.036,10719), Right Top: (0.054,0.01), Left
Bottom: (0.036,0.01), Right Bottom: (0.024, 0.1). Each figure contains 100 data points generated

with Rademacher design matrix (each entry has value 1 with probability 0.5) and iid ¢; from the
t-distribution with 2 degrees of freedom.
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