
SUPPLEMENT361

Notation. For vectors in Rq or Rn, the Euclidean norm is ‖ · ‖ and ‖ · ‖q is the `q-norm for362

1 ≤ q ≤ +∞. For matrices, ‖ · ‖op is the operator norm (largest singular value), ‖ · ‖F the Frobenius363

norm. We use index i only to loop or sum over [n] = {1, ..., n} and j only to loop or sum over364

[p] = {1, ..., p}, so that ei ∈ Rn refers to the i-th canonical basis vector in Rn and ej ∈ Rp the j-th365

canonical basis vector in Rp. Positive absolute constants are denoted C0, C1, C2, ...,, constants that366

depend on γ only are denoted C0(γ), C1(γ), ... and constant that depend on γ, µ only are denoted by367

C0(γ, µ), C1(γ, µ), . . . If f : Rq → Rn is differentiable at z ∈ Rq, we denote the Jacobian matrix368

in Rn×q by ∂f
∂z or ∂f/∂z. For an event Ω, its indicator function is denoted by IΩ or I{Ω}.369

Organization of the proofs. Section 7 provides the proof of the main results from the main text370

(Theorems 3.1, 3.2, 4.1, 5.1 and 5.3 and Corollaries 4.2 and 4.3) and the overall proof strategy. Sec-371

tion 8 gives the proof of the probabilistic tools used in Section 7. Section 9 proves the differentiability372

formulae in Theorem 2.1 and Remark 2.2.373

Additional simulations. Additional simulations and figures are given in Section 10 for Gaussian374

designs and in Section 11 for non-Gaussian Rademacher design. The simulations for Rademacher375

design suggests that our results generalize to non-Gaussian design, although it is unclear at this point376

how to extend the proofs to non-GaussianX .377

Simulations were run on an Amazon EC2 c5.4xlarge instance for about 40 hours.378

7 Proof of the main results379

We perform the following change of variable to reduce the anisotropic design regression problem to380

an isotropic one,G = XΣ−1/2 ∈ Rn×p a Gaussian matrix with iid N(0, 1) entries and381

h(ε,G) = argmin
u∈Rp

1

n

n∑

i=1

ρ(εi − e>i Gu) + g(β∗ + Σ−1/2u) (20)

and denote by (hj)j=1,...,p the components of (20). Then Σ1/2(β̂(y,X) − β∗) = h(ε,X) with382

β̂(y,X) the M -estimator in (1). With y = GΣ1/2β∗ + ε, by the chain rule and (5),383

Σ−1/2(∂/∂gij)h(ε,G)

= (∂/∂gij)β̂(GΣ1/2β∗ + ε,GΣ1/2)

= ÂX>eiψ
′(ri)(Σ

1/2β∗)ej + ÂΣ1/2ejψ(ri)− ÂX>eiψ′(ri)(Σ1/2β̂)ej .

Define ψ(ε,G) = ψ(ε−Gh). With ei ∈ Rn, ej ∈ Rp denoting canonical basis vectors,384

(∂/∂gij)h(ε,G) = Aejψ(ri)−AG>eiψ′(ri)hj (21)

(∂/∂gij)ψ(ε,G) = −diag{ψ′(r)}GAejψ(ri)− V eihj (22)

where the second line follows by the chain rule for Lipschitz functions in in [20, Theorem 2.1.11].385

The crux of the argument is that the quantities of interest appearing in our results, ‖h‖2 = ‖Σ1/2(β̂−386

β∗)‖2, ‖ψ(r)‖2, tr[ÂΣ] = tr[A], tr[V ] and d̂f naturally appear from tensor contractions involving387

the derivatives in (21)-(22). For instance, denotingD = diag{ψ′(r)} ∈ Rn×n if hj , ψi are the j-th388
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and i-th component of (20) and ψ(ε,G) and denoting
∑n
i=1

∑p
j=1 by

∑
ij for brevity,389

p∑

j=1

∂hj
gij

= tr[A]ψi − h>AG>Dei for a given i = 1, ..., n, (23)

n∑

i=1

∂ψi
∂gij

= −ψ>DGAej − tr[V ]hj for a given j = 1, ..., p, (24)

∑

ij

∂(hjψi)

gij
= ‖ψ‖2 tr[A]− h>G>Dψ −ψ>DGAh− ‖h‖2 tr[V ], (25)

∑

ij

∂(hje
>
i Gh)

gij
= tr[A]ψ>Gh− h>AG>Gh+ n‖h‖2 +ψ>GAh− ‖h‖2d̂f, (26)

∑

ij

∂(ψie
>
j G
>ψ)

gij
= −ψ>DGAG>ψ − tr[V ]ψ>Gh− h>G>V ψ + (p− d̂f)‖ψ‖2 (27)

where we used that d̂f =
∑n
i=1 e

>
i GAG

>Dei = tr[GAG>D] in the fourth line and d̂f =390 ∑p
j=1 e

>
j G
>DGAej = tr[G>DGA] in the fifth thanks to the commutation property of the391

trace. The terms in colored purple indicate terms that will be proved to be negligible later on. The392

probabilistic tool that leads to asymptotic normality of the residuals is the following.393

Proposition 7.1. [Variant of [5]] Let z ∈ N(0, Iq) and f := f(z) : Rq → Rq \ {0} be locally394

Lipschitz in z with E[‖f‖−2
∑q
k=1 ‖

∂f
∂zk
‖2] < +∞. Then395

E
[(f>z −∑q

k=1(∂/∂zk)fk
‖f‖2

− Z
)2]
≤ (7 + 2

√
6)E
[
‖f‖−2

q∑

k=1

‖ ∂f
∂zk
‖2
]
< +∞. (28)

Proposition 7.1 is proved in Section 8. From here, asymptotic normality of the residuals in the square396

loss case is readily obtained using the explicit formulae for the derivatives and the contraction (23).397

We start with the square loss and the proof of Theorem 3.2.398

Proof of Theorem 3.2. Apply Proposition 7.1 with q = p + 1 and z = (gi, εi/σ) ∼ N(0, Ip+1)399

conditionally on (gl, εl)l∈[n]\{i}, and with f = (h,−σ) ∈ Rp+1. Note that the last compo-400

nent of f is constant and ‖f‖2 = ‖h‖2 + σ2. By (23) and D = In for the square loss,401

tr[∂f/∂z] = tr[A]ψi − h>AG>ei and by symmetry in i = 1, ..., n, E[|h>AG>ei|2/‖f‖2] =402
1
n

∑n
l=1 E[|h>AG>el|2/‖f‖2] = 1

n‖GA
>h‖2/‖f‖2] ≤ 1

nE[‖G‖2op‖A‖2op] ≤ n−2C4(γ, µ)403

thanks to ‖A‖op ≤ 1/(nµ) and E[‖G‖2op] ≤ C5(γ)n. Similarly, for the square loss ri = ψi =404

εi − g>i h and405

‖f‖−1‖∂f/∂z‖F = (‖h‖2 + σ2)−1/2‖Aψi −AG>eih>‖F
≤ ‖A‖op[

√
p|εi|/σ +

√
p‖h‖−1|g>i h|+ ‖G‖op].

By the triangle inequality, ‖A‖op ≤ 1/(nµ) and p ≤ γn,

E[‖f‖−2‖∂f/∂z‖2F ]1/2 ≤
√
p

nµ (E[ε2
i /σ

2]1/2 + E[(g>i h)2/‖h‖2]1/2) + 1
nµE[‖G‖2op]1/2.

By symmetry in i = 1, ..., n, E[(g>i h)2/‖h‖2] = 1
n

∑n
l=1 E[(g>l h)2/‖h‖2] ≤ 1

nE[‖G‖2op]. Since406

1
nE[‖G‖2op] ≤ C6(γ), the right-hand side in the previous display is bounded from above by407

C7(γ, µ)n−1/2. Since f>z = −ri we obtain −ri − tr[A]ri = (‖h‖2 + σ2)1/2(Z + OP (n−1/2))408

which completes the proof of (14).409

Proof of Theorem 3.1. Let U ∼ N(0, 1) be independent of everything else. We apply the pre-410

vious proposition with z = (gi, U) ∼ N(0, Ip+1) conditionally on (ε, gl, l ∈ [n] \ {i}) to411

f = (h, n−1/4ψ(εi)). Note that the last component of f is constant. By (23), tr[∂f/∂z] =412

tr[A]ψi − h>AG>Dei and by (21),413

‖f‖−1‖∂f/∂z‖F = (‖h‖2 + n−1/2ψ(εi)
2)−1/2‖Aψi −AG>Deih>‖F (29)

≤ ‖A‖op[n1/4√p+
√
p‖h‖−1|g>i h|+ ‖G‖op] (30)
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where we used ‖A‖F ≤
√
p‖A‖op and |ψi| ≤ ψ(εi) + |g>i h| thanks to ψ being 1-Lipschitz. We414

have ‖A‖op ≤ 1/(nµ) and E[‖h‖−2|g>i h|2] = 1
n

∑n
l=1 E[‖h‖−2|g>l h|2] = 1

nE[‖h‖−2‖Gh‖2] ≤415

1
nE[‖G‖2op] by symmetry in i = 1, ..., n, so that E[‖f‖−2‖∂f/∂z‖2F ] ≤ n−1/2C8(γ, µ). Thus by416

Proposition 7.1,417

(−ri − tr[A]ψi) + (εi − ‖h‖Z) = g>i h− tr[A]ψi − ‖h‖Z
= −Un−1/4ψ(εi) + [‖f‖ − ‖h‖]Z + ‖f‖Rem−h>AG>Dei

where E[Rem2] ≤ C9E[‖f‖−2‖∂f/∂z‖2F ] ≤ n−1/2C10(γ, µ). By properties of the operator norm418

and symmetry in i = 1, ..., n,419

E[‖h‖−2|h>AG>Dei|2] = 1
nE[‖h‖−2‖DGA>h‖2] ≤ 1

nE[‖G‖2op‖A‖2op] ≤
C11(γ,µ)
n−2 . (31)

By the triangle inequality, |‖f‖ − ‖h‖| ≤ n−1/4|ψ(εi)| so that the right-hand side is of the form
OP (n−1/4)(|ψ(εi)| + ‖h‖) as desired. The previous display can be rewritten as ri + tr[A]ψi =

ε̃ni + ‖h‖Z̃ni for

ε̃ni = εi+Un−1/4ψ(εi)− [‖f‖−‖h‖](Z+ Rem), Z̃ni = −Z−Rem +‖h‖−1h>AG>Dei.

If εi has a fixed distribution F , then |ψ(εi)| ≤ |ψ(0)|+ |εi| = |εi| = OP (1) thanks to ψ(0) = 0 and420

ψ being 1-Lipschitz so that (ε̃ni , Z̃
n
i ) = (εi,−Z) +OP (n−1/4). Since (εi,−Z) are independent, by421

Slutsky’s theorem this proves that (ε̃ni , Z̃
n
i ) converges weakly to the product measureF⊗N(0, 1).422

Proposition 7.2. Let h : Rn×p → Rp, ψ : Rn×p → Rn be locally Lipschitz functions. IfG ∈ Rn×p423

has iid N(0, 1) entries then424

E
[(ψ>Gh−∑ij

∂(ψihj)
gij

‖h‖2 + ‖ψ‖2/n

)2

+
(‖Gh‖2 −∑ij

∂(hje
>
i Gh)
gij

‖h‖2 + ‖ψ‖2/n

)2

+
(‖G>ψ‖2 −∑ij

∂(ψie
>
j G
>ψ)

gij

n‖h‖2 + ‖ψ‖2
)2]

≤ C12E
[
n+ p+ ‖G‖2op + (n+ p)

n∑

i=1

p∑

j=1

1 + ‖G‖2op/n
(‖h‖2 + ‖ψ‖2/n)2

(∥∥∥ ∂h
∂gij

∥∥∥
2

+
1

n

∥∥∥ ∂ψ
∂gij

∥∥∥
2)]

(32)

for some positive absolute constant in the second line.425

Proposition 7.2 is proved in Section 8. By Proposition 7.2 combined with the identities (25)-(26)-(27),426

and by showing that the colored terms in purple (25)-(26)-(27) are negligible, we obtain the following.427

Proposition 7.3. Let Assumption 1.1 be fulfilled. Then428

E
[{
n−

1
2 (‖h‖2 + ‖ψ‖2/n)−1

(
ψ>Gh− tr[A]‖ψ‖2 + tr[V ]‖h‖2

)}2] ≤ C13(γ, µ), (33)

E
[{
n−

1
2 (‖h‖2 + ‖ψ‖2/n)−1

(
1
n‖G

>ψ‖2 − p−d̂f
n ‖ψ‖

2 + tr[V ]
n ψ>Gh

)}2] ≤ C14(γ, µ), (34)

E
[{
n−

1
2 (‖h‖2 + ‖ψ‖2/n)−1

(
‖Gh‖2 − tr[A]ψ>Gh− (n− d̂f)‖h‖2

)}2] ≤ C15(γ, µ). (35)

Proof. We bound from above the derivatives in (32). For the norm of (∂/∂gij)h and (∂/∂gij)ψ, by429

(22)-(21) and 1
2 (a+ b)2 ≤ a2 + b2,430

∑

ij

1

2

∥∥∥ ∂h
∂gij

∥∥∥
2

≤ ‖A‖2F ‖ψ‖2 + ‖AG>D‖2F ‖h‖2,
∑

ij

1

2n

∥∥∥ ∂ψ
∂gij

∥∥∥
2

≤ ‖DGA‖
2
F ‖ψ‖2 + ‖V ‖2F ‖h‖2

n
.

Using ‖A‖op ≤ 1/(nµ), ‖D‖op ≤ 1, p/n ≤ γ and V in (7), it follows that in (32) we have431

1

‖h‖2 + ‖ψ‖2/n

n∑

i=1

p∑

j=1

(∥∥∥ ∂h
∂gij

∥∥∥
2

+
1

n

∥∥∥ ∂ψ
∂gij

∥∥∥
2)
≤ C16(γ, µ)

(
1 + ‖G‖2op/n

)
. (36)

Since E[‖n−1/2G‖4op] ≤ C17(γ) [10, Theorem II.13], this shows that (32) is bounded from above432

by C18(γ, µ)n. The contractions appearing in the left-hand side of (32) are given in (25)-(26)-(27),433

so that it remains to bound from above the purple colored terms in these three equations. This is434

done by using the upper bounds on the operator norms ‖A‖op ≤ 1/(nµ), ‖D‖op ≤ 1 and again that435

E[‖n−1/2G‖4op] ≤ C19(γ), so that (32) yields the three inequalities in Proposition 7.3.436
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The next result is another probabilistic result where the contractions in (23)-(24) appear.437

Proposition 7.4. Let h : Rn×p → Rp, ψ : Rn×p → Rn be locally Lipschitz functions. IfG ∈ Rn×p438

has iid N(0, 1) entries then439

E
[∣∣ p
n‖ψ‖

2 − 1
n

∑p
j=1

(
ψ>Gej −

∑n
i=1

∂ψi

∂gij

)2∣∣
‖h‖2 + ‖ψ‖2/n

]
+ E

[∣∣n‖h‖2 −∑n
i=1

(
g>i h−

∑p
j=1

∂hj

∂gij

)2∣∣
‖h‖2 + ‖ψ‖2/n

]

≤ C20

(√
n+ p(1 + Ξ1/2) + Ξ

)
where Ξ = E

[ 1

‖h‖2 + ‖ψ‖2/n

n∑

i=1

p∑

j=1

(∥∥∥ ∂h
∂gij

∥∥∥
2

+
1

n

∥∥∥ ∂ψ
∂gij

∥∥∥
2)]

.

The proof of Proposition 7.4 is given in Section 8. Using the contractions (23)-(24) in the left-hand440

side of Proposition 7.4, and by showing that the purple colored terms are negligible, we obtain the441

following two inequalities.442

Proposition 7.5. Let Assumption 1.1 be fulfilled. Then443

E
∣∣n− 1

2 (‖h‖2 + ‖ψ‖2/n)−1
(
p
n‖ψ‖

2 − 1
n‖G

>ψ + tr[V ]h‖2
)∣∣ ≤ C21(γ, µ), (37)

E|n− 1
2 (‖h‖2 + ‖ψ‖2/n)−1

(
n‖h‖2 − ‖Gh− tr[A]ψ‖2

)
| ≤ C22(γ, µ). (38)

Proof. For Ξ in Proposition 7.4, the fact that Ξ ≤ C23(γ, µ) is already proved in (36). For the first444

inequality we use Proposition 7.4 and the contraction (24). To control the purple terms in (24) inside445

the left-hand side of Proposition 7.5,446

∣∣∣
p∑

j=1

(ψ>Gej −
n∑

i=1

∂ψi
∂gij

)2 − ‖G>ψ + tr[V ]h‖2
∣∣∣ =

∣∣∣ψ>DGA
(

2G>ψ + 2 tr[V ]h+A>G>Dψ
)∣∣∣

≤ (‖ψ‖2/n+ ‖h‖2)(2n‖G‖2op‖A‖op + 2
√
n‖G‖op‖A‖op + n‖A‖2op‖G‖2op)

thanks to | trV | ≤ n in Theorem 2.1. With the bound obtained by multiplying the previous display447

by n−3/2(‖h‖2 + ‖ψ‖2/n)−1, and using the previous bounds on ‖A‖op and E[‖n−1/2G‖2op], we448

obtain (37) from Proposition 7.4 and (24). The second claim is obtained by Proposition 7.4, the449

contraction (23) and an argument similar to the previous display bound the purple term in (23).450

We are now ready to prove Theorem 5.1.451

Proof of Theorem 5.1. Define452

ξI = ψ>Gh− tr[A]‖ψ‖2 + tr[V ]‖h‖2 (bounded in (33)),

ξII = 1
n‖G

>ψ‖2 − p−d̂f
n ‖ψ‖

2 + tr[V ]
n ψ>Gh (bounded in (34)),

ξIII = ‖Gh‖2 − tr[A]ψ>Gh− (n− d̂f)‖h‖2 (bounded in (35)),

ξIV = p
n‖ψ‖

2 − 1
n‖G

>ψ + tr[V ]h‖2 (bounded in (37)),

ξV = n‖h‖2 − ‖Gh− tr[A]ψ‖2 (bounded in (38)).

Then by expanding the square in ξIV and ξV and simple algebra (for instance by computing first
ξII + ξIV and ξIII + ξV separately),

(tr[V ]/n− trA)ξI + ξII + ξIII + ξV I + ξV = (‖ψ‖2/n+ ‖h‖2)(d̂f − tr[A] tr[V ]).

Since | tr[V ]/n ≤ 1, tr[A] ≤ γ/µ by Theorem 2.1, the previous display divided by n1/2(‖ψ‖2/n+453

‖h‖2) and the bounds (33), (34), (35), (37) and (38) complete the proof.454

To prove Theorem 4.1, we need this extra proposition whose proof is closely related to Proposition 7.3.455

456

Proposition 7.6. Let Assumption 1.1 be fulfilled. Then457

E
[{

(‖h‖2 + ‖ψ‖2/n)−
1
2 ‖ε‖−1ξV I

}2] ≤ C24(γ, µ) for ξV I = ε>(Gh− tr[A]ψ). (39)
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Proposition 7.6 is proved in Section 8. We are now ready to prove Theorem 4.1.458

Proof of Theorem 4.1. We have n‖h‖2 + ‖ε‖2 − ‖r + tr[A]ψ‖2 = ξV + 2ξV I by simple algebra459

and the definitions of ξV and ξV I . Hence460

E
[ ∣∣‖h‖2 + ‖ε‖2/n− ‖r + tr[A]ψ‖2/n

∣∣
max{‖h‖2 + ‖ψ‖2/n, (‖h‖2 + ‖ψ‖2/n)1/2(‖ε‖2/n)1/2}

]
≤ n−1/2C25(γ, µ) (40)

thanks to (39) and (38).461

Proof of Corollary 4.2. We perform the change of variable (20) to β̃ as well, giving h̃ (the counterpart462

of h), ψ̃ (counterpart of ψ) and Ã (counterpart ofA). Let Ω be the event defined in the theorem, i.e,463

Ω = {‖G‖op ≤ 2
√
n+
√
p} ∩ {‖ε‖2 ≤ n2/(1+q)}. (41)

Then P(Ωc)→ 0 by [10, Theorem 2.13] for the first event and [13] to show that ‖ε‖2/n2/(1+q) →P 0464

under the assumption that E[|εi|1+q] is bounded.465

Under Assumption 1.2, IΩ(‖ψ‖2/n + ‖h‖2) is bounded by a constant. Indeed, since the penalty466

g is minimized at 0, (β̂ − 0)>X>ψ ∈ n(β̂ − 0)>(∂g(β̂) − ∂g(0)) since 0 ∈ ∂g(0). By strong467

convexity of g in Assumption 1.1, (β̂ − 0)>X>ψ ≥ µ‖Σ1/2β̂‖2. In Ω, this implies ‖Σ1/2β̂‖ ≤468
1
µn‖G‖op‖ψ‖ ≤ C26(γ, µ)‖ψ‖/

√
n and ‖ψ‖/

√
n ≤ M in Assumption 1.2. Since ‖Σ1/2β∗‖2 ≤469

M in Assumption 1.2, this yields IΩ(‖h‖2 + ‖ψ‖2/n) ≤ C27(γ, µ,M) and the same holds for h̃, ψ̃:470

IΩ(‖h̃‖2 + ‖ψ̃‖2/n) ≤ C28(γ, µ,M).471

Inequality (40) thus implies472

E[IΩ(
∣∣‖h‖2 + ‖ε‖2/n− ‖r + tr[A]ψ‖2/n

∣∣+
∣∣‖h̃‖2 + ‖ε‖2/n− ‖r̃ + tr[Ã]ψ̃‖2/n

∣∣)]
≤ C29(γ, µ,M)(n−1/2 ∨ n−q/(1+q)).

Since q ∈ (0, 1) we have n−1/2 ∨ n−q/(1+q) = n−q/(1+q) in the right-hand side. Let Ω̂ = {‖h‖2 −
‖h̃‖2 > η, ‖r + tr[A]ψ‖2 ≤ ‖r̃ + tr[Ã]ψ̃‖2} be the event for which we are trying to control the
probability. By the triangle inequality,

E[IΩ
∣∣‖h‖2 − ‖h̃‖2 − ‖r + tr[A]ψ‖2/n+ ‖r̃ + tr[Ã]ψ̃‖2/n

∣∣] ≤ C30(γ, µ,M)n−q/(1+q).

In Ω̂, the random variable in the expectation sign is larger than ηIΩ. Thus ηE[IΩIΩ̂] ≤473

C31(γ, µ,M)n−q/(1+q) and P(Ω̂) ≤ η−1C32(γ, µ,M)n−q/(1+q) + P(Ωc).474

Proof of Corollary 4.3. We follow the same strategy. Let Ω be the same event as in the previous475

proof, so that P(Ωc)→ 0 as before. We perform the change of variable (20) for each k = 1, ...,K476

giving hk, ψk andAk. We have IΩ maxk=1,...,K(‖hk‖2 + ‖ψk‖2/n) ≤ C33(γ, µ,M) as explained477

in the previous proof.478

Summing over k the inequality (40) gives E[IΩ
∑K
k=1 |‖hk‖2 + ‖ε‖2 − ‖rk + tr[Ak]ψk‖2|] ≤479

KC34(γ, µ,M)n−q/(1+q). Let k̂ be the minimizer of ‖rk + tr[Ak]ψk‖2 as defined in the statement480

of Corollary 4.3 and let k̃ ∈ {1, ...,K} be such that ‖hk̂‖
2 ≥ ‖hk̃‖2 + η in the event Ω̃ where481

such k̃ exists. Then by the triangle inequality, ηE[IΩIΩ̃] ≤ C35(γ, µ,M)n−q/(1+q). It follows that482

P(Ω̃) ≤ η−1C36(γ, µ,M)n−q/(1+q) + P(Ωc)→ 0 as desired.483

Proof of Theorem 5.3. Using ‖a‖2 − ‖b‖2 = (a− b)>(a+ b) we have484

‖Gh− tr[A]ψ‖2 − ‖Gh− (d̂f/ tr[V ])‖2 = (d̂f/ tr[V ]− tr[A])ψ>(2Gh− (tr[A] + d̂f/ tr[V ])ψ).

Hence using | tr[A]| ≤ γ/µ, |d̂f| ≤ n and the Cauchy-Schwarz inequality485

|‖Gh− tr[A]ψ‖2 − ‖Gh− (d̂f/ tr[V ])‖2|
≤ C37(γ, µ)( n

trV ∨ 1)|d̂f/n− tr[V ] tr[A]/n|(‖ψ‖2 + ‖G‖op‖h‖2).
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Let Ω be the event in Corollary 4.2. Using the bound on the operator norm of G in Ω, for any
deterministic η > 0 we have proved

E
[
I{Ω}I{tr[V ]n ≥ η} |‖Gh− tr[A]ψ‖2 − ‖Gh− (d̂f/ tr[V ])‖2|

‖h‖2 + ‖ψ‖2/n

]
≤ C38(γ, µ)

η ∧ 1
n1/2

thanks to Theorem 5.1. By (56), in the event Ω where the operator norm of ‖n−1/2G‖op is bounded486

by a constant, tr[V ] ≥ tr[diag{ψ′(r)}]/C39(γ, µ). Hence combining the previous display with (40),487

we have proved488

E
[I{Ω}I{∑n

i=1 ψ
′(ri) ≥ nη}

∣∣‖h‖2 + ‖ε‖2/n− ‖r + d̂f
trV ψ‖

2/n
∣∣

max{‖h‖2 + ‖ψ‖2/n, (‖h‖2 + ‖ψ‖2/n)1/2(‖ε‖2/n)1/2}

]
≤ C40(γ, µ, η)√

n
.

At this point the proof is similar to that of Corollary 4.3: We perform the change of variable (20)489

for each k = 1, ...,K giving hk, ψk, d̂fk and V k. We have IΩ maxk=1,...,K(‖hk‖2 + ‖ψk‖2/n) ≤490

C41(γ, µ,M) as explained in the previous proofs. Summing over k = 1, ...,K the previous display,491

using IΩ maxk=1,...,K(‖hk‖2 + ‖ψk‖2/n) ≤ C42(γ, µ,M) and IΩ‖ε‖2 ≤ n2/(1+q) we find492

E
[ K∑

k=1

I{Ω}I{
n∑

i=1

ψ′k(rki) ≥ nη}
∣∣∣‖hk‖2 + ‖ε‖2/n− ‖rk +

d̂fk
trV k

ψk‖2/n
∣∣∣
]
≤ KC43(γ, µ, η)

nq/(1+q)
.

Let Ω̃ be the event that there exists k̃ with 1
n

∑n
i=1 ψ

′
k̃
(rk̃i) ≥ η satisfying ‖hk̃‖2 + η̃ ≤ ‖hk̂‖

2, then493

by the previous display and the triangle inequality, using ‖rk̂ +
d̂fk̂

trV k̂
ψk̂‖

2 ≤ ‖rk̃ +
d̂fk̃

trV k̃
ψk̃‖2 by494

definition of k̂, we obtain η̃P(IΩIΩ̃) = O(K/nq/(1+q)). Since η̃ is a constant independent of n, p495

and P(Ω)→ 1, the probability P(Ω̃) converge to 0 if K = o(nq/(1+q)).496

8 Probabilistic results and their proofs497

Proposition 7.1. [Variant of [5]] Let z ∈ N(0, Iq) and f := f(z) : Rq → Rq \ {0} be locally498

Lipschitz in z with E[‖f‖−2
∑q
k=1 ‖

∂f
∂zk
‖2] < +∞. Then499

E
[(f>z −∑q

k=1(∂/∂zk)fk
‖f‖2

− Z
)2]
≤ (7 + 2

√
6)E
[
‖f‖−2

q∑

k=1

‖ ∂f
∂zk
‖2
]
< +∞. (28)

Proof. Let g := g(z) = f(z)
‖f(z)‖ − E[ f(z)

‖f(z)‖ ] and set

Z = z>E[
f(z)

‖f(z)‖
]
/√

V , V =
∥∥E
[ f(z)

‖f(z)‖

]∥∥2

so that Z ∼ N(0, 1) and V is deterministic with V ≤ 1 by Jensen’s inequality. As a first step, we500

proceed to prove inequality501

E
[(f>z −∑q

k=1(∂/∂zk)fk
‖f‖2

−
√
V Z
)2]
≤ 6 E

[
‖f‖−2

q∑

k=1

‖ ∂f
∂zk
‖2
]
. (42)

Then at any point z where f is differentiable we have

∂g

∂zk
= ‖f(z)‖−1P̂

∂f

∂zk
, where P̂ = Iq −

ff>

‖f‖2
.

This implies that almost surely,

fTz −
∑q
k=1(∂/∂zk)fk
‖f‖2

−
√
V Z = gTz −

q∑

k=1

(∂/∂zk)gk −
fT (∂f/∂z)f

‖f‖3

where ∂f/∂z is the matrix with entries (l, k) entry (∂/∂zk)fl for all, k, l = 1, ..., q.502
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By the triangle inequality and (a + b)2 ≤ 2a2 + 2b2, this implies that the left-hand side of (42) is503

bounded from above by 2E[(zTg − tr[∂g/∂z])2] + 2E[‖f‖−2‖∂f/∂z‖2F ]. The first term can be504

bounded using the main result of [4] and the Gaussian Poincaré inequality [6, Theorem 3.20]505

E[(zTg − tr[∂g/∂z])2] = E[‖g‖2] + E tr[(∂g/∂z)2] ≤ 2E[‖∂g/∂z‖2F ].

This proves (42). To bound |
√
V − 1|, we have by the triangle inequality

|
√
V − 1| = |

√
V −

∥∥ f
‖f‖
∥∥| ≤

∥∥E[ f‖f‖ ]−
f
‖f‖
∥∥ = ‖g‖.

By another application of the Gaussian Poincaré inequality,506

|
√
V − 1|2 ≤ E[‖g‖22] ≤ E[‖∂g/∂z‖2F ] ≤ E[‖f‖−2‖∂f/∂z‖2F ]. (43)

Combining Equations (42) and (43) using (a+ b)2 = a2 + 2ab+ b2 ≤ a2 + 1/
√

6a2 +
√

6b2 + b2,507

we obtain the constant 7 + 2
√

6.508

509

Proposition 7.2. Let h : Rn×p → Rp, ψ : Rn×p → Rn be locally Lipschitz functions. IfG ∈ Rn×p510

has iid N(0, 1) entries then511

E
[(ψ>Gh−∑ij

∂(ψihj)
gij

‖h‖2 + ‖ψ‖2/n

)2

+
(‖Gh‖2 −∑ij

∂(hje
>
i Gh)
gij

‖h‖2 + ‖ψ‖2/n

)2

+
(‖G>ψ‖2 −∑ij

∂(ψie
>
j G
>ψ)

gij

n‖h‖2 + ‖ψ‖2
)2]

≤ C44E
[
n+ p+ ‖G‖2op + (n+ p)

n∑

i=1

p∑

j=1

1 + ‖G‖2op/n
(‖h‖2 + ‖ψ‖2/n)2

(∥∥∥ ∂h
∂gij

∥∥∥
2

+
1

n

∥∥∥ ∂ψ
∂gij

∥∥∥
2)]

(32)

for some positive absolute constant in the second line.512

Proof of Proposition 7.2. We prove the claim separately for the three terms in the left-hand side of513

Proposition 7.2; we start with the first of the three terms. We will apply the probabilistic result514

given in Proposition 6.3 in [3]: if η : Rn×p → Rp and ρ : Rn×p → Rn are locally Lipschitz and515

G ∈ Rn×p has iid N(0, 1) entries,516

E
[(
ρ>Gη −

∑

ij

∂(ρiηj)

gij

)2]
≤ E

[
‖ρ‖2‖η‖2

]
+ 2E

[∑

ij

‖η‖2‖ ∂ρ
∂gij
‖2 + ‖ρ‖2‖ ∂η

∂gij
‖2
]
. (44)

The proof only relies on Gaussian integration by parts to transform the left-hand side. Let f :517

Rn×p → Rn+p be locally Lipschitz. For any i, j and at a point where both h and ψ are differentiable518

and f 6= 0,519

∂

∂gij

( f

‖f‖

)
=

1

‖f‖

(
In+p −

ff>

‖f‖2
) ∂f
∂gij

so that
∥∥∥ ∂

∂gij

( f

‖f‖

)∥∥∥
2

≤ 1

‖f‖2
∥∥∥ ∂f
∂gij

∥∥∥
2

.

We use this inequality applied with520

f = (h, 1√
n
ψ), ρ = 1√

n
ψ
‖f‖ , η = h

‖f‖ . (45)

To bound from above the right-hand side of (44), the inequality in the previous display can be521

rewritten522

‖ ∂η
∂gij
‖2 + ‖ ∂ρ

∂gij
‖2 ≤ 1

‖h‖2 + ‖ψ‖2/n

(
‖ ∂h
∂gij
‖2 +

1

n
‖ ∂ψ
∂gij
‖2
)
. (46)

Since ‖ρ‖ ≤ 1 and ‖η‖ ≤ 1 by definition, the right-hand side of (44) is bounded from above by
1 + 2E[ 1

‖h‖2+‖ψ‖2/n (‖ ∂h∂gij ‖
2 + 1

n‖
∂ψ
∂gij
‖2)]. Thus the proof of Proposition 7.2 for the first term in

the left-hand side is almost complete; it remains to control inside the parenthesis of the left-hand side,

∑

ij

1

‖h‖2 + ‖ψ‖2/n
∂(ψin

−1/2hj)

∂gij
− ∂

∂gij

( ψin
−1/2hj

‖h‖2 + ‖ψ‖2/n

)
= 2

∑

ij

ψin
−1/2hj

h> ∂h
∂gij

+ 1
nψ
> ∂ψ
∂gij

(‖h‖2 + ‖ψ‖2/n)2
.
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By multiple applications of the Cauchy-Schwartz inequality, the absolute value of the previous display523

is bounded from above by 2(‖h‖2 + ‖ψ‖2/n)−1/2(
∑
ij ‖

∂h
∂gij
‖+ 1

n‖
∂ψ
∂gij
‖)1/2. This completes the524

proof of Proposition 7.2 for the first term in the left-hand side.525

For the second and third term in the left-hand side of Proposition 7.2, apply instead (44) to ρ = Gη526

and η = G>ρ to obtain527

E
[(
‖Gη‖2−

∑

ij

∂(ηje
>
i Gη)

gij

)2]
≤ E

[
‖Gη‖2‖η‖2

]
+2E

[∑

ij

‖η‖2‖eiηj+G
∂η

∂gij
‖2+‖Gη‖2‖ ∂η

∂gij
‖2
]
,

528

E
[(
‖G>ρ‖2−

∑

ij

∂(ρiρ
>Gej)

gij

)2]
≤ E

[
‖G>ρ‖2‖ρ‖2

]
+2E

[∑

ij

‖G>ρ‖2‖ ∂ρ
∂gij
‖2+‖ρ‖2‖ejρi+G>

∂ρ

∂gij
‖2
]
.

Setting ρ = 1√
n
ψ/‖f‖, η = h/‖f‖we obtain the claim in Equation (44) by bounding the right-hand529

side of the previous displays using the operator norm ofG and arguments similar to (46). The term530

involving ∂
∂gij

(
1

‖h‖2+‖ψ‖2/n
)

in the left-hand side is controlled similarly to the previous paragraph.531

532

Proposition 7.4. Let h : Rn×p → Rp, ψ : Rn×p → Rn be locally Lipschitz functions. IfG ∈ Rn×p533

has iid N(0, 1) entries then534

E
[∣∣ p
n‖ψ‖

2 − 1
n

∑p
j=1

(
ψ>Gej −

∑n
i=1

∂ψi

∂gij

)2∣∣
‖h‖2 + ‖ψ‖2/n

]
+ E

[∣∣n‖h‖2 −∑n
i=1

(
g>i h−

∑p
j=1

∂hj

∂gij

)2∣∣
‖h‖2 + ‖ψ‖2/n

]

≤ C45

(√
n+ p(1 + Ξ1/2) + Ξ

)
where Ξ = E

[ 1

‖h‖2 + ‖ψ‖2/n

n∑

i=1

p∑

j=1

(∥∥∥ ∂h
∂gij

∥∥∥
2

+
1

n

∥∥∥ ∂ψ
∂gij

∥∥∥
2)]

.

Proof of Proposition 7.4. We first focus on the first term in the left-hand side. Theorem 7.1 in [3]535

provides that of ρ : Rn×p is locally Lipschitz with ‖ρ‖ ≤ 1 then536

E
∣∣∣p‖ρ‖2−

p∑

j=1

(
ρ>Gej−

n∑

i=1

∂ρi
∂gij

)2∣∣∣ ≤ C46
√
p
(

1+
∑

ij

∥∥∥ ∂ρ
∂gij

∥∥∥
2)1/2

+C47

∑

ij

∥∥∥ ∂ρ
∂gij

∥∥∥
2

. (47)

Let ρ = n−1/2ψ/‖f‖ as in (45). Inequality (46) lets us bound from above the right-hand side537

of the previous display by the right-hand side of Proposition 7.4. In the left-hand side, p‖ρ‖2 =538
p
n‖ψ‖

2/(‖h‖2 + ‖ψ‖2/n) as desired. For the left-hand side, using some algebra in [3, Section 7],539

for any random vectors a, b ∈ Rp by the triangle and Cauchy-Schwarz inequalities we have540

|p‖ρ‖2 − ‖a‖2| − |p‖ρ‖2 − ‖b‖2| ≤ ‖a− b‖‖a+ b‖
≤ ‖a− b‖2 + 2‖a− b‖‖b‖

≤ ‖a− b‖2 + 2‖a− b‖(
√
|‖b‖2 − p‖ρ‖2|+

√
p‖ρ‖2)

≤ 3‖a− b‖2 + 1
2 |‖b‖

2 − p‖ρ‖2|+ 2‖a− b‖
√
p‖ρ‖2

so that |p‖ρ‖2 − ‖a‖2| ≤ 3
2 |p‖ρ‖

2 − ‖b‖2| + 3‖a − b‖2 + 2‖a − b‖
√
p‖ρ‖2. Applying this

to bj = ρ>Gej −
∑n
i=1

∂ρi
∂gij

we use (47) to bound |p‖ρ‖2 − ‖b‖2| and ‖ρ‖ ≤ 1 to bound√
p‖ρ‖2 ≤ √p. It remains to specify a so that |p‖ρ‖2 − ‖a‖2| coincides with the first term

in the left-hand side of Proposition 7.4 and bound ‖a− b‖. Consequently, we set

aj =
ψ>Gej −

∑n
i=1

∂ψi

∂gij√
n(‖h‖2 + ‖ψ‖2/n)1/2

= ρ>Gej −
∑n
i=1

∂ψi

∂gij√
n(‖h‖2 + ‖ψ‖2/n)1/2

= bj −
n∑

i=1

ψi√
n

∂(D−1)

∂gij

where D = (‖h‖2 + ‖ψ‖2/n)1/2 so that by the Cauchy-Schwarz inequality ‖a − b‖2 ≤541

1
n‖ψ‖

2
∑
ij(

∂(D−1)
∂gij

)2 and542

∑

ij

(∂(D−1)

∂gij

)2

=
1

D6

∑

ij

(
h>

∂h

∂gij
+
ψ√
n

> ∂ψ

∂gij

)2

≤ 2

D4

∑

ij

‖ ∂h
∂gij
‖2 +

1

n
‖ ∂ψ
∂gij
‖2. (48)
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using again the Cauchy-Schwarz inequality and max{‖h‖2, ‖ψ‖2/n} ≤ D2. We obtain ‖a− b‖2 ≤543

D−2
∑
ij ‖

∂h
∂gij
‖2 + 1

n‖
∂ψ
∂gij
‖2 which completes the proof for the first term in the left-hand side of544

Proposition 7.4. For the second term in the left-hand side, the proof is similar with by exchanging the545

role of n and p in (47) and applying (47) to h/D instead of ψ/(
√
nD).546

Proposition 7.6. Let Assumption 1.1 be fulfilled. Then547

E
[{

(‖h‖2 + ‖ψ‖2/n)−
1
2 ‖ε‖−1ξV I

}2] ≤ C48(γ, µ) for ξV I = ε>(Gh− tr[A]ψ). (39)

Proof of Proposition 7.6. Apply (44) with ρ = ε/‖ε‖ and η = h/D where D = (‖h‖2 +548

‖ψ‖2/n)1/2 as in the previous proof (this scalar D is not related to the diagon matrix D =549

diag{ψ′(r)}). Since ε has 0 derivative with respect toG we find550

E
[(ε>Gh
‖ε‖D

−
∑

ij

εi
‖ε‖

∂(hjD
−1)

∂gij

)2]
≤ 1 + 2

∑

ij

E[‖ ∂η
∂gij
‖2].

The right-hand side is bounded from above by C49(γ, µ) thanks to (46) and (36). For the second term551

above we use product rule and (23),552

∑

ij

εi
‖ε‖

∂(hjD
−1)

∂gij
=

tr[A]ψ>ε

D‖ε‖
− h

>AG> diag(ψ′(r))ε

D‖ε‖
+
∑

ij

εihj
‖ε‖

∂(D−1)

∂gij
.

To complete the proof we need to bound from above the expectation of the square of the second553

and third terms colored in purple are bounded by C50(γ, µ). Since ‖h‖ ≤ D, the second term is554

bounded from above by ‖A‖op‖G‖op since |ψ′| ≤ 1 and E[‖A‖2op‖G‖2op] ≤ C51(γ, µ) thanks to555

‖A‖op ≤ 1/(nµ) and [10, Theorem II.13]. For the third term, we use the Cauchy-Schwarz inequality556

(
∑
ij
εihj

‖ε‖ )2 ≤ ‖h‖2
∑
ij(

∂(D−1)
∂gij

)2, (48) and (36).557

9 Proof of differentiability results558

Theorem 2.1. Let Assumption 1.1 be fulfilled. For almost every (y,X) the map (y,X) 7→ β̂(y,X)559

is differentiable at (y,X) and there exists a matrix Â ∈ Rp×p with ‖Σ1/2ÂΣ1/2‖op ≤ (nµ)−1 s.t.560

(∂/∂yi)β̂(y,X) = ÂX>eiψ
′(ri),

(∂/∂xij)β̂(y,X) = Âejψ(ri)− ÂX>eiψ′(ri)β̂j ,
where ri = yi − x>i β̂, (5)

ei ∈ Rn, ej ∈ Rp are canonical basis vectors , ψ := ρ′ and ψ′ denote the derivatives. Furthermore,561

d̂f = tr[X(∂/∂y)β̂] = tr[XÂX diag{ψ′(r)}], (6)

V = diag{ψ′(r)}(In −X(∂/∂y)β̂) = diag{ψ′(r)} − diag{ψ′(r)}XÂX diag{ψ′(r)}. (7)

satisfy 0 ≤ d̂f ≤ n and 0 ≤ tr[V ] ≤ n.562

The first part of the following proof is similar to the argument using the KKT conditions in [3]. After563

(51), the argument is novel and lets us derive the convenient formula (5) and the existence of matrix564

Â which plays a central role in the contractions (23)-(27).565

Proof of Theorem 2.1. Xt = X + tU and yt = y + tv with t ∈ R where U ∈ Rn×p and566

v ∈ Rn are fixed. Let β̂t = β̂(yt,Xt) and r̂t = yt −Xtβ̂(yt,Xt) and ψ̂(yt,Xt) = ψ(r̂t).567

By convention, without arguments β̂,ψ refer to (y,X) which is (yt,Xt) at t = 0. By the KKT568

conditions,X>ψ̂ ∈ n∂g(β̂) andX>t ψ̂t ∈ n∂g(β̂t), by strong convexity of g, we have569

nµ‖Σ1/2(β̂t − β̂)‖2 ≤ (β̂t − β̂)>(X>t ψ̂t −X
>ψ̂). (49)

By the fact that ψ is non-decreasing and 1-Lipschitz, for any two real numbers a < b, 0 ≤ ψ(b)−570

ψ(a) ≤ b− a. Multiplying ψ(b)− ψ(a), we have (ψ(b)− ψ(a))2 ≤ (ψ(b)− ψ(a))(b− a). Thus571

‖ψ̂t − ψ̂‖2 ≤ (ψ̂t − ψ̂)>(r̂t − r̂).
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Adding up the above two displays we have572

nµ‖Σ1/2(β̂t − β̂)‖2 + ‖ψ̂t − ψ̂‖2 ≤ (β̂t − β̂)>(X>t ψ̂t −X
>ψ̂) + (ψ̂t − ψ̂)>(r̂t − r̂). (50)

ByX>t ψ̂t−X
>ψ̂ = (Xt−X)>ψ̂+X>t (ψ̂t−ψ̂) andXt(β̂t−β̂)+r̂t−r̂ = yt−y−(Xt−X)>β̂,573

we have574

nµ‖Σ1/2(β̂t − β̂)‖2 + ‖ψ̂t − ψ̂‖2 ≤ (β̂t − β̂)>(Xt −X)>ψ̂ + (yt − y − (Xt −X)>β̂)>(ψ̂t − ψ̂).

By the Cauchy-Schwartz inequality, the above implies575

(
nµ‖Σ1/2(β̂t − β̂)‖2 + ‖ψ̂t − ψ̂‖2

)1/2 ≤ (nµ)−1/2‖Σ−1/2(Xt −X)>ψ̂‖2 + ‖yt − y − (Xt −X)>β̂‖2,
Since t,U ,v are arbitrary, for (yt,Xt) and (y,X) both in a compact subset K of Rp × Rn×p, the576

above display also implies577

(
nµ‖Σ1/2(β̂t − β̂)‖2 + ‖ψ̂t − ψ̂‖2

)1/2 ≤ const(K)
(
‖Σ−1/2(Xt −X)‖op + ‖yt − y‖2

)
,

where const(K) := sup(y,X)∈K{(nµ)−1/2‖ψ̂‖2 + 1 + ‖Σ1/2β̂‖2}. This says that578

β̂(y,X), ψ̂(y,X) are locally Lipschitz in (y,X). By Rademacher’s Theorem, ∂β̂/∂yi and579

∂β̂/∂xij exist almost everywhere.580

Taking the limit t→ 0+ in (49) and using the chain rule, where the derivatives exist we have581

nµ
∥∥Σ1/2

(∂β̂
∂y
v +

∂β̂

∂X
(U)

)∥∥2

2

≤
(∂β̂
∂y
v +

∂β̂

∂X
(U)

)>(
U>ψ̂ +X> diag(ψ̂

′
)
(
−Uβ̂ −X ∂β̂

∂X
(U) +

(
In −X

∂β̂

∂y

)
v
))

=
(∂β̂
∂y
v +

∂β̂

∂X
(U)

)>
B(U ,v)−

∥∥∥diag(ψ̂
′
)

1
2X
(∂β̂
∂y
v +

∂β̂

∂X
(U)

)∥∥∥
2

2

(51)
where (∂β̂/∂y)v :=

∑
i∈[n](∂β̂/∂yi)vi, the Jacobian with respect to X and the linear map B :582

Rn×p × Rn → Rp are defined as583

∂β̂

∂X
(U) :=

∑

i,j∈[n]×[p]

∂β̂

∂xij
uij ∈ Rp, B(U ,v) := U>ψ̂ +X> diag(ψ̂

′
)(−Uβ̂ + v) ∈ Rp

where (uij)i=1,...,n,j=1,...,p are the entries of U . By the Cauchy-Schwartz inequality, (51) provides584

us the following two main ingredients:585

∂β̂

∂y
v +

∂β̂

∂X
(U) = 0 for all (U ,v) such that B(U ,v) = 0, (52)

586 ∥∥∥Σ1/2
(∂β̂
∂y
v +

∂β̂

∂X
(U)

)∥∥∥
2
≤ µ−1n−1‖Σ−1/2B(U ,v)‖2. (53)

Since both ∂β̂
∂yv + ∂β̂

∂X (U) and B(U ,v) are linear in (U ,v) ∈ Rn×p × Rn into Rp, Proposition 9.1587

implies that there exists a matrix Â ∈ Rp×p such that ∂β̂∂yv + ∂β̂
∂X (U) = ÂB(U ,v) for all (U ,v),588

and by (53), Â can be chosen such that ‖Σ1/2ÂΣ1/2‖op ≤ (nµ)−1 thanks to the operator norm589

identity in Proposition 9.1. With (U ,v) = (eie
>
j ,0) for (i, j) ∈ [n]× [p] and (U ,v) = (0, ek) for590

k ∈ [n], we obtain the stated formulae for (∂xij/∂)β̂ and (∂yk/∂)β̂ in (5).591

Now we show that both tr[V ] := tr[D − DXÂX>D] and d̂f := tr[XÂX>D] are in [0, n]592

where D := diag{ψ′(r)}. Using the symmetric part of A defined as Ã := (Â+ Â>)/2 we have593

tr[V ] = tr[D −DXÃX>D] and d̂f = tr[D1/2XÃX>D1/2] by property of the trace. In (51),594

take U = 0 so that ∂β̂∂yv + ∂β̂
∂X (U) = ÂB(U ,v) = ÂX>Dv and we have withG = XΣ−1/2

595

(1 + nµ
‖D1/2G‖2op

)‖D1/2XÂX>Dv‖2 ≤ nµ‖ÂX>Dv‖2 + ‖D1/2XÂX>Dv‖2 (54)

≤ v>DXÂX>Dv = v>DXÃX>Dv (55)
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for all v. This implies the positive semi-definite property of the symmetric matrix DXÃX>D,596

and thus d̂f ≥ 0 and tr[V ] ≤ tr[D] ≤ n. With ṽ = D1/2v, it also implies (1 +597

nµ/‖D1/2G‖2op)‖D
1/2XÂX>D1/2ṽ‖2 ≤ ṽ>D1/2XÂX>D1/2ṽ, which implies by the598

Cauchy-Schwartz inequality (1 + nµ/‖D1/2G‖2op)‖D
1/2XÂX>D1/2‖op ≤ 1. The same op-599

erator norm inequality with Â replaced by Ã thanks to the triangle inequality. Thus d̂f ≤600

tr[D](1 + nµ/‖D1/2G‖2op)−1 ≤ n as well as601

tr[V ] = tr[D1/2(In −D1/2XÃX>D1/2)D1/2] ≥ tr[D](1− (1 + nµ/‖D1/2G‖2op)−1)

= tr[D]/(‖D1/2G‖2op/(nµ) + 1)

≥ tr[D]/(‖G‖2op/(nµ) + 1) (56)

≥ 0

thanks to ψ′ ∈ [0, 1]. Inequality (55) with ṽ = D1/2v andM = In −D1/2XÂX>D1/2 implies602

‖(M − In)ṽ‖2 ≤ ṽ>(In −M)ṽ. As the left-hand side is ‖Mṽ‖2 − 2ṽ>Mṽ + ‖ṽ‖2, this yields603

‖Mṽ‖2 ≤ ṽ>Mṽ ≤ ‖ṽ‖‖Mṽ‖. If ṽ has unit norm and is such that ‖Mṽ‖ = ‖M‖op this gives604

‖M‖op ≤ 1 so that ‖V ‖op = ‖D1/2MD1/2‖op ≤ ‖D‖op ≤ 1. This gives another proof of605

tr[V ] ≤ n.606

Proof of Remark 2.2. The proof for the intercept term included is the same to that of Theorem 2.1.607

The only difference is that when computing the derivatives,608

dψ̂t
dt
|t=0 = U>ψ̂ +X>

(∂ψ̂
∂y
v +

∂ψ̂

∂X
(U)

)
,

∂ψ̂

∂y
v = diag(ψ̂

′
)(In − 1

∂β̂0

∂y
−X ∂β̂

∂y
)v,

∂ψ̂

∂X
(U) = diag(ψ̂

′
)(−1

∂β̂0

∂X
(U)−Uβ̂ −X ∂β̂

∂X
(U))

609

=⇒ dψ̂t
dt
|t=0 = −ψ̂

′ dβ̂0,t

dt
|t=0 − diag(ψ̂

′
)X

dβ̂t
dt
|t=0 + diag(ψ̂

′
)v − diag(ψ̂

′
)Uβ̂.

We have an additional KKT conditions providing us 0 = 1>(dψ̂t/dt)|t=0. Multiplying 1> on both610

sides of the above display, we have611

dβ̂0,t

dt
|t=0 = − ψ̂

′>
X

1>ψ̂
′
dβ̂t
dt
|t=0 +

ψ̂
′>
v

1>ψ̂
′ −

ψ̂
′>
Uβ̂

1>ψ̂
′ ,

=⇒ dψ̂t
dt
|t=0 = −Ψ′X

dβ̂t
dt
|t=0 + Ψ′v −Ψ′Uβ̂,

where Ψ′ := diag(ψ̂
′
)− ψ̂

′
ψ̂
′>
/1>ψ̂

′
. By taking limit of t→ 0 in Equation (50),612

nµ
∥∥∥dβ̂t
dt
|t=0

∥∥∥
2

2
≤ dβ̂t

dt
|>t=0

d(X>ψ̂)

dt
|t=0 =

dβ̂t
dt
|>t=0

(
U>ψ̂ +X>

dψ̂t
dt
|t=0

)

=
dβ̂t
dt
|>t=0

(
U>ψ̂ +X>

(
−Ψ′X

dβ̂t
dt
|t=0 + Ψ′v −Ψ′Uβ̂

))

=
dβ̂t
dt
|>t=0

(
U>ψ̂ +X>Ψ′v −X>Ψ′Uβ̂

)
−
∥∥∥Ψ′1/2X dβ̂t

dt
|t=0

∥∥∥
2

.

613

Proposition 9.1 (A lemma on linear transformations). Let A and B be two real matrices with614

shape n by p. Assume that Bv = 0 for all v such that Av = 0 with v ∈ Rp. Then the matrix615

C := BA+ whereA+ is the Moore-Penrose pseudoinverse ofA satisfiesB = CA and ‖C‖op =616

maxu∈Rn:Au6=0{‖Bu‖2/‖Au‖2}.617
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Proof. Let r be the rank of A. We let A = UDV > be the SVD of A, where V has orthonormal618

columns v1, ...,vp with the first r columns spanning the row space ofA, and the last p− r columns619

spanning the nullspace ofA. Let ui denote the i-th column of U . Let620

C := BA+ :=
∑

i∈[r]

d−1
i Bviu

>
i

where A+ is the Moore-Penrose pseudoinverse of A. Notice that A+Av =
∑
i∈[r] viv

>
i v =621

Prow(A)v project v ∈ Rp onto the row space of A. So BA+Av = Bv if v ∈ row(A), and622

BA+Av = 0 if v ∈ Ker(A). By the assumption thatBv = 0 for all v such thatAv = 0, we have623

BA+Av = Bv holds for all v ∈ Rp = row(A)⊕ Ker(A).624

For ‖BA+‖op, we notice that A+ maps any u ∈ col(A)⊥ to 0. The ratio ‖BA+u‖2/‖u‖2 for625

u ∈ Rn is maximized only when u ∈ col(A): Otherwise, we can replace u with the projection of u626

onto col(A), denoted byAv := Pcol(A)u, and we will have a ratio with the same numerator, but a627

smaller denominator and thus a larger ratio:628

‖BA+u‖2
‖u‖2

=
‖BA+(Av + u−Av)‖2
‖Av + u−Av‖2

≤ ‖BA
+Av‖2

‖Av‖2
=
‖Bv‖2
‖Av‖2

.

This implies ‖BA+‖op = maxv∈Rn
‖Bv‖2
‖Av‖2 .629
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10 Additional Figures (anisotropic Gaussian design)630
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Figure 4: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
Λ = 0.054n1/2 and (λ, τ) where λ ∈ [0.0032, 0.41] and τ ∈ [10−10, 0.1]. Each cell is the average
over 100 repetitions. See the simulation setup in Section 6 in the paper for more details.
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Figure 5: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
Λ = 0.024n1/2 and (λ, τ) where λ ∈ [0.00062, 0.081] and τ ∈ [10−10, 0.1]. Each cell is the average
over 50 repetitions. See the simulation setup in Section 6 in the paper for more details.

11 Additional Figures (non-Gaussian, Rademacher design)631
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Figure 6: Boxplots for d̂f, p̂, n̂, tr[V ], tr[ΣÂ] and | tr[ΣÂ] − d̂f/ tr[V ]| in Huber Elastic-Net
regression with τ = 10−10 and λ ∈ [0.0032, 0.41]. The data are generated withX having iid entries
taking value ±1 each with probability 0.5 (so that Σ = Ip). Each box contains 30 data points.
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Figure 7: Histogram and QQ-plot for ζ1 in (13) under Huber Elastic-Net regression for different
choices of tuning parameters (λ, τ). Left Top: (0.036, 10−10), Right Top: (0.054, 0.01), Left
Bottom: (0.036, 0.01), Right Bottom: (0.024, 0.1). Each figure contains 100 data points generated
with Rademacher design matrix (each entry has value ±1 with probability 0.5) and iid εi from the
t-distribution with 2 degrees of freedom.

26


	Introduction
	Contributions
	Related works

	Differentiability of regularized M-estimators
	Distribution of individual residuals
	A proxy of the out-of-sample error if bold0mu mumu section is known
	Degrees of freedom and estimating `39`42`"613A``45`47`"603Atr[bold0mu mumu sectionbold0mu mumu AAsectionAAAA"0362bold0mu mumu AAsectionAAAA] without the knowledge of bold0mu mumu section
	Example and simulation setting: Huber loss with Elastic-Net penalty
	Proof of the main results
	Probabilistic results and their proofs
	Proof of differentiability results
	Additional Figures (anisotropic Gaussian design)
	Additional Figures (non-Gaussian, Rademacher design)

