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Abstract

Automated Machine Learning (AutoML) is the problem of automatically finding the pipeline
with the best generalization performance on some given dataset. AutoML has received
enormous attention in the last decade and has been addressed with sophisticated black-box
optimization techniques like Bayesian Optimization, Genetic Algorithms, or Tree Search.
These approaches are almost never compared to simple baselines to see how much they
improve over simple but easy to implement approaches. We present Naive AutoML, a very
simple baseline for AutoML that exploits meta-knowledge about machine learning problems
and makes simplifying, yet, effective assumptions to quickly come to high-quality solutions.
In 1h experiments, state of the art approaches can hardly improve over Naive AutoML,
which in turn comes along with advantages such as interpretability and flexibility.

1. Introduction

AutoML is the problem of automatically finding the data transformation and learning al-
gorithms with the best generalization performance on a given dataset. The combination of
such algorithms is typically called machine learning pipeline, because several algorithms for
data manipulation and analysis are concatenated sequentially. To optimize such a machine
learning pipeline, important decisions do not only include the learning algorithm itself but
also its parameters as well as a definition of which features should be used by the learner.

The baselines used to assess the performance of AutoML tools are often other AutoML
tools or random search. A simple but perhaps more sensible baseline than random search
would be to imitate the steps a human data scientist would take. Without such baselines, we
do not learn how AutoML tools improve upon ad-hoc techniques but only how they compare
relatively to each other. To our knowledge, the only work accounting for such baselines is
(Thornton et al., 2013), using the Exhaustive-Default (“Ex-def”) baseline, which is to take
the default parametrized model that is best in a cross-validation. They also discuss a grid
search, which is however not applicable in practice.

In this paper, we make up for such a baseline, which imitates the process a human expert
might go through to find the best pipeline. Instead of crawling an enormous search space
and to pick the best one seen within some timeout, the idea is to conduct an analytical
process and derive the appropriate pipeline from it. In this, we implicitly assume a form
of independence of the optimization decisions and hence act a bit naive w.r.t. potential
interactions between them; this is why we call the approach Naive AutoML. In this sense,
we complement the “Ex-def” baseline (Thornton et al., 2013) by what a somewhat more
experienced data scientist would maybe do.
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The surprising result of our experimental evaluation is that, for runtimes of 1h, the
black box optimizers are hardly ever able to improve upon Naive AutoML. In fact, the
experiments even show that the “Ex-def” baseline itself is already quite strong in this time
frame. This is not a contradiction to the results in (Thornton et al., 2013), where a timeout
of 30 hours was used. While this observations calls for more exhaustive experiments, it is
already evident that simple baselines are stronger than perhaps believed.

Even from these results, we can learn two things. First, it seems sensible to adopt
Naive AutoML as a standard baseline for the evaluation of AutoML tools in order to demon-
strate their superiority over a very simple yet often effective approach. Second, the success
of Naive AutoML challenges the view of black box optimization for AutoML in general and
invites to consider more specific approaches taylored for AutoML.

2. Problem Definition

In this paper, we are focused on AutoML for supervised learning. Formally, in the supervised
learning context, we assume some instance space X ⊆ Rd and a label space Y. A dataset
D ⊂ {(x, y) | x ∈ X , y ∈ Y} is a finite relation between the instance space and the label
space, and we denote as D the set of all possible datasets. We consider two types of
operations over instance and label spaces:

1. Transformers. A transformer is a function t : XA → XB, converting an instance x of
instance space XA into an instance of another instance space XB.

2. Predictors. A predictor is a function p : Xp → Y, assigning an instance of its instance
space Xp a label of the original label space Y.

In this paper, a pipeline P = t1◦..◦tk◦p is a functional concatenation in which ti : Xi−1 → Xi

are transformers with X0 = X being the original instance space, and p : Xk → Y is a
predictor. Hence, a pipeline is a function P : X → Y that assigns a label to each object
of the instance space. We denote as P the space of all pipelines of this kind. In general,
the first part of a pipeline could not only be a sequence but also a transformation tree with
several parallel transformations that are then merged (Olson and Moore, 2016), but we do
not consider such structures in this paper since they are not necessary for our key argument.

In addition to the sequential structure, many AutoML approaches restrict the search
space still a bit further. This is by putting an order on the pre-processing steps and allowing
only on transformer per type. So P will only contain pipelines compatible with this order.
We can then express every element of P as a concatenation of k + 1 functions, where k is
the number of considered transformation algorithm types.

In this space of possible pipelines, the goal is to find the one that optimizes a pre-defined
performance measure φ : D × P → R. Typical measures are the error rate, log-loss or, for
the case of binary classification, AUC/ROC or the F1-measure on a given dataset.

3. Naive AutoML

3.1 Naivety Assumptions

Naive AutoML makes, among others, the assumption that the optimal pipeline is the one
that is locally best for each of its transformers and the final predictor. In other words,
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taking into account pipelines with (up to) k transformers and a predictor, we assume that
for all datasets D and all 1 ≤ i ≤ k + 1

c∗i ∈ arg min
ci

φ(D, c1 ◦ .. ◦ ck+1)

is invariant to the choices of c1, ..ci−1, ci+1, .., ck+1, which are supposed to be fixed in the
above equation. Note that we here use the letter c instead of t for transformers or p for the
predictor, because c may be any of the two types.

We dub the approach Naive AutoML, because there is a direct link to the assumption
made by the Naive Bayes classifier. Consider P an urn and denote as Y the event to observe
an optimal pipeline in the urn. Then

P(Y | c1, .., ck+1) ∝ P(c1, .., ck+1 | Y )P(Y )
naive

= P(ci | Y )
k+1∏

j=1,j 6=i

P(cj | Y )P(Y ),

in which we consider cj to be fixed components for j 6= i, and only ci being subject to
optimization. Applying Bayes theorem again to P(ci | Y ) and observing that the remaining
product is a constant regardless the choices of ci 6=j , it gets clear that the optimal solution
is the one that maximizes the probability of being locally optimal, and that this choice is
independent of the choice of the other components.

The typical approach to optimize the ci is not to directly construct those functions but
to adopt parametrized model building processes that create these functions. For example,
c1 could be a projection obtained by determining some features which we want to stay with,
or ck+1 could be a trained neural network. These induction processes for the components
can be described by an algorithm ai and a hyper-parametrization θi of the algorithm. The
component ci is obtained by running ai under parameters θi with some training data. So
to optimize ci, we need to optimally choose ai and θi.

Within this regime, Naive AutoML makes the additional (maybe not always correct)
assumption that even each component ci can be optimized by local optimization techniques.
More precisely, it is assumed that the algorithm that yields the best component when using
the default parametrization is also the algorithm that yields the best component if all
algorithms are run with the best parametrization possible.

3.2 A Prototype for Naive AutoML

In this paper, we work with a specific exemplary realization scheme of Naive AutoML. How-
ever, this scheme is not what we refer to as Naive AutoML but only one prototypical instan-
tiation. We certainly do not claim this prototype to be the last answer in Naive AutoML;
better schemes can be found in future work.

Our prototype scheme consists of six stages and is sketched in Fig. 1. The first
stage simply cross-validates every learning algorithm once without setting any of its hyper-
parameters. This stage corresponds to the “Ex-def” baseline used in (Thornton et al.,
2013). The second stage simply pairs all feature scalers with all learners and observes their
performance. The third stage is independent of the first two stages and adopts filtering tech-
niques to identify a subset of the features that are expected to bring the best performance
(on average). The fourth stage combines all previous candidates with each homogeneous
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Figure 1: Prototype of a six-stage Naive AutoML process (top), taking a dataset as an
input and returning a final candidate. The lower part of the figure illustrates the
potential shapes of machine learning pipelines contained in the candidate pool
after the execution of the respective stage.

meta learner, and the fifth stage tunes the learner parameters of the incoming candidates
(with a given time budget). In the final stage, the most promising candidates are evaluated
against a validation dataset. The stages are described in more detail in the Appendix.

This stage scheme produces pipelines with up to three components. A candidate is
encoded by a tuple (s,F , a, θ), where s encodes the feature transformations (applied to all
columns), F is a set of feature indices to consider, a is the prediction algorithm, and θ the
parametrization for a. The reason why s is a function but F is a set is simply that the
feature selection is a projection that is entirely described by the features it shall retrain, but
the scaling implies a functional transformation of data that cannot be captured so easily.

Despite being only an example scheme, one advantage of Naive AutoML that already
becomes clear here is that it directly generates important insights that can significantly
support the data scientist working with it. For example, a question like “what is the
potential of feature selection on the given data?” can be answered by black-box approaches
only after some post-processing, if at all. In our scheme, the filtering stage (cf. Sec. A.3) is
a very good basis to give an initial answer to this question. In this sense, Naive AutoML
presents itself as more amenable to the growing demand for meaningful interaction between
the tool and the human (Wang et al., 2019; Crisan and Fiore-Gartland, 2021; Drozdal et al.,
2020; Wang et al., 2021) compared to the currently adopted black-box approaches.

4. Evaluation

In this section, we want to address the following question: How much can state-of-the-art
tools for Python and Java improve over the baseline imposed by Naive AutoML?

We stress our point of view that Naive AutoML is in fact the baseline here and not the
competing technique. Naive AutoML updates the previous “Ex-def” baseline by proposing
a more sophisticated data scientist (acknowledging that an expert data scientist would be
even more flexible and hence might even be stronger than our Naive AutoML).

4.1 Compared Algorithms

We ran Naive AutoML in two configurations. We refer to “primitive” as the version of
Naive AutoML that only adopts the probing (first) stage and nothing else. Once again,
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this corresponds to the “Ex-def” baseline proposed in (Thornton et al., 2013). The profile
containing all the stages (including validation), is referred to as “full”.

On the state-of-the-art side, we compare solutions with competitive performance for
both WEKA (Hall et al., 2009) and scikit-learn (Pedregosa et al., 2011). To our knowledge,
ML-Plan is the best performing AutoML tool for WEKA to date, but we also consider
Auto-WEKA to contrast its performance against the “Ex-def” baseline. On the scikit-learn
side, we consider auto-sklearn as a competitor (without warm-starting and without final
ensemble building). We consider version 0.12.0, which underwent substantial changes and
improvements compared to the original version proposed by (Feurer et al., 2015).

4.2 Experiment Setup

The evaluation is based on the dataset portfolio proposed in (Gijsbers et al., 2019). This is
a collection of datasets available on openml.org (Vanschoren et al., 2013). To complement
these datasets, we have added some of the datasets that were used in the Auto-WEKA
paper (Thornton et al., 2013) and have been used frequently for comparison in publications
on AutoML. Five datasets of (Gijsbers et al., 2019) (23, 31, 188, 40996, 41161, 42734) were
removed due to technical issues in the data loading process.

For each dataset, 10 random train-test splits were created, and all algorithms were
run once on each of these splits, using the train data for optimizing, and the test data to
assessing the performance. Needless to say, the splits were the same for all approaches.

For all algorithms, we allowed a total runtime of 1h, and the runtime for a single pipeline
execution was configured to take up to 1 minute. In Auto-WEKA, it is not possible to
configure the maximum runtime for single executions; this variable is interenally controlled.
In Naive AutoML, we imposed stage time bounds for the meta and the parameter tuning
stages of 5 minutes respectively (the other stages were not equipped with a dedicated
timeout). Of course, on hitting the time bound of 1h, Naive AutoML was stopped regardless
the phase in which it was, and the best seen solution was returned.

Computations were run on Linux machines, each of them equipped with 2.6Ghz Intel
Xeon E5-2670 processors and 32GB memory. In spite of the technical possibilities, we did
not parallelize evaluations, i.e. all the tools were configured to run with a single CPU core.

4.3 Results

Due to space limitations, Fig. 2 only summarizes the results very superficially through final
ranks. More detailed results can be found in Table 2 and Fig. 4 in Sec. C of the appendix.
The code (both Java and Python) to reproduce these results is publicly available1.

The results show that the cases in which any of the advanced AutoML tools achieves
a statistically significant improvement form a small minority. In fact, there are even quite
some datasets on which Naive AutoML performs better. Auto-WEKA is never better than
the “primitive” Naive AutoML approach (“Ex-def”) and even worse in 6 cases. The per-
formance of ML-Plan is only marginally better in the comparison with Naive AutoML but
also does not show a substantial improvement over it and is outperformed even 11 times by
“Ex-def”. The comparison between auto-sklearn and the “full” Naive AutoML profile, we

1. https://github.com/fmohr/naiveautoml/tree/icml2021
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Figure 2: Final performance ranks after 1h runtime. See Appendix for details.

can see that it substantially improves upon Naive AutoML in only five out of 67 cases and
is outperformed 8 times. Among the five cases of improvement, auto-sklearn uses in four of
the cases algorithms not supported by Naive AutoML in the current version.

The observations on the “primitive” profile can be put into words by saying that if
we run a simple for loop over the possible base learners (using default parameters and
ignoring meta-learners or any kind of feature transformation), then we obtain an equal or
better performance than Auto-WEKA, ML-Plan, or auto-sklearn in more than 90% of the
cases; no pre-processors are required. The results for the “primitive” solution arrive often
in the range of some few minutes. So they are cheap to obtain, and other approaches rarely
can improve upon it even when running for an hour.

In our view, there are two possible explanations for the missing superiority of the
black-box optimization techniques. The first is simply that the global optimum is in fact
obtained by choosing the best algorithm without any further optimizations. That is, there is
simply no potential for optimization. On some datasets (with almost perfect performance)
this is clearly the case. The second is that there maybe is potential for optimization, but the
resource limitations impede that the black-box approaches can develop their full potential.
Theoretically, all of the black-box approaches converge to the globally optimal solution.
However, only a tiny fraction of the search space can be examined in any reasonable time-
out, and the number of evaluations that can be made in that time are not enough to learn
enough about the performance landscape to steer the search process in a meaningful way.
It is hence worthwhile to run the experiments with higher timeouts to see whether the
AutoML tools can eventually outperform Naive AutoML and after which time.

5. Conclusion

This paper proposes Naive AutoML, a slightly more sophisticated baseline for AutoML
than proposed with “Ex-def” in (Thornton et al., 2013). Instead of searching a complex
pipeline search space with a black-box optimizer, Naive AutoML imitates the sequential
workflow conducted by a data scientist, which implicitly defines a solution pipeline. We
empirically demonstrate that state-of-the-art tools are rarely able to outperform this base-
line (sometimes the contrary is true). Producing competitive results to the state of the
art, Naive AutoML is not only more transparent and understandable to the expert but also
more flexible, because all modifications can be directly realized in the stage implementations
instead of having it to be injected into the solver through the problem encoding.
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Appendix

Appendix A. Details on the Stages of the Naive AutoML Prototype

A candidate is encoded by a tuple (s,F , a, θ), where s encodes the feature transformations
(applied to all columns), F is a set of feature indices to consider, a is the prediction algo-
rithm, and θ the parametrization for a. The symbol ⊥ is used to denote that a part of the
description remains empty.

In the following sub-sections, we assume that candidates are evaluated with some stan-
dard evaluation scheme. A typical choice to evaluate candidates is to use standard cross
validation techniques. For example, in the evaluation in Sec. 4, we conduct a Monte-Carlo
Cross Validation (MCCV) with a train fold size of 70% and 5 repetitions. This means that
we build 5 random splits of 70% training data and 30% validation data each, train and test
over the 5 folds using the desired metric, and then average these observations to get to a
score. However, Naive AutoML is not committed to a particular type of scoring function
and could, for example, also be run with a 10-fold cross validation. We hence just shall
assume that every pipeline has some score, and we leave it to the concrete implementation
to implement one or another method.

A.1 The Probing Stage

This stage corresponds to the “Ex-def” suggested in the evaluation of (Thornton et al.,
2013). Formally, we create and evaluate all candidates of the form (⊥,⊥, a,⊥), where a is
one of the available base prediction algorithms. Here, we do not consider ensemble learners
like Boosting or Bagging but only those that are already implemented with a specific base
learner, such as Random Forests.

A.2 The Feature-Scaling Stage

In this step, we examine the benefit of different feature scaling operations for the base
learners. To this end, two or three cheap distance-sensitive pilot classifiers like kNN or
SVMs are used to assess the impact of different feature scaling techniques such as (mean)-
normalization, standardization (mean 0 and std 1), or quantile-based re-scaling. In addition,
it can make sense to add as a pilot the one or two best candidates resulting from the probing
stage. Formally, for each scaler s and each pilot algorithm ap, we evaluate the candidate
(s,⊥, ap,⊥).

For each scaling technique s, if at least one pilot classifier improves upon its result of the
original data, we evaluate all other candidates (s,⊥, a,⊥) as well, where a is any non-pilot
base learner.

A.3 The Filtering Stage (Classifier-Independent Attribute Selection).

This stage consists of two steps. In the first step, we compute the set F of features that are
considered relevant. In the second step, we examine how the previously created candidates
behave when using only the features of F . That is, for every candidate (s,⊥, a,⊥), we
create and evaluate the candidate (s, F, a,⊥). Here s may be ⊥ as well, and the candidates
are created in the order of the performance of the pipeline without feature selection. Typ-
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Figure 3: Error rates when applying filtering on the datasets cnae-9 (left) with 856 features
in total and Madelon (right) with 500 features in total. Each curve shows at
point x the error rate obtained when using the first x attributes according to the
ranking created by the respective feature evaluator. In both cases, it is evident
that there is little point in using all the features. In the better case, this only
implies a waste of computational time (cnae-9) while in the worse case this even
implies inferior results (Madelon).

ically, one may want to define a timeout for this stage to not evaluate overly unpromising
candidates if a lot of time has already been used.

The feature set F is computed based on the results of different filtering techniques (Hall,
1999). Different techniques to rank the relevance of features exist. In contrast to wrapping
(Kohavi and John, 1997), filtering techniques do not adopt (costly) learners to judge fea-
ture relevance and hence are typically cheap to compute. We execute all such available
filters, which gives us a set of rankings. Then, for each of these rankings, we compute the
performance when using the first l features where l is increased until the performance starts
to decrease. To assess the performance, a pilot classifier is evaluated on the respective fea-
ture set in some kind of cheap cross-validation. In this sense, Naive AutoML uses existing
pre-processors only as a source of suggestions for candidate feature sets.

To motivate this procedure, it is worth to have a look at the performance curves one
obtains for the different filters. For each number x of features, we can plot the performance
of some pilot learner if using only the first x features in the ranking created by some filter.
Fig. 3 illustrates these curves for two datasets and using different filters from WEKA. In
the case of the cnae-9 dataset (left), we can see that there is only marginal improvement
after x = 100, and for the madelon dataset (right) we can even observe that performance
decreases quickly. In both cases, it is evident that only a relatively small portion of the
features is needed to obtain the same or even better results compared to when all features
are used (notice that the plot curves to not even show the full range of features for both
datasets).

Note that the filtering stage optimizes the feature set F independently of the outcomes
of earlier stages. Neither the results of the probing stage nor those of the scaling stage
are used in the determination of F . Those outcomes are only relevant in that they define
the candidates to which the feature selection F should be added, and their order for the
evaluation.
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One important additional use case for the analysis of such curves is the reduction of
evaluation times during the AutoML process. Even if we do not need to reduce the di-
mensionality to obtain good results as in the case of madelon (right), we can often still
approximate the prediction performance on the full feature set sufficiently well. For ex-
ample, in the case of cnae-9 (left), we only need to use 100 of the 856 features to obtain
comparable results, which should be good enough to steer the search process. Since we
know that the runtime of many learners often increases super-linearly (sometimes quadrat-
ically) in the number of attributes (Mohr et al., 2021), there is a huge potential in runtime
reduction. For example, the time to train a random forest on cnae-9 on some reference
machine is 2.2s on average but only 0.5s on 100 attributes with almost the same outcome.

A.4 Meta-Learner Stage.

In this stage, each candidate of the input pool is taken and used as a template to de-
rive new pipelines in which the base learner is wrapped into a meta-learner. The feature
transformation algorithms, if present, are not touched in this stage.

The algorithms we consider here as meta-learners are also sometimes called (homoge-
neous) ensembles. The idea of those learners is to take several copies of a base learner
and somehow combine them into a new augmented learner. Typical examples are Bagging
(Breiman, 1996) and AdaBoost (Freund and Schapire, 1998). This is opposed to heteroge-
neous ensembles like Stacking (Wolpert, 1992) or majority vote ensembles, in which differ-
ent learners of different types are combined. Since we augment existing pipelines (with one
learner), we only work with homogeneous ensembles here.

Forming a heterogeneous ensemble is a reasonable final step. This would be identical to
the strategy pursued in (Feurer et al., 2015) to eventually take the best k learners seen so
far and merge them into a voting ensemble. Alternatively, more sophisticated approaches
could try to optimize such an ensemble using previous observations.

A.5 Parameter Tuning.

This stage simply tries to find better hyperparameters for the predictor in one or more
candidate pipelines. Given a total timeout for this phase, the candidates are optimized in
the order of their performance with a (local) timeout and a maximum number of evaluations.
For algorithms with a small parameter space, all candidates can be enumerated, e.g. k-
nearest neighbors with some reasonable candidate set for the number of neighbors. For
all other algorithms, standard techniques for finding good configurations such as SMAC
(Hutter et al., 2011), Hyperband (Li et al., 2017), etc. can be employed. In this paper, we
even only adopt a simple random search.

A.6 (Validation-Based) Model Selection.

The default decision of Naive AutoML to select the best seen pipeline might not always
be the best. Despite the simplicity and naivity of Naive AutoML, there is some significant
optimization going on, potentially leading to over-fitting.

The potential need of some validation has been recognized earlier (Mohr et al., 2018),
and we adopt a similar strategy here. More precisely, the idea is to keep back a certain
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portion of the original data that is not shown to the optimization process and only used
in this final stage. The main difference to (Mohr et al., 2018) is that we do not add the
validation data to the pool and then run a cross-validation on the augmented dataset, but
we here simply conduct a “classical” single-fold validation on this hold-out set.

The data portion used for validation can be chosen dynamically based on the de-
sired guarantees on the generalization performance. For a set of m remaining competi-
tive candidates, the Hoeffding bound allows us to estimate the out-of-sample error with
P(|µ − ν| > ε) < 2me−2εn, where µ is the true out-of-sample error, ν is the error on the
validation fold, and n is the size of the validation fold. Given sufficient data and for a
moderate number m, say m = 10, this can be quite a good bound and impose an important
remedy against over-fitting after an exhaustive optimization effort.

Unfortunately, the number of validation samples available is often not sufficient to make
the Hoeffding bound meaningful. In most cases, we want to choose ε ≈ 0.01 and have
the bound relatively small, say, 0.1. To assure such a bound for even only one candidate
(effectively testing its performance), the validation fold must already contain roughly 15000
examples. For m = 10, we would need 35,000 validation instances, which are often not
available.

We hence propose to use both the “internal” score observed during the optimization
process and the validation score for model selection and weight the two scores based on the
validation set size. To this end, we introduce a parameter n̄ that quantifies the number of
validation instances required to exclusively use validation instances to compute the score.
Intuitively, n̄ is the number of instances needed to get the desired certainty in the Hoeffding
bound, e.g., 35,000 instances. The satisfaction of the Hoeffding bound can then be expressed
as

τ(n) = min{1, n
n̄
},

where n is the actual size of the validation fold. However, a close-to-0 satisfaction does not
necessarily mean a close-to-0 weight of the validation score. For example, if we have 500
instances in total and use 100 of them for validation, then 100 is probably far away from n̄,
and the satisfaction is almost 0. Still, the 100 instances are a valuable complement to the
400 instances used for training. In this case, it makes more sense to weight the validation
score based on the ratio between the number of validation instances and totally available
instances; here, this would be 0.2. Hence, instead of using the satisfaction of the validation
fold size directly as a weight, we use it to determine the point on a linear scale between the
above ratio and 1. Formally, we define the pipeline score in the validation phase then to be

φfinal(P ) = φint(P )(1− ω(n)) + φvalidate(P )ω(n),

where φint is the internal score obtained using only the data available for optimization,
φvalidate is the performance obtained using only the validation data (the pipeline has still
been defined not using these data points), n is the number of instances in the validation
fold, and

ω(n) = τ(n) +
n

N
(1− τ(n)).

In the last term, N is the total number of instances available.
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Appendix B. Datasets

All datasets are available via the openml.org platform (Vanschoren et al., 2013).

Appendix C. Result Tables for Naive AutoML

The results of the experiments are shown in Table 2. The reported metric is the error rate.
For each dataset and each approach, we report the trimmed mean (10% trimmed) with
standard deviation. Nan entries are caused by memory overflows. We refrain from the now
somewhat common practice of reporting average ranks, because, in our view, those obscure
a lot of important details in the comparison, e.g. on which (and how many) datasets which
algorithm is better than another and by which margin.

The formatting semantics of the table is as follows. The best entries (w.r.t to the
trimmed mean) per machine learning library are formatted in bold, and those whose result
distribution cannot be said to be statistically different to the best one (according to a
Wilcoxcon signed rank test with confidence 0.05) or where the performance difference is
“irrelevant” (< 0.01) are underlined. With respect to the latter one we of course understand
that in some cases such marginal difference can be relevant, but here we still treat them as
equally good to give more significance to the symbols used to denote improvements. For
each of the state-of-the-art techniques, we use the • or ◦ symbol to indicate a score that is
“substantially” better or worse than the one obtained with Naive AutoML. The symbols
are used twice, once to compare against the “primitive” profile and once comparing against
the “full” profile. As above, substantial here means that it is not only statistically significant
but also that the absolute improvement is at least 0.01. The symbol † is used instead of a •
in cases in which auto-sklearn constructed pipelines with feature transformation algorithms
not supported in the algorithm scheme of Naive AutoML; examples are the PCA or feature
encodings based on trees. Based on these results, we can now answer the three research
questions above.
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openmlid name instances features classes

3 kr-vs-kp 3196 37 2
12 mfeat-factors 2000 217 10
54 vehicle 846 19 4

181 yeast 1484 9 10
1049 pc4 1458 38 2
1067 kc1 2109 22 2
1111 KDDCup09 appetency 50000 231 2
1457 amazon-commerce-reviews 1500 10001 50
1461 bank-marketing 45211 17 2
1464 blood-transfusion-service-center 748 5 2
1468 cnae-9 1080 857 9
1475 first-order-theorem-proving 6118 52 6
1485 madelon 2600 501 2
1486 nomao 34465 119 2
1487 ozone-level-8hr 2534 73 2
1489 phoneme 5404 6 2
1494 qsar-biodeg 1055 42 2
1515 micro-mass 571 1301 20
1590 adult 48842 15 2
4134 Bioresponse 3751 1777 2
4135 Amazon employee access 32769 10 2
4534 PhishingWebsites 11055 31 2
4538 GesturePhaseSegmentationProcessed 9873 33 5
4541 Diabetes130US 101766 50 3

23512 higgs 98050 29 2
23517 numerai28.6 96320 22 2
40498 wine-quality-white 4898 12 7
40668 connect-4 67557 43 3
40670 dna 3186 181 3
40685 shuttle 58000 10 7
40701 churn 5000 21 2
40900 Satellite 5100 37 2
40975 car 1728 7 4
40978 Internet-Advertisements 3279 1559 2
40981 Australian 690 15 2
40982 steel-plates-fault 1941 28 7
40983 wilt 4839 6 2
40984 segment 2310 20 7
41027 jungle chess 2pcs raw endgame complete 44819 7 3
41138 APSFailure 76000 171 2
41142 christine 5418 1637 2
41143 jasmine 2984 145 2
41144 madeline 3140 260 2
41145 philippine 5832 309 2
41146 sylvine 5124 21 2
41147 albert 425240 79 2
41150 MiniBooNE 130064 51 2
41156 ada 4147 49 2
41157 arcene 100 10001 2
41158 gina 3153 971 2
41159 guillermo 20000 4297 2
41162 kick 72983 33 2
41163 dilbert 10000 2001 5
41164 fabert 8237 801 7
41165 robert 10000 7201 10
41166 volkert 58310 181 10
41167 dionis 416188 61 355
41168 jannis 83733 55 4
41169 helena 65196 28 100
42732 sf-police-incidents 2215023 10 2
42733 Click prediction small 39948 12 2

Table 1: Overview of datasets used in the evaluation.
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Figure 4: Error rates on the different datasets. Left for scikit-learn and right for WEKA.
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Table 2: Mean error rates and standard deviations per machine learning library.
WEKA backend scikit-learn backend

id auto-weka mlplan primitive full asklearn primitive full

3 0.0±0.0 0.01±0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
12 0.02±0.0 0.04±0.01 0.03±0.01 0.03±0.01 0.03±0.02 0.02±0.02 0.03±0.02
54 0.18±0.02 0.18±0.03 0.17±0.02 0.18±0.05 0.19±0.03 ◦ ◦ 0.16±0.03 0.17±0.03

181 0.39±0.04 0.39±0.04 0.38±0.03 0.39±0.04 0.39±0.04 0.38±0.03 0.37±0.05
1049 0.1±0.02 0.09±0.01 0.09±0.02 0.09±0.02 0.09±0.02 0.09±0.02 0.09±0.01
1067 0.15±0.01 0.15±0.01 0.15±0.02 0.15±0.01 0.14±0.02 0.15±0.02 0.15±0.01
1111 0.02±0.0 0.02±0.0 • 0.02±0.0 0.04±0.0 0.02±0.0 0.02±0.0 0.02±0.0
1457 0.29±0.0 0.25±0.03 0.25±0.03 0.24±0.03 0.2±0.02 • ◦ 0.23±0.04 0.16±0.03
1461 0.1±0.0 0.1±0.01 0.1±0.0 0.1±0.0 0.11±0.0 0.11±0.0 0.11±0.0
1464 0.22±0.03 0.24±0.01 ◦ 0.21±0.04 0.23±0.03 0.22±0.02 0.22±0.02 0.21±0.03
1468 0.06±0.02 0.05±0.02 0.05±0.01 0.05±0.01 0.05±0.02 0.04±0.02 0.04±0.01
1475 0.38±0.03 0.36±0.02 0.37±0.02 0.37±0.02 0.39±0.03 ◦ ◦ 0.37±0.02 0.37±0.02
1485 0.39±0.1 ◦ ◦ 0.23±0.05 ◦ 0.23±0.02 0.11±0.02 0.11±0.02 † 0.26±0.03 0.12±0.01
1486 0.03±0.0 0.05±0.01 ◦ ◦ 0.03±0.0 0.03±0.0 0.05±0.0 0.05±0.0 0.05±0.0
1487 0.05±0.01 0.06±0.01 0.05±0.01 0.05±0.01 0.05±0.01 0.05±0.01 0.05±0.01
1489 0.09±0.01 0.09±0.01 0.09±0.01 0.09±0.01 0.1±0.01 0.09±0.01 0.09±0.01
1494 0.13±0.03 0.13±0.04 0.13±0.02 0.12±0.03 0.14±0.03 ◦ 0.13±0.03 0.12±0.03
1515 0.09±0.03 0.13±0.04 0.13±0.04 0.13±0.04 0.07±0.03 • 0.13±0.03 0.07±0.26
1590 0.14±0.0 0.14±0.01 0.14±0.0 0.14±0.01 0.16±0.0 0.16±0.0 0.16±0.0
4134 0.23±0.02 0.2±0.01 0.2±0.01 0.22±0.05 0.2±0.01 0.19±0.02 0.2±0.02
4135 0.05±0.0 0.06±0.01 0.05±0.0 0.08±0.03 0.05±0.0 0.05±0.0 0.05±0.0
4534 0.03±0.0 0.04±0.01 ◦ ◦ 0.02±0.0 0.02±0.01 0.02±0.0 0.02±0.01 0.02±0.0
4538 0.32±0.02 0.32±0.01 0.32±0.01 0.31±0.01 0.31±0.01 0.3±0.01 0.3±0.01
4541 0.43±0.0 0.42±0.01 0.42±0.01 0.42±0.01 0.42±0.0 0.42±0.0 0.42±0.0

23512 0.31±0.0 ◦ 0.32±0.02 ◦ 0.31±0.02 0.28±0.01 0.28±0.0 0.28±0.01 0.28±0.01
23517 0.48±0.01 0.48±0.01 0.48±0.0 0.48±0.01 0.48±0.01 0.48±0.0 0.48±0.0
40498 0.31±0.01 0.31±0.02 0.3±0.01 0.3±0.01 0.34±0.02 ◦ ◦ 0.29±0.01 0.29±0.01
40668 0.03±0.0 • 0.19±0.01 • 0.21±0.11 0.27±0.0 0.17±0.06 † ◦ 0.26±0.0 0.03±0.01
40670 0.04±0.01 0.05±0.01 0.04±0.01 0.04±0.02 0.03±0.01 0.03±0.01 0.03±0.01
40685 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
40701 0.05±0.01 0.04±0.01 0.05±0.01 0.05±0.01 0.04±0.0 0.05±0.01 0.05±0.01
40900 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0
40975 0.0±0.0 0.0±0.01 0.0±0.01 0.0±0.01 0.0±0.0 0.01±0.01 0.01±0.01
40978 0.02±0.01 0.03±0.01 0.02±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01
40981 0.14±0.05 ◦ 0.14±0.03 ◦ 0.12±0.03 0.13±0.03 0.12±0.03 0.12±0.03 0.12±0.02
40982 0.19±0.02 0.2±0.02 0.2±0.03 0.21±0.03 0.21±0.04 † 0.21±0.02 0.25±0.1
40983 0.02±0.0 0.02±0.0 0.02±0.0 0.02±0.01 0.01±0.0 0.01±0.0 0.01±0.0
40984 0.02±0.01 0.04±0.01 ◦ ◦ 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01
41027 0.16±0.02 ◦ ◦ 0.15±0.02 ◦ ◦ 0.09±0.0 0.09±0.02 0.07±0.01 † † 0.16±0.01 0.14±0.0
41138 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0 0.01±0.0
41142 0.29±0.02 ◦ ◦ 0.28±0.02 ◦ 0.27±0.02 0.26±0.03 0.27±0.03 0.28±0.02 0.28±0.02
41143 0.16±0.0 0.17±0.02 0.17±0.02 0.18±0.02 0.18±0.02 0.19±0.02 0.2±0.04
41144 0.27±0.01 0.19±0.02 ◦ 0.21±0.05 0.09±0.01 0.1±0.02 † 0.24±0.02 0.11±0.02
41145 0.29±0.03 ◦ ◦ 0.26±0.02 ◦ 0.25±0.01 0.16±0.03 0.18±0.01 † † 0.25±0.02 0.24±0.01
41146 0.04±0.0 0.07±0.01 ◦ ◦ 0.05±0.01 0.04±0.01 0.05±0.01 0.05±0.01 0.04±0.01
41147 nan 0.32±0.01 0.33±0.01 0.32±0.0 nan 0.32±0.0 nan
41150 0.07±0.0 0.08±0.01 0.09±0.0 0.08±0.01 0.06±0.0 0.07±0.0 0.06±0.0
41156 0.15±0.03 0.15±0.02 0.15±0.01 0.15±0.01 0.14±0.01 0.14±0.01 0.14±0.01
41157 nan 0.21±0.14 ◦ 0.15±0.09 0.22±0.11 0.24±0.09 ◦ 0.11±0.09 0.26±0.15
41158 0.07±0.01 • 0.07±0.01 • 0.07±0.04 0.19±0.05 0.05±0.01 0.05±0.01 0.05±0.01
41159 nan 0.2±0.01 0.21±0.01 0.18±0.03 0.17±0.01 0.18±0.01 nan
41162 0.1±0.0 0.1±0.0 • 0.1±0.0 0.22±0.06 0.1±0.0 0.1±0.0 0.1±0.0
41163 0.08±0.0 0.03±0.0 0.03±0.0 0.02±0.01 0.01±0.0 0.02±0.0 0.02±0.0
41164 0.35±0.01 ◦ ◦ 0.32±0.02 ◦ 0.3±0.01 0.33±0.02 0.31±0.02 ◦ ◦ 0.29±0.01 0.29±0.01
41165 nan 0.62±0.02 0.6±0.03 nan 0.55±0.02 0.55±0.01 0.56±0.01
41166 0.36±0.03 0.35±0.01 ◦ 0.3±0.01 0.34±0.1 0.28±0.0 † † 0.33±0.0 0.32±0.0
41167 nan 0.96±0.0 ◦ ◦ 0.12±0.07 0.09±0.0 nan 0.31±0.0 nan
41168 0.34±0.01 0.3±0.0 • 0.34±0.01 0.29±0.01 0.27±0.0 • • 0.29±0.01 0.29±0.0
41169 0.71±0.0 0.72±0.0 • 0.72±0.0 0.75±0.01 0.69±0.01 ◦ ◦ 0.65±0.0 0.64±0.0
42732 nan 0.12±0.0 0.12±0.0 0.12±0.0 0.12±0.0 0.12±0.0 0.12±0.0
42733 0.16±0.0 0.17±0.02 • 0.17±0.0 0.25±0.03 0.17±0.0 0.17±0.0 0.17±0.0
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