
Learning Density Distribution of Reachable States for334

Autonomous Systems (Supplementary Material)335

A Generalization error bound for the learning framework336

With sufficient amount of data and a large enough neural network, we can approximate the state337

and density estimation at arbitrary small errors [76]. In the language of statistical learning theory,338

the neural network generating functions (Φω, Gθ) is called a hypothesis and denoted by h. The set339

containing all the possible hypotheses is called the hypothesis classH. For a hypothesis h generating340

(Φω, Gθ), we denote l(h, ξi) =
∑

(xki ,k∆T)∈ξi
(Φω(xi0, k∆t)−xik)2+(

∂Gθ(xi0,k∆t)
∂t +Gθ(x

i
0, k∆t)·(∇·341

f(xki)))2−γ where γ ≥ 0 is an error tolerance term which is further used to derive the probabilistic342

guarantee. Assume that the optimization problem in Eq.(3) is feasible, and ω̂ and θ̂ solve Eq. (3).343

Let ĥN be the hypothesis that generates (Φω̂, Gθ̂). Furthermore, assume that |l(·, ·)| ≤ Bl, and344

denote the sample distribution D (where the training sample trajectories are sampled from). Then345

according to Theorem 5 in [77], the following statement holds with probability at least 1− δ over a346

training data set consisting of N i.i.d. random trajectories:347

P(E
ξ∼D

l(ĥN , ξ) > 0) ≤ K
(

log3N

γ2
R2
N (H) +

2 log(log(4Bl/γ)/δ)

N

)
(8)

where K is a universal constant, and RN (H) is the Rademacher complexity forH defined as:348

RN (H) = sup
ξ1,ξ2,··· ,ξN

[
E
σ

[
sup
h∈H

1

N

N∑
i=1

σil(h, ξi)

]]
(9)

where σ = [σ1, σ2, · · · , σN] are i.i.d. random variables with P(σi = 1) = P(σi = −1) = 0.5.349

Remarks: Here we reduce bounding the generalization error to bounding the Rademacher com-350

plexity RN (H), where RN (H) can be further bounded as RN (H) ≤ o(kN) for Lipschitz paramet-351

ric function classes (including neural networks) where k denotes the number of learnable parame-352

ters [78][Theorem 4.2.]. In this way, we show that for a fixed error threshold γ, as the number of353

training samples N increases, the probability that our learning framework fails to satisfy the Liou-354

ville equation or fails to estimate the system dynamics will gradually decrease to zero. We show an355

empirical result to support this in Figure 1. For the Van der Pol Oscillator benchmark example, we356

train the neural network with different numbers of training samples (from 8 × 100 ∼ 8 × 104) and357

report the testing error (mean square error for the state estimation and density concentration function358

comparing to the groundtruth) for a fixed testing set. As the number of training samples increases,359

the testing error gradually converges to zero.360

Assume the functions on the right hand side of Eq. (2) are uniformly Lipschitz continuous in (x, ρ),361

then the function will have a unique solution according to Picard-Lindelöf theorem[79][Theorem362

I.3.1]. Then if our estimator satisfies the Liouville equation everywhere, we can recover the363

groundtruth density concentration function as well as the system dynamics.364

B Implementation details for system reachable set probability computation365

using RPM366

B.1 Online query set probability bound computation under different initial state367

distributions368

The problem formulation is: given a query set Rq with density concentration function constraints369

[zmin, zmax] (the range that the density concentration function can change from the initial condition370

to the terminal condition; if this constraint is not specified, the default value is −∞ ≤ z ≤ ∞),371

compute the probability that the system will reach this query set (with optional density constraints).372

In our case, when using RPM to compute the reachable sets, we represent Rq as a polyhedron, and373

since [zmin ≤ z ≤ zmax] is a set of linear inequality constraints, the set Mq = {(z, v)|zmin ≤ z ≤374

1

Figure 1: The testing error decreases as more training samples are used.

Figure 2: Illustration for the online query set probability bound computation (for an output cellMk).

zmax, v ∈ Rq} is also a polyhedron. At each time step t, from Sec. 3.2 we can represent the NN375

input cells, affine mapping and output cells at this time step as {(Ak, bk, Ck, dk, Ek, fk)}Nk=1 (here376

we omit the subscript for t for the brevity in the notation) where each input cell is a polyhedron377

Hk = {x ∈ Rd+1|Akx ≤ bk}, with an affine mapping y = Ckx + dk and the resulting output cell378

is also polyhedron Mk = {y ∈ Rd+1|Eky ≤ fk}. Then for each output cell Mk, we check for the379

intersection between the query cell and the output cell Mq
k = {y|y ∈Mq, Eky ≤ fk}. Next we can380

derive the intermediate density concentration function bound [zk,min, zk,max] on Mq
k by solving the381

following Linear Programming problem (here taking zk,min as an example; to solve zk,max we just382

need to change the “min” to “max” in the objective function in Eq. 10; and here [y]0 denotes the first383

coordinate of y, thus [y]0 = z as we denote y = (z, x)T):384 {
min [y]0
s.t. y ∈Mq

k

(10)

After we derive the bound for z onMq
k , the density bound forMq

k is computed as (similar to Eq.(6)):385

386 {
ρk,min = ρ0(x̃k)et·zk,min

ρk,max = ρ0(x̃k)et·zk,max
(11)

where x̃k is the center of Hk. And the probability bound can be computed by pk,min =387

ρk,min · Vol(Mq
k) and pk,max = ρk,max · Vol(Mq

k) where the Vol(Mq
k) is the volume for the388

intersection. Finally the probability of the system reach this query set at time t is bounded by389 [
Pmin =

N∑
k=1

pk,min, Pmax =
N∑
k=1

pk,max

]
. An illustrative figure is shown in Fig. 2390

Remarks: This algorithm can be used for online safety verification under different initial state391

distributions by just representing the dangerous set inRq , and changing the ρ0(·) function in (11) on392

2

the fly. Here we approximate the density distribution in Hk using the density evaluated at x̃k which393

is the center of Hk - the accuracy of this approximation will converge to 1 as the partition on ρ0 gets394

finer.395

B.2 Backward reachable set probability computation396

The problem formulation is: given a query set Rq with density concentration function constraints397

[zmin, zmax] (the range that the density concentration function can change from the initial condition398

to the terminal condition; if this constraint is not specified, the default value is −∞ ≤ z ≤ ∞),399

compute for all possible initial conditions as well as probabilities that lead the system to reach the400

query set (with optional density constraints).401

Similar to Sec. B.1, we can denote this query set as Mq = {(z, v)|zmin ≤ z ≤402

zmax, v ∈ Rq}. At each time step t, the NN input cells, affine mapping and output cells are403

{(Ak, bk, Ck, dk, Ek, fk)}Nk=1 where each input cell is a polyhedron Hk = {x ∈ Rd+1|Akx ≤ bk},404

with an affine mapping y = Ckx + dk and the resulting output cell is also polyhedron Mk = {y ∈405

Rd+1|Eky ≤ fk}. Then for each output cell Mk, we check for the intersection between the query406

cell and the output cell Mq
k = {y|y ∈ Mq, Eky ≤ fk}. Using the affine mapping with invertible407

Ck
7, we can derive the pre-image of this intersection to beHq

k = {x|x = C−1
k y−C−1

k dk, y ∈Mq
k}.408

Thus the reachable set can be computed using projection: Ri,qk = {x ∈ X |(x, t) ∈ Hq
k} and the409

corresponding probability is pi,qk = Vol(Ri,qk)ρ0(x̃i,qk) where ρ0(·) is the initial state distribution410

function and ˜
xi,qk is the center of Ri,qk . By performing this for all output cells and for all time steps411

t, we derive the backward reachable set {{(Ri,qt,k, p
i,q
t,k)}Nk=1}

T−1
t=0 .412

B.3 Speed up the probability computation by using hyper-rectangle heuristic413

The computation in both Sec. B.1 and Sec. B.2 requires checking the intersection between polyhe-414

dral Hi and Hj , where one approach is to check whether a feasible solution exists for the linear415

programming problem : min 0Tx, s.t. x ∈ Hi ∩Hj . Solving this for x ∈ Rn requires O(n2.5) time416

when the interior method is used. To speed up the intersection checking process, we introduce a417

hyper-rectangle heuristic: at the pre-processing stage, we over-approximate each polyhedron Hi by418

its outer hyper-rectangle H̃i (derived by computing the range for the vertices of Hi in each dimen-419

sion). When checking for the polyhedron intersection between Hi and Hj , we first check whether420

their corresponding hyper-rectangles H̃i and H̃j will intersect. If H̃i and H̃j do not intersect, then it421

is guaranteed that the polyhedra Hi and Hj won’t intersect. Otherwise, we further check the inter-422

section of Hi and Hj by using the interior method. Checking hyper-rectangles’ intersection can be423

implemented in O(n), hence greatly accelerates the computation process. A detailed computation424

time comparison will be presented in Sec. E.425

C Simulation environments426

In this section, we present the implementation details for all 10 simulation environments used in our427

main paper, sorted in the same order as shown in Table. 2.428

C.1 Van der Pol Oscillator429

Consider the Van der Pol Oscillator problem: d
2x
dt2 −µ(1−x2)dxdt +x = 0 where the position variable430

x is a function of t and the scalar parameter µ indicates the strength of the system damping effect.431

By doing a transformation: y = ẋ, the original problem can be shaped to the following 2d system432

dynamics:433 {
ẋ = y

ẏ = µ(1− x2)y − x (12)

7In practice, Ck is in high probability to be invertible. This is because the set of all non-invertible random
matrices forms a hyper-surface with Lebesque measure zero. When Ck is singular, we can use elimination
method like Fourier-Motzkin elimination as in [21] to derive the set representation in the input side.

3

where the divergence term∇·f used in (2) can be computed as: ∇·f = µ(1−x2). In the simulation,434

we set µ = 1.0, the initial state distribution as an uniform distribution U[−2.5,2.5]×[−2.5,2.5] and the435

time step duration ∆t = 0.05s. We run each simulation for 50 time steps to collect the trajectories.436

C.2 Double Integrator with an NN controller437

We consider a discrete double integrator system introduced in [41]:438 (
xt+1

yt+1

)
=

[
1 1
0 1

](
xt
yt

)
+

[
0.5
1

]
ut (13)

where (xt, yt)
T denotes the 2d state variable, and ut is the output of a neural network controller439

which is trained to mimic the behavior of an MPC controller [41, 42]. We convert the system to the440

continuous system with state (x, y)T and time step duration ∆t = 1.0s as :441

˙(x
y

)
=

[
0 1
0 0

](
x
y

)
+

[
0.5
1

]
u (14)

and here the divergence term∇ · f used in (2) can be computed as: ∇ · f = 0.5∂u∂x + ∂u
∂y , where the442

∂u
∂x is the gradient of the neural network controller output u with respect to the input x (and similar443

for ∂u
∂y and y) and can be calculated using automatic differentiation engine in PyTorch [71]. We set444

the initial state distribution as an uniform distribution U[−0.5,4.0]×[−1.0,1.0]. Similar to [41, 42], we445

run each simulation for 10 time steps to collect the trajectories.446

C.3 Kraichnan-Orszag system447

The system dynamics of the Kraichnan-Orszag problem [66, 18] is defined as:448 
ẋ1 = x1x3

ẋ2 = −x2x3

ẋ3 = −x2
1 + x2

2

(15)

and here an interesting fact is that the divergence term∇·f used in (2) is just: ∇·f = x3−x3+0 = 0,449

which means the density along each trajectory won’t change over time, and only depends on the450

initial state distribution. Similar to [18], we set the initial state x(0) = (x1(0), x2(0), x3(0))T451

distribution as an Gaussian distribution with:452 
x1(0) ∼ N (1, 1/42)

x2(0) ∼ N (0, 1/22)

x3(0) ∼ N (0, 1/22)

(16)

where we further truncate the initial state within the range {0 ≤ x1(0) ≤ 2,−2 ≤ x2(0) ≤ 2,−2 ≤453

x3(0) ≤ 2}. We set the time step duration ∆t = 0.125s and run each simulation for 80 time steps454

to collect the trajectories.455

C.4 Inverted pendulum456

The inverted pendulum problem [67] is defined as θ̈ + b
mL2 θ̇ − g

L sin θ − 1
mL2uLQR = 0, where θ457

denotes the pendulum’s relative angle to the the up-right position, m,L, g, b are pre-defined param-458

eters and uLQR denotes the output of an LQR controller [67] u = K1θ+K2θ̇ where K1 and K2 are459

scalar-valued coefficients. To test for the system performance under different coefficient settings for460

the LQR controller, we include k1, k2 into the system state variable and study the following system461

dynamics:462 
θ̇ = ω

ω̇ = 1
m·L2 (mgL sin θ − bω + u)

k̇1 = 0

k̇2 = 0

(17)

where u = K1

50 e
k1θ + K2

50 e
k2ω. Now the divergence term ∇ · f used in (2) can be computed as:463

∇ · f = − b
mL2 + 1

mL2
∂u
∂w = − b

mL2 + K2e
k2

50mL2 . Based on [67], we set g = 9.80, L = 0.50,m =464

4

0.15, b = 0.00,K1 = −23.59,K2 = −5.31, the time step duration ∆t = 0.02s. We set the465

initial state distribution as a uniform distribution U[−2.1,2.1]×[−5.5,5.5]×[−2.0,2.0]×[−2.0,2.0] and run466

each simulation for 50 time steps to collect the trajectories.467

C.5 Ground robot navigation with an NN controller468

Figure 3: The screenshot for robot navigation problem.

We design a ground robot navigation experiment (as shown in Fig. 3), where the objective is to reach469

the green region {(x, y)|(x−xgoal)2 + (y− ygoal)2 ≤ r2
goal} while avoiding to enter the red region470

{(x, y)|(x− xobs)2 + (y − yobs)2 ≤ r2
obs}. The robot is following an Dubins car model:471 

ẋ = v cos θ

ẏ = v sin θ

θ̇ = uw
v̇ = ua

(18)

where x, y, θ, v represent robot’s x and y position, heading angle and velocity respectively. We use472

an NN controller to output control signals uw, uv . The NN controller is a feedforward NN with473

2 hidden layers and 32 hidden units in each layer. We use ReLU for the intermediate activation474

functions and use Tanh as the activation function for the last layer to make sure the control output is475

always bounded. During training, we use this NN controller to collect trajectory data and do back-476

propagation with the loss function: L =
N−1∑
i=0

T−1∑
k=0

α
[
(xik − xgoal)2 + (yik − ygoal)2

]
+ 1{dobs <477

robs}(dobs − robs) where dobs =
√

(xik − xobs)2 + (yik − yobs)2. Here the divergence term ∇ · f478

used in (2) can be computed as: ∇ · f = ∂uw
∂θ + ∂ua

∂v . We set the initial state distribution as an479

uniform distribution U[−1.8,−1.2]×[−1.8,−1.2]×[0,π/2]×[1.0,1.5]. We run each simulation for 50 time480

steps with time duration ∆t = 0.05s to collect the trajectories.481

C.6 FACTEST car tracking system482

Consider a rearwheel kinematic car in 2D scenarios where the dynamics is:483 ẋẏ
θ̇

 =

[
cos(θ) 0
sin(θ) 0

0 1

] [
v
ω

]
(19)

and the corresponding errors are measured by:484 [
ex
ey
eθ

]
=

[
cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

][
xref − x
yref − y
θref − θ

]
(20)

5

with xref , yref , θref being some predefined tracking points (in this experiment, we assume the485

tracking points are not changing over time). With the following tracking controller defined in (wref486

and vref are referenced angular velocity and velocity respectively, k1, k2, k3 are the parameters487

controlling how fast the system will converge to the reference point) [68]:488 {
v = vref cos(eθ) + k1ex
ω = ωref + vref (k2ey + k3 sin(eθ))

(21)

and with an uncertainty error in the dynamics of ex and ey (denoted as a), the error dynamics489

become:490 ėxėyėθ
ȧ

 =

 (ωref + vref (k2ey + k3 sin(eθ)))ey − k1ex+aex
−(ωref + vref (k2ey + k3 sin(eθ)))ex + vref sin(eθ)+aey

−vref (k2ey + k3 sin(eθ))
0

 (22)

The uncertain parameter a ∈ [0, 1]. We will show that althought now the reachable set will be much491

larger than the case when a = 0, the probability that the system does not converge to the origin492

(zero-error) is very low.493

Here the divergence term ∇ · f used in (2) can be computed as: ∇ · f = 2a − k1 − k2vrefex −494

vrefk3 cos eθ. In our experiment, we set xref = yref = θref = 0, k1 = k2 = 0.5, k3 =495

1.0, wref = 0, vref = 1. We set the initial state distribution as an uniform distribution496

U[−2.1,2.1]×[−2.1,2.1]×[0,0.1]×[0.0,1.0]. We run each simulation for 50 time steps with time duration497

∆t = 0.10s to collect the trajectories.498

C.7 6D Quadrotor with an NN controller499

Consider a 6D quadrotor [42]:500

ẋ =

[
03×3 I3
03×3 03×3

]
x+

[
g 0 0

03×3 0 −g 0
0 0 1

]T
u+

[
05×1

−g

]
(23)

where the state vector x contains 3D positions and velocities [px, py, pz, vx, vy, vz], g is the gravity501

(set to 9.8m/s2), and the control u = (u1, u2, u3)T is from the output of an NN controller taking502

the state vector as the input [42]. Here the divergence term ∇ · f used in (2) can be computed503

as: ∇ · f = g · ∂u1

∂vx
− g · ∂u2

∂vy
+ ∂u3

∂vz
. Similar to [42], we set the initial state distribution as an504

uniform distribution U[4.65,4.75]×[4.65,4.75]×[2.95,3.05]×[0.94,0.96]×[−0.05,0.05]×[−0.5,0.5]. We run each505

simulation for 12 time steps with time duration ∆t = 0.10s to collect the trajectories.506

C.8 Adaptive cruise control system507

Consider a learning-based adaptive cruise control (ACC) problem with plant dynamics [4]:508 

ẋrel = vlead − vego
v̇lead = γlead
γ̇lead = alead
v̇ego = γego
γ̇ego = −2γego + 2u(xrel, vlead − vego − γegoτ, vego + γegoτ)

ȧlead = −2γlead
τ̇ = 0

(24)

here xrel denotes the relative distance from the leading vehicle to the ego vehicle, vlead and509

vego denote the velocity of leading and ego vehicles and γlead and γego denote the correspond-510

ing acceleration rates of the two vehicles (alead models the change in the leading vehicle’s ac-511

celeration rate, similar to the MATLAB implementation in [4]). And the controller u is taking512

the relative distance, velocity, and ego vehicle’s velocity as input and outputs the change in the513

ego vehicle’s acceleration rate. We model the velocity perception uncertainty as τ and pass it514

through the neural network. Here the divergence term ∇ · f used in (2) can be computed as:515

∇ · f = −2 − ∂u
∂(vlead−vego−γegoτ)τ + ∂u

∂(vego+γegoτ)τ . We set the initial state distribution as an516

uniform distribution U[59.0,62.0]×[26.0,30.0]×[−0.01,0.01]×[30.0,30.5]×[−0.01,0.01]×[−10.1,−9.9]×[−2.0,2.0]517

and run each simulation for 50 time steps with time duration ∆t = 0.10s to collect the trajectories.518

6

C.9 F-16 ground-collision avoidance system519

This F-16 Ground-Collision Avoidance System (GCAS) performs a recovery maneuver for the F-16520

aircraft when a ground collision is detected. The F-16 aircraft is modelled with 6 degrees of freedom521

(DoF) associated with 13 nonlinear equations (three equations each for forces, kinematics, moments522

and position of the aircraft, and one extra to capture the F-16 turbojet engine). The hierarchical523

control system has an outer-loop autopilot controller and an inner loop tracking and stabilizing524

controller (ILC). More details can be found in [69]. Specifically in this experiment, the GCAS525

drives the roll angle and its rate to 0 and then accelerates upwards to avoid ground collision. The526

safety specification is to make sure the altitude is always non-negative (not hitting the ground).527

We collect the trajectories using the F-16 simulator provided in [69]. The trajectories has a time528

step duration as 0.0333s and has 106 time steps in total. The hierarchical controller made the529

closed-loop F-16 system a black-box system without a clean ODE expression. Therefore, there is530

no analytical way to compute for the system dynamics. As we discussed in the main paper, we could531

approximate the divergence of the system dynamics by using gradient perturbation. Recall that for532

system ẋ = (f1(x), f2(x), ..., fd(x))T , the system divergence is∇·f =
d∑
i=1

∂fi
∂xi

, so we approximate533

the gradient for ∂fi(x)
xi

by (fi(x1, ..., xi + ε, ..., xn) − fi(x1, ..., xi − ε, ..., xn))/(2ε) where ε is a534

very small number and we set ε = 10−8 in our experiments.535

C.10 8-car platooning with model error536

In this experiment we consider a 8-car platoon model [80, 70]. The state variable is x ∈ R15, where537

x1 represents the first vehicle’s (which is also the leading vehicle in the platoon) velocity, x2k−1538

(k=2,3...,8) represents the relative velocity of the k−1-th vehicle comparing to the k-th vehicle, and539

x2k−2 (k=2,3...,8) represents the relative longitudinal offset of the k− 1-th vehicle comparing to the540

k-th vehicle. The dynamics of the system hence is given by:541

ẋ2k−1 =

{
u1, k = 1

uk−1 − uk, k = 2, 3, ...8

ẋ2k−2 = x2k−1 + w, k = 2, 3, ...8

(25)

where u = (u1, ..., u8)T is the NN controller’s output (for changing the vehicles’ acceleration rates)542

and w models the noise in the vehicles’ velocity dynamics. Here the neural network controller is543

trained via RL [81]. Here the divergence term ∇ · f used in (2) can be computed as: ∇ · f =544

∂u1

∂x1
+

8∑
k=2

(∂uk−1

∂x2k−1
− ∂uk

∂x2k−1
). We set the initial state distribution as an uniform distribution U for545

19.9 ≤ x1 ≤ 20.1, 0.9 ≤ x2k−3 ≤ 1.1, k = 2, 3..., 8 and −0.1 ≤ x2k−2 ≤ 0.1, k = 2, 3..., 8 and546

−0.01 ≤ w ≤ 0.01. We run each simulation for 50 time steps with time duration ∆t = 0.15s to547

collect the trajectories.548

D Forward reachable set distribution under different probability thresholds549

Instead of over-approximating the reachable sets like traditional methods, our approach can ren-550

der varied sizes of reachable sets under different probability thresholds and under different initial551

state distributions. We compute for the varied reachable sets at t=1.0s for ground robot navigation552

experiment under three different (truncated) multivariate Gaussian distributions: N1 = N (µ =553

(−1.7,−1.7, 0.2, 1.4)T ; Σ = 0.02I), N2 = N (µ = (−1.7,−1.7, 1.3, 1.4)T ; Σ = 0.02I), and554

N3 = N (µ = (−1.7,−1.7, 0.2, 1.4)T ; Σ = 0.1I). The difference between N1 and N2 is the555

change of the mean vector, and the difference between N1 and N3 is the change in the covariance556

matrix. As shown in Fig. 4∼Fig. 6, as the probability threshold decreases, the relative volume of the557

reachable set (comparing to the volume in Fig.3(a)) decreases drastically. And our approach shows558

that under the initial distribution N1, a large portion of the states (p>=0.8980) actually only reside559

in a small region (vol=0.03X) in the state space (as shown in Fig. 4(e)). Whereas under different ini-560

tial state distributions, the concentration region might be different (comparing Fig. 4(f) and Fig. 5(f))561

or the degree of concentration is different (comparing Fig. 4(f) and Fig. 6(e)).562

7

(a) vol=1.00X; p=1.0000 (b) vol=0.24X; p >= 0.9999 (c) vol=0.13X; p >= 0.9995

(d) vol=0.05X; p >= 0.9813 (e) vol=0.03X; p >= 0.8980 (f) vol=0.02X; p >= 0.5697

Figure 4: The system forward reach set distribution under different probability thresholds at t=1.0s
with initial condition N1 = N(µ = (−1.7,−1.7, 0.2, 1.4)T ; Σ = 0.02I). The color ranged from
dark purple to light yellow indicates the density inside the polyhedral cells. The density is shown
in logarithm magnitude. The edges colored in green indicate the boundaries of the RPM polyhedral
cells with density below a threshold. As the probability thresholds (p) decreases, the relative volume
(vol) of the reachable set decreases drastically. Our approach indicates under this distribution, the
system state has large probability concentrating in the right bottom curve as shown in Fig. 4(f).

E Runtime for fast safety checking563

Low density Medium density High density
e−10 ≤ ρ ≤ e2 e2 ≤ ρ ≤ e3 ρ ≥ e3

Vanilla Heuristic Vanilla Heuristic Vanilla Heuristic
Time (sec) 3.1594 0.8425 3.0854 0.8122 3.0585 0.7644

#(Rect) - 391 - 31 - 4
#(Poly) 303 303 2 2 0 0
Is safe? No No No No Yes Yes

Table 2: Online safe verification comparison under different density conditions (Low / Medium /
High). We measure the computation time (“Time””), number of rectangle intersections (“#(Rect)”),
number of polyhedral intersections (“#(Poly)”) and whether the initial condition will avoid to drive to
unsafe region (“Is safe?”) under each density condition with and without using the hyper-rectangle
heuristics (“Heuristic”/“Vanilla”). As shown in Table. 2, the trajectories sampled from the initial
state will only reach the unsafe region under low and medium densities while won’t reach the unsafe
region in high density. Using heuristics can reduce the computation time in all conditions by 70%.

We also perform the system safety verification for the ground robot task. Specifically, we want564

to verify whether the trajectories starting from the initial condition Sinit will drive to the unsafe565

region Sunsafe under different density conditions. We set Sinit = {−1.8 ≤ x ≤ −1.2, −1.8 ≤566

y ≤ −1.2, 0.0 ≤ θ ≤ π/2, 0.0 ≤ v ≤ 1.0}, Sunsafe = {−0.5 ≤ x ≤ 0.0,−0.5 ≤ y ≤567

0.0} and try three different density constraints: which are low density (e−10 ≤ ρ ≤ e2), medium568

8

(a) vol=1.00X; p=1.0000 (b) vol=0.97X; p >= 0.9999 (c) vol=0.83X; p >= 0.9995

(d) vol=0.48X; p >= 0.9851 (e) vol=0.11X; p >= 0.8749 (f) vol=0.06X; p >= 0.6139

Figure 5: The system forward reach set distribution under different probability thresholds at t=1.0s
with initial condition N2 = N(µ = (−1.7,−1.7, 1.3, 1.4)T ; Σ = 0.02I). The color ranged from
dark purple to light yellow indicates the density inside the polyhedral cells. The density is shown
in logarithm magnitude. The edges colored in green indicate the boundaries of the RPM polyhedral
cells with density below a threshold. As the probability thresholds (p) decreases, the relative volume
(vol) of the reachable set decreases drastically. Our approach indicates under this distribution, the
system state has large probability concentrating in the top left curve as shown in Fig. 5(f).

density (e2 ≤ ρ ≤ e3) and high density (ρ ≥ e3). We measure whether the initial condition569

will avoid to lead the system to reach the unsafe region under each density condition (“Is safe?”).570

To illustrate how the heuristic method introduced in Sec. B.3 accelerates the computation process,571

we also measure the computation time (“Time””), number of rectangle intersections (“#(Rect)”),572

number of polyhedral intersections (“#(Poly)”) and , with and without using the hyper-rectangle573

heuristics(“Heuristic”/“Vanilla”). Our program is implemented in Python with parallel computation574

deployed on a 12-core CPU.575

As shown in Table. 2, the trajectories sampled from the initial state will only reach the unsafe region576

under low and medium densities, and won’t reach the unsafe region in high density. This can be577

helpful when we are considering planning problems with density constraints. Besides, our approach578

with hyper-rectangle heuristic can finish the online safety verification for 50 time steps in only 0.8579

seconds, which reduces 70% of the computation time comparing to the vanilla algorithm. Doing580

safety verification for each time step only needs 0.016s, which is much smaller than the actual ∆t581

used for the ground robot navigation benchmark (∆t = 0.05s). With code-level optimization (e.g.582

write the program in C++ or Julia) and more CPU cores being used in parallel, our approach can583

further benefit for real-time applications.584

F Density (Ours, KDE, histogram, groundtruth) and reachability585

visualizations586

Here we compare the density prediction results on all 10 benchmark examples mentioned in Table 1,587

and compare our reachable set result with other worst-case reachability tools (Convex Hull [9],588

GSG [73] and DryVR [68]) on 4 of the benchmark examples. As shown in figures in F.1, our589

9

(a) vol=1.00X; p=1.0000 (b) vol=0.99X; p >= 0.9951 (c) vol=0.96X; p >= 0.9420

(d) vol=0.91X; p >= 0.8625 (e) vol=0.77X; p >= 0.5513 (f) vol=0.46X; p >= 0.2223

Figure 6: The system forward reach set distribution under different probability thresholds at t=1.0s
with initial condition N3 = N(µ = (−1.7,−1.7, 0.2, 1.4)T ; Σ = 0.1I). The color ranged from
dark purple to light yellow indicates the density inside the polyhedral cells. The density is shown
in logarithm magnitude. The edges colored in green indicate the boundaries of the RPM polyhedral
cells with density below a threshold. As the probability thresholds (p) decreases, the relative volume
(vol) of the reachable set decreases drastically. Our approach indicates under this distribution, the
system state has large probability concentrating in the right bottom curve as shown in Fig. 6(f), but
is not as concentrated as shown in Fig. 4(f).

approach can consistently achieve the closest state density distribution among other approaches590

(Kernel density, histogram), and doesn’t have a restriction for high-dimension systems (whereas the591

histogram method cannot estimate the density for high-dimension systems like in Fig. 28∼ Fig. 36).592

For the reachability comparison, different from the worst-case reachability analysis tools (Convex593

Hull [9], GSG [73] and DryVR [68]), our approach can compute the density and probability for each594

of the reachable set, hence is able to tell where do states concentrate (a high probability of states595

only reside in a small region in the state space, as shown in Fig. 39, Fig. 42, Fig. 44, Fig. 48, etc).596

Our method is more precise and informative than those worst-case reachability analysis approaches.597

More figures can be found out in the supplementary video.598

F.1 Comparison of density prediction accuracies599

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 7: Comparison of density prediction accuracies (Van der Pol, t=0)

10

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 8: Comparison of density prediction accuracies (Van der Pol, t=20)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 9: Comparison of density prediction accuracies (Van der Pol, t=49)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 10: Comparison of density prediction accuracies (Double integrator, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 11: Comparison of density prediction accuracies (Double integrator, t=3)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 12: Comparison of density prediction accuracies (Double integrator, t=9)

11

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 13: Comparison of density prediction accuracies (Kraichnan-Orszag system, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 14: Comparison of density prediction accuracies (Kraichnan-Orszag system, t=20)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 15: Comparison of density prediction accuracies (Kraichnan-Orszag system, t=79)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 16: Comparison of density prediction accuracies (Inverted pendulum, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 17: Comparison of density prediction accuracies (Inverted pendulum, t=20)

12

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 18: Comparison of density prediction accuracies (Inverted pendulum, t=49)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 19: Comparison of density prediction accuracies (Ground robot navigation, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 20: Comparison of density prediction accuracies (Ground robot navigation, t=20)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 21: Comparison of density prediction accuracies (Ground robot navigation, t=49)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 22: Comparison of density prediction accuracies (FACTEST car model, t=0)

13

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 23: Comparison of density prediction accuracies (FACTEST car model, t=20)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 24: Comparison of density prediction accuracies (FACTEST car model, t=49)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 25: Comparison of density prediction accuracies (Quadrotor control system, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 26: Comparison of density prediction accuracies (Quadrotor control system, t=4)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 27: Comparison of density prediction accuracies (Quadrotor control system, t=11)

14

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 28: Comparison of density prediction accuracies (Adaptive cruise control system, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 29: Comparison of density prediction accuracies (Adaptive cruise control system, t=20)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 30: Comparison of density prediction accuracies (Adaptive cruise control system, t=49)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 31: Comparison of density prediction accuracies (Ground collision avoidance system, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 32: Comparison of density prediction accuracies (Ground collision avoidance system, t=20)

15

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 33: Comparison of density prediction accuracies (Ground collision avoidance system, t=59)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 34: Comparison of density prediction accuracies (8-Car platoon system, t=0)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 35: Comparison of density prediction accuracies (8-Car platoon system, t=20)

(a) Groundtruth (b) Kernel density (c) Histogram (d) Ours (e) SGPD

Figure 36: Comparison of density prediction accuracies (8-Car platoon system, t=49)

F.2 Comparison of reachable set computation among different tools600

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 37: Comparison of reachable set computation among different tools (Van der Pol, t=0). The
gray dots are sampled points and blue / green / red / colored regions are reachability results

16

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 38: Comparison of reachable set computation among different tools (Van der Pol, t=40). The
gray dots are sampled points and blue / green / red / colored regions are reachability results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 39: Comparison of reachable set computation among different tools (Van der Pol, t=49). The
gray dots are sampled points and blue / green / red / colored regions are reachability results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 40: Comparison of reachable set computation among different tools (Double integrator, t=0).
The gray dots are sampled points and blue / green / red / colored regions are reachability results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 41: Comparison of reachable set computation among different tools (Double integrator, t=3).
The gray dots are sampled points and blue / green / red / colored regions are reachability results

17

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 42: Comparison of reachable set computation among different tools (Double integrator, t=7).
The gray dots are sampled points and blue / green / red / colored regions are reachability results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 43: Comparison of reachable set computation among different tools (Ground robot naviga-
tion, t=0). The gray dots are sampled points and blue / green / red / colored regions are reachability
results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 44: Comparison of reachable set computation among different tools (Ground robot naviga-
tion, t=20). The gray dots are sampled points and blue / green / red / colored regions are reachability
results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 45: Comparison of reachable set computation among different tools (Ground robot naviga-
tion, t=40). The gray dots are sampled points and blue / green / red / colored regions are reachability
results

18

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 46: Comparison of reachable set computation among different tools (FACTEST car model,
t=0). The gray dots are sampled points and blue / green / red / colored regions are reachability results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 47: Comparison of reachable set computation among different tools (FACTEST car model,
t=20). The gray dots are sampled points and blue / green / red / colored regions are reachability
results

(a) Convex Hull (b) GSG (c) DryVR (d) Ours

Figure 48: Comparison of reachable set computation among different tools (FACTEST car model,
t=49). The gray dots are sampled points and blue / green / red / colored regions are reachability
results

19

601

G Comparison between histogram-based and Liouville-based approaches602

The advantage of learning density distribution by solving Liouville ODE is that it requires less603

training samples than histogram-based approaches, hence has the potential to generalize to high-604

dimension cases. To show its advantages in training efficiency and testing accuracy, we compare the605

histogram-based approach and Liouville-based approach’s density estimation for the following sys-606

tem, under different number of training samples. To make sure we can compare to the “groundtruth”607

density, we manually design the system such that the state density distribution at each time step has608

a closed form solution.609

Consider a 1-d system: ẋ = −x2 with initial states ranged from [0, 1]. Under uniformly distributed610

initialization, the system dynamics x(t) and density distribution β(x, t) (here β(x, t) denotes the611

density at time t at location x) can be directly written out in the closed form:612 {
x(t) = 1/(C + t)

β(x, t) = 1/(1− x · t)2 (26)

where the parameter C can be derived from the initial condition x(0) = x0 = 1/C.613

Figure 49: KL Divergence (comparing to groundtruth state density) for histogram-based approach
and Liouville-based approach in different numbers of training samples. The groundtruth state den-
sity is computed analytically in closed form. We use 10000, 100000, 1000000 training samples
for the histogram-based approach and use only 10000 training samples for the Liouville-based ap-
proach. The KL divergence is computed on a separate testing set (200 samples). Comparing to the
histogram-based approach, the Liouville-based approach can achieve a smaller KL divergence while
using 0.01X number of training samples.

We then use histogram-based and Liouville-based approach to estimate the state density for this614

system. We uniformly sample initial states and generate 1000000 trajectories using ODE45 solver.615

We use 10000, 100000 and 1000000 training samples for the histogram-based approach and use only616

10000 training samples for the Liouville-based approach, then we estimate the density on a separate617

testing set of trajectories using nearest neighbor interpolation. At each time step, we measure the618

estimation accuracy on the test set by computing the KL divergence to the groundtruth density.619

As shown in Fig. 49, histogram-based approach needs lots of samples to accurately approximate a620

good distribution (the KL divergence converges to zero at each time step as the number of samples621

increases), where our approach can learn the density distribution with the lowest KL divergence622

20

using just 0.01X of the sampled trajectories. This shows the advantage of solving Liouville ODE to623

estimate the state density.624

625

H Comparison with state-of-the-art worst-case reachability approaches626

We compare our approach with three state-of-the-art worst-case reachability methods: Sher-627

lock [75], Verisig [39] and ReachNN [40]. We use the official implementation of Verisig and628

ReachNN which focus on reachable set computation for neural network control systems (NNCS),629

and use the re-implementation of Sherlock from [6], which is for neural network verification.630

To make a fair comparison, we set a timeout limit of six hours for all approaches. Among all the631

four datasets that our method has computed, Sherlock can solve for the reachable sets for the datasets632

“Double integrator”, “Ground robot navigation” and “FACTEST car tracking system”, and Verisig633

and ReachNN can only calculate for the “Double integrator” dataset - Verisig encounters numerical634

issue on this dataset at first due to the large initial set, and we have to divide the initial set to smaller635

sets and run the program multiple times in parallel to compute for the reachable sets. Similar in636

Sec. 4.3, we measure the reachable sets by computing the volume of the reachable sets relative to637

the volume of the convex hull of the sampled points.638

We use different networks when doing reachability analysis, because all those methods have differ-639

ent requirements for the analyzed system:640

(a) The RPM used in our approach is doing reachability analysis for ReLU-based NNs. For641

the “Double Integrator” system, the controller is another ReLU-based NN that has a clip642

function at the output (to rectify the control output between [−1, 1])643

(b) The Sherlock approach we used in [6] can only work with ReLU-based NN (not NNCS).644

Thus we used the same NN used in (a) and conducted the experiments. Since we only645

compute for the reachable set, we just collect the flow map estimation Φω part of this NN646

(i.e. we did not need to use the density estimator part of the NN).647

(c) Verisig can only work with a Neural Network Controlled System (NNCS) with648

Sigmoid/Tanh-based NN controllers. Thus we re-trained a Tanh-based NN controller (us-649

ing the same number of hidden layers and hidden units) to reproduce the output of the650

original controller in (a) and use this new controller to do reachability analysis. We verified651

that the L2 error between the Tanh-based NN controller and the original controller is less652

than 0.001 on the testing set, and we also inspected the trajectories generated using these653

two controllers and cannot find a substantial difference.654

(d) ReachNN can work with NNCS that has Sigmoid/Tanh/ReLU-based NN controllers. How-655

ever, it cannot directly process the controller we had in (a) because the controller in (a) has656

a clip function at the output to rectify the control output between [−1, 1]. Therefore, we657

trained another ReLU-based NN controller that does not have that clip function to repro-658

duce the output of the original controller in (a). We use this newly trained controller to do659

reachability analysis in ReachNN.660

As shown in Fig. 50 ∼ Fig. 53, in the “Double integrator” experiment, all of the three worst-case661

reachability analysis methods can only over-approximate the reachable sets of the system, with the662

reachable volume increasing over time. The approximation error for Versig and ReachNN will663

severely accumulate, hence the corresponding reachable sets gradually occupy the whole figure664

(where the growths is 32.24X for Verisig and 67.96X for ReachNN respectively), whereas our ap-665

proach estimated reachable sets have volume less than the convex hull volume, and can reflect the666

convergence of the majority of the system states owing to the ability to predict the state density. For667

higher dimension benchmarks like “Ground robot navigation” and “FACTEST car tracking system”668

(as shown in Fig. 54 ∼ Fig. 57), only our approach and Sherlock are able to compute the reachable669

set under the timeout limit. Due to the high dimensionality, Sherlock’s estimated volume grows670

dramatically over time (16.51X for the “Ground robot navigation”, and 42.60X for the “FACTEST671

car model”), while our approach still gives more compact reachable sets. These observations il-672

lustrate the advantages of our approach in precisely estimating the system reachable sets as well673

as the state density distribution. One advantage of Sherlock over ours is that it can also solve for674

other benchmarks listed in Table. 2, where our approach cannot solve due to the numerical issues in675

21

RPM. Another limitation is that our approach only solves for NN with ReLU activations, which is676

again a restriction inherited from RPM. We believe combining our learning framework with a more677

advanced exact reachability tool will resolve this issue in the future.678

(a) Sherlock (b) Verisig (c) ReachNN (d) Ours

Figure 50: Comparison of reachable sets (Double integrator, t=0)

(a) Sherlock (b) Verisig (c) ReachNN (d) Ours

Figure 51: Comparison of reachable sets (Double integrator, t=3)

(a) Sherlock (b) Verisig (c) ReachNN (d) Ours

Figure 52: Comparison of reachable sets (Double integrator, t=7)

(a) Sherlock (b) Verisig (c) ReachNN (d) Ours

Figure 53: Comparison of reachable sets (Double integrator, t=9)

22

(a) Sherlock, t=0 (b) Sherlock, t=20 (c) Sherlock, t=30 (d) Sherlock, t=40

Figure 54: Sherlock results (Ground robot navigation, t=0, 20, 30, 40)

(a) Ours, t=0 (b) Ours, t=20 (c) Ours, t=30 (d) Ours, t=40

Figure 55: Our results (Ground robot navigation, t=0, 20, 30, 40)

(a) Sherlock, t=0 (b) Sherlock, t=20 (c) Sherlock, t=30 (d) Sherlock, t=40

Figure 56: Sherlock results (FACTEST car model, t=0, 20, 30, 40)

(a) Ours, t=0 (b) Ours, t=20 (c) Ours, t=30 (d) Ours, t=40

Figure 57: Our results (FACTEST car model, t=0, 20, 30, 40)

23

References679

[1] M. Chen and C. J. Tomlin. Hamilton–jacobi reachability: Some recent theoretical advances680

and applications in unmanned airspace management. Annual Review of Control, Robotics, and681

Autonomous Systems, 1:333–358, 2018.682

[2] A. Devonport and M. Arcak. Data-driven reachable set computation using adaptive gaussian683

process classification and monte carlo methods. In 2020 American Control Conference (ACC),684

pages 2629–2634. IEEE, 2020.685

[3] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid sys-686

tems. In International Conference on Computer Aided Verification, pages 258–263. Springer,687

2013.688

[4] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak, and T. T.689

Johnson. Nnv: The neural network verification tool for deep neural networks and learning-690

enabled cyber-physical systems. In International Conference on Computer Aided Verification,691

pages 3–17. Springer, 2020.692

[5] S. Bansal and C. Tomlin. Deepreach: A deep learning approach to high-dimensional reacha-693

bility. arXiv preprint arXiv:2011.02082, 2020.694

[6] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, and M. J. Kochenderfer. Algorithms for695

verifying deep neural networks. arXiv preprint arXiv:1903.06758, 2019.696

[7] A. Devonport and M. Arcak. Estimating reachable sets with scenario optimization. In Learning697

for Dynamics and Control, pages 75–84. PMLR, 2020.698

[8] L. Liebenwein, C. Baykal, I. Gilitschenski, S. Karaman, and D. Rus. Sampling-based approx-699

imation algorithms for reachability analysis with provable guarantees. RSS, 2018.700

[9] T. Lew and M. Pavone. Sampling-based reachability analysis: A random set theory approach701

with adversarial sampling. arXiv preprint arXiv:2008.10180, 2020.702

[10] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In Inter-703

national Workshop on Hybrid Systems: Computation and Control, pages 202–214. Springer,704

2000.705

[11] A. Girard. Reachability of uncertain linear systems using zonotopes. In International Work-706

shop on Hybrid Systems: Computation and Control, pages 291–305. Springer, 2005.707

[12] P. S. Duggirala and M. Viswanathan. Parsimonious, simulation based verification of linear sys-708

tems. In International Conference on Computer Aided Verification, pages 477–494. Springer,709

2016.710

[13] P.-J. Meyer, A. Devonport, and M. Arcak. Tira: Toolbox for interval reachability analysis. In711

Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and712

Control, pages 224–229, 2019.713

[14] S. Bak. Reducing the wrapping effect in flowpipe construction using pseudo-invariants. In714

Proceedings of the 4th ACM SIGBED International Workshop on Design, Modeling, and Eval-715

uation of Cyber-Physical Systems, pages 40–43, 2014.716

[15] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems with uncer-717

tain parameters using conservative linearization. In 2008 47th IEEE Conference on Decision718

and Control, pages 4042–4048. IEEE, 2008.719

[16] J. Cyranka, M. A. Islam, G. Byrne, P. Jones, S. A. Smolka, and R. Grosu. Lagrangian reacha-720

bililty. In International Conference on Computer Aided Verification, pages 379–400. Springer,721

2017.722

[17] M. Ehrendorfer. The liouville equation and prediction of forecast skill. In Predictability and723

Nonlinear Modelling in Natural Sciences and Economics, pages 29–44. Springer, 1994.724

24

[18] T. Nakamura-Zimmerer, D. Venturi, Q. Gong, and W. Kang. Density propagation with725

characteristics-based deep learning. arXiv preprint arXiv:1911.09311, 2019.726

[19] Y. Chen, M. Ahmadi, and A. D. Ames. Optimal safe controller synthesis: A density function727

approach. In 2020 American Control Conference (ACC), pages 5407–5412. IEEE, 2020.728

[20] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep729

learning framework for solving forward and inverse problems involving nonlinear partial dif-730

ferential equations. Journal of Computational Physics, 378:686–707, 2019.731

[21] J. A. Vincent and M. Schwager. Reachable polyhedral marching (rpm): A safety verifica-732

tion algorithm for robotic systems with deep neural network components. arXiv preprint733

arXiv:2011.11609, 2020.734

[22] International competition on verifying continuous and hybrid systems. https://cps-vo.735

org/group/ARCH/FriendlyCompetition. Accessed: 2021-06-18.736

[23] G. Agha and K. Palmskog. A survey of statistical model checking. ACM Transactions on737

Modeling and Computer Simulation (TOMACS), 28(1):1–39, 2018.738

[24] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent hamilton-jacobi formulation739

of reachable sets for continuous dynamic games. IEEE Transactions on automatic control, 50740

(7):947–957, 2005.741

[25] B. Xue, M. Zhang, A. Easwaran, and Q. Li. PAC model checking of black-box continuous-742

time dynamical systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits743

and Systems, 39(11):3944–3955, 2020.744

[26] A. Berndt, A. Alanwar, K. H. Johansson, and H. Sandberg. Data-driven set-based estimation745

using matrix zonotopes with set containment guarantees. arXiv preprint arXiv:2101.10784,746

2021.747

[27] R. E. Allen, A. A. Clark, J. A. Starek, and M. Pavone. A machine learning approach for real-748

time reachability analysis. In 2014 IEEE/RSJ international conference on intelligent robots749

and systems, pages 2202–2208. IEEE, 2014.750

[28] M. Rasmussen, J. Rieger, and K. N. Webster. Approximation of reachable sets using optimal751

control and support vector machines. Journal of Computational and Applied Mathematics,752

311:68–83, 2017.753

[29] A. J. Thorpe, K. R. Ortiz, and M. M. Oishi. Data-driven stochastic reachability using hilbert754

space embeddings. arXiv preprint arXiv:2010.08036, 2020.755

[30] A. Chakrabarty, C. Danielson, S. Di Cairano, and A. Raghunathan. Active learning for estimat-756

ing reachable sets for systems with unknown dynamics. IEEE Transactions on Cybernetics,757

2020.758

[31] D. Fridovich-Keil, A. Bajcsy, J. F. Fisac, S. L. Herbert, S. Wang, A. D. Dragan, and C. J. Tom-759

lin. Confidence-aware motion prediction for real-time collision avoidance1. The International760

Journal of Robotics Research, 39(2-3):250–265, 2020.761

[32] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R. Tedrake. Convex optimization of non-762

linear feedback controllers via occupation measures. The International Journal of Robotics763

Research, 33(9):1209–1230, 2014.764

[33] A. Abate. Probabilistic reachability for stochastic hybrid systems: theory, computations, and765

applications. University of California, Berkeley, 2007.766

[34] A. R. R. Matavalam, U. Vaidya, and V. Ajjarapu. Data-driven approach for uncertainty propa-767

gation and reachability analysis in dynamical systems. In 2020 American Control Conference768

(ACC), pages 3393–3398. IEEE, 2020.769

[35] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient smt770

solver for verifying deep neural networks. In International Conference on Computer Aided771

Verification, pages 97–117. Springer, 2017.772

25

https://cps-vo.org/group/ARCH/FriendlyCompetition
https://cps-vo.org/group/ARCH/FriendlyCompetition
https://cps-vo.org/group/ARCH/FriendlyCompetition

[36] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu,773

A. Zeljić, et al. The marabou framework for verification and analysis of deep neural networks.774

In International Conference on Computer Aided Verification, pages 443–452. Springer, 2019.775

[37] W. Xiang, H.-D. Tran, and T. T. Johnson. Output reachable set estimation and verification for776

multilayer neural networks. IEEE transactions on neural networks and learning systems, 29777

(11):5777–5783, 2018.778

[38] X. Yang, H.-D. Tran, W. Xiang, and T. Johnson. Reachability analysis for feed-forward neural779

networks using face lattices. arXiv preprint arXiv:2003.01226, 2020.780

[39] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying safety properties of781

hybrid systems with neural network controllers. In Proceedings of the 22nd ACM International782

Conference on Hybrid Systems: Computation and Control, pages 169–178, 2019.783

[40] J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu. Reachnn*: A tool for reachability analysis of784

neural-network controlled systems. In International Symposium on Automated Technology for785

Verification and Analysis, pages 537–542. Springer, 2020.786

[41] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas. Reach-sdp: Reachability analysis of closed-787

loop systems with neural network controllers via semidefinite programming. In 2020 59th788

IEEE Conference on Decision and Control (CDC), pages 5929–5934. IEEE, 2020.789

[42] M. Everett, G. Habibi, and J. P. How. Efficient reachability analysis of closed-loop systems790

with neural network controllers. arXiv preprint arXiv:2101.01815, 2021.791

[43] D. A. Spencer and R. D. Braun. Mars pathfinder atmospheric entry-trajectory design and792

dispersion analysis. Journal of Spacecraft and Rockets, 33(5):670–676, 1996.793

[44] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM, 1992.794

[45] C. Pantano and B. Shotorban. Least-squares dynamic approximation method for evolution of795

uncertainty in initial conditions of dynamical systems. Physical Review E, 76(6):066705, 2007.796

[46] H. Lee and I. S. Kang. Neural algorithm for solving differential equations. Journal of Compu-797

tational Physics, 91(1):110–131, 1990.798

[47] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and799

partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.800

[48] T. Uchiyama and N. Sonehara. Solving inverse problems in nonlinear pdes by recurrent neural801

networks. In IEEE International Conference on Neural Networks, pages 99–102. IEEE, 1993.802

[49] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differ-803

ential equations. Journal of computational physics, 375:1339–1364, 2018.804

[50] J. Berg and K. Nyström. A unified deep artificial neural network approach to partial differential805

equations in complex geometries. Neurocomputing, 317:28–41, 2018.806

[51] E. Weinan and B. Yu. The deep ritz method: a deep learning-based numerical algorithm for807

solving variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.808

[52] J. He, L. Li, J. Xu, and C. Zheng. Relu deep neural networks and linear finite elements. arXiv809

preprint arXiv:1807.03973, 2018.810

[53] J. Han, A. Jentzen, et al. Algorithms for solving high dimensional pdes: From nonlinear monte811

carlo to machine learning. arXiv preprint arXiv:2008.13333, 2020.812

[54] Y. Khoo, J. Lu, and L. Ying. Solving parametric pde problems with artificial neural networks.813

European Journal of Applied Mathematics, 32(3):421–435, 2021.814

[55] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural815

networks and parametric pdes. Constructive Approximation, pages 1–53, 2021.816

26

[56] D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis. Quantifying total uncertainty in physics-817

informed neural networks for solving forward and inverse stochastic problems. Journal of818

Computational Physics, 397:108850, 2019.819

[57] L. Yang, D. Zhang, and G. E. Karniadakis. Physics-informed generative adversarial networks820

for stochastic differential equations. arXiv preprint arXiv:1811.02033, 2018.821

[58] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-822

kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint823

arXiv:2010.08895, 2020.824

[59] Z. Long, Y. Lu, X. Ma, and B. Dong. Pde-net: Learning pdes from data. In International825

Conference on Machine Learning, pages 3208–3216. PMLR, 2018.826

[60] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear operators for identify-827

ing differential equations based on the universal approximation theorem of operators. arXiv828

preprint arXiv:1910.03193, 2019.829

[61] A. Koryagin, R. Khudorozkov, and S. Tsimfer. Pydens: A python framework for solving830

differential equations with neural networks. arXiv preprint arXiv:1909.11544, 2019.831

[62] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. Deepxde: A deep learning library for solving832

differential equations. SIAM Review, 63(1):208–228, 2021.833

[63] F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal, and M. Di Giovanni.834

Neurodiffeq: A python package for solving differential equations with neural networks. Jour-835

nal of Open Source Software, 5(46):1931, 2020.836

[64] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In837

Icml, 2010.838

[65] T. Chai and R. R. Draxler. Root mean square error (rmse) or mean absolute error (mae)?–839

arguments against avoiding rmse in the literature. Geoscientific model development, 7(3):840

1247–1250, 2014.841

[66] S. A. Orszag and L. Bissonnette. Dynamical properties of truncated wiener-hermite expan-842

sions. The Physics of Fluids, 10(12):2603–2613, 1967.843

[67] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. arXiv preprint844

arXiv:2005.00611, 2020.845

[68] C. Fan, K. Miller, and S. Mitra. Fast and guaranteed safe controller synthesis for nonlinear846

vehicle models. In International Conference on Computer Aided Verification, pages 629–652.847

Springer, 2020.848

[69] P. Heidlauf, A. Collins, M. Bolender, and S. Bak. Verification challenges in f-16 ground849

collision avoidance and other automated maneuvers. In ARCH@ ADHS, pages 208–217, 2018.850

[70] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan. An inductive synthesis framework for ver-851

ifiable reinforcement learning. In Proceedings of the 40th ACM SIGPLAN Conference on852

Programming Language Design and Implementation, pages 686–701, 2019.853

[71] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,854

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning855

library. arXiv preprint arXiv:1912.01703, 2019.856

[72] C. Donner and M. Opper. Efficient bayesian inference of sigmoidal gaussian cox processes.857

10.14279/depositonce-8398, 2018.858

[73] M. Everett, G. Habibi, and J. P. How. Robustness analysis of neural networks via efficient859

partitioning with applications in control systems. IEEE Control Systems Letters, 2020.860

[74] P. Du, Z. Huang, T. Liu, T. Ji, K. Xu, Q. Gao, H. Sibai, K. Driggs-Campbell, and S. Mitra.861

Online monitoring for safe pedestrian-vehicle interactions. In 2020 IEEE 23rd International862

Conference on Intelligent Transportation Systems (ITSC), pages 1–8. IEEE, 2020.863

27

[75] S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari. Output range analysis for deep neural864

networks. arXiv preprint arXiv:1709.09130, 2017.865

[76] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with866

a nonpolynomial activation function can approximate any function. Neural networks, 6(6):867

861–867, 1993.868

[77] N. Srebro, K. Sridharan, and A. Tewari. Smoothness, low noise and fast rates. Advances in869

neural information processing systems, 23, 2010.870

[78] N. M. Boffi, S. Tu, N. Matni, J.-J. E. Slotine, and V. Sindhwani. Learning stability certificates871

from data. arXiv preprint arXiv:2008.05952, 2020.872

[79] E. A. Coddington and N. Levinson. Theory of ordinary differential equations. Tata McGraw-873

Hill Education, 1955.874

[80] B. Schürmann and M. Althoff. Optimal control of sets of solutions to formally guarantee875

constraints of disturbed linear systems. In 2017 American Control Conference (ACC), pages876

2522–2529. IEEE, 2017.877

[81] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.878

Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.879

28

