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1 ADJACENCY MATRIX AND FAIRNESS MASK CONSTRUCTION

1.1 FAIRNESS MASK CONSTRUCTION

Our proposed method only requires prior knowledge of what attributes are allowed or not allowed to
construct the fairness mask MF . For example, in loan example, the prior knowledge is that Race R is
only allowed to affect Y through income Q. Therefore, in the fairness mask, in the i-th column, only
the j-th row is set to be 0, and all others in the i-th column are set as 1, if Race is the i-th variable,
and income is the j-th variable. it means that except Race R→ Q income, all other paths including
Race R→ Z or R→ Y are all unfair paths.

In the non-root case, the MF is built in a similar way with the additional prior knowledge regarding
the latent variables that the latent variable is not allowed to affect Y through sensitive variables.

1.2 ADJACENCY MATRIX CONSTRUCTION

When the data both have categorical attributes (represented by one-hot encoding or embedding
vector) and the numerical attribute (represented by a scalar value), we can use the `2 norm of
the corresponding weight vector as the weight in the adjacency matrix. Specifically, take loan
example to illustrate the procedure to construct the adjacency matrix. Suppose A is a categorical
attribute, and is represented by a three dimension vector [A(1), A(2), A(3)]. The reconstruction
function is X2 = wA1

A1 + wA2
A2 + wA3

A3 + w4,2X4. The the w1,2 in the adjacency matrix is

w1,2 =

√
w2
A2

+w2
A3

+w2
4,2

3 .

2 INITIALIZATION AND OPTIMIZATION

Objective Function. When the sensitive attributes are root nodes, the overall loss function is:

L = ||Y − Ŷ ||22 + β||D − D̃||22 + γ1

(
tr(eW�W )− (dA + dX + 1)

)2
+γ2||W ||1 + α||W �MF ||1,

(1)

where Ŷ is defined in Eqn. (6), and D̃ is the reconstruction of D via the cascade data reconstruction
presented in Section 4.1.1.
Initialization. As mentioned previously, the cascade data reconstruction requires acyclic graph. To
satisfies this, we can initialize the adjacency matrix by the following two ways: (1) adopt the prior
knowledge about the basic acyclic graph; (2) pre-train the parameter by the following objective
function:

||Y − Ŷ ||22 + β||D − D̃
′
||22 + γ1

(
tr(eW�W )− (dA + dX + 1)

)2
, (2)

where D̃
′

is the data reconstructed by the observed data. Each node Vi in D̃
′

is calculated as:

V̂i
′

= fi (Π(Vi)W [iπ, i]), where Π(Vi) is the node Vi’s observed value, and W [iπ, i] is the same as
the one in Eqn. (3). Eqn. (2) replaces the cascade data reconstruction D̃ in Eqn. (1) with regular data
reconstruction D̃

′
, which not strictly requires acyclic graph.

Optimization. We adopt the Adam Kingma & Ba (2014) to optimize both Eqn. (2) and Eqn. (1).
Besides, at each iteration of optimizing Eqn. (1), the adjacency matrix W is forced to be acyclic.
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3 REPRODUCIBILITY

We are applying for the approval of code releasing from our affiliation. The hyper-parameter settings
of the experiment are set as follows:

• On the synthetic dataset, α, β are set as 0.5, γ1 and γ2 are set as 0.1, and the learning rate is
0.001.

• On adult dataset, the neural network in NN-CFG has two hidden layers and the dimension
of each hidden layer is 50. γ1 is 0.1, γ2 is 0.01. The hyper-parameter searching range of α
and β is [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0].

• On recommendation dataset, the shared layers have three hidden layers with dimension 32,
16, 8. The dimension of all embeddings is 8. γ1, γ2 are set as 0.1. The hyper-parameter
searching range of α, β and βz is [0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0].

4 EXPERIMENT ON SYNTHETIC DATASET

We conduct experiments on two synthetic datasets: Unfairness comes from selection bias Bareinboim
et al. (2014) and real causality, separately. We experimentally show that when unfairness comes from
selection bias, fairness regularization works as the de-bias, and when it comes from real causality,
there is a trade-off between utility and fairness.

4.1 DATA GENERATION

Figure 1 shows the causal graph of the above two cases. To better understand these two cases, suppose
Figure 1a represents the hiring example, where G is the gender, Q is the candidate’s quality, Y is the
employment status, and S denotes whether an individual applies for the position. S is affected by
gender and quality, which corresponds to the phenomenon that compared to males with the same
quality, females prefer to apply to more advanced positions. Therefore, in this dataset, most females
are rejected, which causes a spurious correlation between gender and employment status leading to
unfairness. In Figure 1b, sensitive attribute G is label node Y ’s direct cause, which is the source of
unfairness. The detailed data generation processes of two cases are in the following.

G Y

Q

S

(a) Case 1: selection bias.

G Y

Q

S

(b) Case 2: real causality.

Figure 1: Causal graphs of synthetic datasets.

Case 1: Unfairness Comes from Selection Bias. We first generate the underlying set with 1000
records by: G ∼ N(0, 4), Q ∼ N(0, 4), Y ∼ N(1.5Q− 1, 1). Then we generate the dataset with
selection bias, named as observed set, by introducing S. For each record [Gi, Qi, Yi], if Si = 1,
this record is also in the observed set, otherwise not. Si is sampled from a Bernoulli distribution
Ber(pi), where pi = min (0.99, 7× pN ([Gi, Qi])). pN ([Gi, Qi]) is the value of probability density
function of the multivariate Gaussian distribution with mean µ = [1, 0.5], and covariance σ =[

1 −0.5
−0.5 1

]
at point [Gi, Qi]. Totally, there are 439 records in the observed dataset and the

covariance between G and Y is −0.434.
Case 2: Unfairness Comes from Real Causality. Based on Figure 1b, the data is generated as:
G ∼ N(0, 4), Q ∼ N(0, 4), Y ∼ N(1.2A+ 0.5Q+ 2, 1). This procedure is repeated 1000 times.
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4.2 EXPERIMENT SETTINGS

The objective of this experiment is to reveal the relationship between utility and fairness. We compare
our proposed model with the following two base models: (1) Logistic regression using all attributes,
denoted as Y ∼ Q,A; (2) Logistic regression only using attribute Q to predict, denoted as Y ∼ Q.
Among them, Y ∼ Q is the ideal fair model in both two cases. Our proposed model is denoted as
LR-CGF since the linear logistic regression model is adopted as the causal mechanism function.
Evaluation. On the data of case 1, the observed data is split into training/testing set with a split ratio
0.8/0.2. All the models are trained on the training set, and evaluated on both the test set split from
the observed data and the whole underlying dataset. On the data of case 2, we follow the regular
training/testing split with a split ratio 0.8/0.2. The accuracy is adopted to measure the utility.

4.3 RESULTS ANALYSIS

Table 1 reports the results with 5-fold cross-validation. From the table, it is observed that in both
two cases, the proposed method LR-CGF has a similar performance with the ideal fair model, which
confirms the validity of our proposed model. Furthermore, on the underlying set, the fair models
Y ∼ Q and LR-CGF have superior performance. The reason is that the spurious correlation between
G and Y doesn’t hold any more on the underlying set and these two fair models successfully remove
such spurious correlation. In case 2, the unfairness comes from real causality, thus the fairness and
accuracy are actually a trade-off: imposing the fairness constraint would reduce the model utility.

Method
Case 1 Case 2

Observed Set Underlying Set Test Set

Y ∼ Q,G 0.841± 0.022 0.913± 0.004 0.859± 0.011
Y ∼ Q (Ideal) 0.800± 0.017 0.938± 0.002 0.703± 0.020

LR-CGF 0.795± 0.021 0.939± 0.007 0.727± 0.067

Table 1: Results on synthetic dataset.

To further explore the relationship between fairness and utility, we control the strength of fairness
regularization by setting different values to hyper-parameter α while others are fixed. The higher the
α is, the stronger the fairness regularization strength poses. Figure 2a shows the results on case 1. On
the underlying dataset, applying the fairness regularization (α > 0) can greatly improve the accuracy
compared with no fairness regularization (α = 0). Differently, the result shown in Figure 2b clearly
indicates the trade-off between fairness and accuracy.
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(a) Case 1: selection bias.

0.0 0.5 1.0 1.5
0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

(b) Case 2: real causality.

Figure 2: The effect of fairness regularization.

5 ADULT DATASET

5.1 EXPERIMENT SETTINGS

Dataset. The statistics of female and male in the dataset is shown in Table 2. From the table, it is
obvious that classic models trained on raw data are highly like to predict the females as low income
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compared to males. If banks use those models to predict the loan applicants’ income, it is unfair to fe-
males. Figure 3 shows the causal graph to the baselines and the arrows marked as red are unfair edges,
where G is gender, A is age, M is married, E is higher edu, O is managerial Occupation, J is
gov jobs, H is high hours, C is native country, Y is high income.

Gender No. of Low Income No. of High Income

Female 12909 1660
Male 20797 8503

Table 2: Statistics of Adult Dataset.

	G

	A 	C

	M 	E 	O 	Y

	H 	J

Figure 3: The causal graph of Adult Dataset.

Data Pre-processing for PSE-DR. To run the code of baseline PSE-DR1 provided by the authors
in Zhang et al. (2017), the Adult datasets requires additional stratification step to reduce the num-
ber of categories of each variable. The procedure of each variable is: higher edu: higher edu:
bhigher edu/10c; high hours: bhigh hours/20c; managerial occ: bmanagerial occ/5c;
gov jobs: bgov jobs/5c; age: bage/20c; native country: bnative country/5c, married:
bmarried/3c, where bxc denotes the floor of the scalar x, which is the largest integer i, such
that i <= x.
Evaluation Metric: Path-specific Effects (PSE). As suggested in Nabi & Shpitser (2018), we
formulate the path-specific effects (PSE) as the form of nested counterfactuals Shpitser (2013).
Intuitively, the variables along the pathways of interest are set as the value if the treatment variable is
set to the treated value. Along other pathways, they are set as if the treatment variable is set to the
control value, which turning off the effect passed along those pathways. Under this scheme, the PSE
of effect of Gender (denoted as G) along the paths G→M → · · · → Y and G→ Y in Figure 3 is :

E [Y (G = 1,M(G = 1), E(G = 0,M(G = 1)), O(G = 0, E(G = 0,M(G = 1))),

H(G = 0,M(G = 1)), J(M(G = 1), E(G = 0,M(G = 1))))]− E[Y (G = 0)],
(3)

where M(G = 1) denotes the variable M is its parent G had been set as 1; E(G = 0,M(G = 1)
denotes the variable E if its parent G have been set as 0, and its another parent M have been set as
the value if M ’s parent G had been set as G = 1. Other nested counterfactuals in Eqn. (3) can be
expressed similarly.

5.2 RESULTS OF LR-CGF

To explore the relationship between the reconstruction and fairness regularization, we fix one part’s
hyper-parameter and tunes the other. Figure 4 reports the results of LR-CGF, and similar trends to
NN-CGF can be observed.

1https://www.yongkaiwu.com/publication/zhang-2017-causal/zhang-2017-causal.zip
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Figure 4: Effects of reconstruction and fairness regularization.

5.3 GRAPH STRUCTURE LEARNING RESULTS

Figure 5 shows the adjacency matrix learned by NN-CGF on Adult dataset, which reflects the model
graph. The cell located in the i-th row and j-th column denotes the weight associated with Vi → Vj .
If the weight is equal to 0, then the edge Vi → Vj does not exist in the causal graph. From the figure,
it can be observed that in the model graph, the edge G→M and G→ Y are reduced.
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Figure 5: The adjacency matrix of NN-CGF on Adult Dataset.

5.4 RESULTS ON THE UNDERLYING SET.

Similar to the underlying set of the synthetic dataset, we construct an underlying set by randomly
select the same number of individuals in four groups shown in Table 2. Finally, in the underlying set,
the numbers of low-income female, high-income female, low-income male and high-income male
are all 1000. Figure 6 shows the effect of reconstruction part and the fairness on the model utility
of NN-CGF. For better comparison, we also plot the results on the test set split from the original
observed dataset, marked as blue line. In Figure 6a, the reconstruction part improves the model utility
in both two test sets. In Figure 6b, it is worth mentioning that in the underlying set, the fairness
regularization no longer sacrifices the model utility, instead, it improves the utility on the underlying
dataset. The reason is that the correlation between gender and income doesn’t hold anymore in the
underlying set, and the fairness regularization successfully corrects the bias due to such correlation.

6 EXPERIMENT IN RECOMMENDATION DATASET

6.1 EXPERIMENT SETTINGS

We adopt the Gini Index and Popularity Rate (PR) are also adopted to measure the fairness. Given
the item impression list K = [k1, k2, · · · , kI ], where ki represents the number of exposures of the
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Figure 6: Results on underlying set.

i-th item, the Gini Index is defined as: Gini Index(K) = 1
2|I|2k̄

I∑
i=1

I∑
j=1

|ki − kj |, where I is the

number of total items, k̄ is the mean of item impression list K. Gini Index measures the statistical
dispersion of the item exposure. Popularity rate is the ratio of popular items among the total items

recommended to the users, and is defined as: PR(K) =
I∑
i=1

Piki/
I∑
i=1

ki, where Pi is i-th item’s

value of item popularity, which is binary. For HR and NDCG, the higher the value is, the better the
performance is. For Gini Index and PR, the lower the value is, the fairer the model is.

6.2 NEURAL NETWORK STRUCTURE OF CGF IN RECOMMENDATION DATASET

Figure 7 shows the neural network structure of MLP-CGF, where Z is the concatenation of user em-
bedding Zu, rating related item embedding Zl, popularity related item embedding Zs and popularity
P . The weight Wl and Ws in the first layer control the flow of information into rating prediction and
popularity prediction, separately. After the first layer, the ratings and popularity tasks shared several
common layers, followed by their specific prediction layers.

𝑍! 𝑍" 𝑍# 𝑃

First laryer: 

𝑍:

𝑍×𝑊" 𝑍×𝑊#

shared common 
layers

Rating Popularity

shared common 
layers

∈ ℝ$×	(()!"#$*$)

Figure 7: Neural network structure of MLP-CGF.

The weighting matrices Wl and Ws control the information flow from Z to rating and popularity
prediction, respectively. The details of Wl and Ws are shown in Figure 8. The dimension of Wl and
Ws are both (3dembd + 1)× dshare, where dembd is the embedding size, dshare is the dimension of
the first layer in shared common layers. Each of the weights contains four parts that are Zu related
weights, Zl related weights, Zs related weights and P related weights. the P related weights W l

s in
Ws is zero matrix because in popularity prediction, ground-truth popularity value should be the input.
Notice that Zl and Xu should not affect item popularity, we also minimize the norm of Wu

s and W l
s.

Since the paths Zs → Y and P → Y are unfair as shown in Figure 9, the fairness regularization is:
LF = α

(
||W s

l ||1 + ||WP
l ||1

)
.
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Figure 8: Details of Wl and Ws in the first layer.
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Figure 9: Recommendation: Causal Graph with Effect Diversion.

7 PROOF OF THEOREM 4.1

The theorem shows that the generalization error relates to the reconstruction error (the first term) and
fairness regularization (RF ). It explains the benefits of minimizing the reconstruction error and the
fairness regularization jointly, which provides the theoretical support for our proposed framework.
We also notice that these two terms cannot achieve the minimal value simultaneously, except that the
observed graph of the original dataset is exactly the same as the fair graph. When the reconstruction
error is small, the model graph would be more likely close to the observed graph, which leads to a
high value of the fairness regularization term. Similarly, when the value of the fairness regularization
term is small, the model graph would be close to the fair graph, which results in a high value of the
reconstruction error. Our proposed method minimizes these two terms targeting a better trade-off
between fairness and prediction accuracy. In the following, we give the proof of theorem.

The generalization error of fair classifier hF on the distribution of observed data Dob can be written
as:

εD
ob

hF

=(εD
ob

hF − ε
DF
hF ) + εD

F

hF

≤
∣∣∣∣∫
A×X

`hF (a, x)
[
pD

F

(a, x)− pD
ob

(a, x)
]
dadx

∣∣∣∣+ εD
F

hF

≤ sup
g∈H

∣∣∣∣∫
A×X

g(a, x)
[
pD

F

(a, x)− pD
ob

(a, x)
]
dadx

∣∣∣∣+ εD
F

hF

=wass1

(
pD

F

, pD
ob
)

+ εD
F

hF ,

(4)

where Dob is the distribution of observed data, and DF is the distribution of data reconstructed from
fair graph.
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7.1 THE BOUND OF WASS1

(
pD

F

, pD
ob
)

When pD
ob

is normal distribution, i.e., xi|paG(xi) ∼ N (fpaG (xi), 1), where paG(xi) is xi’s parent

nodes in graph G. wass
(
pD

F

, pD
ob
)

has the following close form Chafai & Malrieu (2010):

wass1

(
pD

F

, pD
ob
)

= |µob − µF |+
√∑dA+dX

i=1

∣∣∣√λobi υobi −√λFi υFi ∣∣∣2
= |µob − µF |

+

√∑dA+dX
i=1

{(√
λobi −

√
λFi

)2

+ 2
√
λobi λ

F
i (1− υobi · υFi )

}
,

(5)

where
{
λobi
}dA+dX

i=1
,
{
λFi
}dA+dX

i=1
are ordered spectrum of Σob and ΣF , respectively. µob and µF are

the mean vectors of distribution Dob and DF . Σob and ΣF are the covariance matrices of distribution
Dob and DF .

{
υobi
}dA+dX

i=1
,
{
υFi
}dA+dX

i=1
are the associated orthonormal basis of eigenvectors. We

assume υobi · υFi > 0.

First term: If we assume: τ = ||LWD (·, ·)||2 < ∞, where LWD (·, ·) is the Euclidean distance
function, according to the Hoeffding‘s Inequality, the following inequality regarding the first term in
Eqn (5) holds with probability 1− δ,

||µob − µF ||2
=
∫
A×X LWD

([aob, xob], [aF , xF ])dadx

≤ ||D − D̃||2fro + τ

√
2 log 2

δ

m ,

(6)

where D is the observed samples, and D̃ is the reconstructed data.

Second term: According to corollary 4.2 and theorem 4.1 in Loukas (2017), with probability 1− δ,
we have the following:∑dA+dX

i=1

(√
λobi −

√
λFi

)2

=
∑dA+dX
i=1

(√
λobi −

√
λ̂obi

)2

+

(√
λ̂obi −

√
λ̂Fi

)2

+

(√
λ̂Fi −

√
λ̂Fi

)2

≤
∑dA+dX
i=1

κobi +κFi√
mδ

+

(√
λ̂obi −

√
λ̂Fi

)2

,

(7)

where (κobi )2 = λobi (λobi + tr(Σob)), (κFi )2 = λFi (λFi + tr(ΣF )), λ̂Fi and λ̂obi are the empirical
estimation of λFi and λobi , separately.

2
√
λobi λ

F
i (1− υobi · υFi )

≤2

√
(λ̂obi − λobi )(λ̂Fi − λFi ) + λ̂Fi (λ̂obi − λobi ) + λ̂obi (λ̂Fi − λFi ) + λ̂obi λ̂

F
i

≤2

√
κobi + κFi
mδ

+
1√
mδ

(κobi λ̂
F
i + κFi λ̂

ob
i ) + λ̂obi λ̂

F
i

≤2

√κobi + κFi√
mδ

+

√
κobi λ̂

F
i + κFi λ̂

ob
i

4
√
mδ

+

√
λ̂obi λ̂

F
i

 .

(8)

Combining Eqn. (5), Eqn. (6), Eqn. (7) and Eqn. (8), the following equality holds with probability
1− δ, for ∀δ > 0,

wass1

(
pD

F

, pD
ob
)

≤
(
||D − D̃||2fro + τ

√
2 log 2

δ

m + C1√
mδ

+ C2
4√
mδ

+ C3

) 1
2

,
(9)
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where C1 =
∑dA+dX
i=1 (κobi + κFi + 2

√
κobi + κFi ), C2 = 2

∑dA+dX
i=1

√
κobi λ̂

F
i + κFi λ̂

ob
i , C3 =∑dA+dX

i=1

(
λ̂obi + λ̂Fi

)
.

7.2 THE BOUND OF εD
F

hF
.

According to the Theorem 1 in Kyono et al. (2020), the expected error of hF on the modified dataset,
with probability 1− δ, ∀δ, γ > 0 satisfies the following:

εD
F

hF ≤ 4ε̂D
F

hF +
1

m

[
Rdag + C4(Rl1 +RF ) + log(

8

δ
)

]
+ C5, (10)

where C4 and C5 are the same as the C1 and C2 defined in Kyono et al. (2020) separately.

7.3 SUMMARY

The generalization error of hF on the observed dataset satisfies the following inequality with proba-
bility 1− δ, ∀δ > 0:

εD
ob

hF
≤
(
||D − D̃||2fro + τ

√
2 log 2

δ

m + C1√
mδ

+ C2
4√
mδ

+ C3

) 1
2

+4ε̂D
F

hF
+ 1

m

[
Rdag + C4(Rl1 +RF ) + log( 8

δ )
]

+ C5.

(11)
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