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Abstract

We argue to use Differentially-Private Local Stochastic Gradient Descent (DP-1

LSGD) in both centralized and distributed setups, and explain why DP-LSGD2

enjoys higher clipping efficiency and produces less clipping bias compared to clas-3

sic Differentially-Private Stochastic Gradient Descent (DP-SGD). For both convex4

and non-convex optimization, we present generic analysis on noisy synchronized-5

only iterates in LSGD, the building block of federated learning, and study its6

applications to differentially-private gradient methods with clipping-based sen-7

sitivity control. We point out that given the current decompose-then-compose8

framework, there is no essential gap between the privacy analysis of centralized9

and distributed learning, and DP-SGD is a special case of DP-LSGD. We thus build10

a unified framework to characterize the clipping bias via the second moment of11

local updates, which initiates a direction to systematically instruct DP optimization12

by variance reduction. We show DP-LSGD with multiple local iterations can13

produce more concentrated local updates and then enables a more efficient exploita-14

tion of the clipping budget with a better utility-privacy tradeoff. In addition, we15

prove that DP-LSGD can converge faster to a small neighborhood of global/local16

optimum compared to regular DP-SGD. Thorough experiments on practical deep17

learning tasks are provided to support our developed theory.18

1 Introduction19

Local Stochastic Gradient Descent (LSGD) [1, 2] and (Local/Client-Level) Differential Privacy (DP)20

[3, 4, 5] are two popular methods to address the issues of communication efficiency and data privacy,21

respectively. Rooted in the FedAvg framework first proposed in [6], instead of communicating and22

synchronizing on the local updates from each user at each iteration, LSGD [1] randomly samples23

participants to perform gradient descent on their local data in parallel and only aggregates their local24

updates periodically. Though LSGD is a simple generalization of SGD to a distributed setup with a25

lower synchronization frequency, empirically it is known to produce promising performance, with26

regard to both communication efficiency and convergence rate [7]. When each user holds i.i.d. data,27

LSGD provably achieves a linear speedup in the number of users with also asymptotic improvements28

on the communication overhead over regular distributed SGD to produce equivalent accuracy [1, 2].29

As for privacy preservation, DP [3, 8] provides a semantically precise way to quantify the data leakage30

from any processing. At a high level, DP is an input-independent guarantee which ensures that an ad-31

versary cannot infer the participation of an individual datapoint easily from the release. For example,32

the classic (ϵ, δ)-DP with small security parameters ϵ and δ implies a large Type I or Type II error for33

an adversarial hypothesis testing to guess whether an arbitrary individual is involved in the processing34

[9]. In DP research, one key problem is to determine the sensitivity, the worst-case influence/change35

on the output of the objective processing after arbitrarily replacing an individual in an input set. Only36
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with tractable sensitivity, one can then apply proper randomization/perturbation such as the Gaussian37

or Laplace mechanism [10] to produce required security parameters. Unfortunately, sensitivity is38

in general NP-hard to compute [11]. To this end, in practice, a commonly-applied alternative is the39

decompose-then-compose framework: a complicated processing is first (approximately) decomposed40

into several simpler (possibly adaptive) subroutines such as mean estimation, each of whose sen-41

sitivity is controllable. A white-box adversary is then assumed who can observe the intermediate42

computations, and an upper bound on the privacy loss is derived by the composition of the leakage43

from the virtual release in each step [12].44

In the applications of machine learning, where the processing function returns a model trained on45

possibly sensitive data, arguably the most popular and generic DP privatization method is DP-SGD46

[13, 14]. As a representative of the above-mentioned decompose-then-compose framework, DP-SGD47

views the SGD as a sequence of adaptive gradient mean estimations. To ensure a bounded sensitivity48

guarantee, each per-sample gradient is clipped, usually, in l2-norm [14] to some constant c, which is49

essentially a projection to an l2-norm ball of radius c. Noise, which is determined by both the number50

of iterations T and the clipping threshold c (sensitivity bound), is then added to the clipped stochastic51

gradient in each iteration to produce satisfied DP parameters (ϵ, δ) under T -fold composition. A wider52

dimension and a longer convergence time T will consequently require a larger DP noise. Though the53

implementation of DP-SGD does not require any additional assumptions on either model or training54

data, it is notorious for heavy utility loss, especially for deep learning. Moreover, the understanding55

of the clipping bias from this artificial sensitivity control remains limited. In general, due to the bias,56

clipped SGD will not converge even without noise perturbation [15, 16].57

Given the artificial assumption that DP-SGD releases the intermediate computations, there is no58

essential gap between the privacy analysis of the centralized and local SGD, except that in the59

distributed setup one may apply different DP metrics such as Local DP (LDP) [4] or client-level DP60

[5] to consider the privacy preservation for each user’s local data. More interestingly, it is worth61

noting the connection among different problems in federated learning and DP-SGD that are essentially62

equivalent. First, it is not hard to see that DP-SGD is a special case of DP-LSGD. DP-SGD can63

be viewed as: n nodes, each holds a sample, and a virtual server collects the clipped stochastic64

gradient from a subset of sampled nodes in every iteration, and publishes a noisy gradient descent.65

DP-LSGD can be similarly defined where the only difference is that the server may not synchronize66

on each iteration, but clips and aggregates a linear combinations of local gradients, periodically.67

Thus, as a primary concern in federated learning, a smaller communication overhead in a lower68

synchronization/aggregation frequency would also imply less leakage and a smaller composition69

bound of privacy loss. On the other hand, the study on the utility loss by perturbation and artificial70

sensitivity control (clipping) could also be used to analyze federated learning with compressed71

communication [17] where there exists quantification error in broadcasted local updates. Therefore,72

in this paper, we aim to provide a unified analysis for both noisy LSGD and DP-LSGD/SGD to get73

new insights. Before we can build useful theory to capture these concerns from different perspectives,74

several technical challenges need to be addressed.75

Utility of "Synchronized/Published" Iterate Only: Many existing convergence results [2, 18, 19,76

20, 21] on non-private LSGD are developed on the (weighted) average of all iterates. These include77

the intermediate iterates produced during the local updates from each user/node, which will not be78

exposed or shared. To properly characterize the effect of perturbation, a more appropriate and realistic79

convergence guarantee is to measure the performance of synchronized (shared) iterates only. This is80

also important to help understand the practical performance of LSGD as neither the server nor users81

have access to all intermediate computations. Such measurement is especially necessary when we82

apply LSGD in a private version: the utility of concern is only with respect to the released outputs,83

and anything assumed to be published would incur privacy loss and increase the scale of DP noise.84

Clipping Bias and Data Heterogeneity: In practice, tight sensitivity of many data processing85

algorithms is intractable and thus a very popular but artificial control is clipping. However, clipping86

could also bring non-negligible bias. In general, there is no convergence guarantee for clipped SGD87

if we only assume the stochastic gradient is of bounded variance [15], though under more restrictive88

assumptions, for example, when the stochastic gradient is in a symmetric [15] or light-tailed [22]89

distribution, or provided generalized smoothness [23], some (near) convergence results are known. A90

concise characterization of such clipping bias still largely remains open, especially for deep learning.91

The bias is even more complicated in the more general DP-LSGD. To provide meaningful theory92

to instruct systematic bias reduction, we do not want to assume Lipschitz continuity or bounded93
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gradient, which may make the analysis trivial and impractical. Thus, the desired analysis essentially94

captures the scenario given heavy data heterogeneity, and the results should not require a bounded95

difference among the local updates.96

In this paper, through tackling the above-mentioned challenges, we aim to provide useful and intuitive97

theory to understand practical performance of LSGD and instruct optimization with DP guarantees.98

In particular, we want to explain how DP-LSGD out-performs regular DP-SGD. We summarize our99

contributions as follows.100

1. With only a mild assumption that the stochastic gradient is of bounded variance, we present101

the convergence analysis on the released-only iterates of LSGD under perturbation for both102

convex and non-convex smooth optimization in Theorem 3.1 and 3.2. In particular, for the103

general convex case, we show more powerful last iterate convergence, which could be of104

independent interest in developing generic last-iterate analysis with unbounded gradients.105

2. We then generalize our results to study the utility of DP-LSGD, where DP-SGD becomes106

a special case. In particular, we use the incremental norm of local update (see Definition107

4.1) to characterize the clipping bias and show DP-LSGD has a faster convergence rate to a108

small neighborhood of global/local optimum as compared to DP-SGD.109

3. We further show LSGD behaves as an efficient variance reduction of local update, where110

multiple local GDs with a small learning rate cancel out substantial sampling noise, and111

enable more efficient clipping compared to DP-SGD. Thorough experiments show that112

DP-LSGD produces a much sharpened utility-privacy tradeoff in practical deep learning.113

1.1 Related Works114

Convergence Analysis of LSGD: With the increasing scale of both training data and models,115

federated learning has become an important paradigm in modern machine learning, where LSGD and116

its variants form the building block. Though the idea of LSGD can be traced back to earlier works117

[24, 25], the theoretical convergence analysis has only been proved recently. A common strategy to118

show convergence is to consider a virtual average of all the intermediate iterates produced by each119

user, and keep track of the divergence (dissimilarity) between the virtual average and the local iterate.120

In the setup where each user holds i.i.d. data, Stich in [1] studied strongly-convex optimization with121

LSGD and showed a linear speedup in the number of users/nodes. [26] presented non-convex analysis122

under the Lipschitz continuity assumption where the divergence of local update is also bounded.123

For the more general applications with heterogeneous data, [27] studied the convex case with local124

GD (without sampling on either users or users’ local data) but still under Lipschitz continuity. [2]125

presented more generic and tighter analysis for LSGD without assumptions on bounded gradient for126

both strongly and general convex optimization. Further generalization of LSGD to the decentralized127

setup under arbitrary network topology was considered in [19, 28, 29]. However, many existing128

works [2, 19, 28] only showed the convergence rate relying on all the intermediate averages. To our129

knowledge, the first generic analysis for synchronized-only iterates was shown in [30]. [30] proposed130

Scaffold, a generalized LSGD with careful correction on the client-drift caused by data heterogeneity.131

Compared to existing works, in this paper, we prove more powerful last-iterate analysis for general132

convex optimization with clipping and perturbation for privacy. It is also worth mentioning that with133

a different motivation, there is another line of works also studying noisy LSGD to capture the effect134

of compressed local updates to further save the communication cost. But, in most existing related135

works [17, 31], the compression error is assumed to be independent with zero-mean. As we need to136

study DP-LSGD with clipped local update, which introduces bias in the local update generation, in137

this paper we present more involved analysis to handle such adaptive and biased perturbation.138

Convergence Analysis of DP-SGD and DP-LSGD: Asymptotically, under Lipschitz continuity, DP-139

SGD is known to produce a tight utility-privacy tradeoff [32, 33], where no bias is produced given a140

clipping threshold larger than the Lipschitz constant. However, without Lipschitz continuity, practical141

understanding of DP-SGD remains limited. On one hand, negative examples are shown in [15, 16]142

where clipped-SGD in general will not converge, and in practice clipped-SGD does produce bias143

and has a lower convergence rate, especially in deep learning applications compared to regular SGD144

[16]. On the other hand, under more restrictive assumptions on the stochastic gradient distribution,145

clipped-SGD can be shown to (nearly) converge [15, 22, 23]. A generic characterization on the146

clipping bias still largely remains open. As a consequence, there is little known meaningful theory to147

3



systematically instruct optimization algorithms with DP guarantees, and most existing private deep148

learning works are empirical, which aim to search for the optimal model and hyperparameters for149

objective training data [34, 35, 36]. As for DP-LSGD, to our knowledge the only known theoretical150

result that captures the clipping bias is [16]. However, [16] still assumes globally bounded gradient151

compared to bounded second moment as assumed in our results, and its main motivation is to study152

the clipping effect in client-level DP. In this paper, we show more intuitive and generic analysis of153

DP-LSGD for both convex and non-convex optimization, and our motivations are also very different.154

We set out to provide usable quantification on the utility loss due to clipping and we argue to apply155

DP-LSGD both in the centralized and distributed setup, since DP-LSGD can significantly reduce the156

clipping bias with a faster convergence rate.157

2 Preliminaries158

We focus on the classic Empirical Risk Minimization (ERM) problem. Given a dataset D =159

{(xi, yi), i = 1, 2, · · · , n}, the loss function is defined as F (w) = 1
n ·

∑n
i=1 f

(
w, xi, yi

)
= 1

n ·160 ∑n
i=1 fi(w). We will consider the cases where the loss function fi(w) : W → R+ is convex or161

non-convex. w∗ = argminw F (w) represents the global optimum. Some formal definitions about162

the properties of the objective loss function are defined as follows.163

Definition 2.1 (Smoothness). A function f is β-smooth on W if the gradient ∇f(w) is β-Lipschitz164

such that for all w,w′ ∈ W , ∥∇f(w)−∇f(w′)∥ ≤ β∥w′ − w∥.165

Definition 2.2 (Convexity and Strong Convexity). A function f(w) is λ-convex on W if for all166

w,w′ ∈ W , λ
2 ∥w − w′∥2 ≤ f(w) − f(w′) − ⟨∇f(w′), w − w′⟩. We call f(w) general convex if167

λ = 0, and f(w) is strongly convex if λ > 0.168

Assumption 2.1 (Bounded Variance of Stochastic Gradient). For any w ∈ W and an index i that is169

randomly selected from {1, 2, · · · , n}, there exists τ > 0 such that E[∥∇F (w)−∇fi(w)∥2] ≤ τ .170

Assumption 2.1 is the only additional assumption we need for the analysis of non-private LSGD171

without clipping. We formally present the non-private LSGD algorithm in Algorithm 1 which uses172

non-clipped local update (3). The whole process is formed of T phases. In each phase, by q-Poisson173

sampling, in expectation (nq) many users will be selected to perform K local gradient descents174

on their local data before broadcasting the local update. To match the DP-LSGD where the local175

function fi(w) held by each user may only be determined by a single datapoint, we do not consider176

an additional stochastic gradient oracle on the local function in Algorithm 1, but only assume random177

sampling on the user level at each phase. However, our results can be easily generalized to the178

scenario with stochastic local gradient. Moreover, we assume Poisson sampling in Algorithm 1 so as179

to match the setup of DP-LSGD, since given current studies on privacy amplification by sampling,180

Poisson sampling can produce the tightest results [37] (and has become the most popular option in181

practice [36, 38]). In the following, we introduce the definition of DP.182

Definition 2.3 (Differential Privacy [38]). Given a universe X ∗, we say that two datasets X,X ′ ⊆ X ∗183

are adjacent, denoted as X ∼ X ′, if X = X ′ ∪ x or X ′ = X ∪ x for some additional datapoint184

x ∈ X . A randomized algorithm M is said to be (ϵ, δ)-differentially-private (DP) if for any pair of185

adjacent datasets X,X ′ and any event set O in the output domain of M, it holds that186

P(M(X) ∈ O) ≤ eϵ · P(M(X ′) ∈ O) + δ.

In Definition 2.3, we apply the unbounded DP definition as adopted in most existing DP-SGD works187

[16, 35, 38], where the two adjacent datasets are defined to differ in one datapoint. One may also188

apply the bounded DP definition [8] by defining the adjacent datasets as arbitrarily replacing a189

datapoint. However, as a stronger definition, bounded DP will also face a larger sensitivity bound.190

We can now formally describe DP-LSGD and DP-SGD. In (2) of Algorithm 1, a clipping operation191

on a vector v with threshold c is defined as CP(v, c) = v ·min{1, c/∥v∥}, which ensures a bounded192

sensitivity up to c. Using the clipped local update (2), by selecting Q(t) to be proper DP noise,193

Algorithm 1 captures DP-SGD when K = 1 and DP-LSGD for general K ≥ 1. DP-LSGD (SGD) is194

essentially an LSGD (SGD) with clipped local update (per-sample gradient) and additional DP noise.195

Running for T iterations with a total privacy budget (ϵ, δ), one may select Q(t) ∼ N (0, σ2 · Id)196

where σ = Õ(qc
√
T log(1/δ)/ϵ) by the composition bound [38]. The privacy analysis and the noise197

bound are identical for both DP-LSGD and DP-SGD given the same clipping threshold c.198
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Algorithm 1 (Differentially Private) Local SGD with Noisy (Clipped) Periodic Averaging
1: Input: A system of n workers where each holds a local loss function F (w) = fi(w), sampling

rate q, update step size η, local update length K and global synchronization number T , clipping
threshold c, and initialization w̄(0) with synchronization noise Q(1:T ).

2: for t = 1, 2, · · · , T do
3: Implement i.i.d. sampling to select an index batch S(t) =

{
[1], · · · , [Bt]

}
from {1, 2, · · · , n}

of size Bt.
4: for i = 1, 2, · · · , Bt in parallel do
5: w

(t,0)
[i] = w̄(t−1).

6: for k = 1, 2, · · · ,K do
7:

w
(t,k)
[i] = w

(t,k−1)
[i] − η∇f[i](w

(t,k−1)
[i] ). (1)

8: end for
9: Clip the local update as ∆w

(t)
[i] = CP(w

(t,K)
[i] − w̄(t−1), c)

10: end for
11: if to ensure Differential Privacy with clipping then
12:

w̄(t) = w̄(t−1) +
1

nq
· (

Bt∑
i=1

∆w
(t)
[i] ) +Q(t) (2)

13: else
14:

w̄(t) =
1

nq
· (

Bt∑
i=1

w
(t,K)
[i] ) +Q(t). (3)

15: end if
16: end for
17: Output: w̄(t) for t = 1, 2, · · · , T .

We want to stress again that our motivation to study DP-LSGD is not because we only focus on the199

federated setup, but to provide a unified analysis of the clipping bias and argue for using DP-LSGD200

even in the centralized setup. Our results are straightforwardly applicable to distributed learning with201

local DP [4] or client-level DP [5], where the only difference is that we may add a larger noise Q(t)202

determined by the number of local datapoints or the users involved, respectively, for these stronger203

DP definitions. As for the possible communication restriction where we need to add discrete noise of204

finite precision, one may replace the Gaussian noise by the Binomial mechanism [39].205

3 Convergence of Synchronized-Only Iterate in Noisy Non-Clipped LSGD206

In this section, we will study the convergence analysis of LSGD in Algorithm 1 using the non-clipped207

local update (3) for both convex and non-convex optimization.208

Theorem 3.1 (Last-iterate Convergence of Noisy LSGD in General Convex Optimization). For an209

objective function F (w) = 1
n ·

∑n
i=1 fi(w) where fi(w) is convex and β-smooth with variance-210

bounded gradient (Assumption 2.1), when η < min{ β√
24K

, 1
20β ,

1
2β+3Kβ/(nq)}, log(TK) ≥ 2, and211

Q(t) is an independent noise such that E[Q(t)] = 0 and E[∥Q(t)∥2] ≤ Q̄, for some parameter Q̄ for212

t = 1, 2, · · · , T , when K2 = O(nq), Algorithm 1 with (3) ensures213

E[F (w̄(T ))] ≤ O(1) ·
(∥w̄(0) − w∗∥2

η(TK + 1)
+ log(TK + 1)

(ητ
nq

+K2τη2 + Q̄/η + τη
)

+ η(log(TK) + 1)
(
∥w̄(0) − w∗∥2 + T

(
βη3K3τ +

K4β2η4τ +K2η2τ

nq
+ Q̄

))
= Õ(

∥w̄(0) − w∗∥2√
TK

+
τ√
TK

+
Kτ

T
+
√
TKQ̄), if η = O(1/

√
TK).

214
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The proof can be found in Appendix A. To prove Theorem 3.1, with a careful analysis on ∥w̄(t)−w∗∥2,215

we develop a new last-iterate analysis framework, different from existing works [40, 41, 42] which216

must count on the assumption of bounded gradient. In Theorem 3.1, we need to assume the noise217

Q to be independent and of zero-mean. Because we do not assume Lipschitz continuity of F (w),218

we cannot provide a meaningful upper bound of the deviation between F (w) and F (w + Q) for219

arbitrary w and Q in general. However, provided the Lipschitz assumption, Theorem 3.1 can be220

easily generalized to handle biased perturbation. In Section 4, with an additional assumption on the221

similarity of the local functions (Assumption 4.2), we will show how to handle the clipping bias as a222

special biased noise. When there is no noise Q̄ = 0, provided that K = O(T 1/3), we show LSGD223

achieves Õ(∥w̄
(0)−w∗∥2+τ

T 2/3 ) last-iterate convergence in general-convex optimization.224

We now study the non-convex scenario.225

Theorem 3.2 (Synchronized-only Iterate Convergence of Noisy LSGD in Non-convex Optimization).226

For an arbitrary objective function F (w) = 1
n ·

∑n
i=1 fi(w), where fi(w) is β-smooth and satisfies227

Assumption 2.1, and for arbitrary perturbation (not necessarily independent or of zero mean) where228

E[∥Q(t)∥2] ≤ Q̄, when η < min{ β√
24K

, 1
4βK , 1

20β }, Algorithm 1 with (3) ensures that229

E[
∑T

t=1 ∥∇F (w̄(t−1))∥2

T
] ≤ 4F (w̄(0))

TKη
+

16η2τβ2K2

nq
+

4(1 + βη)
∑T

t=1 E[∥Q
(t)
i ∥2]

η2KT

= O(
τ1/3

T 2/3(nq)1/3
+

T 2/3τ2/3KQ̄
(nq)2/3

),

(4)

when we select η = O( (nq)1/3

T 1/3Kτ1/3 ). In particular, when Q(t) is independent and E[Q(t)] = 0, and
η = Θ(1/K), then

E[
∑T

t=1 ∥∇F (w̄(t−1))∥2

T
] ≤ O

(F (w̄(0))

ηTK
+ τ +

∑T
t=1 βE[∥Q(t)∥2]

ηTK

)
= O(

1

T
+ τ + Q̄).

230

The proof can be found in Appendix B. In Theorem 3.2, we provide an analysis on the effect of generic231

perturbation, which can also be used to capture the clipping bias in DP-LSGD. When there is no232

perturbation, Theorem 3.2 has two implications. First, we show to ensure minE[∥∇F (w̄(t))∥2] ≤ κ,233

we need T = O(

√
τ/(nq)

κ3/2 ), which is tighter than the state-of-the-art results O( τ/(nq)κ2 +
√
τ

κ3/2 ) in234

[30]. Second, compared to O(1/T 2/3), we also show that LSGD can converge faster in O(1/T )235

to a τ -neighborhood of a saddle point. This is helpful to understand the practical performance of236

DP-LSGD with bias, as discussed in Section 4.2.237

As a final remark, we want to mention it is possible to improve the convergence rate from O(1/T 2/3)238

to O(1/T ) via careful variance reduction or error feedback mechanism, such as Scaffold [30] or239

FedLin [43]. However, the proper implementation of those advanced tricks in DP-LSGD with240

additional sensitivity control is not clear. As a first step to systematically study the generic clipping241

bias, in this paper we only focus on the regular LSGD. We will explain and discuss possible242

generalizations in Section 6.243

4 Utility and Clipping Bias of DP-LSGD and DP-SGD244

In this section, we move to study DP-LSGD with clipped local update (2) in Algorithm 1. To have245

a clear comparison with DP-SGD, we still consider the centralized setup and F (w) = 1/n · fi(w)246

where each local function fi(w) is determined by a single sample. To capture the clipping bias, we247

need to introduce a new term, termed incremental norm.248

Definition 4.1 (Incremental Norm). Consider applying the private and clipping version of Algorithm 1249

with (2) on F (w) =
∑n

i=1 fi(w). In the t-th phase, we define Ψ(t)
i = 1

(
∥∆w

(t)
i ∥ > c

)
·(∥∆w

(t)
i ∥−c)250

as the incremental norm of the local update from fi(w) compared to the clipping threshold c, for251

t = 1, 2, · · · , T .252

In Definition 4.1, the incremental norm Ψ
(t)
i simply quantifies the difference between the norm of253

the local update and its clipped version from fi(w). In the following, we will always assume the DP254

noise injected E[∥Q(t)∥2] = σ2d, following the classic privacy analysis of DP-SGD [38].255
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It is not hard to observe that the clipped local update is essentially a scaled version of the original256

update, and thus virtually one may view DP-LSGD as a generalization of noisy LSGD but each local257

update applies a different and adaptively-selected learning rate. To show meaningful characterization258

on the difference among those learning rates, we need the following assumption as a generalization259

of bounded-variance stochastic gradient.260

Assumption 4.1 (Incremental norm of Bounded Second Moment). When applying the clipped version261

of Algorithm 1 via (2) on an objective function F (w) = 1
n · fi(w), E

[(∑n
i=1(Ψ

(t)
i )2

)
/n

]
is upper262

bounded by B2, for some global parameter B for t = 1, 2, · · · , T .263

Assumption 4.1 basically states that in expectation the square of l2-norm of each local update is264

bounded. Assumption 4.1 also suggests that E
[(∑n

i=1 Ψ
(t)
i

)
/n

]
≤ B.265

4.1 Utility of DP-LSGD in Convex Optimization266

Another assumption we need for the anlysis of DP-LSGD on general convex optimization is the267

similarity among the local functions.268

Assumption 4.2 (γ Similarity). For F (w) = 1/n ·
∑n

i=1 fi(w), local functions fi are of γ-similarity269

to F such that for any w ∈ W , |fi(w)− F (w)| ≤ γ, for some constant γ > 0.270

The main reason why we need this additional Assumption 4.2 is because we do not assume Lipschitz271

continuity of F (w). Thus, we alternatively consider to use the similarity among local functions to272

characterize the deviation of the evaluation of F (·) on biased iterates.273

Theorem 4.1 (Last-iterate of DP-LSGD in General Convex Optimization). For an arbitrary objective274

function F (w) = 1
n ·

∑n
i=1 fi(w) where fi(w) is convex and β-smooth, and under Assumptions 2.1,275

4.1 and 4.2, when η = O(1/
√
TK) and Q(t) is independent DP noise such that E[Q(t)] = 0 and276

E[∥Q(t)∥2] = σ2d, t = 1, 2, · · · , T , then when K2 = O(nq), DP-LSGD with clipping threshold c277

ensures that278

c

c+ B
· E[F (w̄(T ))− F (w∗)] = Õ

(
(

1√
TK

+
K

nT
)∥w̄(0) − w∗∥2

+ (
K

nT
+

1√
TK

)(1 +
K3/2

√
T

+
K

nq
)τ + (

K3/2

√
Tn

+ 1)
γB

c+ B
+
√
TKσ2d

)
.

(5)

For (ϵ, δ)-DP, where σ = Õ(
c
√

T log(1/δ)

nϵ ), we have that279

E[F (w̄(T ))− F (w∗)]

= Õ
( c+ B

c
·
(∥w̄(0) − w∗∥2√

TK
+ (

1√
TK

+
K

T
)τ
)

︸ ︷︷ ︸
(A)

+
γB
c︸︷︷︸

(B)

+
c+ B
c

· T
3/2K1/2 log(1/δ)dc2

n2ϵ2︸ ︷︷ ︸
(C)

)
.

280

The proof can be found in Appendix C. We focus on a practical scenario where B = O(c), i.e., the281

incremental norm of local updates is in the same order of the clipping threshold c selected, and thus282

(c + B)/c = O(1). From Theorem 4.1, we show the last-iterate utility of DP-LSGD is captured283

by three terms: (A) a similar convergence rate as regular LSGD, (B) a clipping bias, and (C) the284

DP noise variance. First, ignoring the bias and noise, DP-LSGD still enjoys a convergence rate285

Õ(∥w̄
(0)−w∗∥2

√
TK

+ ( 1√
TK

+ K
T )τ). Second, the clipping bias is captured by (γB)/c. This matches our286

intuition that a larger incremental norm B combined with a smaller clipping threshold c will imply a287

more significant change on the local update and thus a larger bias. The last accumulated perturbation288

term is determined by the noise injected across each phase with an effect of Õ(T
3/2K1/2 log(1/δ)dc2

n2ϵ2 )289

for (ϵ, δ)-DP under T -fold composition.290

As we consider the very generic setup with non-trival clipping, Theorem 3.2 cannot be directly com-291

pared to the classic DP-utility tradeoff [32] given Lipschitz continuity, where a utility loss Θ̃(
√
d/nϵ)292

is tight for convex optimization under (ϵ, δ)-DP. However, we have the following interesting observa-293

tions. First, when we take the clipping threshold c = O(η) = O(1/
√
TK) and K = O(T ·d/(n2ϵ2)),294
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DP-LSGD achieves the same optimal rate Õ(
√
d/nϵ) [33] ignoring the clipping bias. Second and295

more important, when the stochastic gradient variance τ is in the same order of the clipping bias296

O(γB/c), then by selecting c = Θ(η) and K = Θ(T ), Theorem 4.1 suggests that DP-LSGD will297

converge in O(1/T ) to an O(γB/c+ d
n2ϵ2 ) neighborhood of the global optimum. As a comparison,298

when we select K = 1 in Theorem 4.1, it becomes the analysis of DP-SGD but the convergence299

rate to the neighborhood of global optimum in the same scale O(γB/c+ d
n2ϵ2 ) is only O(1/

√
T ).300

Moreover, as we will show in the next section, the local update bound B in DP-SGD with K = 1301

in practice would be much larger than that of DP-LSGD with a relatively larger K. As a simple302

generalization, we also include an analysis of DP-LSGD on strongly-convex functions in Appendix303

D, and we move our focus to the non-convex optimization in the following.304

4.2 Utility of DP-LSGD in Non-convex Optimization305

Theorem 4.2 (DP-LSGD in Non-convex Optimization). For F (w) = 1
n ·

∑n
i=1 fi(w) where fi(w)306

is β-smooth and satisfies Assumptions 2.1 and 4.1, when η = O(1/K), DP-LSGD ensures that307

E[
∑T

t=1 ∥∇F (w̄(t−1))∥2

T
] ≤ 4F (w̄(0))

TKη
+

16η2τβ2K2

nq
+

4(1 + βη)
(
B2/q + σ2d

)
η2K

. (6)

When we select η = O( 1√
TK

) and K = Θ(T ), for (ϵ, δ)-DP we have that308

E[
∑T

t=1 ∥∇F (w̄(t−1))∥2

T
] = Õ(

F (w̄(0))

T
+

τ

nq
+

B2T

q
+

d

n2ϵ2
). (7)

309

The proof can be found in Appendix E. For the analysis of DP-LSGD in non-convex optimization,
we do not need Assumption 4.2 on the similarity among local functions and Theorem 4.2 is simply
obtained by substituting the clipping error from each phase into Theorem 3.2. To have a more clear
picture, we still consider a practical scenario when B = B0 · η for some constant B0 and the variance
τ is also some constant. Then, from (7) we have that

E[
∑T

t=1 ∥∇F (w̄(t−1))∥2

T
] = O

(F (w̄(0))

T
+

1

nq
+

B2
0

q
+

d

n2ϵ2
)
= Õ

( 1
T

+
1

q
+

d

n2ϵ2
)
.

In other words, similar to the convex case, DP-LSGD will converge at a rate of O(1/T ) to an310

Õ(1 + d/(n2ϵ2)) neighborhood of a saddle point given some constant sampling rate q. As a311

comparison, for DP-SGD when K = 1, from Theorem 3.2 we can only ensure an O(1/
√
T )312

convergence rate to a same Õ(1 + d/(n2ϵ2)) neighborhood.313

5 Why DP-LSGD Produces Less Bias and Better SNR314

Throughout the previous section, we showed that asymptotically DP-LSGD enjoys a faster conver-315

gence rate to a neighborhood of (global/local) optimum compared to DP-SGD. We characterized316

the clipping bias mainly based on the second moment upper bound B2 of the incremental norm317

Ψ
(t)
i of local updates. In this section, we proceed to empirically study the Ψ

(t)
i , and the tradeoff318

between clipping bias and DP (Gaussian) noise in practical deep learning tasks. We will explain why319

DP-LSGD could produce smaller bias and enable more efficient clipping compared to DP-SGD.320

To produce good utility-privacy tradeoff, a proper selection of the clipping threshold c is important.321

Many existing works are devoted to optimizing the selection of c by either grid searching [35] or322

adaptive fine-tuning [44]. A smaller c requires less DP noise. But, as a tradeoff shown in Theorem323

4.1 and 4.2, a smaller c and a consequently a larger B will also lead to a heavier clipping bias. Thus,324

from the perspective of signal-to-noise ratio (SNR), an ideal scenario is that the l2-norm of each325

local update is concentrated such that we can maximize the efficiency of the clipping power c with326

a small clipping effect for most local updates. Interpreted via our developed theory of clipping327

bias, it is expected that given the clipping threshold c, the incremental norm Ψ
(t)
i would be small,328

captured by B in (5) and (7). In Fig. 1 (a,b), we plot various statistics of the incremental norm Ψ
(t)
i329

for DP-LSGD and DP-SGD, respectively, on training CIFAR10 [45]. By our analysis, DP-LSGD330

usually should apply a smaller learning rate η. To have a fair comparison, we consider the normalized331
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Figure 1: Training ResNet 20 on CIFAR10 with DP-LSGD (K = 10, η = 0.025, c = 1) and
DP-SGD (K = 1, η = 1, c = 1) under (ϵ = 2, δ = 10−5)-DP, with expected batch size 1000.

incremental norm Ψ
(t)
i /η. Given the same clipping threshold, comparing Fig. 1 (a) and (b), the mean332

of normalized incremental norm, captured by B/η in our theorems, of DP-LSGD is only around 32%333

of that of DP-SGD. The corresponding standard deviation is around only 40% of that of DP-SGD.334

One may also compare the 25% and 75% quantiles, which suggest that more local updates bear335

less clipping influence in DP-LSGD, thus enjoying a higher clipping efficiency. We also report336

the comparison when training ResNet20 [46] on SVHN [47] in Fig. 2 in Appendix F with similar337

observations. Details of experiment setups and the anonymous GitHub code link can be found in338

Appendix F.339

Dataset and Method \ ϵ 1.5 2.0 2.5 3.0 3.5 4.0

CIFAR10, DP-LSGD (K = 10) 59.4(±0.5) 64.0(±0.3) 66.2(±0.4) 67.7(±0.3) 68.7(±0.2) 69.9(±0.3)
CIFAR10, DP-SGD (K = 1) 49.8(±1.2) 58.7(±1.0) 59.9(±1.2) 60.6(±0.8) 62.1(±0.6) 62.8(±0.6)
SVHN, DP-LSGD (K = 10) 83.2(±0.4) 84.4(±0.5) 85.7(±0.5) 85.4(±0.4) 86.1(±0.4) 86.5(±0.3)
SVHN, DP-SGD (K = 1) 74.5(±0.8) 78.2(±0.6) 79.8(±0.6) 80.3(±1.0) 81.7(±0.4) 82.2(±0.5)

Table 1: Test Accuracy of ResNet20 on CIFAR10 and SVHN via DP-LSGD and DP-SGD under
various ϵ and fixed δ = 10−5, with expected batch size 1000.

In Fig.1 (c), we record the performance of DP-LSGD and DP-SGD, which coincides with our theory340

that DP-LSGD has a smaller clipping bias and a faster convergence rate. The smaller incremental341

norm in DP-LSGD is not surprising. With relatively larger K, for each individual function fi(w),342

though the K local gradients are correlated and essentially determined by a single sample, their343

aggregation still averages out substantial sampling noise and makes the l2-norm of local updates more344

concentrated. In Table 1, we include additional comparison between their performance on CIFAR10345

[45] and SVHN [47]; DP-LSGD produces significant improvements.346

6 Conclusion and Prospects347

In this paper, via LSGD, we provide a unified analysis of the clipping bias and the utility loss in348

privacy-preserving gradient methods for both centralized and distributed setups. Provided the generic349

analysis, we develop the connections between the bias and the second moment of local updates.350

This initializes a new direction to systematically instruct private learning by connecting the research351

of variance reduction in distributed optimization. In this paper we only focus on regular LSGD352

to show its advantage over DP-SGD, but advanced acceleration methods [30, 31, 43] are known353

in non-private federated learning to further reduce the “local-update drift” caused by (per-sample)354

data heterogeneity. This could then further reduce the clipping bias given local updates of smaller355

variance. Thus, a promising future direction is to understand and incorporate those techniques356

within the sensitivity control framework. Another important issue we have not fully explored is the357

software implementation of DP-LSGD in the centralized case. For DP-SGD, many PyTorch libraries358

with fast per-sample gradient computation in low memory overhead have been developed, such as359

Opacus [48]. However, in all above-presented experiments, we simulate DP-LSGD in a distributed360

environment and compute each local update in parallel at a cost of large memory. Given limited361

hardware resources, this restricts the application of larger batchsize (tens of thousands) and deploying362

deeper neural networks, which are known to produce much better utility-privacy tradeoffs [36, 49].363

We leave empirical efficiency improvement to future work.364
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A Proof of Theorem 3.1: Last-iterate Convergence of Noisy LSGD in General503

Convex Optimization504

We first present a sketch of the proof. There are two main challenges to derive the last-iterate
convergence of LSGD with unbounded gradients. First, to derive the last-iterate guarantee, we
need to keep track of the progress of F (w̄(t))− F (w̄(t′)) for different t and t′. To support this, we
still adopt the similar idea from existing works [2, 26] to consider a virtual sequence determined
by the average of all intermediate updates assuming all users participate in the t-th phase, i.e.,
w̃(t,k) = 1

n ·
∑n

i=1 w
(t,k)
i . But instead, we show a more generic analysis on F (w̃(t,k))− F (u) for

arbitrary u and a careful characterization of the difference between F (w̃(t,k)) and F (w̄(t)) under
sampling, given that w̄(t) is the actual and only release. The second and more challenging problem is
that we cannot straightforwardly apply classic last-iterate convergence analyses [40, 41, 42] which
must count on the assumption of bounded gradient. To address this, in the proof, we alternatively use
the following two kinds of upper bounds on the gradient norm

∥∇F (w)∥2 = ∥∇F (w)−∇F (w∗)∥2 ≤ min{β2∥w − w∗∥2, 2β
(
F (w)− F (w∗)

)
},

which is based on the property of smoothness and convexity. With a careful analysis on ∥w̃(t,k) −505

w∗∥2 for any t and k, we propose a more generic last-iterate framework to handle unbounded and506

heterogeneous local update, simultaneously.507

A.1 Main Proof508

Before the start, we define a virtual sequence ŵ(t,k) = w̄(t−1) + 1
nq

∑n
i=1 1

(t)
i (w

(t,k)
i − w̄(t−1))509

for those intermediate iterates produced by the users selected in the t-th phase. 1(t)i is an indicator510

which equals 1 iff the i-th user is selected in the t-th phase. Meanwhile, we imagine the scenario511

that all users participate in the t-th phase computation and a sequence of intermediate iterates w(t,k)
i512

for i = 1, 2, · · · , n, and k = 1, 2, · · · ,K, is produced. We use w̃(t,k) = 1
n ·

∑n
i=1 w

(t,k)
i to denote513

the average. It is not hard to observe that E[ŵ(t,k)] = w̃(t,k) conditional on w̄(t−1). Moreover,514

w
(t,0)
i = w̃(t,0) = w̄(t−1) for i = 1, 2, · · · , n. In the following, we unravel ∥w̃(t,k) − u∥2 for515

arbitrary u and obtain516

∥ŵ(t,k) − u∥2 = ∥ŵ(t,k−1) − η

nq

n∑
i=1

1
(t)
i ∇fi(w

(t,k−1)
i )− u∥2

= ∥ŵ(t,k−1) − u∥2 − 2

nq
·

n∑
i=1

η1
(t)
i · ⟨ŵ(t,k−1) − u,∇fi(w

(t,k−1)
i )⟩+ ∥

∑n
i=1 η1

(t)
i ∇fi(w

(t,k−1)
i )

nq
∥2.

(8)

We first work on the last term ∥
∑n

i=1 η1
(t)
i ∇fi(w

(t,k−1)
i )

nq ∥2 in (8).517

Lemma A.1. Conditional on w̄(t−1),518

E[∥
∑n

i=1 η1
(t)
i ∇fi(w

(t,k−1)
i )

nq
∥2] ≤10η2β2

n

n∑
i=1

∥w(t,k−1)
i − w̃(t,k−1)∥2 + 6η2τ

nq

+ 10η2 min{2β(F (w̃(t,k−1))− F (w∗)), β2∥w̃(t,k−1) − w∗∥2}.
(9)

519

Now, we move our focus to the second term −2
nq ·

∑n
i=1 η1

(t)
i · ⟨ŵ(t,k−1) − u,∇fi(w

(t,k−1)
i )⟩ of (8).520

Lemma A.2. Conditional on w̄(t−1),521

E
[
− 2

nq
·

n∑
i=1

η1
(t)
i ⟨ŵ(t,k−1) − u,∇fi(w

(t,k−1)
i )⟩

]
≤ 2η

(
F (u)− F (w̃

(t,k−1)
i ) +

β

2n

n∑
i=1

∥w(t,k−1)
i − w̃(t,k−1)∥2

)
.

(10)
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522

Finally, we consider the upper bound of
∑n

i=1 ∥w
(t,k−1)
i − w̃(t,k−1)∥2.523

Lemma A.3. When η < β√
24K

,524

n∑
i=1

∥w(t,k)
i − w̃(t,k)∥2 ≤ 4k2nτη2. (11)

525

Now, we combine Lemma A.1, A.2 and A.3 together and go back to (8). On one hand, when we526

adopt the upper bound of Lemma A.1 using F (w̃(t,k))− F (w∗), we have527

E[∥ŵ(t,k) − u∥2] ≤ E
[
∥ŵ(t,k−1) − u∥2 + 20η2β

(
F (w̃(t,k−1))− F (w∗)

)
+ 2η(F (u)− F (w̃(t,k−1)))

+
6η2τ

nq
+ (10η2β2 + βη) · 4k2τη2

]
.

(12)
Sum up (12) on both sides from k = 1, 2, · · · ,K, and we have that528

E
[ K∑
k=1

2η(F (w̃(t,k−1))− F (u))− 20η2β
(
F (w̃(t,k−1))− F (w∗)

)]
≤ E[∥w̄(t−1) − u∥2 − ∥ŵ(t,K) − u∥2] + 6Kη2τ

nq
+ (10η2β2 + βη) · 4K3τη2.

(13)

When u = w∗, it is noted that the left side of (13) becomes

E
[ K∑
k=1

(2η − 20η2β)(F (w̃(t,k−1))− F (w∗))
]
,

and once η is small enough such that 2(η − 10η2β) > 0 where η < 1/(10β), then the above is529

non-negative. In the following, we further take the perturbation Q(t) into accountant. It is noted that530

E[∥w̄(t) − u∥2] = E[∥ŵ(t,K) +Q(t) − u∥2] = E[∥ŵ(t,K) − u∥2] + E[∥Q(t)∥2], (14)

since Q(t) is independent zero-mean noise. Therefore, when we further sum up (13) for t =531

1, 2, · · · , T combined with (14),532

E[
∑T

t=1

∑K
k=1 F (w̃(t,k))− F (w∗)

TK
]

≤ ∥w̄(0) − w∗∥2

(2η − 20η2β)TK
+

(6η2τ/(nq) + (10η2β2 + βη) · 4K2τη2) + Q̄/K

(2η − 20η2β)
.

(15)

Here, as assumed E[∥Q(t)∥2] ≤ Q̄. When η < 1/(20β), which suggests that (2η − 20η2β) ≥ η and533

(10η2β2 + βη) ≤ 2βη, respectively, (15) can be simplified as534

E[
∑T

t=1

∑K
k=1 F (w̃(t,k))− F (w∗)

TK
] ≤ ∥w̄(0) − w∗∥2

ηTK
+ (

6ητ

nq
+ 8βK2τη2) + Q̄/(ηK) (16)

On the other hand, when we apply Lemma A.1 in (12) if we adopt the form β2∥w̃(t,k−1) − w∗∥2 as535

the upper bound, we have536

E[∥ŵ(t,k) − u∥2] ≤ E
[
∥ŵ(t,k−1) − u∥2 + 10η2β2∥w̃(t,k−1) − w∗∥2 + 2η(F (u)− F (w̃(t,k−1)))

+
6η2τ

nq
+ (10η2β2 + βη) · 4k2τη2

]
.

(17)
With a similar reasoning, when η < 1/(20β),537

E[F (w̃(t,k−1))− F (u)]

≤ E
[∥ŵ(t,k−1) − u∥2 − ∥ŵ(t,k) − u∥2

2η
+ 5ηβ2∥w̃(t,k−1) − w∗∥2 + 3ητ

nq
+ 4k2βτη2

]
.

(18)

However, to apply (18), we need an additional result to upper bound the term ∥w̃(t,k−1) − w∗∥,538

summarized as the following lemma.539
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Lemma A.4. With the initialization w̄(0), when η < min{ β√
24K

, 1
20β ,

1
2β+3Kβ/(nq)}, for any k ∈540

[0 : K − 1],541

E[∥w̃(t,k) − w∗∥] ≤ ∥w̄(0) − w∗∥+ 8tβη3K3τ + (t− 1)
(
Q̄+

12K4β2η4τ + 3K2η2τ

nq

)
.

542

From Lemma A.4, we also have a global bound that for any t ∈ [1 : T ] and k ∈ [0 : K],543

E[∥w̃(t,k) − w∗∥] ≤ ∥w̄(0) − w∗∥+ T
(
8βη3K3τ +

(
Q̄+

12K4β2η4τ + 3K2η2τ

nq

))
. (19)

Now, for any t0 ∈ [1 : T ] and k0 ∈ [0 : K − 1], if we select u = w̃(t0,k0), stemmed from (18),544 ∑
(t,k)∈C E[F (w̃(t,k))− F (w̃(t0,k0))]

(T − t0 + 1)K − k0
≤ 3ητ/(nq) + 4K2βτη2

+
(T − t0 + 1)Q̄

2η((T − t0 + 1)K − k0)
+

5ηβ2
∑

(t,k)∈C E[∥w̃(t,k) − w∗∥2]
(T − t0 + 1)K − k0

,

(20)

where C =
(
(t0, k), k = k0, · · · ,K − 1

)
∪
(
(t, k), t = t0 + 1, · · · , T, k = 0, · · · ,K − 1

)
. Finally,545

as we are concerning about the utility of F(w̄(T )), we need to virtually implement one more gradient546

descent step on w̄(T ) to get an upper bound of F (w̄(T ))− F (w∗). To be specific, we imagine one547

additional full gradient descent using the entire set on w̄(T ), and for any u, we have that548

∥w̃(T+1,1) − u∥2 = ∥w̄(T ) − u− η ·
∑n

i=1 ∇fi(w̄
(T ))

n
∥2

≤ ∥w̄(T ) − u∥2 − 2η
(
F (w̄(T ))− F (u)

)
+ η2∥∇F (w̄(T ))−∇F (w∗)∥2

≤ ∥w̄(T ) − u∥2 − 2η
(
F (w̄(T ))− F (u)

)
+min η2{β2∥w̄(T ) − w∗∥2, 2β(F (w̄(T ))− F (w∗))}.

(21)
Therefore, let u = w∗ and we can combine (16) and (21) to produce the following. Since we assume549

(2η − 20η2β) ≥ η which also implies 2(η − η2β) ≥ η, we have550

E[
∑T

t=1

∑K
k=1

(
F (w̃(t,k−1))− F (w∗)

)
+
(
F (w̄(T ))− F (w∗)

)
TK + 1

]

≤ ∥w̄(0) − w∗∥2

η(TK + 1)
+ (

6ητ

nq
+ 8βK2τη2) + Q̄/(ηK).

(22)

Similarly, for (20), it is noted that conditional on w̄(t−1), we have that551

E[∥ŵ(t,k) − u∥2] = E[∥ŵ(t,k) − w̃(t,k)∥2] + ∥w̃(t,k) − u∥2, (23)

and for E[∥ŵ(t,k) − w̃(t,k)∥2] for any t and k,552

E[∥ŵ(t,k) − w̃(t,k)∥2] = E[∥(ŵ(t,k) − w̄(t−1))− (w̃(t,k) − w̄(t−1))∥2]

= η2E[∥
n∑

i=1

(1(t) − q)

nq
·
k−1∑
l=0

∇fi(w
(t,k)
i )∥2] ≤ η2k(q − q2)

n2q2
·

n∑
i=1

k−1∑
l=0

∥∇fi(w
(t,l)
i )∥2

=
η2k(q − q2)

n2q2
·

n∑
i=1

k−1∑
l=0

∥∇fi(w
(t,l)
i )−∇fi(w̃

(t,l)) +∇fi(w̃
(t,l))− F (w̃(t,l)) +∇F (w̃(t,l))−∇F (w∗)∥2

)
≤ 3kη2

n2q
·

n∑
i=1

k−1∑
l=0

(
β2∥w(t,l)

i − w̃(t,l)∥2 + β2∥w̃(t,l) − w∗∥2 + τ
)

≤ 3Kη2

nq

(
4β2K3τη2 +Kτ +

k−1∑
l=0

β2∥w̃(t,l) − w∗∥2
)
.

(24)
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where the last line of (24) we apply Lemma A.4. Therefore, by replacing E[∥ŵ(t,k) − u∥2] with553

E[∥ŵ(t,k) − w̃(t,k)∥2] + ∥w̃(t,k) − u∥2 in (18), we have that554

E[F (w̃(t,k−1))− F (u)] ≤ E
[∥w̃(t,k−1) − u∥2 − ∥w̃(t,k) − u∥2 + ∥ŵ(t,k−1) − w̃(t,k−1)∥2 − ∥ŵ(t,k) − w̃(t,k−1)∥2

2η

+ 5ηβ2∥w̃(t,k−1) − w∗∥2 + 3ητ

nq
+ 4K2βτη2

]
.

(25)
Now, we let u = w̃(t0,k0) in (21) and (25), combining (24) we have555 ∑T

t=t0

∑K−1
k=k0

E[F (w̃(t,k))− F (w̃(t0,k0))] + E[F (w̄(T ))− F (w̃(t0,k0))]

((T − t0 + 1)K − k0 + 1)

≤ 3ητ/(nq) + 4K2βτη2 +
(T − t0 + 1)Q̄

2η((T − t0 + 1)K − k0 + 1)

+

3Kη
nq

(
4β2K3τη2 +Kτ +

∑k−1
l=0 β2∥w̃(t,l) − w∗∥2

)
2((T − t0 + 1)K − k0 + 1)

+
5ηβ2

(∑T
t=t0

∑K
k=k0+1 E[∥w̃(t,k) − w∗∥2] + E[∥w̄(T ) − w∗∥2]

)
(T − t0 + 1)K − k0 + 1

.

(26)

Now, we can apply the last-iterate convergence rate trick.556

Lemma A.5. For any sequence yi, i = 1, 2, · · · ,M ,557

yM =

∑M
j=1 yj

M
+

M−1∑
j=1

∑M
l=M−j+1(yl − yM−j)

j(j + 1)
(27)

558

One can easily verify the identity in Lemma A.5.559

If we take yj = E[F (w̃(t,k))− F (w∗)] and zj = E[∥w̃(t,k) − w∗∥2], for j = (t− 1)K + k and let560

M = TK + 1 where yTK+1 = E[F (w̄(T ))− F (w∗)] and zTK+1 = E[∥w̄(T ) − w∗∥2], combined561

with (22),(26) and Lemma A.5, we have that562

yTK+1 = E[F (w̄(T ))− F (w∗)] (28)

=

∑TK
j=1 yj

TK + 1
+

TK∑
j=1

1

j + 1
·
∑TK+1

l=TK+2−j(yl − yTK+1−j)

j
(29)

≤
{∥w̄(0) − w∗∥2

η(TK + 1)
+ (

6ητ

nq
+ 8βK2τη2) + Q̄/(ηK)

}
(30)

+

TK∑
j=1

{ 1

j + 1
·
(3ητ
nq

+ 4βK2τη2 +
Q̄
2η

+
12K4η3β2τ

2nq
+

3K2ητ

2nq
+

3K2η

nq
max

l
{zl}

)
+ 5ηβ2

∑TK+1
l=TK−j+2 zl

j(j + 1)

}
(31)

≤ ∥w̄(0) − w∗∥2

η(TK + 1)
+ log(TK + 1)

(6ητ
nq

+ 8βK2τη2 + Q̄/η +
12K4η3β2τ

2nq
+

3K2ητ

2nq
+

3K2η

nq
max

l
{zl}

)
(32)

+ (5ηβ2)

TK∑
j=1

(
1

j
− 1

TK + 1
) · zTK−j+2 (33)

In (30), we apply (22) on
∑TK

j=1 yj

TK+1 . In (31), we apply the results in (26) and (T−t0+1)Q̄
2η((T−t0+1)K−k0+1) ≤563

Q̄
2η , since the number of iterates is always no less than the number of synchronization in any time564

interval. In (33), we use the fact that
∑TK

j=1
1

j+1 ≤ log(TK + 1) and as assumed log(TK) ≥ 2.565

16



Now, with the assumption that K2 = O(nq), (33) can be further bounded as566

yTK+1 < O(1) ·
(∥w̄(0) − w∗∥2

η(TK + 1)
+ log(TK + 1)

(ητ
nq

+K2τη2 + Q̄/η + τη
)
+ η(

TK∑
j=1

1

j
) ·max

l
{zl}

)
(34)

≤ O(1) ·
(∥w̄(0) − w∗∥2

η(TK + 1)
+ log(TK + 1)

(ητ
nq

+K2τη2 + Q̄/η + τη
)

(35)

+ η(log(TK) + 1)
(
∥w̄(0) − w∗∥2 + T

(
βη3K3τ +

K4β2η4τ +K2η2τ

nq
+ Q̄

))
. (36)

In (36), we apply Lemma A.4 and (19). Thus, we complete the proof.567

A.2 Proof of Lemma A.1568

Conditional on w̄(t−1), we have that569

E[∥
∑n

i=1 η1
(t)
i ∇fi(w

(t,k−1)
i )

nq
∥2]

= E[∥
∑n

i=1 η1
(t)
i ∇fi(w

(t,k−1)
i )

nq
−

∑n
i=1 η∇fi(w

(t,k−1)
i )

n
+

∑n
i=1 η∇fi(w

(t,k−1)
i )

n
∥2]

≤ 2 · E[∥
∑n

i=1 η(1
(t)
i − q)∇fi(w

(t,k−1)
i )

nq
∥2] + 2 · ∥

∑n
i=1 η∇fi(w

(t,k−1)
i )

n
∥2

=
2(q − q2)

∑n
i=1 ∥η∇fi(w

(t,k−1)
i )∥2

(nq)2
+ 2 · ∥

∑n
i=1 η∇fi(w

(t,k−1)
i )

n
∥2

≤
2η2

∑n
i=1 ∥∇fi(w

(t,k−1)
i )∥2

n2q
+ 2η2∥

∑n
i=1 ∇fi(w

(t,k−1)
i )

n
∥2.

(37)

In the fourth line of (37), we use the fact that 1(t)
[1:n] are i.i.d. Bernoulli variable of mean q, and thus570

E[(1(t)
i −q)2] = q(1−q) and E[(1(t)

i −q) ·(1(t)
j −q)] = 0 for i ̸= j. As for

∑n
i=1 ∥∇fi(w

(t,k−1)
i )∥2,571

we can further bound it as follows,572

n∑
i=1

∥∇fi(w
(t,k−1)
i )−∇fi(w̃

(t,k−1)) +∇fi(w̃
(t,k−1))−∇fi(w

∗) +∇fi(w
∗)∥2 (38)

≤ 3

n∑
i=1

(
β2∥w(t,k−1)

i − w̃(t,k−1)∥2 + 2βDfi(w̃
(t,k−1), w∗) + ∥∇fi(w

∗)∥2
)

(39)

≤ 3β2
n∑

i=1

∥w(t,k−1)
i − w̃(t,k−1)∥2 + 6βn

(
F (w̃(t,k−1))− F (w∗)

)
+ 3nτ. (40)

In (39), we apply AM-GM inequality again and use the property that for convex and β-smooth573

function fi(w), it holds that ∥∇fi(x) − ∇fi(y)∥2 ≤ 2βDfi(x, y), where Dfi(x, y) = f(x) −574

f(y)− ⟨∇f(y), x− y⟩ is the Bregman divergence. In (40), we use the fact that ∇F (w∗) = 0 and575

due to Assumption 2.1, the variance
∑n

i=1 ∥∇fi(w
∗) − ∇F (w∗)∥2 =

∑n
i=1 ∥∇fi(w

∗)∥2 ≤ nτ .576

When we apply similar decomposition tricks in (40) to the term ∥
∑n

i=1 ∇fi(w
(t,k−1)
i )

n ∥2,577

∥
∑n

i=1 ∇fi(w
(t,k−1)
i )

n
∥2

≤ ∥
∑n

i=1 ∇fi(w
(t,k−1)
i )−∇fi(w̃

(t,k−1)) +∇fi(w̃
(t,k−1))−∇fi(w

∗) +∇fi(w
∗)

n
∥2

≤ 2
(
∥
∑n

i=1 ∇fi(w
(t,k−1)
i )−∇fi(w̃

(t,k−1))

n
∥2 + ∥

∑n
i=1 ∇fi(w̃

(t,k−1))−∇fi(w
∗)

n
∥2
)

≤
2β2

∑n
i=1 ∥w

(t,k−1)
i − w̃(t,k−1)∥2

n
+ 4β

(
F (w̃(t,k−1))− F (w∗)

)
,
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since ∇F (w∗) = 1
n ·

∑n
i=1 ∇fi(w

∗) = 0. Thus, (37) can be further bounded as follows:578

E[∥
∑n

i=1 η1
(t)
i ∇fi(w

(t,k−1)
i )

nq
∥2]

≤ 10η2β2

n

n∑
i=1

∥w(t,k−1)
i − w̃(t,k−1)∥2 + 20βη2(F (w̃(t,k−1))− F (w∗)) +

6η2τ

nq
.

(41)

Here, we use the fact that q ≥ 1/n and thus 1
n2q ≤ 1

n . Meanwhile, it is noted that ∥∇fi(w̃
(t,k−1))−579

∇fi(w
∗)∥2 can also be bounded by β2∥w̃(t,k−1) −w∗∥2 alternatively due to the smooth assumption.580

Thus, by replacing 2β(F (w̃(t,k−1))−F (w∗)) in (39) and (41) with β2∥w̃(t,k−1)−w∗∥2, we complete581

the proof.582

A.3 Proof of Lemma A.2583

Based on the Poisson sampling assumption, conditional on w̄(t−1),

E
[
− 2

nq
·

n∑
i=1

η1
(t)
i ⟨w̃(t,k−1) − u,∇fi(w

(t,k−1)
i )⟩

]
= −2η

n
[

n∑
i=1

⟨w̃(t,k−1) − u,∇fi(w
(t,k−1)
i )⟩].

For each i, it is noted that584

− ⟨w̃(t,k−1) − u,∇fi(w
(t,k−1)
i )⟩

= −⟨w(t,k−1)
i − u,∇fi(w

(t,k−1)
i )⟩ − ⟨w̃(t,k−1) − w

(t,k−1)
i ,∇fi(w

(t,k−1)
i )⟩

≤ fi(u)− fi(w
(t,k−1)
i ) + fi(w

(t,k−1)
i )− fi(w̃

(t,k−1)) +
β

2
∥w(t,k−1)

i − w̃(t,k−1)∥2.

(42)

In (42), we use the following facts. First, for smooth and convex function fi, Dfi(u,w
(t,k−1)
i ) ≥ 0

and thus −⟨w(t,k−1)
i −u,∇fi(w

(t,k−1)
i )⟩ ≤ fi(u)−fi(w

(t,k−1)
i ). Second, for the term −⟨w̃(t,k−1)−

w
(t,k−1)
i ,∇fi(w

(t,k−1)
i )⟩, we use the classic smooth inequality where

fi(w̃
(t,k−1)) ≤ fi(w

(t,k−1)
i ) + ⟨w̃(t,k−1) − w

(t,k−1)
i ,∇fi(w

(t,k−1)
i )⟩+ β

2
∥w(t,k−1)

i − w̃(t,k−1)∥2.

Therefore, by (42), we have that

−2η

n
[

n∑
i=1

⟨w̃(t,k−1)−u,∇fi(w
(t,k−1)
i )⟩] ≤ 2η

(
F (u)−F (w̃(t,k−1))+

β

2n

n∑
i=1

∥w(t,k−1)−w̃(t,k−1)∥2
)
.

A.4 Proof of Lemma A.3585

Given w̄(t−1),586

n∑
i=1

[
∥w(t,k)

i − w̃(t,k)∥2
]
= η2

n∑
i=1

[
∥
k−1∑
l=0

∇fi(w
(t,l)
i )−

∑n
j=1

∑k−1
l=0 ∇fj(w

(t,l)
j )

n
∥2
]

(43)

≤ 3kη2
[ n∑
i=1

k−1∑
l=0

(
∥∇fi(w

(t,l)
i )−∇fi(w̃

(t,l))∥2 + ∥∇fi(w̃
(t,l))−∇F (w̃(t,l))∥2 (44)

+ ∥∇F (w̃(t,l))−
∑n

j=1 ∇fj(w
(t,l)
j )

n
∥2
)]

(45)

≤ 3kη2
[( n∑

i=1

k−1∑
l=0

β2∥w(t,l)
i − w̃(t,l)∥2

)
+ knτ +

n∑
i=1

k−1∑
l=0

β2∥w̃(t,l) − w
(t,l)
i ∥2

n

]
(46)

≤ 3kβ2η2(1 + 1/n)

n∑
i=1

k−1∑
l=0

[∥w(t,l)
i − w̃(t,l)∥2] + 3k2nτη2. (47)
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In (45), we use the fact that ∥
∑3

i=1 vi∥2 ≤ 3
∑3

i=1 ∥vi∥2. In (46), we use Assumption 2.1 that the587

variance of stochastic gradient is bounded by τ and apply the form ∇F (w̃(t,l)) =
∑n

i=1 ∇fi(w̃
(t,l))

n .588

Let M (k) = E[
∑n

i=1 ∥w
(t,k)
i − w̃(t,k)∥2]. Then, from (47), when n ≥ 1, we have an inequality in a

form

M (k) ≤ η2(6kβ2
k−1∑
l=0

M (l) + 3k2nτ),

where M (0) = ∥w̄(t−1) − w̄(t−1)∥2 = 0. It is not hard to verify that by induction, once η2 < β2

24K2 ,589

M (k) ≤ 4η2k2nτ .590

A.5 Proof of Lemma A.4591

To provide more intuition, we start from the case when t = 1, w̃(t,0) = w̄(0) and thus

∥w̃(1,k)−w∗∥2 = ∥w̃(1,k−1)−w∗∥2−2η⟨
∑n

i=1 ∇fi(w
(1,k−1)
i )

n
, w̃(1,k−1)−w∗⟩+η2∥

∑n
i=1 ∇fi(w

(1,k−1)
i )

n
∥2.

As a straightforward corollary of Lemma A.1, A.2 and A.3, we can obtain a similar upper bound in a592

form once η < min{ β√
24K

, 1
2β }593

∥w̃(1,k) − w∗∥2 ≤ ∥w̃(1,k−1) − w∗∥2 + 2η
(
F (w∗)− F (w̃(t,k−1)) +

β

2n

n∑
i=1

∥w(t,k−1) − w̃(t,k−1)∥2
)

+ 2η2
(β2

∑n
i=1 ∥w

(t,k−1)
i − w̃(t,k−1)∥2

n
+ 2βF (w̃(t,k−1))− F (w∗)

)
≤ ∥w̃(1,k−1) − w∗∥2 + 2(η − 2βη2)(F (w∗)− F (w̃(t,k−1)) + (βη + 2β2η2) · 4η2K2τ

≤ ∥w̃(1,k−1) − w∗∥2 + 2(η − 2βη2)(F (w∗)− F (w̃(t,k−1)) + 8βη3K2τ.
(48)

In (48), we apply Lemma A.3 and use the fact that βη + 2β2η2 ≤ 2βη.594

On the other hand, during the synchronization, it is noted that

E[w̄(1)] = E[w̃(1,K) +Q(1)] = E[w̃(1,K)].

Therefore,
E[∥w̄(1) − w∗∥2] = E[∥w̄(1) − w̃(1,K)∥2] + ∥w̃(1,K) − w∗∥2.

Moreover,595

E[∥w̄(1) − w̃(1,K)∥2]

= E[η2∥
∑K

k=1

∑n
i=1(1

(1)
i − q)∇fi(w

(1,k−1)
i )

nq
−Q(1)∥2]

≤
Kη2

∑K
k=1

∑n
i=1 ∥∇fi(w

(1,k−1)
i )∥2

n2q
+ Q̄

≤
3Kη2

∑K
k=1

{∑n
i=1

(
β2∥w(1,k−1)

i − w̃(1,k−1)∥2
)
+ 2βn(F (w̃(1,k−1))− F (w∗)) + nτ

}
n2q

+ Q̄

≤
3Kη2

(
4β2η2K3nτ + 2βn

∑K
k=1(F (w̃(1,k−1))− F (w∗)) +Knτ

}
n2q

+ Q̄

=
12K4β2η4τ + 6Kβη2

∑K
k=1(F (w̃(1,k−1))− F (w∗)) + 3K2η2τ

nq
+ Q̄.

(49)
In the fifth line of (49), we apply Lemma A.3. From (48),596

∥w̃(1,K) − w∗∥2 ≤ ∥w̄(0) − w∗∥2 + 2(η − 2βη2)

K∑
k=1

(F (w∗)− F (w̃(t,k−1))) + 8βη3K3τ . (50)
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Now, we combine (49) and (50). Once 2(η − 2βη2) − 6Kβη2

nq ≥ 0, which implies that η ≤
1

2β+3Kβ/(nq) ,

E[∥w̄(1) − w∗∥2] ≤ ∥w̄(0) − w∗∥2 + 12K4β2η4τ + 3K2η2τ

nq
+ 8βη3K3τ + Q̄.

The remainder of the proof for the ∥w̃(t,k)−w∗∥ is straightforward as for arbitrary t, ∥w̃(t,0)−w∗∥ =597

∥w̄(t−1) − w∗∥. Therefore, by induction reasoning, we have the bound claimed.598
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B Proof of Theorem 3.2: Synchronized-only Convergence of Noisy LSGD in599

Non-convex Optimization600

Based on the smooth assumption of F (w), we have the following classic inequality,601

F (w̄(t)) ≤ F (w̄(t−1)) + ⟨∇F (w̄(t−1)), w̄(t) − w̄(t−1)⟩+ β

2
∥w̄(t) − w̄(t−1)∥2

= F (w̄(t−1))− ⟨∇F (w̄(t−1)),
η

nq

∑
i∈S(t)

K−1∑
k=0

∇fi(w
(t,k)
i )−Q(t)⟩

+
β

2
∥ η

nq

∑
i∈S(t)

K−1∑
k=0

∇fi(w
(t,k)
i )−Q(t)∥2

= F (w̄(t−1))

− η

2

(K−1∑
k=0

(
∥∇F (w̄(t−1))∥2 + ∥ 1

nq

∑
i∈S(t)

∇fi(w
(t,k)
i )∥2 − ∥∇F (w̄(t−1))− 1

nq

∑
i∈S(t)

∇fi(w
(t,k)
i )∥2

))
+ ⟨∇F (w̄(t−1)), Q(t)⟩+ β

2
∥ η

nq

∑
i∈S(t)

K−1∑
k=0

∇fi(w
(t,k)
i )−Q(t)∥2.

(51)
In (51), we simply use the fact that ⟨a, b⟩ = ∥a∥2+∥b∥2−∥a−b∥2

2 . For notation simplicity, we will602

use g(t,k)i = ∇fi(w
(t,k)
i ) and g(t,k) = 1

nq ·
∑

i∈St
∇fi(w

(t,k)
i ) = 1

nq ·
∑

i∈St
g
(t,k)
i in the following.603

Using the generalized AM-GM inequality, where ⟨a, b⟩ ≤ 1
2

(
γ∥a∥2 + 1

γ ∥b∥
2
)

for any γ > 0, on604

⟨∇F (w(t−1)), Q(t)⟩, we have that605

⟨∇F (w(t−1)), Q(t)⟩ ≤ η

4
∥∇F (w(t−1))∥2 + 1

η
∥Q(t)∥2. (52)

Similarly,606

β

2
∥ η

nq

∑
i∈St

K−1∑
k=0

g
(t,k)
i −Q(t)∥2 ≤ β

(
η2∥ 1

nq

∑
i∈St

K−1∑
k=0

g
(t,k)
i ∥2 + ∥Q(t)∥2

)
. (53)

Thus, putting together, we have the following by rearranging the terms in (51),607

(
ηK

2
− η

4
)∥∇F (w̄(t−1))∥2 ≤F (w̄(t−1))− F (w̄(t))−

(η
2

K−1∑
k=0

∥g(t,k)∥2 − βη2∥
K−1∑
k=0

g(t,k)∥2
)

︸ ︷︷ ︸
(A)

+
η

2

K−1∑
k=0

∥∇F (w̄(t−1))− g(t,k)∥2 + (
1

η
+ β)∥Q(t)∥2.

(54)
Still by AM-GM inequality, it is noted that ∥

∑K−1
k=0 g(t,k)∥2 ≤ K

∑K−1
k=0 ∥g(t,k)∥2 and therefore608

term (A) is lower bounded by (η2 − βη2K)
∑K−1

k=0 ∥g(t,k)∥2. For a sufficiently small learning609

rate η, term (A) is non-negative. Thus, to upper bound ∥∇F (w(t))∥2, it suffices to keep track of610

∥∇F (w(t))− g(t,k)∥2.611

Now, we imagine the scenario that each agent participates in the t-th phase without Poisson612

sampling and each produces intermediate w
(t,k)
i for i = 1, 2, · · · , n and k = 1, 2, · · · ,K. Let613

w̃(t,k) = 1
n

∑n
i=1 w

(t,k)
i . It is not hard to observe that conditional on w̄(t−1), E[w̃(t,k) − w̄(t−1)] =614
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−ηE[
∑k−1

l=0 g(t,l)]. On the other hand, by AM-GM inequality again,615

∥∇F (w(t−1))− g(t,k)∥2

≤ 2
(
∥∇F (w̄(t−1))−∇F (w̃(t,k))∥2 + ∥∇F (w̃(t,k))− g(t,k)∥2

)
≤ 2

(
β2∥w̄(t−1) − w̃(t,k)∥2 + ∥∇F (w̃(t,k))− g(t,k)∥2

)
= 2

(
β2∥w̄(t−1) − w̃(t,k)∥2 + ∥

∑n
i=1(q − 1

(t)
i )

(
∇fi(w̃

(t,k))−∇fi(w
(t,k)
i )

)
nq

∥2
)
.

(55)

In (55), we use the β-smooth assumption on ∇F (w), and 1
(t)
i is an indicator which equals 1 iff the616

i-th worker/agent is selected in the t-th phase with probability q, otherwise 0. We first handle the first617

term β2∥w̄(t) − w̃(t,k)∥2. With expectation conditional on w̄(t−1),618

E[∥w̄(t−1) − w̃(t,k)∥2] = E[η2∥
k−1∑
l=0

g(t,l)∥2]− E
[
∥ − (η

k−1∑
l=0

g(t,l))− (w̄(t−1) − w̃(t,k))∥2
]

≤ kη2
k−1∑
l=0

E[∥g(t,l)∥2]

(56)

In (56), we use the following fact about the variance and second moment: for a random vector v619

whose mean is µ, E[∥v∥2] = E[∥v − µ∥2] + ∥µ∥2. As mentioned above, the expectation conditional620

on w̄(t−1) E[w̃(t,k) − w̄(t−1)] = −ηE[
∑k−1

l=0 g(t,l)]. Therefore,621

2β2
K∑

k=1

E[∥w̄(t−1) − w̃(t,k)∥2] ≤ 2β2
K∑

k=1

kη2
k−1∑
l=0

E[∥g(t,l)∥2] ≤ 2β2η2K2
K−1∑
k=0

E[∥g(t,k)∥2].

(57)
Now, combined the same term E[∥g(t,k)∥2] in (57) with (A), it is not hard to verifiy that, once
η
2 − βη2K − β2η3K2 ≥ 0, which holds when η < 1

4βK , then the expectation

E
[η
2
· 2β2K2η2

K−1∑
k=0

∥
k∑

l=0

g(t,l)∥2 − (A)
]
≤ 0.

Now, we move our focus to the second term ∥ 1
nq ·

∑n
i=1(q − 1

(t)
i )

(
∇fi(w̃

(t,k))−∇fi(w
(t,k)
i )

)
∥2622

in (55).623

Based on the assumption on Poisson sampling, 1(t)i is independent and E[1(t)i ] = q for i = 1, 2, · · · , n.624

Morevoer, E[(1(t)i − q)2] = q − q2 < q. Therefore, with expectation,625

K−1∑
k=0

E
[
∥
∑n

i=1(q − 1
(t)
i )

(
∇fi(w̃

(t,k))−∇fi(w
(t,k)
i )

)
nq

∥2
]

=

K−1∑
k=0

n∑
i=1

(q − q2)E[∥∇fi(w̃
(t,k))−∇fi(w

(t,k)
i )∥2]

(nq)2
≤

K−1∑
k=0

n∑
i=1

β2E[∥w̃(t,k) − w
(t,k)
i ∥2]

n2q
.

(58)
In (58), we use the fact for n random independent vectors v[1:n] of zero mean, E[∥

∑n
i=1 vi∥2] =∑n

i=1 E[∥vi∥2]. On the other hand, we can apply the results of Lemma A.3 to upper bound∑n
i=1 E

[
∥w(t,k)

i − w̃(t,k)∥2
]

by 4η2k2nτ once η < min{ β√
24K

, 1
20β }. Now, back to (58), we

have that
K−1∑
k=0

n∑
i=1

β2E[∥w̃(t,k) − w
(t,k)
i ∥2]

n2q
≤ 4η2τβ2K3

nq
.
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With the above preparation, we are finally ready to complete the proof. Back to (54), conditional on626

w(t−1), with expectation we have that627

(
ηK

2
− η

4
)∥∇F (w̄(t−1))∥2 ≤E[F (w̄(t−1))− F (w̄(t))]− (

η

2
− βη2K − β2η3K2)

K−1∑
k=0

E[∥g(t,k)∥2]

+
η

2
· 8η

2τβ2K3

nq
+ (

1

η
+ β)∥Q(t)∥2.

(59)
Summing up both sides of (59) for t = 1, 2, ..., T , with unconditional expectation and averaging,628

since ηK/2− η/4 ≥ ηK/4 for K ≥ 1, we obtain that once η < min{ β√
24K

, 1
4βK , 1

20β },629

E[
∑T

t=1 ∥∇F (w̄(t−1))∥2

T
] ≤ 4F (w̄(0))

TKη
+

16η2τβ2K2

nq
+

(1 + βη)
∑T

t=1 E[∥Q(t)∥2]
η2KT

.

Alternatively, especially when the perturbation Q(t) is independent and of zero-mean, we may630

consider another bound derived as follows. Still, based on the smooth assumption of F (w), if we631

focus on each cross term between ∇F (w̄(t−1)) and ∇fi(w
(t,k)
i ), we have632

F (w̄(t)) ≤ F (w̄(t−1)) + ⟨∇F (w̄(t−1)), w̄(t) − w̄(t−1)⟩+ β

2
∥w̄(t) − w̄(t−1)∥2

= F (w̄(t−1))− ⟨∇F (w̄(t−1)),
η

nq

∑
i∈S(t)

K−1∑
k=0

∇fi(w
(t,k)
i )−Q(t)⟩

+
β

2
∥ η

nq

∑
i∈S(t)

K−1∑
k=0

∇fi(w
(t,k)
i )−Q(t)∥2

= F (w̄(t−1))

− η

2nq
·
( ∑
i∈S(t)

K−1∑
k=0

(
∥∇F (w̄(t−1))∥2 + ∥∇fi(w

(t,k)
i )∥2 − ∥∇F (w̄(t−1))−∇fi(w

(t,k)
i )∥2

))
+ ⟨∇F (w̄(t−1)), Q(t)⟩+ β

2
∥ η

nq

∑
i∈S(t)

K−1∑
k=0

∇fi(w
(t,k)
i )−Q(t)∥2.

(60)
With a similar reasoning as (53), we have the following by rearranging the terms in (60),633

ηKBt

2nq
∥∇F (w̄(t−1))∥2 ≤F (w̄(t−1))− F (w̄(t))−

( η

2nq
− βη2BtK

(nq)2
) ∑
i∈S(t)

K−1∑
k=0

∥g(t,k)i ∥2︸ ︷︷ ︸
(A)

+
η

2nq

∑
i∈S(t)

K−1∑
k=0

∥∇F (w̄(t−1))− g
(t,k)
i ∥2 + β∥Q(t)∥2.

(61)

For a sufficiently small learning rate η, term (A) is non-negative. Thus, to upper bound ∥∇F (w(t))∥2,634

it suffices to keep track of ∥∇F (w̄(t−1))− g(t,k)∥2. Conditional on w̄(t−1), take expectation on both635

sides of (54) and we have636

ηK

2
E[∥∇F (w̄(t−1))∥2] ≤E

[
F (w̄(t−1))− F (w̄(t))−

( η

2n
− βη2K

n

) n∑
i=1

K−1∑
k=0

∥g(t,k)i ∥2

+
η

2n

n∑
i=1

K−1∑
k=0

∥∇F (w̄(t−1))− g
(t,k)
i ∥2 + β∥Q(t)∥2

]
,

(62)

since E[Bt] = nq.637
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By AM-GM inequality again,638

n∑
i=1

∥∇F (w̄(t−1))− g
(t,k)
i ∥2

≤ 2

n∑
i=1

(
∥∇F (w̄(t−1))−∇fi(w̄

(t−1))∥2 + ∥∇fi(w̄
(t−1))−∇fi(w

(t,k)
i )∥2

)
≤ 2

(
nτ + β2

n∑
i=1

∥w̄(t−1) − w
(t,k)
i ∥2

)
= 2

(
nτ + β2η2

n∑
i=1

∥
k−1∑
l=0

g
(t,l)
i ∥2

)
≤ 2

(
nτ + β2η2k

n∑
i=1

k−1∑
l=0

∥g(t,l)i ∥2
)
.

(63)

Plugging (63), which suggests that

η

2n

n∑
i=1

K−1∑
k=0

∥∇F (w̄(t−1))− g
(t,k)
i ∥2 ≤ η(τK +

β2η2K2

n

n∑
i=1

K−1∑
k=0

∥g(t,k)i ∥2),

back to (62), we have that639

ηK

2
E[∥∇F (w̄(t−1))∥2] ≤E

[
F (w̄(t−1))− F (w̄(t))−

( η

2n
− βη2K

n
− β2η3K2

n

) n∑
i=1

K−1∑
k=0

∥g(t,k)i ∥2

+ ητK + β∥Q(t)∥2
]
,

(64)
Therefore, when η

2n − βη2K
n − β2η3K2

n ≥ 0, which requires that η ≤ 1
2βK , we have640

E[∥∇F (w̄(t−1))∥2] ≤2 · E
[F (w̄(t−1))− F (w̄(t))

ηK
+ τ +

β

ηK
∥Q(t)∥2

]
. (65)

Now, we sum up (65) both sides for t = 1, 2, · · · , T and average them, we have that641

E[
∑T

t=1 ∥∇F (w̄(t−1))∥2

T
] ≤2 · E

[F (w̄(t−1))

ηTK
+ τ +

∑T
t=1 βE[∥Q(t)∥2]

ηTK

]
. (66)
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C Proof of Theorem 4.1: Utility of DP-LSGD in General Convex642

Optimization643

We first focus on the clipped local update CP(∆w
(t)
i , c) = CP(w

(t,K)
i − w̄(t−1), c) in the t-th phase644

if the i-th sample gets selected. Since the local update before clipping is essentially the sum of645

gradient scaled by the learning rate −η, therefore,646

CP(w
(t,K)
i − w̄(t−1), c) = CP(−η

K−1∑
k=0

∇fi(w
(t,k)
i ), c) = −η

(t)
i

K−1∑
k=0

∇fi(w
(t,k)), (67)

where η
(t)
i = η · min{1, c

∥
∑K−1

k=0 ∇fi(w
(t,k)
i )∥

} is determined by the clipping threshold, and thus647

η
(t)
i ≤ η. Based on Definition 4.1,648

η − η
(t)
i = η · (1− c

c+ 1(∥∆w
(t)
i ∥ > c) · (∥∆w

(t)
i ∥ − c))

= η · Ψ
(t)
i

c+Ψ
(t)
i

, (68)

where Ψ
(t)
i = max{0, ∥∆w

(t)
i ∥ − c} represents the incremental norm of the local update from the649

i-th sample in the t-th phase. For simplicity, we will use ∆Ψ
(t)
i to denote Ψ

(t)
i

c+Ψ
(t)
i

.650

Now, we consider two virtual sequences:651

a) w
′(t,0)
i = w̄(t−1) and w

′(t,k)
i = w

′(t,k−1)
i −η

(t)
i ∇fi(w

(t,k−1)
i ), which represents a sequence652

of iterates based on the gradients ∇fi(w
(t,k−1)
i ) but scaled by η

(t)
i instead of constant η for653

each i;654

b) We use ŵ(t,k) = 1
nq ·

∑n
i=1 1

(t)
i ·w′(t,k)

i to represent the average of w′(t,k)
i for those indices655

i selected in the t-th phase. Here, 1(t)
i = 1 iff the i-th sample is selected in the t-th phase.656

Similarly, we define w̃(t,k) = 1
n · w′(t,k)

i to be the average of all w′(t,k)
i for i = 1, 2, · · · , n.657

It is not hard to observe that w̃(t,K)
i = w̄(t−1)+CP(∆w

(t)
i , c), and consequently conditional658

on w̄(t−1), E[w̄(t)] = E[ŵ(t,K)] = w̃(t,K) since the independent DP noise satisfies that659

E[Q(t)] = 0.660

In the following, we unravel ∥w̃(t,k) − u∥2 for arbitrary u and obtain661

∥ŵ(t,k) − u∥2

= ∥ŵ(t,k−1) −
n∑

i=1

η
(t)
i · 1(t)

i · ∇fi(w
(t,k−1)
i )

nq
− u∥2

= ∥ŵ(t,k−1) − u∥2 − 2

nq
·

n∑
i=1

η
(t)
i 1

(t)
i ⟨w̃(t,k−1) − u,∇fi(w

(t,k−1)
i )⟩+ ∥

∑n
i=1 η

(t)
i 1

(t)
i ∇fi(w

(t,k−1)
i )

nq
∥2.

(69)
We first work on the last term of (69). With the fact that η(t)i ≤ η, conditional on w̄(t−1),662

E[∥
∑n

i=1 η
(t)
i 1

(t)
i ∇fi(w

(t,k−1)
i )

nq
∥2]

= E[∥
∑n

i=1 η
(t)
i 1

(t)
i ∇fi(w

(t,k−1)
i )

nq
−

∑n
i=1 η

(t)
i ∇fi(w

(t,k−1)
i )

n
+

∑n
i=1 η

(t)
i ∇fi(w

(t,k−1)
i )

n
∥2]

≤ 2 · E[∥
∑n

i=1 η
(t)
i (1

(t)
i − q)∇fi(w

(t,k−1)
i )

nq
∥2] + 2 · ∥

∑n
i=1 η

(t)
i ∇fi(w

(t,k−1)
i )

n
∥2

≤
2(q − q2)

∑n
i=1 ∥η

(t)
i ∇fi(w

(t,k−1)
i )∥2

(nq)2
+

2
∑n

i=1 ∥η
(t)
i ∇fi(w

(t,k−1)
i )∥2

n

≤
4η2

∑n
i=1 ∥∇fi(w

(t,k−1)
i )∥2

n
(70)
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which can be further bounded via Lemma A.1 as663

4η2
(3β2

∑n
i=1 ∥w

(t,k−1)
i − w̃(t,k−1)∥2

n
+min{6βF (w̃(t,k−1))−F (w∗), 3β2∥w̃(t,k−1)−w∗∥2}+3τ

)
.

(71)
Now, we move our focus to the second term of (69). Still, with a similar reasoning as Lemma A.2,664

E
[−2

nq
·

n∑
i=1

1
(t)
i η

(t)
i ⟨w̃(t,k−1) − u,∇fi(w

(t,k−1)
i )⟩

]
=

[−2

n
·

n∑
i=1

η(1−∆Ψ
(t)
i )⟨w̃(t,k−1) − u,∇fi(w

(t,k−1)
i )⟩

]
≤ 2

n

n∑
i=1

η(1−∆Ψ
(t)
i )

(
fi(u)− fi(w̃

(t,k−1)) +
β

2
∥w(t,k−1)

i − w̃(t,k−1)∥2
)

≤ 2η
(
F (u)− F (w̃(t,k−1)) +

β

2n
·

n∑
i=1

(1−∆Ψ
(t)
i )∥w(t,k−1) − w̃(t,k−1)∥2

)
− 2

n
·

n∑
i=1

η∆Ψ
(t)
i

(
F (u)− F (w̃(t,k−1))

)
+

n∑
i=1

2

n

(
η∆Ψ

(t)
i ) · 2γ

≤ 2η(1−
∑n

i=1 ∆Ψ
(t)
i

n
)
(
F (u)− F (w̃(t,k−1))

)
+

(βη
n

n∑
i=1

∥w(t,k−1)
i − w̃(t,k−1)∥2

)
+

4ηγ
∑n

i=1 ∆Ψ
(t)
i

n
.

(72)
In the fourth line of (72), we use the γ-similarity assumption from Assumption 4.2. In the following,665

we will use ∆Ψ̄(t) =
∑n

i=1 ∆Ψ
(t)
i

n for simplicity.666

Next, we work on the upper bound of
∑n

i=1 ∥w
(t,k−1)
i − w̃(t,k−1)∥2. Similar to Lemma A.3,667

n∑
i=1

∥w̃(t,k−1) − w
(t,k−1)
i ∥2

=

n∑
i=1

∥
∑k−1

l=0

∑n
j=1 η

(t)
j ∇fj(w

(t,l)
j )

n
− η ·

k−1∑
l=0

∇fi(w
(t,l)
i )∥2

≤ 2

n∑
i=1

(
η2∥

∑k−1
l=0

∑n
j=1(∇fj(w

(t,l)
j )−∇fi(w

(t,l)
i ))

n
∥2 + ∥

∑k−1
l=0

∑n
j=1(η − η

(t)
j )∇fj(w

(t,l)
j )

n
∥2
)

(73)
For the first term in (73), we have studied it in Lemma A.3, where once η2 < β2

24K2 ,668

n∑
i=1

∥η ·
∑k−1

l=0

∑n
j=1 ∇fj(w

(t,l)
j )

n
− η ·

k−1∑
l=0

∇fi(w
(t,l)
i )∥2 ≤ 4η2k2nτ. (74)

Plugging (74) back to (73), since (η − η
(t)
j )2 ≤ η2, and we apply the similar decomposition trick669

used in (71), we have that670

n∑
i=1

∥w̃(t,k−1) − w
(t,k−1)
i ∥2

n
≤ 8η2k2nτ +

1

n
·
2kη2

∑k−1
l=0

∑n
i=1 ∥∇fi(w

(t,l)
i )∥2

n

≤ 8η2k2τ

+
6kη2

n

k−1∑
l=0

(
β2∥w̃(t,l) − w

(t,l)
i ∥2 +min

{
2β

(
F (w̃(t,l))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

}
+ τ

)
≤ 14η2k2τ +

6kη2

n

k−1∑
l=0

(
β2∥w̃(t,l) − w

(t,l)
i ∥2 +min

{
2β

(
F (w̃(t,l))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

})
,

(75)
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given that n ≥ 1. Thus, when η is selected small enough such that η ≤ min{
√
n√

30Kβ
, 1√

6K
}, for any671

k0 ≤ K, by induction it is not hard to verifiy that672 ∑n
i=1 ∥w

(t,k0−1)
i − w̃(t,k0−1)∥2

n

≤ 15η2k20τ +
12η2k0

n

( k0−1∑
l=0

min
{
2β

(
F (w̃(t,l))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

})
.

(76)

Now, we put (71), (72) and (76) together, and go back to (69)673

[η(1−∆Ψ̄(t))
(
F (w̃(t,k−1))− F (u)

)
] ≤ E[∥ŵ(t,k−1) − u∥2 − ∥ŵ(t,k) − u∥2] + 4ηγ∆Ψ̄(t)

+ (12η2β2 + βη)
(
15η2k2τ +

12η2k

n

( k−1∑
l=0

min
{
2β

(
F (w̃(t,l))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

}))
+ 12η2 min

{
2β

(
F (w̃(t,k−1))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

}
+ 12η2τ

(77)
When η is small enough such that 12η2β2 + βη ≤ 2βη, (77) can be simplified as674

[η(1−∆Ψ̄(t))
(
F (w̃(t,k−1))− F (u)

)
] ≤ E[∥ŵ(t,k−1) − u∥2 − ∥ŵ(t,k) − u∥2] + 4ηγ∆Ψ̄(t)

+ (10K2βη3 + 12η2)τ +
24Kβη3

n

k−1∑
l=0

min
{
2β

(
F (w̃(t,l))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

}
)

+ 12η2 min
{
2β

(
F (w̃(t,k−1))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

}
.

(78)

The remainder of the proof is almost the same as that for Theorem 4.1. On one hand, it is noted that675

1−∆Ψ̄(t) =

n∑
i=1

1

n
· c

c+Ψ
(t)
i

≥ c

c+
Ψ

(t)
i

n

, (79)

since 1/(1 + x) is convex regarding x. Therefore, E[(1−∆Ψ̄(t))] ≥ c
c+B and E[∆Ψ̄(t)] ≤ B

c+B by676

Assumption 4.1 that E[
∑n

i=1 Ψ
(t)
i

n ] ≤ B.677

Therefore, for sufficiently small η = O(n/K2) such that 24η2β + 48K2β2η3

n ≤ cη
2(c+B) , summing678

up both sides of (77) for k = 1, 2, · · · ,K and t = 1, 2, · · · , T with u = w∗, and take the zero-mean679

independent DP noise into accountant where w̄(t) = ŵ(t,K) +Q(t), we have680

E[
∑T

t=1

∑K−1
k=1

c
2(c+B)

(
F (w̃(t,k−1))− F (w∗)

)
TK

]

≤ ∥w̄(0) − w∗∥2

TKη
+ (30K2βη2 + 12η)τ +

4γB
c+ B

+
σ2d

Kη
.

(80)

To obtain the convergence guarantee of w̄(T ), we similarly imagine a virtual step where we implement681

one additional full gradient descent using the entire set and we have that682

∥w̃(T+1,1) − u∥2 = ∥w̄(T ) − u− η ·
∑n

i=1 ∇fi(w̃
(T,K))

n
∥2

≤ ∥w̄(T ) − u∥2 − 2η
(
F (w̄(T ))− F (u)

)
+ η2∥∇F (w̄(T ))−∇F (w∗)∥2

≤ ∥w̄(T ) − w∗∥2 − 2η
(
F (w̄(T ))− F (u)

)
+ η2 min{β2∥w̄(T ) − w∗∥2, 2β(F (w̄T )− F (w∗))}

)
.

(81)
Therefore, for small enough η, such that η − η2β > 0.5η, we combine (80) and (81) with u = w∗,683

and have684

E[
∑T

t=1

∑K
k=1

c
2(c+B)

(
F (w̃(t,k−1))− F (w∗)

)
+ B

2(c+B)

(
F (w̄(T ))− F (w∗)

)
TK + 1

]

≤ ∥w̄(0) − w∗∥2

(TK + 1)η
+ (30K2βη2 + 12η)τ +

4γB
c+ B

+
σ2d

Kη
.

(82)
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Similarly, it is noted that conditional on w̄(t−1), we still have that685

E[∥ŵ(t,k) − u∥2] = E[∥ŵ(t,k) − w̃(t,k)∥2] + ∥w̃(t,k) − u∥2, (83)

and for E[∥ŵ(t,k) − w̃(t,k)∥2] for any t and k, we use w̃′(t,k) = 1
n ·

∑n
i=1 w

(t,k)
i ,686

E[∥ŵ(t,k) − w̃(t,k)∥2] = E[∥(ŵ(t,k) − w̄(t−1))− (w̃(t,k) − w̄(t−1))∥2]

= E[∥
n∑

i=1

η
(t)
i

η
· 1

(t)
i − q

nq
·
k−1∑
l=0

∇fi(w
(t,l)
i )∥2] ≤ k

n2q

n∑
i=1

k−1∑
l=0

∥∇fi(w
(t,l)
i )∥2,

(84)

since η
(t)
i ≤ η. Therefore, by (24), we also have that687

E[∥ŵ(t,k) − w̃(t,k)∥2] ≤ 3Kη2

nq

(
4β2K3τη2 +Kτ +

k−1∑
l=0

β2∥w̃(t,l) − w∗∥2
)

(85)

Now, using (71) and (83), (78) can be rewritten as688

[η(1−∆Ψ̄(t))
(
F (w̃(t,k−1))− F (u)

)
]

≤ E[∥w̃(t,k−1) − u∥2 − ∥w̃(t,k) − u∥2 + ∥w̃(t,k−1) − ŵ(t,k−1)∥2 − ∥w̃(t,k) − ŵ(t,k)∥]

+
η2K

nq

k∑
l=1

(3β2
∑n

i=1 ∥w
(t,l−1)
i − w̃(t,k−1)∥2

n
+min{6βF (w̃(t,k−1))− F (w∗), 3β2∥w̃(t,k−1) − w∗∥2}+ 3τ

)
+ (10K2βη3 + 12η2)τ +

24Kβη3

n

k−1∑
l=0

min
{
2β

(
F (w̃(t,l))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

}
)

+ 12η2 min
{
2β

(
F (w̃(t,k−1))− F (w∗)

)
, β2∥w̃(t,l) − w∗∥2

}
.

(86)

On the other hand, if we select u = w̃(t0,k0) for some t0 ∈ [1 : T ] and k0 ∈ [0,K − 1] in (86), when689

K2 = O(nq),690

E[
∑

(t,k)∈C
c

2(c+B)

(
F (w̃(t,k))− F (w̃(t0,k0))

)
+ c

2(c+B) (F (w̄T )− F (w̃(t0,k0)))

(T − t0 + 1)K − k0 + 1
]

≤ O(1) ·
{ 3Kη

nq

(
4β2K3τη2 +Kτ +

∑k−1
l=0 β2∥w̃(t,l) − w∗∥2

)
(T − t0 + 1)K − k0 + 1

Kβ3η2

n
(

∑
(t,k)∈C

∑K−1
l=0 E[∥w̃(t,l) − w∗∥2]

(T − t0 + 1)K − k0 + 1
) + (K2βη2 + η)τ

+
γB

(c+ B)
+

σ2d

η
+ ηβ2

∑
(t,k)∈C E[∥w̃(t,k−1) − w∗∥2] + E[∥w̄(T ) − w∗∥2]

(T − t0 + 1)K − k0 + 1

}
,

(87)

where C =
(
(t0, k), k = k0, · · · ,K − 1

)
∪
(
(t, k), t = t0 + 1, · · · , T, k = 0, · · · ,K − 1

)
. In the691

following, we may apply a similar reasoning as Lemma A.4 to derive the following results.692

Lemma C.1. Provided sufficiently small η = o(1/K), for any t ∈ [1 : T ] and k ∈ [0 : K − 1]

E[∥w̃(t,k) − w∗∥2] = O
(
∥w̄(0) − w∗∥2 + TK

(
ηγ

B
c+ B

+ η3K2τ + η2τ +
Kτη2

nq

)
+ Tσ2d

)
.

693

By Lemma (C.1),694

24Kβ3η2

n
·
∑

(t,k)∈C
∑K−1

l=0 E[∥w̃(t,l) − w∗∥2] + E[∥w̄(T ) − w∗∥2]
(T − t0 + 1)K − k0

≤ K2β3η2

n
·O

(
∥w̄(0) − w∗∥2 + TK

(
ηγ

B
c+ B

+ η3K2τ + η2τ +
Kτη2

nq

)
+ Tσ2d

)
.

(88)

28



On the other hand, we have695

12ηβ2

∑T
t=t0

∑K−1
k=k0+1 E[∥w̃(t,k−1) − w∗∥2]
(T − t0 + 1)K − k0

.

≤ η ·O
(
∥w̄(0) − w∗∥2 + TK

(
ηγ

B
c+ B

+ η3K2τ + η2τ +
Kτη2

nq

)
+ Tσ2d

)
.

(89)

Now, we can apply the last iterate trick in Lemma A.5. Let yj = c
2(c+B)E[

(
F (w̃(t,k))− F (w∗)

)
] for696

j = (t−1)K+k+1 for t = 1, 2, · · · , T and k = 0, 1, · · · ,K−1, and yTK+1 = c
2(c+B)E[F (w̄(T ))−697

F (w∗)].698

yTK+1 = E[
c

2(c+ B)
(F (w̄(T ))− F (w∗))]

=

∑TK+1
j=1 yj

TK + 1
+

TK∑
j=1

1

j + 1
·
∑TK+1

l=TK+1−j(yl − yTK+1−j)

j

≤ Õ
(
(η +

η2K2

n
+

K2η

nq
+

1

TKη
) · ∥w̄(0) − w∗∥2

+ TK(
K2η2

n
+

K2η

nq
+ η) ·

(
(1 +K2η +

K

nq
)η2τ + η

γB
c+ B

)
+

Kη

nq

(
β2K3τη2 +Kτ

)
+ (

K2η

nq
+

TK2η2

n
+ Tη + 1/η)σ2d

)
= Õ

(
(

1√
TK

+
K

nT
)∥w̄(0) − w∗∥2 + (

K

nT
+

1√
TK

)(1 +
K3/2

√
T

+
K

nq
)τ + (K2η3 + η)τ

+ (
K3/2

√
Tn

+ 1)
γB

c+ B
+
√
TKσ2d

)
= Õ

(∥w̄(0) − w∗∥2√
TK

+ (
1√
TK

+
K

T
)τ +

γB
c+ B

+
√
TKσ2d

)
.

(90)
when we select η = O(1/

√
TK), K = O(nq) and K = O(T ). This completes the proof.699

C.1 Proof of Lemma C.1700

From (69), by letting u = w∗, given w̄(t−1), we have that701

∥w̃(t,k) − u∥2

= ∥w̃(t,k−1) −
n∑

i=1

η
(t)
i · ∇fi(w

(t,k−1)
i )

n
− w∗∥2

= ∥w̃(t,k−1) − w∗∥2 − 2

n
·

n∑
i=1

η
(t)
i ⟨w̃(t,k−1) − w∗,∇fi(w

(t,k−1)
i )⟩+ ∥

∑n
i=1 η

(t)
i ∇fi(w

(t,k−1)
i )

n
∥2.

(91)
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By (72) and (70), (91) can be further bounded by702

∥w̃(t,k) − w∗∥2

= ∥w̃(t,k−1) − w∗∥2 + 2η(1−∆Ψ̄(t))
(
F (w∗)− F (w̃(t,k−1))

)
+
(βη
n

n∑
i=1

∥w(t,k−1)
i − w̃(t,k−1)∥2

)
+ 4ηγ∆Ψ̄(t) + η2

(3β2
∑n

i=1 ∥w
(t,k−1)
i − w̃(t,k−1)∥2

n
+ 6β(F (w̃(t,k−1))− F (w∗)) + 3τ

)
≤ ∥w̃(t,k−1) − w∗∥2 −

(
2η(1−∆Ψ̄(t))− 6βη2

)(
F (w̃(t,k−1))− F (w∗)

)
+ (ηβ + 3η2β2)

∑n
i=1 ∥w

(t,k−1)
i − w̃(t,k−1)∥2

n
+ 4ηγ∆Ψ̄(t) + 3η2τ

≤ ∥w̃(t,k−1) − w∗∥2 −
(
2η(1−∆Ψ̄(t))− 6βη2

)(
F (w̃(t,k−1))− F (w∗)

)
+ (ηβ + 3η2β2)

(
15η2k2τ +

12η2k

n

( k−1∑
l=0

β
(
F (w̃(t,l))− F (w∗)

))
+ 4ηγ∆Ψ̄(t) + 3η2τ.

(92)
On the other hand, as for ∥w̄(t+1) − w∗∥, we have that703

E[∥w̄(t) − w∗∥2] = E[∥w̄(t) − w̃(t,K)∥2] + E[∥w̃(t,K) − w∗∥2]

= E[∥
∑K

k=1

∑n
i=1(1

(1)
i − q)η

(t)
i ∇fi(w

(t,k−1)
i )

nq
∥2] + E[∥w̃(t,K) − w∗∥2] + σ2d

≤
Kη2

∑K
k=1

∑n
i=1 ∥∇fi(w

(t,k−1)
i )∥2

n2q
+ E[∥w̃(t,K) − w∗∥2] + σ2d

≤
3Kη2

∑K
k=1

{∑n
i=1

(
β2∥w(t,k−1)

i − w̃(t,k−1)∥2
)
+ 2βn(F (w̃(t,k−1))− F (w∗)) + nτ

}
n2q

+ E[∥w̃(t,K) − w∗∥2] + σ2d

= O
(
∥w̄(0) − w∗∥2 + tK

(
ηγ

B
c+ B

+ (η2 + η3K2)τ +
Kτη2

nq

)
+ tσ2d

)
.

(93)
for sufficiently small η = o(1/K) and K = O(nq). Thus, with the above reasoning, we consider704

t = T and k = K, and then we obtain a global upper bound.705

D Utility of DP-LSGD in Strongly Convex Optimization706

Theorem D.1. For an arbitrary objective loss function F (w) = 1
n ·

∑n
i=1 fi(w) where fi(w) is707

λ-strongly-convex and β-smooth, when η < min{1/β, 2/(β + λ)}, Algorithm 1 with clipped local708

update (2) ensures that709

E[∥w̄(T ) − w∗∥2] ≤
(
1− (ηλ)2

)TK∥w̄(0) − w∗∥2 +
4(1 + ηλ)K ·

(
c2

nq + B2 + η2τK2 + σ2d
)

((1 + ηλ)K − 1)(1− (ηλ)2)K
.

(94)
710

Proof. For simplicity, we use G(w) = w − η∇F (w) to represent the output of gradient descent of711

function F (w). Similarly, we use Gi(w) = w − η∇fi(w) to denote the gradient descent output of712

the i-th individual loss function fi(w).713

Lemma D.1 ([50]). If F (w) is convex and β-smooth, and η ≤ 2/β, then the operation G(w) is
contractive, i.e.,

∥G(w)−G(w′)∥ ≤ ∥w − w′∥,
for arbitrary w and w′. In addition, if F (w) is λ-strongly convex and β-smooth, then if η ≤ 2(β+λ),
then G(w) is strictly contractive such that

∥G(w)−G(w′)∥ ≤ (1− ηβλ

β + λ
)∥w − w′∥.
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In the t-th phase of Algorithm 1, conditional on the initialization w̄(t−1), we first consider a virtual714

trajectory produced by applying full gradient descent on F (w) with step size η for K iterations. We715

denote those iterates by w̃(t,k), for k = 1, 2, · · · ,K. Let w∗ = argminw∈W F (w) be the global716

optimum, when η < 1/β,717

∥w̃(t,k))− w∗∥2 = ∥w̃(t,k−1) − w∗ − η∇F (w̃(t,k−1))∥2 (95)

≤ ∥w̃(t,k−1) − w∗∥2 + η2∥∇F (w̃(t,k−1))∥2 − 2η(F (w̃(t,k−1))− F (w∗)) (96)

≤ (1− ηλ)∥w̃(t,k−1) − w∗∥2 + (2η2β − 2η)(F (w̃(t,k−1))− F (w∗)) (97)

≤ (1− ηλ)∥w̃(t,k−1) − w∗∥2. (98)

In (96), we use the property of strong convexity that

F (w̃(t,k−1))− F (w∗) ≤ ⟨∇F (w̃(t,k−1)), w̃(t,k−1) − w∗⟩ − λ

2
∥w̃(t,k−1) − w∗∥2.

In (97), we use the smooth assumption that 1
2β · ∥∇F (w̃(t,k−1))∥2 ≤ F (w̃(t,k−1))−F (w∗). Finally,718

in (98), as η < 1/β and thus 2η(ηβ − 1) < 0. Therefore,719

∥w̃(t,K) − w∗∥2 ≤ (1− ηλ)K∥w̄(t−1) − w∗∥2. (99)

We will use γ1 = (1− ηλ)K for simplicity.720

Now, we consider to bound the deviation between w̃(t,K) and w̄(t). In the following, we always721

assume η < min{1/β, 2/(β + λ)}. It is noted that, based on the strict contraction property of G and722

Gi, for any u and v,723

∥Gi(u)−G(v)∥ = ∥Gi(u)−Gi(v) +Gi(v)−G(v)∥ ≤ ∥Gi(u)−Gi(v)∥+ ∥Gi(v)−G(v)∥

≤ (1− ηβλ

β + λ
)∥u− v∥+ η∥∇fi(v)−∇F (v)∥.

In the following, we use γ2 = (1− ηβλ
β+λ ) for simplicity. Similarly, for {G1, G2, · · · , Gn} on inputs724

{u1, u2, · · · , un}, we have725

∥
∑n

i=1 Gi(ui)

n
−G(v)∥ ≤ γ2 ·

∑n
i=1 ∥ui − v∥

n
+ ∥

∑n
i=1 Gi(v)

n
−G(v)∥

= γ2 ·
∑n

i=1 ∥ui − v∥
n

.

(100)

At the t-th phase, from the initialization w̄(t−1), w(t,K)
i = Gi ◦Gi ◦ · · · ◦Gi︸ ︷︷ ︸

k

(w̄(t−1)). On the726

other hand, with the same start point w̄(t−1), the virtual iterate w̃(t,K) = G ◦G ◦ · · · ◦G︸ ︷︷ ︸
k

(w̄(t−1)).727

Therefore, with a recursion reasoning,728

∥w̃(t,K) −
∑n

i=1 w
(t,K)
i

n
∥

≤
γ2 ·

∑n
i=1 ∥w

(t,K−1)
i − w̃(t,K−1)∥

n

≤
γ2 ·

∑n
i=1

(
γ2∥w(t,K−2)

i − w̃(t,K−2)∥+ η∥∇fi(w̃
(t,K−1))−∇F (w̃(t,K−1))∥

)
n

≤ ∥w̄(t−1) − w̄(t−1)∥+
η
∑K−2

k=0 γK−k
2

∑n
i=1 ∥∇fi(w̃

(t,k))−∇F (w̃(t,k))∥
n

≤ η
√
τ(1− γK

2 )

1− γ2
.

(101)

Here, in (101), we apply Assumption 2.1 on the variance bound τ , where the sampling noise of729

stochastic gradient satisfies ∥
∑n

i=1

(
∇fi(w)−∇F (w)

)
∥ ≤ nB. Now, we further take the clipping730
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operation, i.i.d. sampling and DP noise into accountant. First, due to the clipping, stemmed from731

(101),732

∥
∑n

i=1 w̄
(t−1) + CP(∆w

(t)
i , c)

n
− w̃(t,K)∥ = ∥

∑n
i=1 w̄

(t−1) + CP(w
(t,K)
i − w̄(t−1), c)

n
− w̃(t,K)∥

≤
∥∥∑n

i=1

(
w̄(t−1) + CP(w

(t,K)
i − w̄(t−1), c)− w

(t,K)
i

)
n

∥+ ∥
∑n

i=1 w
(t,K)
i

n
− w̃(t,K)∥

)
≤ B +

η
√
τ(1− γK

2 )

1− γ2
.

(102)
In the following, we proceed to incorporate the sampling noise and DP noise into the deviation733

analysis. Let µ(t) =
∑n

i=1 CP(∆w
(t)
i ,c)

n be the average of clipped local update at the t-th phase. Let734

1
(t)
i to be an indicator which equals 1 iff the i-th sample gets selected (independently with rate q).735

Then,736

E[∥w̄(t) − w̃(t,K)∥] = E[∥w̄(t−1) +

∑
i=1 1

(t)
i · CP(∆w

(t)
i , c)

nq
+ e(t) − w̃(t,K)∥] (103)

≤ E[∥w̄(t−1) +

∑
i=1 1

(t)
i · CP(∆w

(t)
i , c)

nq
− w̃(t,K)∥] + σ

√
d (104)

= E[∥w̄(t−1) +

∑
i=1 1

(t)
i · CP(∆w

(t)
i , c)

nq
− µ(t) + µ(t) − w̃(t,K)∥] + σ

√
d

(105)

≤ E[∥
∑

i=1(1
(t)
i − q) · CP(∆w

(t)
i , c)

nq
∥+ ∥w̄(t−1) − w̃(t,K) + µ(t)∥] + σ

√
d

(106)

≤

√
nc2

n2q
+ B +

η
√
τ(1− γK

2 )

1− γ2
+ σ

√
d. (107)

In (104), we use the fact that Q(t) is independent DP noise with zero mean and E[∥Q(t)∥] = σ
√
d.737

In (106), we use the triangle inequality. In (107), we use the convexity of l2 norm function and it is738

noted that (1(t)
i − q) for i = 1, 2, · · · , n, are i.i.d. and of zero mean while ∥CP(∆w

(t)
i , c)∥ ≤ c.739

So far, we have derived the expected deviation between w̄(t) and w̃(t,K) at the end of the t-th phase740

conditional on w̄(t−1). In the following, we will continue to incorporate such deviation to (99).741

By applying the AM-GM inequality, ∥u − v∥2 ≤ (1 + z)∥u∥2 + (1 + 1
z )∥v∥

2 for any z > 0, on742

∥w̄(t) − w∗∥2 = ∥(w̃(t,K) − w∗) + (w̄(t) − w̃(t,K))∥2, we have that743

E[∥w̄(t) − w∗∥2] ≤ (1 + z)E[∥w̃(t,K) − w∗∥2 + (1 +
1

z
)∥w̄(t) − w̃(t,K)∥2]

≤ (1 + z)γ1E[∥w̄(t−1) − w∗∥2] + (1 +
1

z
)(

c
√
nq

+ B +
η
√
τ(1− γK

2 )

1− γ2
+ σ

√
d)2

≤ (1 + z)γ1E[∥w̄(t−1) − w∗∥2] + 4(1 +
1

z
)
( c2
nq

+ B2 +
η2τ(1− γK

2 )2

(1− γ2)2
+ σ2d

)
(108)

Based on (108) by recursion, we further obtain the following unconditional expectation744

E[∥w̄(T ) − w∗∥2] ≤ ((1 + z)γ1)
T ∥w̄(0) − w∗∥2 +

4(1 + 1
z )

1− (1 + z)γ1

( c2
nq

+ B2 +
η2τ2(1− γK

2 )2

(1− γ2)2
+ σ2d

)
≤

(
1− (ηλ)2

)TK∥w̄(0) − w∗∥2 +
4(1 + ηλ)K ·

(
c2

nq + B2 + η2τK2 + σ2d
)

((1 + ηλ)K − 1)(1− (ηλ)2)K

(109)
In (109), we select z = (1 + ηλ)K − 1,745
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E Proof of Theorem 4.2: Utility of DP-LSGD in Non-Convex Optimization746

To apply Theorem 3.2 on DP-LSGD, we may equivalently view the perturbation term Q(t) as formed747

by two parts. One is due to the local update clipping and the other is the DP noise added, denoted by748

e(t) in this proof. To be formal, Q(t) can be rewritten as follows,749

Q(t) =
η

nq

∑
i∈St

K−1∑
k=0

(1− c

max{∥
∑K−1

k=0 gki ∥, c}
)gki + e(t)

=
η

nq

n∑
i=1

K−1∑
k=0

1
(t)
i (1− c

max{∥
∑K−1

k=0 gki ∥, c}
)gki︸ ︷︷ ︸

(A)

+e(t).
(110)

In (110), term (A) corresponds to the correction term due to the clipping, where equivalently the750

learning rate of the local update from each sample is scaled by a factor determined by the norm751

∥
∑K−1

k=0 gki ∥. e(t) is the independent DP noise added in the t-th phase. Therefore, conditional on752

w̄(t−1), the expectation of ∥Q(t)∥2 is in the following form,753

E[∥Q(t)∥2] =
E[∥

∑n
i=1

∑K−1
k=0 1

(t)
i η(1− c

max{∥
∑K−1

k=0 gk
i ∥,c}

)gki ∥2]

(nq)2
+ σ2d

≤

∑n
i=1 E

[
∥η(1− c

max{∥
∑K−1

k=0 gk
i ∥,c}

)
∑K−1

k=0 gki ∥2
]

nq
+ σ2d

=

∑n
i=1 E[(Ψ

(t)
i )2]

nq
+ σ2d = qB2 + σ2d.

(111)

Recall Definition 4.1, in (111), Ψ(t)
i is the incremental norm of the local update by i-th sample in the754

t-th phase, i.e., max{∥η
∑K−1

k=0 gki ∥ − c, 0}. Now, plugging the form of E[∥Q(t)∥2] in (111) back to755

Theorem 3.2, we obtain the utility bound claimed for DP-LSGD.756

F Additional Experiments and Experiment Setups757

For all the experiments with respect to CIFAR10, we assume the training data set of 50,000 samples758

is private. Similarly, for SVHN, we assume the training data set of 73,257 samples is private. In759

Fig. 2 (a,b), we report the statistics of normalized incremental norm when we train ResNet 20 on760

SVHN. Very similar to our observation on CIFAR10, both the mean and the standard deviation of761

the normalized incremental norm in DP-LSGD is only about a half of those in DP-SGD, which762

suggest that DP-LSGD bears less influence from the clipping operator. As a consequence, in763

Fig. 2 (c), we can see DP-LSGD enjoys a faster convergence rate accompanying with a better764

utility-privacy tradeoff. Our code can be found in the following anonymous Github link: https:765

//anonymous.4open.science/r/DP-Local-SGD--262F/README.md.766

As for the hyper-parameter selection, in Table 1, for both the experiments on CIFAR10 and SVHN,767

the total number of phases T is selected to be 1000, 1000, 1500, 1500, 2000 and 2000 for ϵ =768

1.5, 2, 2.5, 3, 3.5 and 4, respectively. For DP-LSGD, K is always fixed to be 10 and η = 0.025; while769

for DP-SGD, K = 1, η = 1.770
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Figure 2: Training ResNet 20 on SVHN with DP-LSGD (K = 10, η = 0.025, c = 1) and DP-SGD
(K = 1, η = 1, c = 1) under (ϵ = 2, δ = 10−5)-DP, with expected batch size 1000.
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