
Presented at Deep RL workshop, NeurIPS 2021

APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 ABLATIONS FOR KL-REGULARISATION

In these experiments, we investigate the effect of KL-regularisation on the mid-level components,
both for the offline learning phase (regularising each component to p(zt |yt) = N (0, I) via coeffi-
cient βz), and the online reinforcement learning stage via HeLMS-mix (regularising each component
to the mid-level skills learned offline, via coefficient ηz)). The results are reported in Figure 9, where
each plot represents a different setting for offline KL-regularisation (either regularisation toN (0, I)
with βz = 0.01, or no regularisation with βz = 0) and a different transfer case (the easy case of
transferring to object set 4, or the hard case of transferring to object set 3). Each plot shows the
downstream performance when varying the strength of KL-regularisation during RL via coefficient
ηz . The HeLMS-cat approach represents the extreme case where the skills are entirely frozen (i.e.
full regularisation).

The results suggest some interesting properties of the latent skill space based on regularisation.
When regularising the mid-level components to the N (0, I) prior, it is important to regularise dur-
ing online RL; this is especially true for the hard transfer case, where HeLMS-cat performs much
better, and the performance degrades significantly with lower regularisation values. However, when
removing mid-level regularisation during offline learning, the method is insensitive to regularisation
during RL over the entire range evaluated, from 0.01 to 100.0. We conjecture that with mid-level
skills regularised to N (0, I), the different mid-level skills are drawn closer together and occupy a
more compact region in latent space, such that KL-regularisation is necessary during RL for a skill
to avoid drifting and overlapping with the latent distribution of other skills (i.e. skill degeneracy). In
contrast, without offline KL-regularisation, the skills are free to expand and occupy more distant re-
gions of the latent space, rendering further regularisation unnecessary during RL. Such latent space
properties could be further analysed to improve learning and transfer of skills; we leave this as an
interesting direction for future work.

(a) βz = 0.01, easy (b) βz = 0.01, hard (c) βz = 0, easy (d) βz = 0, hard

Figure 9: Ablations for KL-regularisation, showing downstream performance with different degrees
of online KL-regularisation. Performance is evaluated for easy (object set 4) and hard (object set
3) transfer cases, with sparse staged rewards; when using different offline regularisation coefficient
(βz) values for the mid-level components.

A.2 NPMP ABLATION

The Neural Probabilistic Motor Primitives (NPMP) work (Merel et al., 2019) presents a strong base-
line approach to learning transferable motor behaviours, and we run ablations to ensure a fair com-
parison to the strongest possible result. As discussed in the main text, NPMP employs a Gaussian
high-level latent encoder with a AR(1) prior in the latent space. We also try a fixed N(0, I) prior
(this is equivalent to an AR(1) prior with a coefficient of 0, so can be considered a hyperparameter
choice). Since our method benefits from KL-regularisation during RL, we apply this to NPMP as
well.

13

Presented at Deep RL workshop, NeurIPS 2021

As shown in Figure 10, we find that both changes lead to substantial improvements in the manipu-
lation domain, on all five object sets. Consequently, in our main experiments, we report results with
the best variant, using a N(0, I) prior with KL-regularisation during RL.

(a) Object set 1 (b) Object set 2 (c) Object set 3

(d) Object set 4 (e) Object set 5

Figure 10: Ablation for NPMP (Merel et al., 2019) using staged sparse reward, with all object sets.
We find that using N(0, I) prior with KL-regularisation performs much better in the manipulation
domain compared to the original AR(1) prior, so we use this modified baseline.

B REINFORCEMENT LEARNING WITH MPO AND RHPO

As discussed in Section 3.2, the hierarchy of skills are transferred to RL in two ways: HeLMS-
cat, which learns a new high-level categorical policy π(yt |xt) via MPO (Abdolmaleki et al.,
2018); or HeLMS-mix, which learns a mixture policy π(zt |xt) =

∑
yt
π(yt |xt)π(zt |yt,xt) via

RHPO (Wulfmeier et al., 2020). We describe the optimisation for both of these cases in the follow-
ing subsections. For clarity of notation, we omit the additional KL-regularisation terms introduced
in Section 3.2 and describe just the base methods of MPO and RHPO when applied to the RL setting
in this paper. These KL-terms are incorporated as additional loss terms in the policy improvement
stage.

B.1 HELMS-CAT VIA MPO

Maximum a posteriori Policy Optimisation (MPO) is an Expectation-Maximisation-based algorithm
that performs off-policy updates in three steps: (1) updating the critic; (2) creating a non-parametric
intermediate policy by weighting sampled actions using the critic; and (3) updating the parametric
policy to fit the critic-reweighted non-parametric policy, with trust region constraints to improve
stability. We detail each of these steps below. Note that while the original MPO operates in the
environment’s action space, we use it here for the high-level controller, to set the categorical variable
yt.

Policy evaluation First, the critic is updated via a TD(0) objective as:

min
θ
L(θ) = Ext,yt∼B

[(
QT −Qφ(xt,yt))2

]
, (6)

Here, QT = rt + γExt+1,yt+1
[Q′(st+1,yt+1)] is the 1-step target with the state transition

(xt,yt,xt+1) returned from the replay buffer B, and next action sampled from yt+1 ∼ π′(·|xt+1).
π′ and Q′ are target networks for the policy and the critic, used to stabilise learning.

14

Presented at Deep RL workshop, NeurIPS 2021

Policy improvement Next, we proceed with the first step of policy improvement by constructing
an intermediate non-parametric policy q(yt|xt), and optimising the following constrained objective:

max
q
J(q) = Eyt∼q,xt∼B

[
Qφ(xt,yt)

]
, s.t. Ext∼B

[
KL
(
q(·|xt)‖πθk(·|xt)

)]
≤ εE , (7)

where εE defines a bound on the KL divergence between the non-parametric and parametric policies
at the current learning step k. This constrained optimisation problem has the following closed-form
solution:

q(yt |xt) ∝ πθk(yt |xt) exp (Qφ(xt,yt)/η) . (8)

In other words, this step constructs an intermediate policy which reweights samples from the pre-
vious policy using exponentiated temperature-scaled critic values. The temperature parameter η is
derived based on the dual of the Lagrangian; for futher details please refer to (Abdolmaleki et al.,
2018).

Finally, we can fit a parametric policy to the non-parametric distribution q(yt |xt) by minimising
their KL-divergence, subject to a trust-region constraint on the parametric policy:

θk+1 = argmin
θ

Ext∼B

[
KL(q(yt |xt) ||πθ(yt|xt))

]
,

s.t. Ext∼B

[
KL
(
πθk+1

(yt |xt) ||πθk(yt |xt)
)]
≤ εM . (9)

This optimisation problem can be solved via Lagrangian relaxation, with the Lagrangian multiplier
εM modulating the strength of the trust-region constraint. For further details and full derivations,
please refer to (Abdolmaleki et al., 2018).

B.2 HELMS-MIX VIA RHPO

RHPO (Wulfmeier et al., 2020) follows a similar optimisation procedure as MPO, but ex-
tends it to mixture policies and multi-task settings. We do not exploit the multi-task capabil-
ity in this work, but utilise RHPO to optimise the mixture policy in latent space, π(zt |xt) =∑

yt
π(yt |xt)π(zt |yt,xt). The Q-function Qφ(xt, zt) and parametric policy πθk(zt |xt) use the

continuous latents zt as actions instead of the categorical yt. This is also in contrast to the original
formulation of RHPO, which uses the environment’s action space. Compared to MPO, the policy
improvement stage of the non-parametric policy is minimally adapted to take into account the new
mixture policy. The key difference is in the parametric policy update step, which optimises the
following:

θk+1 = argmin
θ

Ext∼B

[
KL(q(zt |xt) ||πθ(zt|xt))

]
,

s.t. Ext∼B

[
KL
(
πθk+1

(yt |xt) ||πθk(yt |xt)
)

+
∑
yt

KL
(
πθk+1

(zt |yt,xt) ||πθk(zt |yt,xt)
)]
≤ εM . (10)

In other words, separate trust-region constraints are applied to a sum of KL-divergences: for the
high-level categorical and for each of the mixture components. Following the original RHPO, we
separate the single constraint into decoupled constraints that set a different ε for the means, covari-
ances, and categorical (εµ, εσ , and εcat, respectively). This allows the optimiser to independently
modulate how much the categorical distribution, component means, and component variances can
change. For further details and full derivations, please refer to (Wulfmeier et al., 2020).

15

Presented at Deep RL workshop, NeurIPS 2021

C ELBO DERIVATION AND INTUITIONS

We can compute the Evidence Lower Bound for the state-conditional action distribution,
p(a1:T |x1:T) ≥ ELBO, as follows:

ELBO = p(a1:T |x1:T)− KL(q(y0:T , z1:T |x1:T) || p(y0:T , z1:T |x1:T))

= Eq(y0:T ,z1:T |x1:T)

[
log p(a1:T ,y0:T , z1:T |x1:T)− log q(y0:T , z1:T |x1:T)

]
= Eq1:T

[
T∑
t=1

log p(at | zt,xt) + log p(zt |yt) + log p(yt |yt−1)

− log q(zt |yt,xt)− log q(yt |yt−1,x)

]

=

T∑
t=1

Eq1:T

[
log p(at | zt,xt)− KL(q(zt |yt,xt) || p(zt |yt))

−KL(q(yt |yt−1,xt) || p(yt |yt−1))

]
(11)

We note that the first two terms in the expectation depend only on timestep t, so we can simplify
and marginalise exactly over all discrete {y1:T }\yt. For the final term, we note that the KL at
timestep t is constant with respect to yt (as it already marginalises over the whole distribution), and
only depends on yt−1. Lastly, we will use sampling to approximate the expectation over zt. This
yields the following:

ELBO =

T∑
t=1

Eq(zt |yt,xt)

[∑
y0:T

q(y0:T |x1:T)
(
log p(at | zt,xt)− KL(q(zt |yt,xt) || p(zt |yt))

−KL(q(yt |yt−1,xt) || p(yt |yt−1))
)]

ELBO ≈
T∑
t=1

[∑
yt

q(yt |x1:t)
(per-component recon loss︷ ︸︸ ︷
log p(at | z̃{yt}

t ,xt)−βz

per-component KL regulariser︷ ︸︸ ︷
KL(q(zt |yt,xt) || p(zt |yt))

)]

−βy
T∑
t=1

[∑
yt−1

q(yt−1 |x1:t−1)KL(q(yt |yt−1,xt) || p(yt |yt−1))︸ ︷︷ ︸
discrete regulariser

]
(12)

where z̃{yt}
t ∼ q(zt |yt,xt), the coefficients βy and βz can be used to weight the KL terms, and the

cumulative component probability q(yt |x1:t) can be computed iteratively as:

q(yt |x1:t) =
∑
yt−1

q(yt |yt−1,xt)q(yt−1 |x1:t−1) (13)

In other words, for each timestep t and each mixture component, we compute the latent sample
and the corresponding action log-probability, and the KL-divergence between the component pos-
terior and prior. This is then marginalised over all yt, with an additional KL over the categorical
transitions.

Structuring the graphical model and ELBO in this form has a number of useful properties. First, the
ELBO terms include an action reconstruction loss and KL term for each mixture component, scaled
by the posterior probability of each component given the history. For a given state, this pressures
the model to assign higher posterior probability to components that have low reconstruction cost or
KL, which allows different components to specialise for different parts of the state space. Second,
the categorical KL between posterior and prior categorical transition distributions is scaled by the

16

Presented at Deep RL workshop, NeurIPS 2021

posterior probability of the previous component given history q(yt−1 |x1:t−1): this allows the rel-
ative probabilities of past skill transitions along a trajectory to be considered when regularising the
current skill distribution. Finally, this formulation does not require any sampling or backpropagation
through the categorical variable: starting from t = 0, the terms for each timestep can be efficiently
computed by recursively updating the posterior over components given history (q(yt |x1:t)), and
summing over all possible categorical values at each timestep.

D ENVIRONMENT PARAMETERS

As discussed earlier in the paper, all experiments take place in a MuJoCo-based object manipulation
environment using a Sawyer robot manipulator and three objects: red, green, and blue. The state
variables in the Sawyer environment are shown in Table 3. All state variables are stacked for 3 frames
for all agents. The object states are only provided to the mid-level and high-level for HeLMS runs,
and the camera images are only used by the high- and mid-level controller in the vision transfer
experiments (without object states).

The action space is also shown in Table 4. Since the action dimensions vary significantly in range,
they are normalised to be between [−1, 1] for all methods during learning.

When learning via RL, we apply domain randomisation to physics (but not visual randomisation),
and a randomly sampled action delay of 0-2 timesteps. This is applied for all approaches, and
ensures that we can learn a policy that is robust to small changes in the environment.

Proprioception
State Dims

Joint angles 7
Joint velocities 7

Joint torque 7
TCP pose 7

TCP velocity 6
Wrist angle 1

Wrist velocity 1
Wrist force 3

Wrist torque 3
Binary grasp sensor 1

Object states
State Dims

Absolute pose (red) 7
Absolute pose (green) 7
Absolute pose (blue) 7

Distance to pinch (red) 7
Distance to pinch (green) 7
Distance to pinch (blue) 7

Vision
State Dims

Camera images 64× 64× 3

Table 3: Details of state variables used by the agent.

Action Dims Range
Gripper translational velocity (x-y-z) 3 [−0.07, 0.07] m/s

Wrist rotation velocity 1 [−1, 1] rad/s
Finger speed 1 [−255, 255] tics/s

Table 4: Action space details for the Sawyer environment.

17

Presented at Deep RL workshop, NeurIPS 2021

Figure 11: The five object sets (triplets) used in the paper. This image has been taken directly from
(Lee et al., 2021) for clarity.

D.1 OBJECT SETS

As discussed in the main paper, we use the object sets defined by Lee et al. (2021), which are care-
fully designed to cover different object geometries and affordances, presenting different challenges
for object interaction tasks. The object sets are shown in Figure 11 (the image has been taken directly
from (Lee et al., 2021) for clarity), and feature both simulated and real-world versions; in this paper
we focus on the simulated versions. As discussed in detail by (Lee et al., 2021), each object set has
a different degree of difficulty and presents a different challenge to the task of stacking red-on-blue:

• In object set 1, the red object has slanted surfaces that make it difficult to grasp, while the
blue object is an octagonal prism that can roll.

• In object set 2, the blue object has slanted surfaces, such that the red object will likely slide
off unless the blue object is first reoriented.

• In object set 3, the red object is long and narrow, requiring a precise grasp and careful
placement.

• Object set 4 is the easiest case with rectangular prisms for both red and blue.
• Object set 5 is also relatively easy, but the blue object has ten faces, meaning limited surface

area for stacking.

For more details about the object sets and the rationale behind their design, we refer the reader to
(Lee et al., 2021).

E NETWORK ARCHITECTURES AND HYPERPARAMETERS

The network architecture details and hyperparameters for HeLMS are shown in Table 5. Parameter
sweeps were performed for the β coefficients during offline learning and the η coefficients during
RL. Small sweeps were also performed for the RHPO ε parameters (refer to (Wulfmeier et al., 2020)
for details), but these were found to be fairly insensitive. All other parameters were kept fixed, and
used for all methods except where highlighted in the following subsections. All RL experiments
were run with 3 seeds to capture variation in each method.

For network architectures, all experiments except for vision used simple 2-layer MLPs for the high-
and low-level controllers, and for each mid-level mixture component. An input representation net-
work was used to encode the inputs before passing them to the networks that were learned from
scratch: i.e. the high-level for state-based experiments, and both high- and mid-level for vision (re-

18

Presented at Deep RL workshop, NeurIPS 2021

call that while the state-based experiments can reuse the mid-level components conditioned on object
state, the vision-based policy learned them from scratch and KL-regularised to the offline mid-level
skills). The critic network was a 3-layer MLP, applied to the output of another input representation
network (separate to the actor, but with the same architecture) with concatenated action.

Offline learning parameters
Name Value

Latent space dimension 8
Number of mid-level components, K 5 for red_on_blue data, 10 for all_pairs data

Low-level network 2-hidden layer MLP, {256, 256} units
Low-level head Gaussian, tanh-on-mean, fixed σ = 0.1

Mid-level network 2-hidden layer MLP for each component, {256, 256} units
Mid-level head Gaussian, learned σ ∈ [0.01, 1.0]

High-level network 2-hidden layer MLP, {256, 256} units
High-level head K-way softmax

Activation function elu
Encoder look-ahead duration 5 timesteps

βy 1.0
βz 0.1, 0.0 (object generalisation)

Batch size 128
Learning rate 10−4

Dataset trajectory length 25

Online RL parameters
Name Value

Number of seeds 3 (all experiments)

Input representation network (state)
Input normalizer layer (linear layer with 256 units,

layer-norm, and tanh-on-output)

High-level network (state) 2-hidden layer MLP, {256, 256} units

Input representation network (vision)
MLP on proprio and ResNet with three layers of {2, 2, 2} blocks

corresponding to {32, 64, 128} channels

High-level network (vision) 2-hidden layer MLP, {256, 256} units
Mid-level network (vision) 2-hidden layer MLP for each component, {256, 256} units

Critic network 3-hidden layer MLP, {256, 256, 256} units with RNN
Activation function elu

ηy 0.1 (vision), 0.01
ηz 0.1 (pyramid and vision), 0.01 (object generalisation)

Number of actors 1500
Batch size 512

Trajectory length 10
Learning rate 2× 10−4

Number of action samples 20
RHPO categorical constraint εcat 1.0

RHPO mean constraint εµ 5× 10−3

RHPO covariance constraint εσ 10−4

Table 5: Hyperparameters and architecture details for HeLMS, for both offline training and RL.

F REWARDS

Throughout the experiments, we employ different reward functions for different tasks and to study
the efficacy of our method in sparse versus dense reward scenarios.

Reward stages and primitive functions The reward functions for stacking and pyramid tasks use
various reward primitives and staged rewards for completing sub-tasks. Each of these rewards are
within the range of [0, 1]

These include:

19

Presented at Deep RL workshop, NeurIPS 2021

• reach(obj): a shaped distance reward to bring the TCP to within a certain tolerance of
obj.
• grasp(): a binary reward for triggering the gripper’s grasp sensor.
• close_fingers(): a shaped distance reward to bring the fingers inwards.
• lift(obj): shaped reward for lifting the gripper sufficiently high above obj.
• hover(obj1,obj2): shaped reward for holding obj1 above obj2.
• stack(obj1,obj2): a sparse reward, only provided if obj1 is on top of obj2 to

within both a horizontal and vertical tolerance.
• above(obj,dist): shaped reward for being dist above obj, but anywhere horizon-

tally.
• pyramid(obj1,obj2,obj3): a sparse reward, only provided if obj3 is on top of the

point midway between obj1 and obj2, to within both a horizontal and vertical tolerance.
• place_near(obj1,obj2): sparse reward provided if obj1 is sufficiently near obj2.

Dense stacking reward The dense stacking reward contains a number of stages, where each stage
represents a sub-task and has a maximum reward of 1. The stages are:

• reach(red) AND grasp(): Reach and grasp the red object.
• lift(red) AND grasp(): Lift the red object.
• hover(red,blue): Hover with the red object above the blue object.
• stack(red,blue): Place the red object on top of the blue one.
• stack(red,blue) AND above(red): Move the gripper above after a completed

stack.

At each timestep, the latest stage to receive non-zero reward is considered to be the current stage,
and all previous stages are assigned a reward of 1. The reward for this timestep is then obtained by
summing rewards for all stages, and scaling by the number of stages, to ensure the highest possible
reward on any timestep is 1.

Sparse staged stacking reward The sparse staged stacking reward is similar to the dense reward
variant, but each stage is sparsified by only providing the reward for the stage once it exceeds a value
of 0.95.

This scenario emulates an important real-world problem: that it may be difficult in certain cases to
specify carefully shaped meaningful rewards, and it can often be easier to specify (sparsely) whether
a condition (such as stacking) has been met.

Sparse stacking reward This fully sparse reward uses the stack(red,blue) function to pro-
vide reward only when conditions for stacking red on blue have been met.

Pyramid reward The pyramid-building reward uses a staged sparse reward, where each stage
represents a sub-task and has a maximum reward of 1. If a stage has dense reward, it is sparsified by
only providing the reward once it exceeds a value of 0.95. The stages are:

• reach(red) AND grasp(): Reach and grasp the red object.
• lift(red) AND grasp(): Lift the red object.
• hover(red,green): Hover with the red object above the green object (with a larger

horizontal tolerance, as it does not need to be directly above).
• place_near(red,green): Place the red object sufficiently close to the green object.
• reach(blue) AND grasp(): Reach and grasp the blue object.
• lift(blue) AND grasp(): Lift the blue object.
• hover(blue,green) AND hover(blue,red): Hover with the blue object above

the central position between red and green objects.
• pyramid(blue,red,green): Place the blue object on top to make a pyramid.
• pyramid(blue,red,green) AND above(blue): Move the gripper above after a

completed stack.

20

Presented at Deep RL workshop, NeurIPS 2021

At each timestep, the latest stage to receive non-zero reward is considered to be the current stage,
and all previous stages are assigned a reward of 1. The reward for this timestep is then obtained by
summing rewards for all stages, and scaling by the number of stages, to ensure the highest possible
reward on any timestep is 1

21

	Introduction
	Related work
	Method
	Latent Mixture Skill Spaces from Offline Data
	Reinforcement learning with reloaded skills

	Experiments
	Experimental setup
	Learning skills from offline data
	Transfer to downstream tasks
	Where and how can hierarchical skill reuse be effective?
	Ablation Studies

	Conclusion
	Additional experiments
	Ablations for KL-regularisation
	NPMP ablation

	Reinforcement learning with MPO and RHPO
	HeLMS-cat via MPO
	HeLMS-mix via RHPO

	ELBO derivation and intuitions
	Environment parameters
	Object sets

	Network architectures and hyperparameters
	Rewards

