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ABSTRACT

The dynamic imbalance of the fore-background is a major challenge in video
object counting, which is usually caused by the sparsity of target objects. This
remains understudied in existing works and often leads to severe under-/over-
prediction errors. To tackle this issue in video object counting, we propose a
density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework
in this paper. To empower the model’s representation ability on density regression,
we develop a new Density-Embedded Masked mOdeling (DEMO) method, which
first takes the density map as an auxiliary modality to perform multimodal self-
representation learning for image and density map. Although DEMO contributes to
effective cross-modal regression guidance, it also brings in redundant background
information, making it difficult to focus on the foreground regions. To handle this
dilemma, we propose an efficient spatial adaptive masking derived from density
maps to boost efficiency. Meanwhile, we employ an optical flow-based temporal
collaborative fusion strategy to effectively capture the dynamic variations across
frames, aligning features to derive multi-frame density residuals. The counting
accuracy of the current frame is boosted by harnessing the information from ad-
jacent frames. In addition, considering that most existing datasets are limited
to human-centric scenarios, we first propose a large video bird counting dataset,
DroneBird, in natural scenarios for migratory bird protection. Extensive experi-
ments on three crowd datasets and our DroneBird validate our superiority against
the counterparts. The code and dataset are available 1.

1 INTRODUCTION

Video object counting aims to estimate the number of objects in video scenes and has been used in
various practical applications, from traffic management to public security. It has the potential to be
used in decreasing the workload of public management and protecting migratory birds. Due to the
crucial role of object counting in multiple application scenarios, it has attracted broad attention in
recent years with the development of computer vision.

Despite many excellent works that have been proposed over the past decades, most of these methods
are based on static single-frame images (Zhang et al., 2016; Li et al., 2018) extracted from video,
leading to significant loss of dynamic inter-frame information, especially for the swiftly moving tar-
gets. In practice, such as crowd or animal activity analysis, the source data is often captured in video
form by surveillance cameras or drones. Unlike static single-frame images, video data is signifi-
cantly dynamic in the spatial motion variations of foreground objects across adjacent time instances,
thereby providing richer contextual information. Therefore, by capturing the inter-frame information
between video frames, the model is qualified to better perceive dynamical targets, thereby improv-
ing the accuracy and stability of the counting performance. To this concern, some video counting
methods appeared recently (Zou et al., 2019; Bai & Chan, 2021; Hossain et al., 2020), which aim to
capture the dynamism between frames by employing techniques such as 3D convolutions or incor-
porating additional information. However, since the video data inherently suffers from the problem
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of redundant background information Zhou et al. (2022), extracting features of dynamic targets in
multiple frames may lead to an imbalance between foreground and background information, posing
challenges for the model’s optimization and inference.

More recently, inspired by the unprecedented strong self-representation ability of pre-trained vision
foundational models (He et al., 2021; Tong et al., 2022), researchers have injected these founda-
tion models into downstream vision tasks to fully exploit their representational potential. Inspired
by this, we present an Efficient Masked Autoencoder Counting (E-MAC) framework for video ob-
ject counting. Our E-MAC introduced optical flow-based Temporal Collaborative Fusion (TCF) to
establish inter-frame relationships, constructing a pre-trained visual foundation model-based video
counting framework. The optical flow between frames is used to warp the predicted density map
of the adjacent frame to the current frame. Then, we perform cross-attention between the warped
density map and the predicted current density map to get the final results.

However, the high dynamic of the video data often leads to imbalanced optimization of the sparse
foreground. Different from most existing techniques, we take the density map as an additional aux-
iliary modality of images and transfer the self-representation foundation model to object counting
for the first time. We constructed a Density-Embedded Masked mOdeling (DEMO) that takes inputs
from both the image and the density map, which performs feature interaction through the encoder
and reconstructs the density map from masked image and density map. To this end, the density
self-representation learning drives the regression implicitly by reconstructing the masked density
maps. In addition, while the self-representation learning of density maps facilitates efficient density
regression, the dynamic nature of foreground objects in video data still brings significant imbal-
anced challenges to optimization. Stochastic masked image modeling struggles to focus the model
on extracting features from dynamic moving targets, leading to redundant background reconstruc-
tion that hinders model optimization. To handle this dilemma, we further develop a Spatial Adaptive
Masking (SAM) to generate dynamic efficient masks. During training, SAM dynamically generates
masks based on the correlated density map of each sample, providing valid information while filter-
ing out redundant background details. Our framework employs a post-fusion strategy and develops
a simple cross-attention module to compute the residuals between adjacent predicted density maps,
and design a skip connect to add the residuals to the predicted density map of the current frame,
which ultimately filters the non-dynamic objects in the background.

In this paper, we validate our E-MAC not only in human-centric scenarios but also in natural scenar-
ios. A large-scale video bird counting dataset DroneBird is collected for migratory bird protection.
To the best of our knowledge, DroneBird is the first video bird counting dataset that is captured
from a drone’s viewpoint and provides abundant annotations and rich attributions. Experimental re-
sults on three human-centric datasets and our DroneBird dataset demonstrate the superiority of our
method over the competing methods. Our main contributions are summarized as follows:

• We propose a density-embedded efficient masked autoencoder counting framework for
video object counting, which integrates the foundational model and takes the density map
as an auxiliary modality to perform self-representation learning, effectively driving density
map regression implicitly.

• We propose an efficient spatial adaptive masking method to overcome the dynamic density
distribution and make the model focus on the foreground regions. It adaptively generates
image masks according to the corresponding density maps, effectively addressing the prob-
lem of imbalanced fore-background.

• We propose a large-scale bird counting dataset DroneBird for bird activities analysis. To
our knowledge, DroneBird is the first video bird counting dataset. Extensive experiments
on three human-centric scenarios and our DroneBird dataset validate our superiority com-
pared to the competing methods.

2 RELATED WORK

Object Counting. The vast majority of proposed object counting methods were commonly based
on a single image. Existing counting methods (Li et al., 2018; Liu et al., 2019; Liang et al., 2022)
were mainly based on density map estimation, which generated the density map from point anno-
tations and took it as the ground truth. Most current counting methods tend to use density map
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Figure 1: The chord diagram illustrates the associations between various attributes of our proposed
dataset. Each attribute showcases a portion of the dataset’s examples as references. We provide two
zoomed-in examples for better visualization. The right part represents the experimental result of our
proposed method and previous video counting method on each attribute of our DroneBird dataset.

regression as the pretext task of object counting since it provides more low-level supervision sig-
nals and is easier to optimize. Earlier researchers (Zhang et al., 2016; Li et al., 2018) explored
improving convolutional neural network structures to enhance density regression performance by
extracting multi-scale features from images. Recent methods (Ma et al., 2019; Lin et al., 2022)
utilized Bayesian loss for density contribution models from point labeling, improving upon density
map supervision. Additionally, researchers have integrated CNNs and Transformers to leverage the
attention mechanism (Tian et al., 2021; Liang et al., 2022). More recently, some methods intro-
duced pre-trained foundational models to build object counting methods (Jiang et al., 2023; Kang
et al., 2024), thereby counting the number of any examples. This inspired us to explore the visual
foundation model based video object counting framework.

Video Object Counting. The single-frame image methods focus on spatial information from static
images and neglect temporal processing, making it difficult to address the dynamic nature of video
object counting tasks. The target of video object counting is to predict the number of objects in each
frame of the video. For the evaluation of counting results, video counting calculates the difference
between the predicted results and the ground truth for each frame, and then computes the mean
absolute error (MAE) and mean squared error (RMSE) across all frames. Video object counting
methods aim to leverage information from neighboring frames to enhance the estimation of the
current frame. LSTM and 3D convolutions are commonly used methods for modeling temporal
dependencies between frames (Zou et al., 2019; Shi et al., 2015). Unlike these implicit methods of
establishing frame associations, leveraging object movement direction and optical flow information
can further enhance counting accuracy (Zhu et al., 2021; Hou et al., 2023). However, existing video
counting methods (Liu et al., 2020; Hou et al., 2023) mainly address temporal relationships but often
neglect intra-frame dynamics of foreground regions. Additionally, the high cost of dot annotations
restricts the availability of large video counting datasets, complicating effective learning of dynamic
regions. Our proposed method treats counting as a density reconstruction task, incorporating self-
representation learning of density maps with a dynamic spatial adaptive masking module, which
significantly enhances the counting performance.

Masked Image Modeling. Masked image modeling refers to the reconstruction of the masked por-
tion of a masked image by learning its representation. With the application of Transformer (Vaswani
et al., 2017) in vision and the success of the BERT (Devlin et al., 2019) pre-training paradigm in
natural language processing in recent years, masked image modeling has achieved great progress.
After some enlightening work (Vincent et al., 2008; Chen et al., 2020; Bao et al., 2022), MAE (He
et al., 2021) chunks the image, randomly masks out the majority of the image patches and then
reconstructs them, which has achieved great success on downstream tasks. Inspired by MAE, many
works (Tong et al., 2022; Bachmann et al., 2022) have begun to apply masked image prediction
to diverse scenarios. Considering the strong representation ability of visual foundation models,
we attempt to embed the density map to guide the masked prediction for intra-frame, performing
density-driven regression from image to density map and forming an efficient self-representation
learning framework for video object counting.

3 DRONEBIRD DATASET

Video object counting methods not only hold promising application prospects in human-centric ac-
tivity analysis, but also possess invaluable potential in natural scenarios, such as migratory bird
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Figure 2: An overview of our E-MAC. For the temporal collaborative fusion, we use optical flow
to fuse multi-frame density maps. For the density-embedded masked modeling, the image and
density map are treated as multi-modal data and are fed into the transformer autoencoder for self-
representation masked modeling simultaneously. The spatial adaptive masking uses the density map
to balance the dynamic fore-background. During inference, the density map is fully masked.

protection. In the scenario of counting volant species like birds, to the best of our knowledge, the
existing open-source data is largely limited to discrete image data (Arteta et al., 2016; Wang et al.,
2023), which makes it challenging to apply these methods to dynamic bird activity analysis scenar-
ios. To alleviate the issue of data scarcity as well as to assist in migratory bird activity analysis, we
collected a new large-scale video bird dataset called DroneBird. DroneBird provides point annota-
tions for bird counting, and also provides additional trajectory annotations for further bird tracking.
To the best of our knowledge, DroneBird is the first bird dataset captured in video from a drone’s
viewpoint and provides both point annotations and trajectory annotations.

We have collected statistics on various aspects of our DroneBird dataset and compared them with
some existing datasets in Table 4. All the videos in DroneBird are recorded at 30 frames per second
with resolutions of 2160× 4096 or 2160× 3840. Each frame contains between 8 and 673 annotated
objects, averaging 171.5 per frame. The dataset includes 3, 686, 409 bird annotations and 9, 389
bird trajectories, ranging from 1 to 500 frames in length. To further investigate DroneBird, we have
analyzed five main attributes of each sample, i.e., Illumination, Density, Perspective, Distance, and
Posture. We present the distribution of these attributes and their correlation in Fig. 1. Each arc
represents an attribute, and each chord connects between two arcs, indicating that there are images
that possess both attributes represented by the two arcs. For each attribute, we provide two example
images in the DroneBird dataset for reference. Detailed descriptions of these attributes and clearer
visualization are presented in Appendix A.1.

4 METHOD

In this paper, we introduce an Efficient Masked Autoencoder Counting (E-MAC) framework based
on a self-representation foundation model for video object counting. The framework of our E-
MAC is depicted in Fig. 2, which consists of temporal collaborative fusion (TCF), density-embedded
masked modeling (DEMO), and spatial adaptive masking (SAM). We utilize optical flow to establish
connections across multiple frames to capture inter-frame information. A temporal residual map is
constructed by leveraging optical flow information between frames, which utilizes historical data to
enhance the counting performance of the current frame. For intra-frame information, we employ
density-embedded masked modeling (DEMO) and spatial adaptive masking (SAM) based on the self-
representation foundation model to effectively balance the learning on foreground and background
for more accurate density map estimation.

4.1 TEMPORAL COLLABORATIVE FUSION

The temporal collaborative fusion aims to integrate multiple frames for more accurate estimation.
Given the frames at time t and t− 1, each sample consists of a frame image and a density map. The
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samples of two frames can be described as St = {It, Dt} and St−1 = {It−1, Dt−1}, which are then
fed into the DEMO for density-embedded masked modeling. Different from most existing methods,
we take the density map as an auxiliary modality corresponding to the image modality.

Specifically, for a sample St = {It, Dt}, the patch embedding module patchifies and embeds both
the image modality and density map modality into multi-modal tokens. The SAM removes specific
patches from these multi-modal tokens before the transformer encoder. After passing through the
encoder, the masked positions of the density map are filled with random mask tokens. The decoder
then reconstructs the complete original density map based on the incomplete input information.
In our framework, two temporally adjacent samples {St,St−1} are simultaneously fed into the
DEMO, where the aforementioned process is used to complete the reconstruction and generation of
the predicted density maps {D̂t, D̂t−1}.

The reconstructed density maps {D̂t−1, D̂t} are obtained by the output of DEMO. To align their
spatial distributions, a pre-trained optical flow network (Sun et al., 2018) estimates the motion dis-
placement, followed by a warp operation on D̂t−1, resulting in D̂warp

t−1 . The cross-attention between
D̂warp

t−1 and D̂t then produces D̂res
t , representing the temporal density residuals of adjacent frames.

D̂res
t and D̂t are combined via element-wise addition to output the final fused prediction D̂fuse. The

TCF can be formally described by Equation 1. The fusion effect is improved by utilizing an opti-
cal flow to align information between adjacent frames. We present the whole training process in
Appendix A.2 to make it easy to understand.

D̂fuse =
(
ϕca(ϕwarp(ϕOpticalFlow(It, It−1), D̂t−1), D̂t)

)
︸ ︷︷ ︸

Temporal residual density of adjacent frames

⊕D̂t. (1)

4.2 DENSITY-EMBEDDED MASKED MODELING

As depicted in Fig. 2, the density-embedded masked modeling (DEMO) is a Transformer-based au-
toencoder. The input sample St is first divided into patches {Ipatch,Dpatch}, which are then converted
into a token sequence T ∈ RB×L×C where B represents the batch size, L is the number of tokens,
and C denotes the feature channels. The image It and density map Dt are tokenized simultaneously,
then concatenated along the L dimension, where L = NI +ND. NI and ND represent the number
of tokens from the image and density map modalities. SAM is a density-guided masking strategy that
uses human annotations as priors. Further details are provided in Sec.4.3. It retainsN ret

I foreground
tokens from image It and randomly keeps N ret

D tokens from Dt, generating a new token sequence
Tret ∈ RB×(N ret

I +N ret
D )×C .

The retained tokens are sent to the transformer encoder, while the remaining tokens are discarded and
not passed into the Transformer. The output token dimension of the encoder is B×(N ret

I +N ret
D )×D.

In the decoder, the retained density map tokens Tret
D are separated from the retained token sequence

Tret, where Tret ∈ RB×(N ret
I +N ret

D )×C and Tret
D ∈ RB×N ret

D×C . The learnable random mask tokens
are filled at the masked positions in the retained density map tokens Tret

D as placeholders, and we use
T̂D to represent the filled density map tokens. Cross-attention is then applied, with T̂D as the query
and Tret as the key and value. Then, the reconstructed density map D̂t is generated by the two-layer
transformer, as the end of the self-representation masked modeling.

4.3 SPATIAL ADAPTIVE MASKING

The masked modeling approach discards a subset of tokens prior to the transformer encoder, utiliz-
ing the decoder to reconstruct the missing information. This process allows the model to capture
the relationships between tokens. In the context of multi-modal masked modeling, it further enables
the model to learn associations and interaction mechanisms across different modalities. A substan-
tial body of research indicates that random masking strategies may introduce excessive redundant
information due to the imbalanced fore-background, which is detrimental to the model’s learning
process. To this concern, we developed spatial adaptive masking (SAM) for efficient learning of
the dynamic changing targets in videos. This strategy reduces redundant background optimization
and focuses the model’s attention on the image foreground, thereby improving the efficiency of
self-representation learning.
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For a video frame I , its density distribution D serves as the standard for delimiting the fore-
ground and the background. The lower-left part of Fig. 2 provides a detailed illustration of the
SAM. The symmetric Dirichlet distribution (Bachmann et al., 2022) is used to determine the number
of retained tokens for the image modality and density map modality when generating multi-modal
masks, denoted as N ret

I and N ret
D , respectively. We calculate the number of targets Vi

D in the i-
th density map patch Di

patch corresponding to each token, and VD = {V1
D,V2

D, · · ·VNI

D }, where
Vi

D = ϕsum(D
i
patch). ϕsum represents the pixel-wise sum operation in each density patch (Zhang

et al., 2016; Li et al., 2018), and the results represent the number of targets in the corresponding
patch. To focus on the foreground, we sort the image tokens according to the number of targets
Vi

D in the corresponding density map modality. While the foreground provides more valid informa-
tion, the background should not be completely ignored. Therefore, we set a background retention
probability (BRP) P to introduce the background information, where BRP determines the sorting
manner, in ascending order with a probability of P (focus on the background) or in descending or-
der with a probability of 1 - P (focus on the foreground). Detailed experiments of P are presented
in the Sec. 5.4. The first N ret

I tokens are retained to guide the masking of image I , preserving the
foreground while discarding the background. Here, we denote K as the set of positions that should
be kept, and N is a random variable that follows a Uniform distribution between 0 and 1, which is
produced by a random number generator.

K =

{
argsortdes(ϕsum(D

i
patch)){1 : N ret

I }, if N ≤ 1− P,
argsortasc(ϕsum(D

i
patch)){1 : N ret

I }, otherwise.
(2)

Based on this, we can obtain the spatial adaptive mask Madaptive = {M i
adaptive|1 ≤ i ≤ NI} for

image I . For each token in position i and its corresponding mask M i
adaptive, we have

M i
adaptive =

{
0, if i ∈ K,
1, otherwise,

(3)

where 0 represent keeping and 1 represent masking. We denote the retained tokens from the image
I as Tret

I ∈ RB×N ret
I ×C , where Tret

I = TI ⊗ (1−Madaptive) and TI denotes all the tokens of image
I . For the density token TD corresponding to density map patch Dpatch, we generate a random mask
Mrandom to retain N ret

D tokens as Tret
D ∈ RB×N ret

D×C . These retained tokens are then concatenated to
Tret ∈ RB×(N ret

I +N ret
D )×C and fed into the decoder for prediction.

During inference, the density maps tokens are fully masked and removed. Only the image tokens are
fed into the trained network, which is then required to fully reconstruct the density maps. In other
words, we set N ret

D = 0 and N ret
I = NI .

4.4 LOSS FUNCTION

In this work, we minimize the Mean Square Error (MSE) to ensure that both multi-frame fused
density map D̂fuse and the single-frame predicted result D̂t approach the ground-truth density map
Dt. To simplify the optimization of the optical flow network, we apply an MSE loss between the
warped Îwarp

t−1 and the original image It:

LMSE =
1

2hw

h∑
i=1

w∑
j=1

(
Êi,j −Gi,j

)2

, (4)

where Ê and G represent the estimated vector and its ground truth. Specifically, Ê inLfuse,Lcur,Lopt

represents D̂fuse, D̂t and Îwarp
t−1 respectively, and the corresponding G represents Dt, Dt and It. A

Total Variations (TV) loss (Rudin et al., 1992) is introduced as a regular term to encourage spatial
smoothness in D̂fus. TV loss can be expressed as:

LTV =
1

hw

h∑
i=1

w∑
j=1

[(
D̂i,j

fuse − D̂i−1,j
fuse

)2

+
(
D̂i,j

fuse − D̂i,j−1
fuse

)2
]
. (5)

The objective loss function can be expressed as follows, where λ1 - λ4 are hyperparameters.

L = λ1Lfuse + λ2Lcur + λ3Lopt + λ4LTV. (6)
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Table 1: Quantitative comparison between our proposed method and existing methods with metrics
MAE and RMSE, lower metrics better. Further comparative results can be found in Sec. A.3.

Method Type Mall FDST VSCrowd DroneBirdMethod Type MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image - - 3.77 4.88 27.1 46.9 122.35 149.07
CSRNet (Li et al., 2018) Image 2.46 4.70 2.56 3.12 13.8 21.1 66.11 79.33
CAN (Liu et al., 2019) Image - - - - - - 70.21 92.15
MAN (Lin et al., 2022) Image - - 2.79 4.21 8.3 10.4 39.11 50.08
HMoDE (Du et al., 2023) Image 2.82 3.41 2.49 3.51 19.8 39.5 67.47 81.40
PET (Liu et al., 2023) Image 1.89 2.46 1.73 2.27 6.6 11.0 45.10 52.35
Gramformer (Lin et al., 2024) Image 1.69 2.14 5.15 6.32 8.09 15.65 49.11 65.50

EPF (Liu et al., 2020) Video - - 2.17 2.62 10.4 14.6 97.22 133.01
PFTF (Avvenuti et al., 2022) Video 2.99 3.72 2.07 2.69 - - 89.76 101.02
GNANet (Li et al., 2022) Video - - 2.10 2.90 8.2 10.2 - -
FRVCC (Hou et al., 2023) Video 1.41 1.79 1.88 2.45 - - - -
STGN (Wu et al., 2023) Video 1.53 1.97 1.38 1.82 9.6 12.5 92.38 124.67

Ours Video 1.35 1.76 1.29 1.69 6.0 10.3 38.72 42.92

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. We conduct experiments on our DroneBird dataset and three video ob-
ject counting datasets: Fudan-ShanghaiTech (FDST) (Fang et al., 2019), Mall (Loy et al., 2013)
and VSCrowd (Li et al., 2022) datasets. We use a fixed Gaussian kernel (σ = 6) to generate the
ground-truth density map on these datasets. Following previous methods, we evaluate the counting
performance by using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for each
frame in datasets. MAE measures accuracy as MAE = 1

n

∑n
i=1

∣∣∣Di − D̂i

∣∣∣, and RMSE measures ro-

bustness as RMSE =
√

1
n

∑n
i=1

(
Di − D̂i

)2 , where n is the number of samples in datasets, Di and D̂i

represent the ground truth and predicted density maps of the i-th sample, respectively.

Implementation Details. For the backbone network, the optical flow network leverages the pre-
trained PWCNet (Sun et al., 2018), while the pre-trained ViT-B from MultiMAE (Bachmann et al.,
2022) is used as the encoder in E-MAC. During inference, the density maps {Dt−1, Dt} are fully
masked, leaving the video frames {It−1, It} intact, enabling the model to reconstruct the complete
density map D̂fus from the input video alone. Our experiments are conducted on Huawei Atlas 800
Training Server with CANN and NVIDIA RTX 3090 GPU. We adopt random horizontal flipping
to perform data augmentation. Density maps are standardized by mean and standard deviation for
better optimization. For hyperparameter settings, the model employs a linear learning rate warm-up
for the first 15 epochs, followed by a cosine decay learning rate. The weight decay of AdamW is
set to 0.05, and layer decay is set to 0.75 for the encoder. The mask ratio is 0.72. Empirically,
to maintain a balance between foreground and background tokens, setting a small probability P of
retaining only the background improves the model’s performance for SAM. The probability P for
spatial adaptive masking is set to 0.2. The trade-off parameters λ1, λ2, λ3, λ4 are set to 10, 10, 1,
and 20, respectively.

5.2 COMPARISONS

We compare our method with several state-of-the-art methods on our DroneBird dataset, the FDST
dataset, the Mall dataset, and the VSCrowd dataset.

Mall. Mall provides video data from a fixed viewpoint in a shopping mall, where factors such
as lighting are relatively controllable. On the Mall dataset, we follow the previous works (Bai &
Chan, 2021; Hossain et al., 2020) for a fair comparison. The model is trained with the first 800
frames of the Mall dataset, and the rest 1, 200 frames are used as the test set. The input images
are set to the size of 448 × 640 and the batch size is set to 3. The quantitative comparisons are
reported in Table 1. Our method achieved significant advantages on MAE and RMSE metrics, which
improves 4% of MAE and 2% of RMSE compared to the runner-up method FRVCC (Hou et al.,
2023) based on CSRNet (Li et al., 2018). Compared to the PFTF, our method achieves significant
reductions in MAE and RMSE of 55% and 53%. We compared our method to a video counting
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Figure 3: Visualized comparisons on the FDST dataset and the Mall dataset.
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Figure 4: Visualized comparisons on the VScrowd dataset and our DroneBird dataset.

method PFTF (Avvenuti et al., 2022) and visualized the results on the Mall dataset in Fig. 3. Our
method produces more clear and accurate density distributions of distant low-pixel targets, resulting
in superior visualization performance. The quantitative and qualitative experimental results proved
the superiority of our framework in the indoor scenarios.

FDST. The FDST dataset provides a wider range of scenarios, including various outdoor scenes,
with more diverse variables compared to the Mall dataset, thus posing greater challenges. For quan-
titative comparison, we reported the MAE and RMSE metrics of our model and competing methods
on the FDST dataset in Table 1. The result shows that our method achieves the best MAE and RMSE,
decreasing the two metrics of 7% compared to the runner-up method STGN (Wu et al., 2023), and
31% compared to FRVCC (Hou et al., 2023), respectively. For qualitative comparison, we visualize
the predicted results of our method and the competing video counting method PFTF (Avvenuti et al.,
2022) on several scenarios in Fig. 3. Our method offers better visualization effects and delivers more
accurate quantitative predictions. These experimental results validate our method maintains superior
performance in more complex scenarios, such as outdoor environments.

VSCrowd. VSCrowd collected more videos by using surveillance cameras or the Internet. Com-
pared to FDST, the VSCrowd dataset provides a more diverse and complex set of outdoor scenes and
presents greater challenges for video crowd counting. The evaluation results of our method and the
competing method on the VSCrowd dataset are presented in Table 1. Compared to existing methods,
our approach achieves superior performance on MAE and runner-up performance on RMSE met-
rics. Compared to the recent video counting method STGN (Wu et al., 2023), our method improves
the performance by 38% in MAE and 18% RMSE, respectively. Compared to the runner-up method
GNANet (Li et al., 2022), our method beat GANNet on the MAE metric and achieved competitive
performance on the RMSE metric. We present detailed visualizations on the VSCrowd datasets in
Fig. 4. Our method achieves accurate counting results under low-light or long-distance dense con-
ditions compared to the previous method (Lin et al., 2022), showing the priority of our framework.
These quantitative and qualitative comparison results demonstrate that our framework still possesses
competitive performance in more diverse and complex outdoor scenarios.
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Table 2: Ablation studies on three components.
Exp. DEMO SAM TCF MAE↓ RMSE↓

I 2.45 3.22
II ✓ 2.32 2.69
III ✓ ✓ 1.57 1.99
IV ✓ ✓ 1.69 2.20
V ✓ ✓ ✓ 1.29 1.69

Table 3: Effect of each loss function.
Exp. Lfuse Lcur Lopt LTV MAE ↓ RMSE ↓
VI ✓ 1.87 2.50
VII ✓ ✓ 1.80 2.37
VIII ✓ ✓ ✓ 1.60 2.03
IX ✓ ✓ ✓ 1.39 1.77
X ✓ ✓ ✓ ✓ 1.29 1.69

DroneBird. Different from the previous three datasets, our DroneBird provides bird flock data from
a drone’s perspective, with scenes mostly consisting of open outdoor areas and exhibiting higher
dynamics which pose significant challenges for video object counting. We assessed several existing
methods on our dataset, as detailed in Table 1. Our method outperforms both recent video and im-
age counting techniques, achieving a 58% improvement in MAE and a 66% improvement in RMSE
compared to the STGN (Wu et al., 2023) method. Additionally, our approach shows enhancements in
MAE and RMSE over the previous optimal method, MAN (Lin et al., 2022). For qualitative compar-
ison, we compared the visualization results in multiple challenging scenarios. Our method achieves
more accurate counting results of birds, even in complex areas like water reflections. The quantita-
tive experimental results across different attributes and the visualization effects demonstrate that our
framework still exhibits superior counting performance in even more complex and variable outdoor
scenes from a drone’s perspective, thereby highlighting the superiority of our framework. Further-
more, we conduct attribute comparisons with three competing methods (Avvenuti et al., 2022; Liu
et al., 2020; Wu et al., 2023) on various attributes of the DroneBird dataset, as illustrated in Fig. 1.
These experiments fully demonstrate our superiority in various complex scenarios.

5.3 ABLATION STUDY

We perform the ablation study on the FDST dataset to investigate the effectiveness of Density-
embedded masked modeling (DEMO), spatial adaptive masking (SAM), and temporal collaborative
fusion (TCF). We construct the same architecture as that in comparison experiments and trained for
200 epochs. The hyperparameters are set to the same as the previous experiments on the FDST
dataset unless otherwise noted.

We test five variants of our method to assess the impact of DEMO, SAM, and TCF in experiments
I-V, with results in Table 2. Exp.I is the E-MAC baseline, using a pure transformer for density map
regression. Exp.II adds optimal flow and a fusion module for inter-frame relationships. Exp.III
incorporates SAM into Exp.II for adaptive masking. Exp.IV introduces DEMO to Exp.II, masking
both images and density maps, unlike Exp.III which only masks images with SAM. Exp.V combines
DEMO and SAM to evaluate overall performance.

Effect of TCF. We incorporated the optical flow module and fusion module into Exp.II and compared
its performance with Exp.I. The results indicate that the construction of inter-frame relationships
brought a performance improvement of 5% to 16% in terms of MAE and RMSE. By employing
optical flow mapping, we were able to effectively leverage the inherent temporal information present
in video data, enhancing the information of the current frame and improving the overall performance.
Further study and visualization on TCF are presented in Appendix A.5.

Effect of DEMO. As shown in Exp.II and Exp. IV in Table 2, DEMO brings in 27% and 18% improve-
ment on MAE and RMSE metrics. In Exp.V, the introduction of the self-representation learning of
density maps resulted in 17% and 15% improvement in MAE and RMSE compared to Exp.III. The
self-representation learning of density maps implicitly drives the regression of density maps and
effectively boosts the counting performance.

Effect of SAM. In Exp.III, foreground tokens from images are selected while all image tokens are
selected in Exp.II. As shown in Exp.II and Exp.III, our proposed spatial adaptive masking brings an
improvement of 32% in MAE and 26% in RMSE. Exp.II and Exp.III show the effect of our proposed
SAM. Additionally, SAM brought 23% performance improvement to DEMO in Exp.V. Hyperparameter
P is set to 0.2 in Exp.III and Exp.IV.

5.4 DISCUSSION

Loss Analysis. We evaluate different loss functions in our framework (Table 3), training for 200
epochs. Starting with Exp.VI (baseline using Lfuse), we incrementally add loss terms. Adding LTV
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Figure 5: Hyperparameter analysis of background retention probability, mask ratio, and loss weights.

(Exp.VII) improves MAE and RMSE by 4% and 5%. Introducing Lopt (Exp.VIII) brings further
gains of 11% and 14% over Exp.VII. Exp.IX adds Lcur, achieving 23% and 25% improvement
in MAE and RMSE compared to Exp.VII. Exp.X combines Lopt and Lcur, yielding 19% and 17%
improvements over Exp.VII. The stronger impact ofLcur stems from its direct supervision for density
map generation, outperforming other loss terms.

Impact of Background Retention Probability. We have conducted an in-depth analysis for our
SAM. Considering that discarding background redundant information altogether leads to imbal-
anced learning towards foreground, which in turn exhibits a decrease in performance. On the other
hand, omissions during manual annotation could result in some counting information being present
in the background. Therefore, we retain only the background of It during SAM with a certain prob-
ability P . Based on Exp.V, we conduct further experiments on the choices of P . We choose five
sampling points: 0, 0.1, 0.2, 0.4, and 1, in our experiments and compared them with the Exp.V in the
ablation study. The subfigure (a) of Fig. 5 provides a more intuitive view of the final performance
with respect to the probability P . The horizontal axis indicates the probability of sorting the tokens
in ascending order. We notice that the curve shows a clear downward rebound trend, and the quanti-
tative metrics show a decline of different degrees in both four experiments compared to Exp.V. We
finally choose 0.2 as the default probability in our experiments.

Impact of Mask Ratio. We conducted experiments to evaluate the impact of the mask ratio on
DEMO by varying it from 0.67 to 0.83. To more clearly evaluate the impact of the mask ratio, these
experiments were specifically performed on our E-MAC without considering temporal information.
Fig. 5(b) shows the results. As the mask ratio decreases, more tokens are input, and MAE decreases.
However, at a mask ratio of 0.67, performance drops by 7% compared to 0.72. We conclude that
a lower mask ratio provides sufficient information for reconstruction, but too low a ratio introduces
redundant information, harming performance.

Hyperparameter Analysis. We conducted experiments on the setting of the hyperparameters
{λ1, λ2, λ3, λ4} of each loss function, as shown in subfigures (c-f) of Fig 5. We vary the weights of
the remaining loss terms while fixing the weights of the other three loss terms, and the experimental
results correspond to the four subfigures of Fig 5. We finally fixed the weights λ1, λ2, λ3, λ4 of each
loss term to 10, 10, 1, 20 in our experiments.

6 CONCLUSION

This paper aims to address the dynamic imbalance of the fore-background in video object counting.
Considering the dynamic sparsity of foreground objects, we proposed a density-embedded efficient
masked autoencoder counting framework. We introduced the self-representation foundation model
to video object counting, which first takes the density map as an auxiliary modality and devel-
ops density-embedded masked modeling (DEMO) to drive the regression of density map estimation.
To handle the infra-frame dynamic density distribution and make the model focus more on the fore-
ground region in the self-representation learning, we proposed a simple but efficient Spatial Adaptive
Masking (SAM), which dynamically generates masks depending on density maps to eliminate the ef-
fect of redundant background information and boost the performance. Furthermore, accounting for
the inter-frame dynamism and utilizing the inherent temporal information in the video, we introduce
the optical flow and propose a temporal collaborative fusion that learns to harness the inter-frame
differences. Besides, we first proposed a new large-scale video bird dataset in the drone perspective,
named DroneBird. Our DroneBird provides point and trajectory annotations in different scenes for
counting and further localization and tracking tasks. Experimental results verify our superiority.
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A APPENDIX

A.1 DRONEBIRD DATASET

Sunny; Crowded; Side view; Far range; Standing Backlight; Crowded; Side view; Far range; Flying

Sunny; Sparse; Side view; Close range; StandingSunny; Crowded; Top view; Far range; Flying

Figure 6: Visualization of partial examples of DroneBird.

Our DroneBird dataset is captured by cameras mounted on drones using consumer drones such as
the DJI Mavic 2 Pro, Phantom 4 Pro, etc. DroneBird captures a wide range of scenarios, including
rivers, wetlands, lakes, ice, and other common bird habitats. The data captured in DroneBird is
primarily obtained by the drone from 30 meters or 60 meters in the air, with a small portion of the
data captured close to the ground. DroneBird’s collection time is during the daytime or in the early
evening when the weather conditions are favorable, and the view is relatively clear.

Table 4: Existing bird datasets and our proposed DroneBird dataset.

Dataset Type Trajectory Highest Resolution Frames Ave count Total count
Penguin (Arteta et al., 2016) Image × 1536× 2048 33, 405 178.4 5, 970, 899
Bird-Count (Wang et al., 2023) Image × 768× 1024 1, 372 131.1 173, 458

DroneBird Video ✓ 2160× 4096 21, 500 171.5 3, 686, 409

20 pixels 160 pixels<<

Figure 7: Visualization of pixel occupied by the target in DroneBird and existing crowd dataset.
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Table 5: Transfer performance on bird data.
Exp. Original dataset Target dataset MAE ↓ RMSE ↓

1 VSCrowd DroneBird 183.31 217.42
2 DroneBird DroneBird 38.72 42.92

DroneBird captured 50 videos of mi-
gratory birds and segmented them.
Specifically, we used 30 of the video
data as a train set, 10 of the remain-
ing 20 videos as a test set, and 10 as a
validate set. We cut the 40 videos in
the train and test sets to 500 frames
per video (around 17s), and cut the 10 videos in the validate set to 150 frames per video (around
5s) to accomplish a reasonable data division. The train set, test set and validate set after the divi-
sion is completed contain 15, 000 frames, 5, 000 frames and 1, 500 frames, respectively. It is worth
noting that the data scenarios for each of the two divisions in the train, test and validate sets are
different, as a way to ensure that the data will not be leaked during the training process.

We have compiled the dataset’s statistics and compared them with existing bird datasets, with the
results shown in Table 4. A few examples of DroneBird are demonstrated in Fig. 6. Most of the
targets in DroneBird are small in size. We compared the pixel height occupied by individual bird
targets in DroneBird with that occupied by individuals in existing crowd data, and visualized this
comparison in Fig. 7. The pixel height occupied by individual bird targets is significantly smaller
than that of crowd individuals, posing a significant challenge for the target counting task.

We summarize the contributions and new challenges brought by DroneBird into the following four
points:

• Small target: We compared the number of foreground pixels occupied by independent
targets in the DroneBird data and the existing crowd data at the same resolution, and the
independent targets in DroneBird occupy fewer pixels (less than 20 pixels height) than
the independent targets in the existing dataset (more than 160 pixels height). Note that
although the counting target in the crowd counting task is the human head, the human body
still provides important information, and the human body occupies more pixels compared
to birds, so our dataset provides data on small targets for counting. On the other hand,
to avoid drone interference with bird activity, DroneBird’s drone was photographed farther
away from the flock, resulting in a further reduction of pixels occupied by the photographed
individual birds.

• Sparse distribution: Unlike humans, birds in nature need enough space to move around,
which means birds are more sparsely distributed in space. Coupled with the smaller tar-
get size of birds, the sparseness of the foreground portion is even more pronounced in
DroneBird compared to the already existing dataset.

• Fast movement: Unlike existing video crowd-sourced data, the unique flight movements
of birds allow them to do fast movements, posing a challenge for better temporal modeling.

• New counting category: DroneBird fills the gap of missing video bird data in the field.
The models trained on crowd data fail to conduct bird counting directly (See Table 5). We
evaluated the performance of our method trained on the VSCrowd dataset (Exp. 1) and
the DroneBird training set (Exp. 2) on the DroneBird testing set. The results show that
the model trained on the VSCrowd dataset failed to perform well on the bird data, which
indicates the large gap between crowd and bird data.

A.2 DETAILED METHOD

We detail the training process of our E-MAC method in Algorithm 1. The training process of DEMO is
represented in Algorithm 2.

As shown in Algorithm 1, our model requires two frames (It, It−1) and their corresponding den-
sity maps (Dt, Dt−1) as input. The image and density map pairs St = {It, Dt} and St−1 =

{It−1, Dt−1} are fed to the DEMO to predict the density map D̂t and D̂t−1. Meanwhile, a pretrained
optical flow estimation network (Sun et al., 2018) is performed on D̂t and D̂t−1 to generate optical
flow M, which is used to warp the D̂t−1 to D̂warp

t−1 . Then the D̂warp
t−1 and D̂t are fed into a cross-

attention layer to calculate the residual D̂res
t of adjacent predicted density map. The final predicted

density map D̂fuse of It is then calculated by a pixel-wise add of D̂t and D̂res
t .
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Algorithm 1 Framework Workflow in Training Phase
Ensure: {It, Dt}, {It-1, Dt-1}
Require: D̂fuse

1: for all epoch do
2: D̂t ← ϕDEMO(It, Dt)

3: D̂t-1 ← ϕDEMO(It−1, Dt−1)
4: M← ϕOpticalFlow(It, It-1)

5: D̂warp
t-1 ← ϕwarp(M, D̂t-1)

6: D̂res
t ← ϕca(D̂

warp
t-1 , D̂t)

7: D̂fuse ← D̂t + D̂res
t

8: Lfuse,Lcur,Lopt,LTV ← ϕLoss
9: L ← λ1Lfuse + λ2Lcur + λ3Lopt + λ4LTV

10: end for

Algorithm 2 DEMO workflow in training phase
Ensure: I,D
Require: D̂

1: TI ,TD, Ipatch,Dpatch ← ϕpatchify(I,D)
2: VD ← ϕsum(Dpatch)
3: N = random(0, 1)
4: if N ≤ 1− P then
5: K ← argsortdes(VD)
6: else
7: K ← argsortasc(VD)
8: end if
9: for all ti ∈ TI do

10: if i ∈ K then
11: M i ← 0
12: else
13: M i ← 1
14: end if
15: end for
16: Tret

I ,Tret
D ← mask(TI ,Madaptive),mask(TD,Mrandom)

17: Tret ← ϕconcate(T
ret
I ,Tret

D )
18: Tret ← ϕencoder(T

ret)
19: Tret

I ,Tret
D ← split(Tret)

20: Mask = random
21: T̂D ← ϕfill(T

ret
D ,Mask)

22: T̂D ← ϕca(T̂D,Tret)

23: D̂ ← ϕdecoder(T̂D)

In the DEMO, a video frame I and its corresponding density map D performed a patchify and a
projection operation to get the token set TI ,TD and patch set Ipatch,Dpatch. Then we perform
mask operation to get the retained tokens Tret

I ,Tret
D . The number of retained tokens for the image

and density map modalities are generated by the Dirichlet distribution, denoted as N ret
I and N ret

D ,
respectively. Specifically, for image modality, we use an adaptive mask to obtain Tret

I from TI .
Firstly, we calculate the number of targets Vi

D in the i-th density map patch Di
patch, and Vi

D =

ϕsum(D
i
patch), where ϕsum represents the pixel-wise sum operation in each density map patch, and

the result represents the number of targets in the corresponding patch. To focus on the foreground,
we sort the image tokens according to the number of targets Vi

D in the corresponding density map
patch. Although the foreground provides more valid information, the background should not be
completely ignored. Therefore, to introduce background information, we set a background retention
probability (BRP) P to control the sorting manner. The tokens are sorted in ascending order with a
probability of P (focus on background) or in descending order with a probability of 1−P (focus on
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Figure 8: The detailed process of SAM. For ease of expression, we crop the image and the density
map into 25 patches, as shown in the figure, this number varies according to the size of input images
(each patch is set to 16× 16). We first calculate the Vi

D of each density map patch Di
patch, and sort

the token according to the number of targets Vi
D. To balance the fore- and back-ground informa-

tion, we set a background retention probability (BRP) P to determine the sorting manner, which is
detailed in Sec. 4.3. For tokens from image modality, we keep the firstN ret

I tokens after sorting. For
tokens from density map modality, we randomly shuffle their order and keep the first N ret

I tokens,
i.e., randomly select N ret

I density tokens. Since the masked tokens are filled by learnable tokens
in the decoder, we first restore the retained image and density tokens to their original order before
sorting. Then, we concatenate and feed them into the encoder. Note that the restoration follows
the same setting with Bachmann et al. (2022), which can be performed in the decoder as well. The
full set of retained tokens and filled density map tokens are then fed into the decoder to predict the
density map. Specifically, the full set of retained tokens are treated as key and value vectors, and
the filled density map tokens are treated as query vector in the cross-attention layer in the decoder.
Then, the output of the cross-attention layer is fed into two self-attention layers to perform the final
prediction.

foreground). The first N ret
I tokens after sorting is then retained as Tret

I . For density map modality,
we randomly shuffle the order of TD and retain the first N ret

D tokens (randomly mask) as Tret
D .

The retained tokens Tret
I and Tret

D are jointly fed into the encoder, while the remaining tokens are
discarded and not passed into the model. The output tokens Tref of encoder are then split to Tret

D and
Tret

I . The learnable random mask tokens are filled at the masked positions in Tret
D as placeholders,

and the filled tokens set is denoted as T̂D. T̂D and Tref are then fed in a cross-attention layer, in
which T̂D servers as query and Tref servers as key and value. Then, the reconstructed density map
D̂ is regressed by two transformer layers.

We have illustrated the detailed SAM process in Fig. 8. For ease of expression, we crop the image
and density map into 25 patches. Each patch from the image and the density map at the same
position is paired, and we have noted an index for each pair of patches in Fig. 8. For each pair
of patches (Iipatch, Di

patch), we calculate the sum of the density map patch Vi
D, sort the token pair

(TI ,TD) according to the number of targets Vi
D. We set a background retention probability (BRP)

P to determine the sorting manner, which is detailed in Sec. 4.3. For tokens from image modality,
we retain the firstN ret

I tokens in the sorted TI . For tokens from density map modality, we randomly
shuffle their order and retain the firstN ret

D tokens. Since the masked tokens will be filled by learnable
tokens in the decoder, we first restore the retained image and density tokens to their original order
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Table 6: Quantitative comparison between the proposed method and existing methods on the Mall
dataset with metrics MAE and RMSE.

Method Type MAE↓ RMSE↓
CSRNet (Li et al., 2018) Image 2.46 4.70
RPNet (Yang et al., 2020) Image 2.20 3.60
TAN (Wu et al., 2020) Image 2.03 2.60
HMoDE (Du et al., 2023) Image 2.82 3.41
PET (Liu et al., 2023) Image 1.89 2.46
Gramformer (Lin et al., 2024) Image 1.69 2.14

ConvLSTM (Xiong et al., 2017) Video 2.24 8.50
LSTN (Fang et al., 2019) Video 2.00 2.50
E3D (Zou et al., 2019) Video 1.64 2.13
MLSTN (Fang et al., 2020) Video 1.80 2.42
MOPN (Hossain et al., 2020) Video 1.78 2.25
Monet (Bai & Chan, 2021) Video 1.54 2.02
PFTF (Avvenuti et al., 2022) Video 2.99 3.72
FRVCC (Hou et al., 2023) Video 1.41 1.79
STGN (Wu et al., 2023) Video 1.53 1.97

Ours Video 1.35 1.76

Table 7: Quantitative comparison between our proposed method and existing methods on the FDST
dataset with metrics MAE and RMSE, lower metrics better.

Method Type MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image 3.77 4.88
CSRNet (Li et al., 2018) Image 2.56 3.12
ChfL (Shu et al., 2022) Image 3.33 4.38
MAN (Lin et al., 2022) Image 2.79 4.21
HMoDE (Du et al., 2023) Image 2.49 3.51
PET (Liu et al., 2023) Image 1.73 2.27
Gramformer (Lin et al., 2024) Image 5.15 6.32

ConvLSTM (Xiong et al., 2017) Video 4.48 5.82
LSTN (Fang et al., 2019) Video 3.35 4.45
MLSTN Fang et al. (2020) Video 2.35 3.02
EPF (Liu et al., 2020) Video 2.17 2.62
MOPN (Hossain et al., 2020) Video 1.76 2.25
PHNet Meng et al. (2021) Video 1.65 2.16
GNANet (Li et al., 2022) Video 2.10 2.90
PFTF (Avvenuti et al., 2022) Video 2.07 2.69
FRVCC (Hou et al., 2023) Video 1.88 2.45
STGN (Wu et al., 2023) Video 1.38 1.82

Ours Video 1.29 1.69

before sorting. Then, we concatenate and feed them into the encoder. The full set of retained tokens
and filled density map tokens are then fed into the decoder to predict the density map. Specifically,
the full set of retained tokens are treated as key and value vectors, and the filled density map tokens
are treated as query vector in the cross-attention layer in the decoder. Then, the output of the cross-
attention layer is fed into two self-attention layers to perform the final prediction.

A.3 MORE EXPERIMENT RESULTS

Additional results on the Mall, FDST, and VSCrowd datasets are provided in Tabs. 6, 7, and 8. In
an extensive survey, our method consistently achieved competitive results.
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Table 8: Quantitative comparison between our proposed method and existing methods on the
VSCrowd dataset with metrics MAE and RMSE, lower metrics better.

Method Type MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image 27.1 46.9
CSRNet (Li et al., 2018) Image 13.8 21.1
Bayesian (Ma et al., 2019) Image 8.7 11.8
MAN (Lin et al., 2022) Image 8.3 10.4
HMoDE (Du et al., 2023) Image 19.8 39.5
PET (Liu et al., 2023) Image 6.6 11.0
Gramformer (Lin et al., 2024) Image 8.09 15.65

EPF (Liu et al., 2020) Video 10.4 14.6
GNANet (Li et al., 2022) Video 8.2 10.2
STGN (Wu et al., 2023) Video 9.6 12.5

Ours Video 6.0 10.3

Table 9: Effect of TCF.
Exp. Model MAE↓ RMSE↓

3 ViT 2.45 3.22
4 ViT w/ TCF 2.32 2.69
5 E-MAC 1.51 2.03
6 E-MAC TCF 1.29 1.69

Table 10: Effect of E-MAC architecture.
Exp. Model MAE ↓ RMSE ↓

7 vanilla ViT 2.63 3.31
8 MultiMAE 2.45 3.22
9 E-MAC w/ vanilla ViT weight 1.49 1.93

10 E-MAC w/ MultiMAE weight 1.29 1.69

A.4 IMPACT OF IMAGE SIZE

We conducted experiments on the FDST dataset to explore the effect of image size on the perfor-
mance of our E-MAC module. We tried a variety of image input sizes and compared their exper-
imental results to validate the effect of input image size. When we increased the image size used
for training from 224 × 224 to 480 × 480, the final MAE showed a downward trend in the figure
and decreased from 1.93 to 1.47, which improved by 24%. However, the computational cost of the
model increases exponentially as the size of the image increases (Dosovitskiy et al., 2020). Inte-
grating temporal information further increases the computational cost, thereby affecting the overall
performance. Therefore, we set the input image size to 320 × 320 on the FDST dataset, balancing
the performance and computational cost.

A.5 IMPACT OF TCF

Additionally, we have conducted additional ablation studies on the TCF module, as shown in Table 9.
We compare the performance of the original ViT architecture (Exp. 3 in Table 9), the ViT framework
augmented with TCF (Exp. 4 in Table 9), and E-MAC with or without TCF (Exp. 5 and 6 in Table 9).
The results demonstrate that TCF provides performance improvements of 5% and 15% on the two
architectures, respectively. To further demonstrate how the fusion module works, we visualized the
input D̂t, and output D̂fuse of the fusion module as well as the intermediate variable D̂res

t under three
datasets, as shown in Fig 9, we provide the original image It and corresponding ground truth Dt in
the first two rows of the figure for reference. Compared with D̂t, the fusion module can well realize
the correction of the current density map by correlating the residuals obtained from the previous and
current predicted density map, which makes the integration of the fused density map D̂fuse closer
to the ground truth. We zoom in on some areas, and we notice that the fusion module can remove
some of the background interference by correlating the front and back predicted density maps, which
makes the final predicted density map better.
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Figure 10: Visualization of the predicted density map w/ and w/o SAM, and statistical results of the
number of foreground and background patches w/ and w/o SAM.

A.6 VISUALIZATION OF SAM

We visualized the differences between the density maps predicted from the same image w/ and
w/o SAM and the ground truth, as presented in Fig. 10. The zoom-in regions display intuitive and
significant visual differences. E-MAC trained w/ SAM effectively counts the targets, while E-MAC
using random masking fails to count some targets. Besides, we conducted a statistical comparison
of the number of foreground and background patches in the images after applying random masks
and different P (BRP) settings with SAM, as presented in Fig. 10. Obviously, SAM significantly
reduces the proportion of background regions, thereby balancing the positive and negative samples.
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Figure 11: Visualization of the predicted results of our key components (TCF, DEMO, SAM).

Table 12: Comparison on FLOPs, FPS, and the number of Parameters.
Method FLOPs(G) ↓ FPS ↑ Parameters(M) ↓ MAE (DroneBird) ↓ RMSE (DroneBird) ↓
EPF (Liu et al., 2020) 815 19 20 97.22 133.01
PFTF (Avvenuti et al., 2022) 1075 13 23 89.76 101.02
STGN (Wu et al., 2023) 742 30 13 92.38 124.67

Ours 811 16 98 38.72 42,92

Table 11: Result with different random seeds.
Metrics 1 2 3 Average

MAE 1.29 1.28 1.33 1.30±0.022

RMSE 1.69 1.66 1.69 1.68±0.015

We have also visualized some of the predicted
results of our key components (TCF, DEMO,
SAM) with our baseline, as shown in Fig. 11.
We gradually add the components (TCF, DEMO,
SAM) to the baseline, resulting in increasingly
accurate predictions and better visual results.

A.7 EFFECT OF E-MAC ARCHITECTURE.

We provide additional quantitative experiments to demonstrate the performance sources of our pro-
posed framework. As shown in Table 10, we provide a comparison of the performance of the vanilla
ViT architecture using different pre-training weights (Exp. 7 and 8 in Table 10) as well as our frame-
work using different pre-training weights (Exp. 9 and 10 in Table 10). As can be seen from the table:
using a larger pre-training weight on ViT does provide better performance, but the improvement is
very limited (6% improvement between Exp. 7 and 8). In contrast, our unique design tailored to the
data and video counting tasks significantly enhances performance (43% between Exp. 7 and 9 and
47% between Exp. 8 and 10 respectively).

A.8 IMPACT OF RANDOM SEED.

To explore the impact of different random seeds on the overall performance of our model, we have
also conducted more experiments on the FDST dataset, which is a relatively small dataset for quick
validation. The average MAE and RMSE scores are 1.30±0.022 and 1.68±0.015. The results in
Table 11 show that different random seeds do not significantly affect the performance of our model.

A.9 MODEL EFFICIENCY DISCUSSION

We have compared FLOPs, FPS, and the number of parameters with some other video counting
models and reported the results in Table 12. All the experiments were conducted on an NVIDIA RTX
3090 GPU. It is worth noting that the FLOPs and FPS of our method and the competing methods
are comparable, although we first adopted the vision foundation model. Compared to EPF (Liu
et al., 2020) and PFTF (Avvenuti et al., 2022), our E-MAC achieves superior performance with less
required computations. STGN (Wu et al., 2023) achieves higher FPS with fewer parameters, but
its performance is limited. Compared to STGN (Wu et al., 2023), our method achieved over 58%
performance improvement with only 9% more FLOPs.

A.10 DYNAMICS OF DATA

Here, we explore the intra-frame dynamics of the foreground regions in video data. We
processed data in the FDST dataset and made analyses. We first utilized a 60 × 60 win-
dow to crop the images into patches and then counted the number of people in each patch.
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Figure 12: Density distribution. The bar graph
portion (blue) represents the number of patches
corresponding to the crowd density. The line
graph portion (red) represents the percentage of
the number of patches whose density is less than
the current density.

Statistical result is shown in Fig. 12, the hori-
zontal axis coordinates are the density of people
in each patch, calculated from the correspond-
ing density map. The left vertical coordinate
is the number of patches for each crowd den-
sity. We fold a portion of the axis as the number
gap is too large. The heterogeneous density dis-
tribution across image patches indicates inher-
ent dynamism in the intra-frame density char-
acteristics. Additionally, due to the presence of
large background areas, the model should fo-
cus more on the foreground regions of the sam-
ples to extract the most informative and rele-
vant information. The utilization of a fixed fo-
cus region across different samples may result
in the loss of critical information about the fore-
ground areas. Similarly, the adoption of com-
pletely random focus regions is unable to con-
sistently capture the salient information within
the foreground regions. Thus, we suggest the
employment of a dynamic masking mechanism
to obtain the foreground focus regions for different samples.
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