
Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DRONEBIRD DATASET

Sunny; Crowded; Side view; Far range; Standing Backlight; Crowded; Side view; Far range; Flying

Sunny; Sparse; Side view; Close range; StandingSunny; Crowded; Top view; Far range; Flying

Figure 6: Visualization of partial examples of DroneBird.

Our DroneBird dataset is captured by cameras mounted on drones using consumer drones such as
the DJI Mavic 2 Pro, Phantom 4 Pro, etc. DroneBird captures a wide range of scenarios, including
rivers, wetlands, lakes, ice, and other common bird habitats. The data captured in DroneBird is
primarily obtained by the drone from 30 meters or 60 meters in the air, with a small portion of the
data captured close to the ground. DroneBird’s collection time is during the daytime or in the early
evening when the weather conditions are favorable, and the view is relatively clear.

Table 4: Existing bird datasets and our proposed DroneBird dataset.

Dataset Type Trajectory Highest Resolution Frames Ave count Total count
Penguin (Arteta et al., 2016) Image × 1536× 2048 33, 405 178.4 5, 970, 899
Bird-Count (Wang et al., 2023) Image × 768× 1024 1, 372 131.1 173, 458

DroneBird Video ✓ 2160× 4096 21, 500 171.5 3, 686, 409

20 pixels 160 pixels<<

Figure 7: Visualization of pixel occupied by the target in DroneBird and existing crowd dataset.

14



Published as a conference paper at ICLR 2025

Table 5: Transfer performance on bird data.
Exp. Original dataset Target dataset MAE ↓ RMSE ↓

1 VSCrowd DroneBird 183.31 217.42
2 DroneBird DroneBird 38.72 42.92

DroneBird captured 50 videos of mi-
gratory birds and segmented them.
Specifically, we used 30 of the video
data as a train set, 10 of the remain-
ing 20 videos as a test set, and 10 as a
validate set. We cut the 40 videos in
the train and test sets to 500 frames
per video (around 17s), and cut the 10 videos in the validate set to 150 frames per video (around
5s) to accomplish a reasonable data division. The train set, test set and validate set after the divi-
sion is completed contain 15, 000 frames, 5, 000 frames and 1, 500 frames, respectively. It is worth
noting that the data scenarios for each of the two divisions in the train, test and validate sets are
different, as a way to ensure that the data will not be leaked during the training process.

We have compiled the dataset’s statistics and compared them with existing bird datasets, with the
results shown in Table 4. A few examples of DroneBird are demonstrated in Fig. 6. Most of the
targets in DroneBird are small in size. We compared the pixel height occupied by individual bird
targets in DroneBird with that occupied by individuals in existing crowd data, and visualized this
comparison in Fig. 7. The pixel height occupied by individual bird targets is significantly smaller
than that of crowd individuals, posing a significant challenge for the target counting task.

We summarize the contributions and new challenges brought by DroneBird into the following four
points:

• Small target: We compared the number of foreground pixels occupied by independent
targets in the DroneBird data and the existing crowd data at the same resolution, and the
independent targets in DroneBird occupy fewer pixels (less than 20 pixels height) than
the independent targets in the existing dataset (more than 160 pixels height). Note that
although the counting target in the crowd counting task is the human head, the human body
still provides important information, and the human body occupies more pixels compared
to birds, so our dataset provides data on small targets for counting. On the other hand,
to avoid drone interference with bird activity, DroneBird’s drone was photographed farther
away from the flock, resulting in a further reduction of pixels occupied by the photographed
individual birds.

• Sparse distribution: Unlike humans, birds in nature need enough space to move around,
which means birds are more sparsely distributed in space. Coupled with the smaller tar-
get size of birds, the sparseness of the foreground portion is even more pronounced in
DroneBird compared to the already existing dataset.

• Fast movement: Unlike existing video crowd-sourced data, the unique flight movements
of birds allow them to do fast movements, posing a challenge for better temporal modeling.

• New counting category: DroneBird fills the gap of missing video bird data in the field.
The models trained on crowd data fail to conduct bird counting directly (See Table 5). We
evaluated the performance of our method trained on the VSCrowd dataset (Exp. 1) and
the DroneBird training set (Exp. 2) on the DroneBird testing set. The results show that
the model trained on the VSCrowd dataset failed to perform well on the bird data, which
indicates the large gap between crowd and bird data.

A.2 DETAILED METHOD

We detail the training process of our E-MAC method in Algorithm 1. The training process of DEMO is
represented in Algorithm 2.

As shown in Algorithm 1, our model requires two frames (It, It−1) and their corresponding den-
sity maps (Dt, Dt−1) as input. The image and density map pairs St = {It, Dt} and St−1 =

{It−1, Dt−1} are fed to the DEMO to predict the density map D̂t and D̂t−1. Meanwhile, a pretrained
optical flow estimation network (Sun et al., 2018) is performed on D̂t and D̂t−1 to generate optical
flow M, which is used to warp the D̂t−1 to D̂warp

t−1 . Then the D̂warp
t−1 and D̂t are fed into a cross-

attention layer to calculate the residual D̂res
t of adjacent predicted density map. The final predicted

density map D̂fuse of It is then calculated by a pixel-wise add of D̂t and D̂res
t .

15



Published as a conference paper at ICLR 2025

Algorithm 1 Framework Workflow in Training Phase
Ensure: {It, Dt}, {It-1, Dt-1}
Require: D̂fuse

1: for all epoch do
2: D̂t ← ϕDEMO(It, Dt)

3: D̂t-1 ← ϕDEMO(It−1, Dt−1)
4: M← ϕOpticalFlow(It, It-1)

5: D̂warp
t-1 ← ϕwarp(M, D̂t-1)

6: D̂res
t ← ϕca(D̂

warp
t-1 , D̂t)

7: D̂fuse ← D̂t + D̂res
t

8: Lfuse,Lcur,Lopt,LTV ← ϕLoss
9: L ← λ1Lfuse + λ2Lcur + λ3Lopt + λ4LTV

10: end for

Algorithm 2 DEMO workflow in training phase
Ensure: I,D
Require: D̂

1: TI ,TD, Ipatch,Dpatch ← ϕpatchify(I,D)
2: VD ← ϕsum(Dpatch)
3: N = random(0, 1)
4: if N ≤ 1− P then
5: K ← argsortdes(VD)
6: else
7: K ← argsortasc(VD)
8: end if
9: for all ti ∈ TI do

10: if i ∈ K then
11: M i ← 0
12: else
13: M i ← 1
14: end if
15: end for
16: Tret

I ,Tret
D ← mask(TI ,Madaptive),mask(TD,Mrandom)

17: Tret ← ϕconcate(T
ret
I ,Tret

D )
18: Tret ← ϕencoder(T

ret)
19: Tret

I ,Tret
D ← split(Tret)

20: Mask = random
21: T̂D ← ϕfill(T

ret
D ,Mask)

22: T̂D ← ϕca(T̂D,Tret)

23: D̂ ← ϕdecoder(T̂D)

In the DEMO, a video frame I and its corresponding density map D performed a patchify and a
projection operation to get the token set TI ,TD and patch set Ipatch,Dpatch. Then we perform
mask operation to get the retained tokens Tret

I ,Tret
D . The number of retained tokens for the image

and density map modalities are generated by the Dirichlet distribution, denoted as N ret
I and N ret

D ,
respectively. Specifically, for image modality, we use an adaptive mask to obtain Tret

I from TI .
Firstly, we calculate the number of targets Vi

D in the i-th density map patch Di
patch, and Vi

D =

ϕsum(D
i
patch), where ϕsum represents the pixel-wise sum operation in each density map patch, and

the result represents the number of targets in the corresponding patch. To focus on the foreground,
we sort the image tokens according to the number of targets Vi

D in the corresponding density map
patch. Although the foreground provides more valid information, the background should not be
completely ignored. Therefore, to introduce background information, we set a background retention
probability (BRP) P to control the sorting manner. The tokens are sorted in ascending order with a
probability of P (focus on background) or in descending order with a probability of 1−P (focus on

16



Published as a conference paper at ICLR 2025

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

7 3 14 5 6 8 2 9 4 25 12 10 11 13 24 15 16 17 18 19 20 21 22 23 1

Descending Sort with 
Probability

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

7 3 14 5 6 8 2 9 4 25 12 10 11 13 24 15 16 17 18 19 20 21 22 23 1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Shuffle

1 2 3 4 5 1 2 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

Restore

Restore

Sum Density Map Patches to 

7 3 14 5 6 8 2 9 4 25

2 3 4 5 6 7 8 9 14 25

10 16 9 13 6 25 20 14 4 5 8 2 3 23 24 15 17 19 7 12 22 21 18 1 1110 16 9 13 6 25 20 14

6 9 10 13 14 16 20 25

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3
2 3 4 5 6 7 8 9 14 25 6 9 10 13 14 16 20 25

Encoder

4 5 1 4 5 3 4 1 5 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Predict

Figure 8: The detailed process of SAM. For ease of expression, we crop the image and the density
map into 25 patches, as shown in the figure, this number varies according to the size of input images
(each patch is set to 16× 16). We first calculate the Vi

D of each density map patch Di
patch, and sort

the token according to the number of targets Vi
D. To balance the fore- and back-ground informa-

tion, we set a background retention probability (BRP) P to determine the sorting manner, which is
detailed in Sec. 4.3. For tokens from image modality, we keep the firstN ret

I tokens after sorting. For
tokens from density map modality, we randomly shuffle their order and keep the first N ret

I tokens,
i.e., randomly select N ret

I density tokens. Since the masked tokens are filled by learnable tokens
in the decoder, we first restore the retained image and density tokens to their original order before
sorting. Then, we concatenate and feed them into the encoder. Note that the restoration follows
the same setting with Bachmann et al. (2022), which can be performed in the decoder as well. The
full set of retained tokens and filled density map tokens are then fed into the decoder to predict the
density map. Specifically, the full set of retained tokens are treated as key and value vectors, and
the filled density map tokens are treated as query vector in the cross-attention layer in the decoder.
Then, the output of the cross-attention layer is fed into two self-attention layers to perform the final
prediction.

foreground). The first N ret
I tokens after sorting is then retained as Tret

I . For density map modality,
we randomly shuffle the order of TD and retain the first N ret

D tokens (randomly mask) as Tret
D .

The retained tokens Tret
I and Tret

D are jointly fed into the encoder, while the remaining tokens are
discarded and not passed into the model. The output tokens Tref of encoder are then split to Tret

D and
Tret

I . The learnable random mask tokens are filled at the masked positions in Tret
D as placeholders,

and the filled tokens set is denoted as T̂D. T̂D and Tref are then fed in a cross-attention layer, in
which T̂D servers as query and Tref servers as key and value. Then, the reconstructed density map
D̂ is regressed by two transformer layers.

We have illustrated the detailed SAM process in Fig. 8. For ease of expression, we crop the image
and density map into 25 patches. Each patch from the image and the density map at the same
position is paired, and we have noted an index for each pair of patches in Fig. 8. For each pair
of patches (Iipatch, Di

patch), we calculate the sum of the density map patch Vi
D, sort the token pair

(TI ,TD) according to the number of targets Vi
D. We set a background retention probability (BRP)

P to determine the sorting manner, which is detailed in Sec. 4.3. For tokens from image modality,
we retain the firstN ret

I tokens in the sorted TI . For tokens from density map modality, we randomly
shuffle their order and retain the firstN ret

D tokens. Since the masked tokens will be filled by learnable
tokens in the decoder, we first restore the retained image and density tokens to their original order

17



Published as a conference paper at ICLR 2025

Table 6: Quantitative comparison between the proposed method and existing methods on the Mall
dataset with metrics MAE and RMSE.

Method Type MAE↓ RMSE↓
CSRNet (Li et al., 2018) Image 2.46 4.70
RPNet (Yang et al., 2020) Image 2.20 3.60
TAN (Wu et al., 2020) Image 2.03 2.60
HMoDE (Du et al., 2023) Image 2.82 3.41
PET (Liu et al., 2023) Image 1.89 2.46
Gramformer (Lin et al., 2024) Image 1.69 2.14

ConvLSTM (Xiong et al., 2017) Video 2.24 8.50
LSTN (Fang et al., 2019) Video 2.00 2.50
E3D (Zou et al., 2019) Video 1.64 2.13
MLSTN (Fang et al., 2020) Video 1.80 2.42
MOPN (Hossain et al., 2020) Video 1.78 2.25
Monet (Bai & Chan, 2021) Video 1.54 2.02
PFTF (Avvenuti et al., 2022) Video 2.99 3.72
FRVCC (Hou et al., 2023) Video 1.41 1.79
STGN (Wu et al., 2023) Video 1.53 1.97

Ours Video 1.35 1.76

Table 7: Quantitative comparison between our proposed method and existing methods on the FDST
dataset with metrics MAE and RMSE, lower metrics better.

Method Type MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image 3.77 4.88
CSRNet (Li et al., 2018) Image 2.56 3.12
ChfL (Shu et al., 2022) Image 3.33 4.38
MAN (Lin et al., 2022) Image 2.79 4.21
HMoDE (Du et al., 2023) Image 2.49 3.51
PET (Liu et al., 2023) Image 1.73 2.27
Gramformer (Lin et al., 2024) Image 5.15 6.32

ConvLSTM (Xiong et al., 2017) Video 4.48 5.82
LSTN (Fang et al., 2019) Video 3.35 4.45
MLSTN Fang et al. (2020) Video 2.35 3.02
EPF (Liu et al., 2020) Video 2.17 2.62
MOPN (Hossain et al., 2020) Video 1.76 2.25
PHNet Meng et al. (2021) Video 1.65 2.16
GNANet (Li et al., 2022) Video 2.10 2.90
PFTF (Avvenuti et al., 2022) Video 2.07 2.69
FRVCC (Hou et al., 2023) Video 1.88 2.45
STGN (Wu et al., 2023) Video 1.38 1.82

Ours Video 1.29 1.69

before sorting. Then, we concatenate and feed them into the encoder. The full set of retained tokens
and filled density map tokens are then fed into the decoder to predict the density map. Specifically,
the full set of retained tokens are treated as key and value vectors, and the filled density map tokens
are treated as query vector in the cross-attention layer in the decoder. Then, the output of the cross-
attention layer is fed into two self-attention layers to perform the final prediction.

A.3 MORE EXPERIMENT RESULTS

Additional results on the Mall, FDST, and VSCrowd datasets are provided in Tabs. 6, 7, and 8. In
an extensive survey, our method consistently achieved competitive results.

18



Published as a conference paper at ICLR 2025

Table 8: Quantitative comparison between our proposed method and existing methods on the
VSCrowd dataset with metrics MAE and RMSE, lower metrics better.

Method Type MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image 27.1 46.9
CSRNet (Li et al., 2018) Image 13.8 21.1
Bayesian (Ma et al., 2019) Image 8.7 11.8
MAN (Lin et al., 2022) Image 8.3 10.4
HMoDE (Du et al., 2023) Image 19.8 39.5
PET (Liu et al., 2023) Image 6.6 11.0
Gramformer (Lin et al., 2024) Image 8.09 15.65

EPF (Liu et al., 2020) Video 10.4 14.6
GNANet (Li et al., 2022) Video 8.2 10.2
STGN (Wu et al., 2023) Video 9.6 12.5

Ours Video 6.0 10.3

Table 9: Effect of TCF.
Exp. Model MAE↓ RMSE↓

3 ViT 2.45 3.22
4 ViT w/ TCF 2.32 2.69
5 E-MAC 1.51 2.03
6 E-MAC TCF 1.29 1.69

Table 10: Effect of E-MAC architecture.
Exp. Model MAE ↓ RMSE ↓

7 vanilla ViT 2.63 3.31
8 MultiMAE 2.45 3.22
9 E-MAC w/ vanilla ViT weight 1.49 1.93

10 E-MAC w/ MultiMAE weight 1.29 1.69

A.4 IMPACT OF IMAGE SIZE

We conducted experiments on the FDST dataset to explore the effect of image size on the perfor-
mance of our E-MAC module. We tried a variety of image input sizes and compared their exper-
imental results to validate the effect of input image size. When we increased the image size used
for training from 224 × 224 to 480 × 480, the final MAE showed a downward trend in the figure
and decreased from 1.93 to 1.47, which improved by 24%. However, the computational cost of the
model increases exponentially as the size of the image increases (Dosovitskiy et al., 2020). Inte-
grating temporal information further increases the computational cost, thereby affecting the overall
performance. Therefore, we set the input image size to 320 × 320 on the FDST dataset, balancing
the performance and computational cost.

A.5 IMPACT OF TCF

Additionally, we have conducted additional ablation studies on the TCF module, as shown in Table 9.
We compare the performance of the original ViT architecture (Exp. 3 in Table 9), the ViT framework
augmented with TCF (Exp. 4 in Table 9), and E-MAC with or without TCF (Exp. 5 and 6 in Table 9).
The results demonstrate that TCF provides performance improvements of 5% and 15% on the two
architectures, respectively. To further demonstrate how the fusion module works, we visualized the
input D̂t, and output D̂fuse of the fusion module as well as the intermediate variable D̂res

t under three
datasets, as shown in Fig 9, we provide the original image It and corresponding ground truth Dt in
the first two rows of the figure for reference. Compared with D̂t, the fusion module can well realize
the correction of the current density map by correlating the residuals obtained from the previous and
current predicted density map, which makes the integration of the fused density map D̂fuse closer
to the ground truth. We zoom in on some areas, and we notice that the fusion module can remove
some of the background interference by correlating the front and back predicted density maps, which
makes the final predicted density map better.

19



Published as a conference paper at ICLR 2025

G
ro

un
d 

T
ru

th
 

F
us

ed
 D

en
si

ty
 

M
ap

 
P

re
di

ct
ed

 R
es

id
ua

l 
M

ap
 

P
re

di
ct

ed
 

Im
ag

e 

-6.45

21.44

22.00

27.89

37.00

35.85

45.04

-9.19

31.00

32.07

33.89

-1.82

SCENE1 SCENE2 SCENE3

Figure 9: Visualization of the output and intermediate variables in the Fusion Module.

0
10
20
30
40
50
60
70
80
90

100

background patch foreground patch

random mask SAM (P=1) SAM (P=0.8)

random mask SAM

0
10
20
30
40
50
60
70
80
90

100

background patch foreground patch

random mask SAM (P=1) SAM (P=0.8)

random mask SAM

0

20

40

60

80

100

background patch foreground patch

random mask SAM (P=1) SAM (P=0.8)

random
mask

SAM

mask
visualization

density
uncertainty

0

20

40

60

80

100

background patch foreground patch

random mask SAM (P=1) SAM (P=0.8)

random
mask

SAM

mask
visualization

predicted
density map

0

20

40

60

80

100

background patch foreground patch

random mask SAM (P=1) SAM (P=0.8)

random
mask

SAM

mask
visualization

predicted
density map

Figure 10: Visualization of the predicted density map w/ and w/o SAM, and statistical results of the
number of foreground and background patches w/ and w/o SAM.

A.6 VISUALIZATION OF SAM

We visualized the differences between the density maps predicted from the same image w/ and
w/o SAM and the ground truth, as presented in Fig. 10. The zoom-in regions display intuitive and
significant visual differences. E-MAC trained w/ SAM effectively counts the targets, while E-MAC
using random masking fails to count some targets. Besides, we conducted a statistical comparison
of the number of foreground and background patches in the images after applying random masks
and different P (BRP) settings with SAM, as presented in Fig. 10. Obviously, SAM significantly
reduces the proportion of background regions, thereby balancing the positive and negative samples.

20



Published as a conference paper at ICLR 2025

Image Predicted Density 
(MultiMAE)

41.73

Ground Truth

46.00

Predicted Density 
(E-MAC w/ TCF)

44.91

Predicted Density 
(E-MAC w/o SAM)

45.38

Predicted Density
(E-MAC)

45.75

Figure 11: Visualization of the predicted results of our key components (TCF, DEMO, SAM).

Table 12: Comparison on FLOPs, FPS, and the number of Parameters.
Method FLOPs(G) ↓ FPS ↑ Parameters(M) ↓ MAE (DroneBird) ↓ RMSE (DroneBird) ↓
EPF (Liu et al., 2020) 815 19 20 97.22 133.01
PFTF (Avvenuti et al., 2022) 1075 13 23 89.76 101.02
STGN (Wu et al., 2023) 742 30 13 92.38 124.67

Ours 811 16 98 38.72 42,92

Table 11: Result with different random seeds.
Metrics 1 2 3 Average

MAE 1.29 1.28 1.33 1.30±0.022

RMSE 1.69 1.66 1.69 1.68±0.015

We have also visualized some of the predicted
results of our key components (TCF, DEMO,
SAM) with our baseline, as shown in Fig. 11.
We gradually add the components (TCF, DEMO,
SAM) to the baseline, resulting in increasingly
accurate predictions and better visual results.

A.7 EFFECT OF E-MAC ARCHITECTURE.

We provide additional quantitative experiments to demonstrate the performance sources of our pro-
posed framework. As shown in Table 10, we provide a comparison of the performance of the vanilla
ViT architecture using different pre-training weights (Exp. 7 and 8 in Table 10) as well as our frame-
work using different pre-training weights (Exp. 9 and 10 in Table 10). As can be seen from the table:
using a larger pre-training weight on ViT does provide better performance, but the improvement is
very limited (6% improvement between Exp. 7 and 8). In contrast, our unique design tailored to the
data and video counting tasks significantly enhances performance (43% between Exp. 7 and 9 and
47% between Exp. 8 and 10 respectively).

A.8 IMPACT OF RANDOM SEED.

To explore the impact of different random seeds on the overall performance of our model, we have
also conducted more experiments on the FDST dataset, which is a relatively small dataset for quick
validation. The average MAE and RMSE scores are 1.30±0.022 and 1.68±0.015. The results in
Table 11 show that different random seeds do not significantly affect the performance of our model.

A.9 MODEL EFFICIENCY DISCUSSION

We have compared FLOPs, FPS, and the number of parameters with some other video counting
models and reported the results in Table 12. All the experiments were conducted on an NVIDIA RTX
3090 GPU. It is worth noting that the FLOPs and FPS of our method and the competing methods
are comparable, although we first adopted the vision foundation model. Compared to EPF (Liu
et al., 2020) and PFTF (Avvenuti et al., 2022), our E-MAC achieves superior performance with less
required computations. STGN (Wu et al., 2023) achieves higher FPS with fewer parameters, but
its performance is limited. Compared to STGN (Wu et al., 2023), our method achieved over 58%
performance improvement with only 9% more FLOPs.

A.10 DYNAMICS OF DATA

Here, we explore the intra-frame dynamics of the foreground regions in video data. We
processed data in the FDST dataset and made analyses. We first utilized a 60 × 60 win-
dow to crop the images into patches and then counted the number of people in each patch.

21



Published as a conference paper at ICLR 2025

60%

65%

70%

75%

80%

85%

90%

95%

100%

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

380

150

8

5

0

250

200

300

350

Figure 12: Density distribution. The bar graph
portion (blue) represents the number of patches
corresponding to the crowd density. The line
graph portion (red) represents the percentage of
the number of patches whose density is less than
the current density.

Statistical result is shown in Fig. 12, the hori-
zontal axis coordinates are the density of people
in each patch, calculated from the correspond-
ing density map. The left vertical coordinate
is the number of patches for each crowd den-
sity. We fold a portion of the axis as the number
gap is too large. The heterogeneous density dis-
tribution across image patches indicates inher-
ent dynamism in the intra-frame density char-
acteristics. Additionally, due to the presence of
large background areas, the model should fo-
cus more on the foreground regions of the sam-
ples to extract the most informative and rele-
vant information. The utilization of a fixed fo-
cus region across different samples may result
in the loss of critical information about the fore-
ground areas. Similarly, the adoption of com-
pletely random focus regions is unable to con-
sistently capture the salient information within
the foreground regions. Thus, we suggest the
employment of a dynamic masking mechanism
to obtain the foreground focus regions for different samples.

22


	Introduction
	Related Work
	DroneBird dataset
	Method
	Temporal Collaborative Fusion
	Density-embedded Masked Modeling
	Spatial Adaptive Masking
	Loss Function

	Experiments
	Experimental Settings
	Comparisons
	Ablation Study
	Discussion

	Conclusion
	Appendix
	DroneBird Dataset
	Detailed Method
	More Experiment Results
	Impact of Image Size
	Impact of TCF
	Visualization of SAM
	Effect of E-MAC architecture.
	Impact of Random Seed.
	Model Efficiency Discussion
	Dynamics of Data


