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A APPENDIX

A.1 DRONEBIRD DATASET

Sunny; Crowded; Side view; Far range; Standing Backlight; Crowded; Side view; Far range; Flying

Sunny; Sparse; Side view; Close range; StandingSunny; Crowded; Top view; Far range; Flying

Figure 6: Visualization of partial examples of DroneBird.

Our DroneBird dataset is captured by cameras mounted on drones using consumer drones such as
the DJI Mavic 2 Pro, Phantom 4 Pro, etc. DroneBird captures a wide range of scenarios, including
rivers, wetlands, lakes, ice, and other common bird habitats. The data captured in DroneBird is
primarily obtained by the drone from 30 meters or 60 meters in the air, with a small portion of the
data captured close to the ground. DroneBird’s collection time is during the daytime or in the early
evening when the weather conditions are favorable, and the view is relatively clear.

Table 4: Existing bird datasets and our proposed DroneBird dataset.

Dataset Type Trajectory Highest Resolution Frames Ave count Total count
Penguin (Arteta et al., 2016) Image × 1536× 2048 33, 405 178.4 5, 970, 899
Bird-Count (Wang et al., 2023) Image × 768× 1024 1, 372 131.1 173, 458

DroneBird Video ✓ 2160× 4096 21, 500 171.5 3, 686, 409

20 pixels 160 pixels<<

Figure 7: Visualization of pixel occupied by the target in DroneBird and existing crowd dataset.

DroneBird captured 50 videos of migratory birds and segmented them. Specifically, we used 30 of
the video data as a train set, 10 of the remaining 20 videos as a test set, and 10 as a validate set.
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Algorithm 1 Framework Workflow in Training Phase
Ensure: {It, Dt}, {It-1, Dt-1}
Require: D̂fuse

1: for all epoch do
2: D̂t ← ϕDEMO(It, Dt)

3: D̂t-1 ← ϕDEMO(It−1, Dt−1)
4: M← ϕOpticalFlow(It, It-1)

5: D̂warp
t-1 ← ϕwarp(M, D̂t-1)

6: D̂res
t ← ϕca(D̂

warp
t-1 , D̂t)

7: D̂fuse ← D̂t + D̂res
t

8: Lfuse,Lcur,Lopt,LTV ← ϕLoss
9: L ← λ1Lfuse + λ2Lcur + λ3Lopt + λ4LTV

10: end for

Algorithm 2 DEMO workflow in training phase
Ensure: I,D
Require: D̂

1: TI ,TD, Ipatch,Dpatch ← ϕpatchify(I,D)
2: VD ← ϕsum(Dpatch)
3: N = random(0, 1)
4: if N ≤ 1− P then
5: K ← argsortdes(VD)
6: else
7: K ← argsortasc(VD)
8: end if
9: for all ti ∈ TI do

10: if i ∈ K then
11: M i ← 0
12: else
13: M i ← 1
14: end if
15: end for
16: Tret

I ,Tret
D ← mask(TI ,Madaptive),mask(TD,Mrandom)

17: Tret ← ϕconcate(T
ret
I ,Tret

D )
18: Tret ← ϕencoder(T

ret)
19: Tret

I ,Tret
D ← split(Tret)

20: Mask = random
21: T̂D ← ϕfill(T

ret
D ,Mask)

22: T̂D ← ϕca(T̂D,Tret)

23: D̂ ← ϕdecoder(T̂D)

We cut the 40 videos in the train and test sets to 500 frames per video (around 17s), and cut the
10 videos in the validate set to 150 frames per video (around 5s) to accomplish a reasonable data
division. The train set, test set and validate set after the division is completed contain 15, 000
frames, 5, 000 frames and 1, 500 frames, respectively. It is worth noting that the data scenarios for
each of the two divisions in the train, test and validate sets are different, as a way to ensure that
the data will not be leaked during the training process.

We have compiled the dataset’s statistics and compared them with existing bird datasets, with the
results shown in the Table. 4. A few examples of DroneBird are demonstrated in Fig. 6. Most of the
targets in DroneBird are small in size. We compared the pixel height occupied by individual bird
targets in DroneBird with that occupied by individuals in existing crowd data, and visualized this
comparison in Fig. 7. The pixel height occupied by individual bird targets is significantly smaller
than that of crowd individuals, posing a significant challenge for the task of target counting.
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Figure 8: The detailed process of SAM. For ease of expression, we crop the image and the density
map into 25 patches, as shown in the figure, this number varies according to the size of input images
(each path is set to 16×16). We first calculate the Vi

D of each density map patch Di
patch, and sort the

token according to the number of targets Vi
D. To balance the fore- and back-ground information, we

set a background retention probability (BRP) P to determine the sorting manner, which is detailed
in Sec. 4.3. For tokens from image modality, we keep the first N ret

I tokens after sorting. For tokens
from density map modality, we randomly shuffle their order and keep the first N ret

I tokens, i.e.,
randomly select N ret

I density tokens. Since the masked tokens are filled by learnable tokens in the
decoder, we first restore the retained image and density tokens to their original order before sorting.
Then, we concatenate and feed them into the encoder. Note that, the restoration follows the same
setting with Bachmann et al. (2022), which can be performed in the decoder as well. The full set
of retained tokens and filled density map tokens are then fed into the decoder to predict the density
map. Specifically, the full set of retained tokens are treated as key and value vectors, and the filled
density map tokens are treated as query vector in the cross-attention layer in the decoder. Then, the
output of the cross-attention layer is fed into two self-attention layers to perform the final prediction.

A.2 DETAILED METHOD

We detail the training process of our E-MAC method in Algorithm 1. The training process of DEMO is
represented in Algorithm 2.

As shown in Algorithm 1, our model requires two frames (It, It−1) and their corresponding den-
sity maps (Dt, Dt−1) as input. The image and density map pairs St = {It, Dt} and St−1 =

{It−1, Dt−1} are fed to the DEMO to predict the density map D̂t and D̂t−1. Meanwhile, a pretrained
optical flow estimation networt (Sun et al., 2018) is performed on D̂t and D̂t−1 to generate optical
flow M, which is used to warp the D̂t−1 to D̂warp

t−1 . Then the D̂warp
t−1 and D̂t are fed into a cross-

attention layer to calculate the residual D̂res
t of adjacent predicted density map. The final predicted

density map D̂fuse of It is then calculated by a pixel-wise add of D̂t and D̂res
t .

In the DEMO, a video frame I and its corresponding density map D performed a patchify and a
projection operation to get the token set TI ,TD and patch set Ipatch,Dpatch. Then we perform
mask operation to get the retained tokens Tret

I ,Tret
D . The number of retained tokens for the image

and density map modalities are generated by the Dirichlet distribution, denoted as N ret
I and N ret

D ,
respectively. Specifically, for image modality, we use an adaptive mask to obtain Tret

I from TI .
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Table 5: Quantitative comparison between the proposed method and existing methods on the Mall
dataset with metrics MAE and RMSE.

Method Type MAE↓ RMSE↓
CSRNet (Li et al., 2018) Image 2.46 4.70
RPNet (Yang et al., 2020) Image 2.20 3.60
TAN (Wu et al., 2020) Image 2.03 2.60
HMoDE (Du et al., 2023) Image 2.82 3.41
PET (Liu et al., 2023) Image 1.89 2.46
Gramformer (Lin et al., 2024) Image 1.69 2.14

ConvLSTM (Xiong et al., 2017) Video 2.24 8.50
LSTN (Fang et al., 2019) Video 2.00 2.50
E3D (Zou et al., 2019) Video 1.64 2.13
MLSTN (Fang et al., 2020) Video 1.80 2.42
MOPN (Hossain et al., 2020) Video 1.78 2.25
Monet (Bai & Chan, 2021) Video 1.54 2.02
PFTF (Avvenuti et al., 2022) Video 2.99 3.72
FRVCC (Hou et al., 2023) Video 1.41 1.79
STGN (Wu et al., 2023) Video 1.53 1.97

Ours Video 1.35 1.76

Firstly, we calculate the number of targets Vi
D in the i-th density map patch Di

patch, and Vi
D =

ϕsum(D
i
patch), where ϕsum represents the pixel-wise sum operation in each density map patch, and

the result represents the number of targets in the corresponding patch. To focus on the foreground,
we sort the image tokens according to the number of targets Vi

D in the corresponding density map
patch. Although the foreground provides more valid information, the background should not be
completely ignored. Therefore, to introduce background information, we set a background retention
probability (BRP) P to control the sorting manner. The tokens are sorted in ascending order with a
probability of P (focus on background) or in descending order with a probability of 1−P (focus on
foreground). The first N ret

I tokens after sorting is then retained as Tret
I . For density map modality,

we randomly shuffle the order of TD and retain the first N ret
D tokens (randomly mask) as Tret

D .
The retained tokens Tret

I and Tret
D are jointly fed into the encoder, while the remaining tokens are

discarded and not passed into the model. The output tokens Tref of encoder are then split to Tret
D and

Tret
I . The learnable random mask tokens are filled at the masked positions in Tret

D as placeholders,
and the filled tokens set is denoted as T̂D. T̂D and Tref are then fed in a cross-attention layer, in
which T̂D servers as query and Tref servers as key and value. Then, the reonstructed density map D̂
is regressed by two transformer layers.

We have illustrated the detailed SAM process in Fig. 8. For ease of expression, we crop the image
and density map into 25 patches. Each patch from the image and the density map at the same
position is paired, and we have noted an index for each pair of patches in Fig. 8. For each pair
of patches (Iipatch, Di

patch), we calculate the sum of the density map patch Vi
D, sort the token pair

(TI ,TD) according to the number of targets Vi
D. We set a background retention probability (BRP)

P to determine the sorting manner, which is detailed in Sec. 4.3. For tokens from image modality,
we retain the firstN ret

I tokens in the sorted TI . For tokens from density map modality, we randomly
shuffle their order and retain the firstN ret

D tokens. Since the masked tokens will be filled by learnable
tokens in the decoder, we first restore the retained image and density tokens to their original order
before sorting. Then, we concatenate and feed them into the encoder. The full set of retained tokens
and filled density map tokens are then fed into the decoder to predict the density map. Specifically,
the full set of retained tokens are treated as key and value vectors, and the filled density map tokens
are treated as query vector in the cross-attention layer in the decoder. Then, the output of the cross-
attention layer is fed into two self-attention layers to perform the final prediction.
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Table 6: Quantitative comparison between our proposed method and existing methods on the FDST
dataset with metrics MAE and RMSE, lower metrics better.

Method Type MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image 3.77 4.88
CSRNet (Li et al., 2018) Image 2.56 3.12
ChfL (Shu et al., 2022) Image 3.33 4.38
MAN (Lin et al., 2022) Image 2.79 4.21
HMoDE (Du et al., 2023) Image 2.49 3.51
PET (Liu et al., 2023) Image 1.73 2.27
Gramformer (Lin et al., 2024) Image 5.15 6.32

ConvLSTM (Xiong et al., 2017) Video 4.48 5.82
LSTN (Fang et al., 2019) Video 3.35 4.45
MLSTN Fang et al. (2020) Video 2.35 3.02
EPF (Liu et al., 2020) Video 2.17 2.62
MOPN (Hossain et al., 2020) Video 1.76 2.25
PHNet Meng et al. (2021) Video 1.65 2.16
GNANet (Li et al., 2022) Video 2.10 2.90
PFTF (Avvenuti et al., 2022) Video 2.07 2.69
FRVCC (Hou et al., 2023) Video 1.88 2.45
STGN (Wu et al., 2023) Video 1.38 1.82

Ours Video 1.29 1.69

Table 7: Quantitative comparison between our proposed method and existing methods on the
VSCrowd dataset with metrics MAE and RMSE, lower metrics better.

Method Type MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image 27.1 46.9
CSRNet (Li et al., 2018) Image 13.8 21.1
Bayesian (Ma et al., 2019) Image 8.7 11.8
MAN (Lin et al., 2022) Image 8.3 10.4
HMoDE (Du et al., 2023) Image 19.8 39.5
PET (Liu et al., 2023) Image 6.6 11.0
Gramformer (Lin et al., 2024) Image 8.09 15.65

EPF (Liu et al., 2020) Video 10.4 14.6
GNANet (Li et al., 2022) Video 8.2 10.2
STGN (Wu et al., 2023) Video 9.6 12.5

Ours Video 6.0 10.3

A.3 MORE EXPERIMENT RESULTS

Additional results on the Mall, FDST, and VSCrowd datasets are provided in Tabs. 5, 6, and 7. In
an extensive survey, our method consistently achieved competitive results.

A.4 IMPACT OF IMAGE SIZE

We conducted experiments on the FDST dataset to explore the effect of image size on the perfor-
mance of our E-MAC module. We tried a variety of image input sizes and compared their exper-
imental results to validate the effect of input image size. When we increased the image size used
for training from 224 × 224 to 480 × 480, the final MAE showed a downward trend in the figure
and decreased from 1.93 to 1.47, which improved by 24%. However, the computational cost of the
model increases exponentially as the size of the image increases (Dosovitskiy et al., 2020). Inte-
grating temporal information further increases the computational cost, thereby affecting the overall
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Figure 9: Visualization of the output and intermediate variables in the Fusion Module.
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Figure 10: Visualization of the predicted density map w/ and w/o SAM, and statistical results of the
number of foreground and background patches w/ and w/o SAM.

performance. Therefore, we set the input image size to 320 × 320 on the FDST dataset, balancing
the performance and computational cost.

A.5 VISUALIZATION OF TCF

To further demonstrate how the fusion module works, we visualized the input D̂t, and output D̂fuse

of the fusion module as well as the intermediate variable D̂res
t under three datasets, as shown in

Fig 9, we provide the original image It and corresponding ground truth Dt in the first two rows of
the figure for reference. Compared with D̂t, the fusion module can well realize the correction of the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Image Predicted Density 
(MultiMAE)

41.73

Ground Truth

46.00

Predicted Density 
(E-MAC w/ TCF)

44.91

Predicted Density 
(E-MAC w/o SAM)

45.38

Predicted Density
(E-MAC)

45.75

Figure 11: Visualization of the predicted results of our key components (TCF, DEMO, SAM).

current density map by correlating the residuals obtained from the previous and current predicted
density map, which makes the integration of the fused density map D̂fuse closer to the ground truth.
We zoom in on some areas and we notice that the fusion module can remove some of the back-
ground interference by correlating the front and back predicted density maps, which makes the final
predicted density map better.

A.6 VISUALIZATION OF SAM

We visualized the differences between the density maps predicted from the same image w/ and
w/o SAM and the ground truth, as presented in Fig. 10. The zoom-in regions display intuitive and
significant visual differences. E-MAC trained w/ SAM effectively counts the targets, while E-MAC
using random masking fails to count some targets. Besides, we conducted a statistical comparison
of the number of foreground and background patches in the images after applying random masks
and different P (BRP) settings with SAM, as presented in Fig. 10. Obviously, SAM significantly
reduces the proportion of background regions, thereby balancing the positive and negative samples.

We have also visualized some of the predicted results of our key components (TCF, DEMO, SAM)
with our baseline, as shown in Fig. 11. We gradually add the components (TCF, DEMO, SAM) to the
baseline, resulting in increasingly accurate predictions and better visual results.

A.7 DYNAMICS OF DATA

60%

65%

70%

75%

80%

85%

90%

95%

100%

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

380

150

8

5

0

250

200

300

350

Figure 12: Density distribution. The bar graph
portion (blue) represents the number of patches
corresponding to the crowd density. The line
graph portion (red) represents the percentage of
the number of patches whose density is less than
the current density.

Here, we explore the intra-frame dynamics of
the foreground regions in video data. We pro-
cessed data in the FDST dataset and made anal-
yses. We first utilized a 60 × 60 window to
crop the images into patches and then counted
the number of people in each patch. Statisti-
cal result is shown in Fig. 12, the horizontal
axis coordinates are the density of people in
each patch, calculated from the corresponding
density map. The left vertical coordinate is the
number of patches for each crowd density. We
fold a portion of the axis as the number gap is
too large. The heterogeneous density distribu-
tion across image patches indicates inherent dy-
namism in the intra-frame density characteris-
tics. Additionally, due to the presence of large
background areas, the model should focus more
on the foreground regions of the samples to ex-
tract the most informative and relevant infor-
mation. The utilization of a fixed focus region
across different samples may result in the loss
of critical information about the foreground ar-
eas. Similarly, the adoption of completely random focus regions is unable to consistently capture the
salient information within the foreground regions. Thus, we suggest the employment of a dynamic
masking mechanism to obtain the foreground focus regions for different samples.
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Table 8: Comparision on FLOPs, FPS, and the number of Parameters.
Method FLOPs(G) ↓ FPS ↑ Parameters(M) ↓ MAE (DroneBird) ↓ RMSE (DroneBird) ↓
EPF (Liu et al., 2020) 815 19 20 97.22 133.01
PFTF (Avvenuti et al., 2022) 1075 13 23 89.76 101.02
STGN (Wu et al., 2023) 742 30 13 92.38 124.67

Ours 811 16 98 38.72 42,92

A.8 MODEL EFFICIENCY DISCUSSION

We have compared FLOPs, FPS, and the number of parameters with some other video counting
models and reported the results in Table 8. All the experiments were conducted on a NVIDIA RTX
3090 GPU. It is worth noting that the FLOPs and FPS of our method and the competing methods
are comparable, although we first adopted the vision foundation model. Compared to EPF (Liu
et al., 2020) and PFTF (Avvenuti et al., 2022), our E-MAC achieves superior performance with less
required computations. STGN (Wu et al., 2023) achieves higher FPS with fewer parameters, but
its performance is limited. Compared to STGN (Wu et al., 2023), our method achieved over 58%
performance improvement with only 9% more FLOPs.
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