
Published as a conference paper at ICLR 2025

IMPLICIT NEURAL SURFACE DEFORMATION WITH
EXPLICIT VELOCITY FIELDS

Lu Sang1,2, Zehranaz Canfes1, Dongliang Cao3, Florian Bernard3, Daniel Cremers1,2
1Technical University of Munich, 2Munich Center of Machine Learning
{lu.sang, zehranaz.canfes, cremers}@tum.de
3University of Bonn
{dcao, fb}@uni-bonn.de

Figure 1: Given two point clouds P0 and P1, our method predicts a time-varying neural implicit
surface that represents a smooth and physically plausible deformation from P0 to P1. To ensure
physical plausibility, we utilize a velocity network that leverages smoothness and divergence-free
constraints.

ABSTRACT

In this work, we introduce the first unsupervised method that simultaneously
predicts time-varying neural implicit surfaces and deformations between pairs
of point clouds. We propose to model the point movement using an explicit
velocity field and directly deform a time-varying implicit field using the modified
level-set equation. This equation utilizes an iso-surface evolution with Eikonal
constraints in a compact formulation, ensuring the integrity of the signed distance
field. By applying a smooth, volume-preserving constraint to the velocity field,
our method successfully recovers physically plausible intermediate shapes. Our
method is able to handle both rigid and non-rigid deformations without any
intermediate shape supervision. Our experimental results demonstrate that our
method significantly outperforms existing works, delivering superior results in both
quality and efficiency1.

1 INTRODUCTION

Representing surfaces using implicit methods, such as signed distance fields, offers significant advan-
tages over explicit methods in some applications. For example, it allows flexible topological changes
and is more memory-efficient compared to storing an explicit representation of a high-resolution
surface. Additionally, implicit representations allow for differentiable operations, as the respective
surfaces are encoded in smooth fields, which in turn enhances a variety of downstream tasks, such as
radiance field rendering by Yariv et al. (2021); Wang et al. (2023). Embedding a signed distance field
within a neural network to represent a single surface demonstrated many successful outcomes, such
as work from Sitzmann et al. (2020); Gropp et al. (2020); Mescheder et al. (2018). However, using
implicit representations to model surface deformation or a dynamic surface evolution, especially with

1the code is available: https://github.com/Sangluisme/Implicit-surf-Deformation

1

https://github.com/Sangluisme/Implicit-surf-Deformation

Published as a conference paper at ICLR 2025

physically plausible deformations, still remains challenging. The challenges stem mainly from two
inherent characteristics with implicit methods: (i) implicit representations do not store explicit surface
point locations, which makes it hard to directly manipulate surfaces during deformation. (ii) the
lack of traceable neighboring information in implicit fields prevents the use of efficient physical
constraints, for example, as-rigid-as-possible regularisation, proposed by Sorkine & Alexa (2007),
which is crucial in many mesh-based methods such as the work from Alexa et al. (2023); Eisenberger
et al. (2021); Cao et al. (2024a). In this paper, we aim to tackle these core problems of implicit
surface representations. To this end, we introduce a method that simultaneously recovers implicit
neural representations of two given point cloud inputs, together with time-varying intermediate shapes
between them. Most notably, our approach distinguishes itself from previous deformation methods
based on implicit representations by recovering physically plausible intermediate shapes – without
supervision from ground truth intermediate shapes. To achieve this goal, we model the deformation of
surface points by training a velocity network that utilizes smoothness and divergence-free constraints,
thereby ensuring natural and physically plausible deformations. Our approach circumvents the need
for mesh rendering during training, facilitating an end-to-end and fully differentiable training process.
Our method supports both intrinsic and extrinsic deformations of the given point clouds, enhancing
its versatility and application scope. In summary, we claim the following contributions:

• We propose a novel end-to-end framework that recovers the underlying surfaces of given
point clouds together with physically plausible intermediate shapes.

• Our method directly deforms the implicit field by the explicit velocity field based on the
level-set equation to avoid explicit mesh rendering.

• We propose to use a modified level-set equation that combines Eikonal constraint and thereby
enables a compact joint optimization while preventing degenerated signed distance fields.

• We validate our method on different datasets and demonstrate that our methods give rise to
high-quality interpolations for challenging inputs, both quantitatively and qualitatively.

2 RELATED WORKS

Surface representation methods We roughly divide shape representation into explicit and implicit
approaches. While explicit representations, such as polygon meshes, store mesh properties, e.g.
vertices, edges, and faces explicitly, implicit methods encode the surface information into function
fields, such as signed distance fields (SDF). With explicit methods, it is relatively straightforward
to edit the shapes, since shape properties can directly be manipulated. However, there are some
drawbacks to explicit surface representations. For instance, meshes can only have a fixed topology. It
is not trivial to adapt vertices and the configuration of their connections (such as edges). Implicit
methods, on the contrary, allow arbitrary topological changes since no explicit surface and structural
information are stored. Additionally, neural implicit representations enable arbitrary resolutions
during inference, without memory increase during storage.

Mesh-based deformation Mesh-based shape deformation is a well-studied problem in computer
graphics. The most common strategy is to directly deform vertices based on some local deformation
measurements (e.g. as-rigid-as-possible (ARAP) proposed by Sorkine & Alexa (2007), PriMo Botsch
et al. (2006), etc.). Another direction is to deform intrinsic quantities like dihedral angles such as
work from Alexa et al. (2023); Baek et al. (2015) before reconstructing 3D shapes. Meanwhile, other
works formulate shape deformation as a time-dependent velocity field Charpiat et al. (2007); Eckstein
et al. (2007) and incorporate specific constraints (e.g. volume preservation used by Eisenberger
et al. (2018); Eisenberger & Cremers (2020)). Despite the great success achieved by mesh-based
shape deformation methods, they rely on the local neighborhood information obtained from edges
(or triangles) during deformation. Therefore, shapes have a fixed topology during deformation,
which limits the applications for shapes with inconsistent topology or partiality. In contrast, our
method directly works on an implicit surface, and thus has no constraint on the shape topology and
is applicable for partial shapes based on spatial smoothness regularisation. In the experiment part,
we demonstrate that our method is capable of deforming shapes with significant variations of shape
resolution and partiality.

Implicit-field based deformation Deforming implicit fields presents a significant challenge, as all
information is encoded within a function field, preventing direct operations on the object. Previous

2

Published as a conference paper at ICLR 2025

works that studied this topic are typically for physical simulation, such as the work of Osher &
Paragios (2003); Museth et al. (2002); Jones et al. (2006), and these works use classical discretely
stored implicit fields. More recently, the widespread adoption of neural networks to represent
implicit fields in shape modeling, work fromYang et al. (2021); Sitzmann et al. (2020); Ma et al.
(2020) inspired works to study shape deformation on implicit fields. Several works, e.g., Peng
et al. (2021) utilizing neural networks for shape deformation have concentrated exclusively on
human body movements , Chen et al. (2021); Deng et al. (2020); Božič et al. (2021) requiring prior
information such as skinning details or intermediate point clouds . Others, like Cao et al. (2024b) have
explored deforming implicit fields through generative or diffusion models, but these still necessitate
intermediate point clouds for supervision. Some works have trained on datasets of shapes from
specific object categories, Deng et al. (2021); Genova et al. (2019); Iglesias et al. (2017); Hao et al.
(2020) aiming to deform from one category to another , rather than recovering plausible intermediate
shapes. Some works address this problem by defining a latent space and getting a deformed shape via
latent space interpolations Liu et al. (2022). Yang et al. (2021) introduced pioneering work that enables
direct editing of implicit fields using user-defined handle points, ensuring the deformation remains
consistent with the original object. Following this, Mehta et al. (2022) proposed using the level-set
equation to deform the implicit network, providing theoretical insights into implicit field deformation.
Building on this foundation, Novello et al. (2023) extended these concepts, applying them to 3D
shapes, primarily focusing on smoothing surface deformations. In terms of directly deforming the
implicit field using a velocity field, their work models the velocity field through linear interpolation
between two pre-trained implicit networks representing the target shapes. Therefore, these works
are limited to work on a pre-defined velocity field and fail to predict reasonable intermediate shapes
when the deformation is not a linear translation.

In this paper, we adopt neural implicit surface representations and tackle the challenging problem
of directly deforming the implicit field while recovering physically plausible intermediate shapes –
without any rendering or intermediate ground truth supervision. We achieve this by modeling
deformations using a velocity field and directly deforming the implicit neural network using modified
level-set-equations. Moreover, our training is end-to-end without any pre-trained SDF network
needed.

3 METHOD

Figure 2: Pipeline of our method: given two point
cloud P0 and P1, we train a time-varying Implicit-
Net to predict SDF in different time steps and
Velocity-Net to predict the velocity of the point
at each time step. We directly deform the implicit
field using MLSE loss.

Given two 3D point clouds P0 = {x0
i }i and

P1 = {x1
i }i, we aim to reconstruct a time-

varying implicit representation of the inputs to-
gether with natural and physically plausible in-
termediate surfaces. To this end, we adopt a
Lagrangian perspective from fluid mechanics to
track the trajectory of individual points through
a velocity field V : Ω → R3, for Ω ⊂ R3 be-
ing the point domain, and directly deform the
time-varying implicit field f : Ω × I → R,
where I = [0, 1] is the time interval. The pri-
mary challenges are (i) modeling deformations
that are realistic according to physical laws, i.e.
modeling physically plausible movements, and (ii) deforming the implicit surfaces without relying
on explicit mesh rendering or intermediate shape supervision. To tackle these issues, we employ
a smoothness constraint and a divergence-free constraint on the velocity field to ensure realistic
movement. Additionally, we utilize a modified level-set equation to directly deform the time-varying
implicit surfaces without rendering meshes explicitly.

3.1 TIME-VARYING IMPLICIT FIELDS

The time-varying implicit field f(·, ·) takes a point location x ∈ Ω and a time t ∈ I as input, where
I = [0, 1] is the time interval and Ω is the surface domain. Its purpose is to encode the evolution of
a surface, that is, the shape St at time t is represented by the zero-level-set of the implicit function
f(·, t), i.e.

St = {x ∈ Ω| f(x, t) = 0} . (1)

3

Published as a conference paper at ICLR 2025

Signed-distance fields (SDFs) have many outstanding properties for representing surfaces: for C2-
smooth surfaces, the gradient of an SDF coincides with the surface normal direction n on the
zero-crossing contour (∂Ω), and the curvature κ coincides with the divergence, that is

n(x, t) =
∇f(x, t)

∥∇f(x, t)∥
, κ(x, t) = ∇ · n(x, t), for x ∈ ∂Ω . (2)

The time-varying signed distance function f should also satisfy the Eikonal equation, since at every
time t, f still is a signed distance field, as proposed by Bothe et al. (2024), i.e. at any time t ∈ I,

∥∇f(x, t)∥ = 1 . (3)

3.2 VELOCITY FIELDS

Inspired by the Lagrangian representation in fluid mechanics , which tracks surface points by modeling
the particle trajectory ϕ : Ω× I → Ω, we track the point by estimating its velocity and integrating
the velocity field to form the point trajectory. The trajectory specifically consists of the position of
particle x at time t. Assuming the points are moved by an external velocity field V : Ω → R3, where
V ∈ V , and V is a Hilbert space of a smooth and compactly supported vector field on Ω. The velocity
of the moving particle satisfies the following ordinary differential (ODE) equation with the initial
condition: the trajectory derivative w.r.t. time t is the velocity and the initial point location is given
by x0 {

V(x) = dϕ(x,t)
dt , for t ∈ I ,

ϕ(x, 0) = x0 .
(4)

Note that in our setting, we also enforce the ending point of particle trajectory by ϕ(x, 1) = x1,
where x1 is the point in the target point cloud. To control the smoothness of the movement and ensure
physical plausibility, we propose to constrain the velocity field by two aspects: spatial smoothness of
the velocity fields, and physical constraints.

Velocity fields that generate diffeomorphisms As the particle path ϕ : Ω× t → Ω represents a
trajectory from one point cloud to another, we would like to recover a smooth transformation between
two point clouds, which is consistent in both directions. Thus, we seek velocity fields that generate
diffeomorphisms when integrated using Eq. (4), i.e. ϕ−1(·, t) = ϕ(·, 1− t)

ϕ(x, t) = x0 +

∫ t

0

V(ϕ(x, t))dτ . (5)

Inspired by Dupuis et al. (1998a), this can be achieved by regularizing on the space V through the
differentiable operator Ł = −α∆+ γI such that

∥V∥V = ∥ŁV∥l2 =

∫
Ω

∥ŁV(x)∥l2 dx , (6)

where I is the identity matrix. A more detailed explanation is provided in the Appendix A.

Divergence-free velocity fields To model physically plausible deformations, we consider the basic
conservation laws. One direct conservation law we can borrow is volume conservation. Since we
move points on the surface along a trajectory, we assume that no particles are moved across the
surface boundary at any time. Then, the total mass inside the surface stays the same, which directly
follows from the divergence theorem Kreyszig et al. (2011), i.e.

∇ · V(x) = 0. (7)

A similar idea has also been explored in previous work from Eisenberger et al. (2018); Cosmo et al.
(2020) for the case of explicit polygon meshes.

Velocity-Net integration Our smooth velocity field is approximated by an MLP Velocity-Net V . To
track the point trajectory, we follow the forward Euler method for integrating ODEs, i.e. we take
certain discrete time steps and integrate the velocity step by step using step length δT = 1/T . Then,
the discrete trajectory of points is formed by

ϕ(x, t+ δt) = ϕ(x, t) + V(ϕ(x, t))δt . (8)

The relation between P0 and P1 is then given as ϕ(x, 0) = x0, x ∈ P0 and ϕ(x, 1) = x1, x ∈ P1.

4

Published as a conference paper at ICLR 2025

3.3 DIRECT IMPLICIT FIELD DEFORMATION

In the previous sections, we introduced the time-varying implicit fields and velocity fields that
represent the shapes and the deformation of points, respectively. In this section, we discuss how to
directly deform the implicit field using the external velocity. We borrow the idea from fluid dynamics
and treat every point as a fluid particle. Since points stay on the surface of any intermediate shape
(i.e. f(ϕ(x, t), t) = 0 for any t ∈ I and x ∈ ∂Ω) , it implies there is no in- or outflow at the surface
boundary ∂Ω

d

dt

∫
Ω

f(ϕ(x, t), t)dx = 0 . (9)

Together with the initial condition, that is, the surface deforms from the underlying surface of point
cloud P0, Eq. (9) implies that {

∂tf + V · ∇f = 0 in Ω× I ,

f(x, 0) = f0 ,
(10)

where f0(x) = 0 for x ∈ P0. The linear transport in Eq. (10) is called the Level-Set Equation
(LSE). However, the function f is a signed distance function in our scenario, which means the
Eikonal equation in Eq. (3) should also hold to prevent degenerated level-set functions. Previous
work from Sussman et al. (1994); Sethian (1996); Sussman & Fatemi (1999) proposed to solve it by
introducing a reinitialization equation at a pseudo time τ , e.g. solving

∂

∂τ
f + sgn(f0)(∥∇f∥ − 1), f |τ=0 = f0 . (11)

However, this requires solving an additional partial differential equation (PDE), and requires that
the signed distance field f at time 0 is well initialized. To avoid pre-training a neural network to fit
the starting mesh and solve the problem more compactly, we follow the idea of Bothe et al. (2024)
and Fricke et al. (2022), combining Eq. (3) and

d

dt
∥∇f(x, t)∥ = −∥∇f∥ ⟨(∇V) ∇f

∥∇f∥
,

∇f

∥∇f∥
⟩ ≡ 0 , (12)

with Eq. (10) to get our Modified Level-Set Equation (MLSE) that reads{
∂tf + V · ∇f = −λlfR(x, t) in Ω× I ,

f(x, 0) = f0 ,
(13)

where R(x, t) = −⟨(∇V) ∇f
∥∇f∥ ,

∇f
∥∇f∥ ⟩. Our MLSE in Eq. (13) preserves the norm of the gradient

at the zero-crossing contour. We also adapt the original proposed level-set equation in Bothe
et al. (2024); Fricke et al. (2022) by adding a weight λl. We find that it helps to achieve better
implicit surfaces while still preserving the desired properties. Compared to the original level-set
equation Eq. (10) and discretely enforced Eikonal constraint Eq. (3) on each time step, the modified
level-set equation is more compact and solves a single partial differentiable equation (PDE) in an
integrated way.

Our MLSE is the bridge between the velocity field and the implicit field. Eq. (13) allows us to deform
the implicit field without rendering explicit meshes. Moreover, every component of the formulation
is differentiable, thus it enables end-to-end training. Our method jointly recovers the implicit surface
for both given point clouds and intermediate shapes without the need for pre-training SDF neural
implicit networks for given point clouds or meshes.

3.4 LOSS

We set up the training loss as follows. Velocity-Net loss Lv contains smoothness (Eq. (6)) and
divergence-free (Eq. (7)) terms. Implicit-Net loss Lf contains MLSE (Eq. (13) term.

Lv =

∫
Ω

∥ŁV∥ dx+ λdiv

∫
Ω

|∇ · V|dx ,

Lf =

∫
Ω

|∂tf + V · ∇f + λlfR|dx .

(14)

5

Published as a conference paper at ICLR 2025

The divergence-free weight λdiv can be set to 0 to disable volume preservation. We show examples
and the influence of the divergence-free term in the experiment section (Sec. 4).

Finally, to fit the network to the given point clouds, we propose the matching loss

Lm =

∫
P0

|f(x, 0)|dx+

∫
P1

|f(x, 1)|dx+

∫
P∗

0

∥∥ϕ(x, 1)− x1
∥∥dx . (15)

The last term is used to indicate a double integral over Ω and I, which is needed as ϕ(x, 1) =

x0 +
∫ 1

0
V(ϕ(x0, τ))dτ . We use the forward Euler step, as described in Sec. 3.2 to integrate during

training. Moreover, the last term also implies that one-to-one correspondence is needed for the
given two point clouds. However, thanks to the spatial smoothness of the velocity field, we only
need a small part of the given correspondence to achieve satisfactory results, thus P∗

0 ⊂ P0 is the
set of points for which correspondence information is available. We will discuss the number of
correspondences that are needed in Sec. 4. Our total loss term is defined as

L = λfLf + λvLv + λmLm , (16)

where λf , λv , and λm are weights to balance the joint training of velocity and implicit function term.

4 EXPERIMENTS

Neural network architectures and implementation To ensure smooth and diffeomorphic transfor-
mations between shapes, as discussed in Sec. 3, we use the following architectures for the two neural
networks: (i) Velocity-Net V consists of 8-layer MLP with 256 nodes per layer; (ii) Implicit-Net
f also consists of 8-layer MLP with 512 nodes per layer. We use Softplus Zhao et al. (2018) as
the activation function. To handle high-frequency information and maintain a diffeomorphism, we
incorporate a Lipschitz continuous positional encoding Yang et al. (2021).

Datasets We evaluated our methods using several datasets: Faust Bogo et al. (2014), SMAL Zuffi
et al. (2017), SHREC16 Cosmo et al. (2016) and DeformingThings4D Li et al. (2021). Faust and
SMAL provide shapes with different categories and movements. Cross-category deformations involve
non-rigid transformations between distinct objects, often with significant topological changes. Move-
ment deformation involves changes in gestures within a single object, adhering to physical laws such
as rigidity or conformality. DeformingThings4D provides continuous ground-truth displacements of
the source mesh vertices in each frame. We used this data set to evaluate our interpolated meshes.

Training strategy To generate training data, we sample 20,000 points on the surface of each
mesh to create point clouds with partial correspondences. Each point cloud maintains ground-truth
correspondences between 5% to 20% of its points We jointly estimate the velocity and the time-
varying signed distance field. To ensure the good initialized deformation of the implicit surfaces, we
train 2,000 warm-up epochs only for velocity fields. Then we gradually increase the loss term Lf

weight λf for Implicit-Net. We implement our code using Jax Bradbury et al. (2018) to enable fast
higher-order derivative computations. We train for a total of 10,000 epochs with batch size 4,000.
The run time is approximately 20 minutes on a GeForce GTX TITAN X GPU with CUDA for each
pair.

4.1 SHAPE DEFORMATION

We test our method on various deformation scenarios and compare it with other methods: LipMLP
from Liu et al. (2022) uses MLP layers that satisfy Lipschitz continuity to ensure smooth transitions
between source and target shapes. NFGP from Yang et al. (2021) deforms shapes based on a source
mesh and user-defined handle points. They estimate the implicit neural surface of the source mesh
and then compute the deformed surface to match the target handle points. That means the method
requires separate training for each time step. NISE fits two neural networks to the source and target
meshes and trains an implicit field with a time dimension to estimate intermediate deformations. We
use ground truth meshes to train both NISE and NFGP. NISE takes about 1.5 hours, and NFGP takes
around 15 hours for each deformation step (over 75 hours for five steps). Our method requires only
1/5 of the time compared to NISE, excluding the pre-training time for SDF networks of the source
and target meshes, which takes around another 20 minutes.

6

Published as a conference paper at ICLR 2025

Extrinsic (pose) deformation Extrinsic deformation refers to only pose changes. The transforma-
tions occurring within the same object category and no changes to the object type. In this context,
we incorporate a divergence-free constraint (c.f. Eq. (7) with λdiv > 0) to ensure that only the object
volume does not change during the deformation. Fig. 3 illustrates the results on the Faust dataset,
benchmarked against other methods. While other methods fail to produce physically plausible inter-
mediate shapes, both NFGP Yang et al. (2021) and our method successfully recover reasonable shapes.
However, NFGP requires user-defined handle points for each step and must be trained incrementally,
preventing it from generating a smooth deformed implicit neural surface.

Instrinsic (non-rigid) deformation Non-rigid deformation typically involves different objects for
the source and target point clouds. In this case, we disable the divergence-free constraint by setting
λdiv = 0. Fig. 4 shows an example that includes different categories and poses deformation (intrinsic
and extrinsic) in the source and target point clouds. Since NFGP Yang et al. (2021) cannot handle
non-rigid deformation, we only provide qualitative visualization results compared with the other two
methods. While all methods can recover the source and target meshes, the comparison methods fail
to generate reasonable intermediate meshes.

Quantitative evaluation To quantitatively evaluate the interpolated meshes, we use the fox and bear
animation from the DeformingThings4D Li et al. (2021) dataset. These examples contain relatively
small deformations per frame, making them suitable as ground truth baseline. Each sequence contains
55 meshes. For each dataset, we select 5 key meshes and estimate the deformations between them. We
calculate the Chamfer Distance (CD) and Hausdorff Distance (HD) of the recovered meshes compared
to the ground truth. We compare our method with LipMLP Liu et al. (2022) and NISE Novello et al.
(2023). Fig. 5 shows the average error table over the 55 interpolated meshes (left) and the error plot
for each mesh in the bear dataset (right). While all methods accurately recover the mesh at input time
steps, LipMLP and NISE exhibit increasing errors at intermediate steps. Our method maintains a
consistently low error on the intermediate meshes. Visualization results and error plots for the fox
dataset are provided in Appendix A.

4.2 INCOMPLETE AND SPARSE INPUT

Implicit methods showcase remarkable flexibility in representing shapes with varying typologies. In
this section, we show some challenging cases that our method can still tackle.

Different sparsity inputs Most existing approaches require fitting two separate networks to esti-
mate the Signed Distance Fields (SDF) for the initial and final shapes, as highlighted in previous
works Novello et al. (2023); Yang et al. (2021); Liu et al. (2022). Consequently, the quality of the
results is heavily dependent on the characteristics—such as the sparsity of the source and target point
clouds. If the fitting process for one shape is unsuccessful, these methods fail to estimate intermediate
shapes. Our approach overcomes these challenges through the Velocity-Net, which enables tracking
the dense initial point cloud P0 to the sparse final point cloud P1, and recovering the underlying
shapes without compromising result quality. Fig. 7 illustrates the varying sparsity levels of the input
data. The source point cloud P0 contains ∼ 20,000, points while the target point cloud P1 only has
∼ 2,000 points. While the source point cloud is dense enough to train a neural network for fitting an
SDF, the target point cloud is much sparser than the source. Although one could employ densification

Figure 3: Experiment on extrinsic deformation. LipMLP Liu et al. (2022) and NISE Novello et al.
(2023) fail to estimate the physically plausible intermediate shapes. NFGP Yang et al. (2021) can
recover reasonable meshes but it is trained separately for each time step. Our method can recover
realistic intermediate shapes in one model.

7

Published as a conference paper at ICLR 2025

Figure 4: Experiment involves both extrinsic and intrinsic deformation. While LipMLP(Liu et al.
(2022)) and NISE(Novello et al. (2023)) fail to create reasonable middle-step meshes, our method
generates appropriate transition meshes from two given point clouds.

method metric datasets

fox bear

LipMLP CD↓ 1.745 2.649
HD↓ 2.456 1.401

NISE CD↓ 0.178 0.366
HD↓ 0.262 0.560

Ours CD↓ 0.108 0.260
HD↓ 0.114 0.265

(a) Average error evaluated on interme-
diate meshes. LipMLP Liu et al. (2022)
and NISE Novello et al. (2023) can fit
well for the given meshes but produce
big errors at the intermediate meshes.
Our proposed method maintains a small
error even on the middle shapes.

0 10 20 30 40 50
0

2

4

·10−3

LipMLP(CD)

LipMLP(HD)

NISE(CD)

NISE(HD)

Ours(CD)

Ours(HD)

(b) Error plot of each intermediate mesh of bear dataset.

Figure 5: Quantitative evaluation of the deformed shapes. Chamfer Distance (CD) scaled by 103 and
Hausdorff Distance (HD) scaled by 102 for the 55 intermediate shapes.

strategies Sang et al. (2023); Zhao et al. (2022) or utilize priors Ma et al. (2022) before fitting the
networks, our method successfully reconstructs both the final and intermediate shapes without any
additional modifications.

Figure 7: Compared to previous methods, our method can
still recover both the target shape and the intermediate shapes
even one input point cloud is excessively sparse.

Incomplete inputs Additionally, our
time-varying implicit network is ca-
pable of completing the shape even
when both input sets are incomplete.
We study the situation that the given
point clouds are incomplete in differ-
ent areas. We sample point clouds
from the incomplete shapes S0 and S1

to create point clouds with holes P0

and P1 as input data. Results in Fig. 6
demonstrate that our method can com-
plete the shape. This experiment re-
sult implies that we do not need consistent topology from the inputs, i.e. we can handle inputs with
different topology features. Note that this is typically challenging for mesh-based methods, both with
and without ground truth correspondences. Meshes have a fixed topology and deforming a mesh to
another one with substantially varying topology is a challenging endeavour. Moreover, mesh-based
methods struggle with completing the mesh without giving a complete shape as a prior. We provide
an analysis and comparison with mesh-based methods in Appendix A.

4.3 ABLATIONS

Modified level-set equation In this section, we demonstrate that the modified level-set equa-
tion Eq. (13) leads to more stable results compared to the original level-set equation. Fig. 8 shows the

8

Published as a conference paper at ICLR 2025

Figure 6: We sample point cloud P0 and P1 from ground truth meshes with holes S0 and S1,
respectively. The input point clouds are incomplete. The proposed method can still recover neural
implicit surfaces with complete shapes together with the intermediate steps.

Figure 8: Ablation study for original level-set equation (OLSE) Eq. (10) (first row) and modified
level set equation (MLSE) Eq. (13) (second row). The OLSE does not coincide with the eikonal
constraint Eq. (3) while MLSE implies it. The reconstruction results show the MLSE produces a
more stable and non-degenerate signed distance field.

qualitative results of the two different level-set equations. The Original Level-Set Equation (OLSE)
uses the formulation Eq. (10) plus Eq. (3) at every discrete time step in training. The Modified
Level-Set Equation (MLSE) embeds the Eikonal constraint compactly. Fig. 8 shows that MLSE
prevents the degenerated meshes.

Volume preservation effect We explore the influence of our divergence-free regularizer Eq. (7)
proposed in Sec. 3.2. We show that the divergence-free regularizer on the velocity field indeed
preserves the total volume of the recovered shape. Fig. 9a shows that if the divergence-free constraint
is enforced, the network produces a surface that preserves the volume of the source point cloud. It
generates meshes that adopt the appearance features of the target point cloud but do not expand the
volume to fit the target point cloud. The whole visualization is provided in Appendix A.

(a) Visualization of the output meshes with and
without divergence-free loss. From the same source
point cloud, the left side of the mesh is slim com-
pared to the target point cloud while the right side
mesh can fit perfectly.

dataset Metric 1% 5% 10% 20%

fox CD↓ 0.119 0.108 0.111 0.110

HD↓ 0.148 0.141 0.114 0.106

bear CD↓ 0.257 0.250 0.251 0.250

HD↓ 0.310 0.306 0.308 0.291

(b) Error with different sparsity levels. The recon-
struction accuracy increases along with the number
of GT correspondences. However, even with 1%
ground truth correspondence, our method can get
small CD and HD errors.

Figure 9: Divergence-free constrains ablation (left) and Sparsity correspondence ablation (right).

Sparsity of the correspondences Our method utilizes a certain amount of ground truth correspon-
dence. In this section, we explore the influence of correspondence numbers on the deformation
qualities. We sample correspondences in different proportions to the point cloud numbers: 1%, 5%,
10%, 20% to test the recovered intermediate mesh quality.

Noisy correspondences ablation We test the robustness of our method in different ways. First, we
test against local noise on ground-truth correspondences. The test data contains 5% correspondences
with respect to the total number of input points. We sample 5%, 10%, and 20% of the correspondences
and swap them with their 5th nearest neighbor correspondences (see Fig. 10). We also test against

9

Published as a conference paper at ICLR 2025

the global noise, where we randomly swap them with other correspondences, regardless of whether
the swapped correspondences are neighboring. This represents an extreme case for noise simulation.
Due to page limitation, we only show the local cases in the main paper. For more ablations please
refer to the appendix.

Figure 10: We add noise to the correspondences by randomly choosing different portions of the GT
correspondences and swap them with its 5th nearest neighbor correspondences. Qualitative results
show that our method is stable up to 10% correspondences and still gives relatively reasonable results
up to 20% misaligned correspondences.
Combining other methods to obtain correspondences Our proposed method integrates seamlessly
with existing point-registration techniques when ground-truth correspondences are unavailable. In
this section, we present results using a prior method Cao et al. (2024a) to first obtain correspondence
vertices, followed by the application of our method. Many point-registration approaches provide only
sparse correspondence pairs with small deviations. However, due to the robustness of our method
and the fact that we require only around 10% of correspondences to achieve strong results, we can
effectively utilize most of their output. Fig. 11 illustrates the results of our method built on top of a
matching technique. For more results using obtained correspondences, please refer to Appendix A.

Figure 11: Results using correspondences obtained by other methods Cao et al. (2024a). The method
offers 5000 correspondences to each pair of the shapes.

5 DISCUSSION

Limitations and future works Even though our work is self-supervised, we still need sparse
correspondences of the point clouds. Moreover, due to the lack of neighboring information, our
method struggles with large deformations and may introduce artifacts around the reconstructed
surfaces (c.f. Appendix A Fig. 23). In the future, we will explore dealing with large deformations
and extend our work to dynamic implicit surface generation.

Conclusion In this paper, we introduce a method to recover the implicit surface of two given point
clouds based on sparse correspondences, while also generating a natural and physically plausible
intermediate deformation. Our approach does not require any intermediate shape supervision beyond
the provided source and target point clouds. Our method directly deforms the implicit field using an
explicitly estimated velocity field, enabling us to estimate deformations directly from the point cloud
input. This approach allows for the representation of more flexible topologies and can handle more
challenging scenarios. Our method also broadens the application of implicit representations from
static objects to dynamic objects.

10

Published as a conference paper at ICLR 2025

BIBLIOGRAPHY

Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible shape interpolation. In Seminal
Graphics Papers: Pushing the Boundaries, Volume 2, pp. 165–172. 2023.

Vladimir I Arnold. Ordinary differential equations. Springer Science & Business Media, 1992.

Seung-Yeob Baek, Jeonghun Lim, and Kunwoo Lee. Isometric shape interpolation. Computers &
Graphics, 46:257–263, 2015.

Mirza Faisal Beg, Michael Miller, Alain Trouvé, and Laurent Younes. Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision,
61:139–157, 02 2005.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST: Dataset and evaluation
for 3D mesh registration. In CVPR, 2014.

Dieter Bothe, Mathis Fricke, and Kohei Soga. Mathematical analysis of modified level-set equations.
Mathematische Annalen, pp. 1–41, 2024.

Mario Botsch, Mark Pauly, Markus H Gross, and Leif Kobbelt. Primo: coupled prisms for intuitive
surface modeling. In Symposium on Geometry Processing, 2006.

Aljaž Božič, Pablo Palafox, Michael Zollhöfer, Justus Thies, Angela Dai, and Matthias Nießner.
Neural deformation graphs for globally-consistent non-rigid reconstruction. CVPR, 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Dongliang Cao, Marvin Eisenberger, Nafie El Amrani, Daniel Cremers, and Florian Bernard. Spectral
meets spatial: Harmonising 3d shape matching and interpolation. In CVPR, 2024a.

Wei Cao, Chang Luo, Biao Zhang, Matthias Nießner, and Jiapeng Tang. Motion2vecsets: 4d latent
vector set diffusion for non-rigid shape reconstruction and tracking. In CVPR, 2024b.

Guillaume Charpiat, Pierre Maurel, J-P Pons, Renaud Keriven, and Olivier Faugeras. Generalized
gradients: Priors on minimization flows. International journal of computer vision, 73:325–344,
2007.

Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges, and Andreas Geiger. Snarf: Differentiable
forward skinning for animating non-rigid neural implicit shapes. In ICCV, 2021.

Luca Cosmo, Emanuele Rodola, Michael M Bronstein, Andrea Torsello, Daniel Cremers,
Y Sahillioǧlu, et al. Shrec’16: Partial matching of deformable shapes. In Eurographics Workshop
on 3D Object Retrieval, EG 3DOR, 2016.

Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, and Emanuele Rodolà. LIMP: Learning
Latent Shape Representations with Metric Preservation Priors, pp. 19–35. Springer International
Publishing, 2020.

Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-Moll, Geoffrey Hinton, Mohammad
Norouzi, and Andrea Tagliasacchi. Neural articulated shape approximation. In ECCV. Springer,
August 2020.

Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit field: Modeling 3d shapes with learned
dense correspondence. In CVPR, 2021.

Paul Dupuis, Ulf Grenander, and Michael I Miller. Variational problems on flows of diffeomorphisms
for image matching. Quarterly of applied mathematics, pp. 587–600, 1998a.

Paul Dupuis, Ulf Grenander, and Michael I Miller. Variational problems on flows of diffeomorphisms
for image matching. Quarterly of applied mathematics, pp. 587–600, 1998b.

11

http://github.com/google/jax

Published as a conference paper at ICLR 2025

Ilya Eckstein, J-P Pons, Yiying Tong, C-CJ Kuo, and Mathieu Desbrun. Generalized surface flows
for mesh processing. In Proceedings of the fifth Eurographics symposium on Geometry processing,
2007.

M. Eisenberger and D. Cremers. Hamiltonian dynamics for real-world shape interpolation. In ECCV,
2020.

Marvin Eisenberger, Zorah Lähner, and Daniel Cremers. Divergence-free shape interpolation and
correspondence. arXiv preprint arXiv:1806.10417, 2018.

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel
Cremers, and Andrea Vedaldi. Neuromorph: Unsupervised shape interpolation and correspondence
in one go. In CVPR, 2021.

Mathis Fricke, Tomislav Marić, Aleksandar Vučković, Ilia Roisman, and Dieter Bothe. A lo-
cally signed-distance preserving level set method (sdpls) for moving interfaces. arXiv preprint
arXiv:2208.01269, 2022.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas
Funkhouser. Learning shape templates with structured implicit functions. In ICCV, 2019.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. In ICML, 2020.

Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. Dualsdf: Semantic shape
manipulation using a two-level representation. In CVPR, 2020.

José A. Iglesias, Martin Rumpf, and Otmar Scherzer. Shape-aware matching of implicit surfaces
based on thin shell energies. Foundations of Computational Mathematics, 18(4):891–927, June
2017.

Mark Jones, Andreas Bærentzen, and Milos Sramek. 3d distance fields: A survey of techniques and
applications. IEEE transactions on visualization and computer graphics, 12:581–99, 08 2006. doi:
10.1109/TVCG.2006.56.

Erwin Kreyszig, Herbert Kreyszig, and E. J. Norminton. Advanced Engineering Mathematics. Wiley,
Hoboken, NJ, tenth edition, 2011.

Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias Nießner. 4dcomplete:
Non-rigid motion estimation beyond the observable surface. In ICCV, 2021.

Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja Fidler, and Or Litany. Learning smooth
neural functions via lipschitz regularization. In ACM SIGGRAPH 2022 Conference Proceedings,
pp. 1–13, 2022.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL:
A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):
248:1–248:16, October 2015.

Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Neural-pull: Learning signed distance
functions from point clouds by learning to pull space onto surfaces. CoRR, abs/2011.13495, 2020.

Baorui Ma, Yu-Shen Liu, and Zhizhong Han. Reconstructing surfaces for sparse point clouds with
on-surface priors. In CVPR, 2022.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. A level set theory for neural implicit
evolution under explicit flows. In ECCV, 2022.

Lars M. Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. CoRR, abs/1812.03828, 2018.

Ken Museth, David Breen, Ross Whitaker, and Alan Barr. Level set surface editing operators. Level
Set Surface Editing Operators, SIGGRAPH, 21, 05 2002.

12

Published as a conference paper at ICLR 2025

Tiago Novello, Vinı́cius da Silva, Guilherme Schardong, Luiz Schirmer, Hélio Lopes, and Luiz Velho.
Neural implicit surface evolution. In ICCV, 2023.

Stanley Osher and Nikos Paragios. Geometric Level Set Methods in Imaging, Vision, and Graphics,
volume xxix. 01 2003.

Sida Peng, Junting Dong, Qianqian Wang, Shangzhan Zhang, Qing Shuai, Xiaowei Zhou, and Hujun
Bao. Animatable neural radiance fields for modeling dynamic human bodies. In ICCV, 2021.

L Sang, A Saroha, M Gao, and D Cremers. Weight-aware implicit geometry reconstruction with
curvature-guided sampling. arXiv preprint arXiv:2306.02099, 2023.

James A Sethian. A fast marching level set method for monotonically advancing fronts. proceedings
of the National Academy of Sciences, 93(4):1591–1595, 1996.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In NeurIPS, 2020.

Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Symposium on Geometry
processing, volume 4, pp. 109–116. Citeseer, 2007.

Mark Sussman and Emad Fatemi. An efficient, interface-preserving level set redistancing algorithm
and its application to interfacial incompressible fluid flow. SIAM Journal on scientific computing,
20(4):1165–1191, 1999.

Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for computing solutions to
incompressible two-phase flow. Journal of Computational physics, 114(1):146–159, 1994.

Shantanu Vyas, Ting-Ju Chen, Ronak R Mohanty, Peng Jiang, and Vinayak R Krishnamurthy. Latent
embedded graphs for image and shape interpolation. Computer-Aided Design, 140:103091, 2021.

Wenbo Wang, Hsuan-I Ho, Chen Guo, Boxiang Rong, Artur Grigorev, Jie Song, Juan Jose Zarate, and
Otmar Hilliges. 4d-dress: A 4d dataset of real-world human clothing with semantic annotations. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu.
Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction. In ICCV, 2023.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry processing with
neural fields. In NeurIPS, 2021.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
In NeurIPS, 2021.

Huizhen Zhao, Fuxian Liu, Longyue Li, and Chang Luo. A novel softplus linear unit for deep
convolutional neural networks. Applied Intelligence, 48:1707–1720, 2018.

Wenbo Zhao, Xianming Liu, Zhiwei Zhong, Junjun Jiang, Wei Gao, Ge Li, and Xiangyang Ji. Self-
supervised arbitrary-scale point clouds upsampling via implicit neural representation. In CVPR,
2022.

Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and Michael J. Black. 3D menagerie: Modeling the
3D shape and pose of animals. In CVPR, 2017.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 MATHEMATICAL PROOFS

Existence of the velocity field We assume that our velocity field is the solution of Eq. (4). The
existence of the solution for the differential equation is given by Picard-Lindelöf Theorem Arnold
(1992) which states that for ϕ : R× Rn → Rn, for continuous t and Lipschitz continuous V , then
there exist an ϵ > 0 such that the initial value problem Eq. (4) have unique solution V on interval
[t− ϵ, t+ ϵ]. As we choose V smooth enough, the requirement is satisfied.

Velocity fields that generate diffeomorphism Dupuis et al. (1998a) proved the existence of the
smooth trajectory generated by Eq. (4) depends on the smoothness constraint in the vector field
V . They also proved that choosing V such that V is a smooth and compactly-supported vector
field with an inner product defined by a differential operator L ensures the solution in the space of
diffeomorphism.

Smooth operator L The differentiable operator L introduced in Eq. (6) is chosen to have the type
L = −α∆+ γI, where α enforces the smoothness and γ > 0 ensures the operator is non-singular.
In the experiments, we set α = 0.01 and γ = 1. The velocity field is a Hilbert space defined by the
operator L with norm

∥V∥V = ⟨V ,LV⟩ . (17)

Beg et al. (2005) proved that this type of choice for operator L stratifies the requirement that ϕ is a
diffeomorphism Dupuis et al. (1998b).

Level-set equation Following Eq. (9) and smoothness assumption of Ω and f we have∫
Ω

df(ϕ(x, t)

dt
dx = 0 , (18)

we have df(ϕ(x,t)
dt = 0 almost everywhere. Compute the derivatives, we have

df(ϕ(x, t)

dt
= ∂ft + ∂fx∂ϕt = 0 . (19)

Together with Eq. (4) and ∂xf = ∇f , we have

df(ϕ(x, t)

dt
= ∂ft +∇f · V = 0 , (20)

which is the original level-set equation.

Modified Level-set equation To ensure the Eikonal constraint on continuous time-space for any t,
it is equivalent to solving an additional initial problem of the PDE, i.e.{

d
dt ∥∇f(x, t)∥ = 0, t ∈ I ,

∥∇f(x, 0)∥ = 1 .
(21)

The function above ensures that ∥∇f(x, t)∥ = 1 for any t ∈ I. Eq. (13) holds on the zero-crossing
surface ∂Ω because the function value f is zero at the zero-cross surface and the two term ∂ft+V ·∇f
and R both equal zero in the surface domain Ω. It is more compact to solve Eq. (13) than solve Eq. (10)
plus Eq. (21) separately since the later solves two PDEs Bogo et al. (2014).

Note that Eq. (13) needs two initial value f(x, 0) = f0 and ∥∇f(x, 0)∥ = 1. We explain in
the Appendix A.2 how we avoid pre-training a network to satisfy the initial condition.

A.2 TRAINING STRATEGY

We implement our method using Jax Bradbury et al. (2018) and set the learning rate to 0.005 with
a decay rate 0.5 within interval 2000. We initialize Implicit-Net’s weights and bias such that it
represents a sphere at step 0, following the method proposed in Gropp et al. (2020).

14

Published as a conference paper at ICLR 2025

(a) Visualization of the middle step meshes for fox datasets. We
visualize the deformed meshes for middle step 5, 15, 25, 35,
and 45 of NISE Novello et al. (2023), LipMLP Liu et al. (2022)
and our method together with the ground truth (GT) meshes
(bottom row). The middle steps usually have the highest error
in quantitative evaluation. The figure shows that our method
can still keep all details on the middle step meshes.

0 10 20 30 40 50
0

1

2

3
·10−3

LipMLP(CD)

LipMLP(HD)

NISE(CD)

NISE(HD)

Ours(CD)

Ours(HD)

(b) Error plot of the fox dataset.

Figure 12: Quantitative and qualitative evaluation of the deformed shapes. Chamfer Distance (CD)
scaled by 103 and Hausdorff Distance (HD) scaled by 102 for the 55 intermediate shapes.

Invertible Lipschitz Positional Encoding We adopt the invertible Lipschitz positional encoding
same as Yang et al. (2021) to cooperate with MLP in both velocity net and implicit net to produce a
stable output.

γi(x) =
1√

2m+ 1
(xi,

cos(20πxi)

20π
,
sin(20πxi)

20π
, . . . ,

cos(2mπxi)

2mπ
,
sin(2mπxi)

2mπ
) . (22)

Oriented point cloud Our method does not require an oriented point cloud (point cloud with
normal). However, if the normal information {n}i, for i = {0, 1} is available for the given point
clouds, the second-order constraints on matching loss can be added according to Eq. (2). The normal
loss term is

Ln =

∫
Pi

|1− ⟨ ∇f

∥∇f∥
,ni⟩|dx, for i ∈ {0, 1} . (23)

Ln term can accelerate the convergence speed of Implicit-Net at time t = 0 and 1.

Network initialization We initialize Implicit-Net such that it represents a unit sphere at time
0 Gropp et al. (2020). Thus it is a valid signed distance field that satisfies the initial condition
in Eq. (21). To satisfy the initial condition in Eq. (13) without pre-train the net on f(x, 0), we set λm

much larger than λf such that the network first converges at time 0 to fit f(x, 0) = 0 on the given
input point cloud P0. Thus, for the experiment showed on the paper, we set λf = 100, λm = 200,
λv = 20 and λl = 10.

Warm up training As described in Sec. 4, we first freeze the implicit network, i.e. we set λf = 0,
λv = 20, λm = 100 for first 2000 epochs, then we gradually increase the it using λf = k−2000

n−2000100
for k < n, and λf = 100 for k ≥ n, where k is the kth-epoch, and n = 5000. As we observe that
velocity field convergence is faster than the implicit field, we decrease the velocity loss to train only
implicit net after a certain epoch, i.e. λv = 0 for k > 8000.

A.3 QUANTITATIVE RESULTS

We show the error plot for fox datasets in which the average error number is reported in Fig. 5a. Even
with small deformation between each key mesh, the comparison methods still report high errors on
the middle step meshes. We show the ground truth meshes with the middle steps in Fig. 12a and the
error plot for each mesh in Fig. 12b.

15

Published as a conference paper at ICLR 2025

Figure 13: Full visualization of Fig. 9a in main paper.

Figure 14: Visualization of divergence-free constraint on Faust dataset. With λdiv > 0 (yellow
meshes), the deformed shapes are still slim and only adopt the movement of the target point cloud
P1, while λdiv = 0 (blue meshes) the deformed meshes have the same gesture and body shape of the
target point cloud P1

.

A.4 DIVERGENCE-FREE CONSTRAINT ABLATION

In this section, we visualize the deformed meshes under two different settings: with divergence-free
term (λdiv > 0) and without divergence-free term (λdiv = 0). In Fig. 13, the recovered deformation
meshes stay slim and thin when λdiv > 0 (top row) and only adopted features such as the shape of the
mouth of the target point cloud. When λdiv = 0 (bottom row), the deformed meshes can perfectly fit
the target point cloud, which means the volume expanded compared to the source point cloud. Fig. 14
shows another example of the volume persevering effect.

A.5 LAPLACIAN CONSTRAINT ABLATION

In this section, we show the visual ablation of Laplacian constraint equation 6. Our smoothness
ablation on the velocity field ensures spatial smoothness over the integration domain, which is
particularly helpful for very sparse correspondences.

16

Published as a conference paper at ICLR 2025

without
smoothness

loss

with
smoothness

loss

Figure 15: Our smoothness ablation on the velocity field ensures spatial smoothness over the
integration domain, which is particularly helpful for very sparse correspondences.

A.6 MODIFIED LEVEL SET EQUATION ABLATION

In this section, we show additional visualization results of our proposed modified level set equation
(MLSE) with original level set equation (OLSE). Comparing MLSE to OLSE, enforcing the Eikonal
loss at intermediate time steps is challenging with OLSE. This process involves moving the points
using velocity and then enforcing the Eikonal constraint on the moved points, which can cause
a coupling effect that leads to the degeneration of the implicit field or velocity field. As shown
in Fig. 16, the first two rows illustrate that, while the final mesh fits the target, artifacts are created
in the intermediate steps. The bottom two rows demonstrate a topology change in the point cloud
(e.g., the crossed legs of the cat separate later). OLSE degenerates in the middle steps, and due to the
continuity of the function, it retains the degenerated legs even when fitted to the target point cloud.

Figure 16: Additional ablation results for MLSE and OLSE.

A.7 DETAIL PRESERVING

We show the results for meshes containing more complicated details. We deform the original
Armadillo mesh using Blender to create the target shape and run our method to interpolate the
intermediate shapes. As shown, our method can preserve most of the complicated geometry details.

A.8 CORRESPONDENCE SPARSITY ANALYSIS

In this section, we present the qualitative results of our method across varying numbers of ground
truth correspondences. We generated input point clouds by sampling 20, 000 points and assessed
deformation quality at approximately 1%, 5%, and 10% correspondence levels. As illustrated

17

Published as a conference paper at ICLR 2025

Figure 17: We show extra results on Armadillo for showing the detail-persevering of our method. Our
method can preserve most of the complicated geometry details while producing physically plausible
intermediate shapes.

Figure 18: We explore the impact of the number of correspondences on the quality of the final
deformation. When only a small percentage of correspondence is used, artifacts tend to appear in
the intermediate shapes. Remarkably, our method achieves reasonable estimations with as few as
approximately 1% ground-truth correspondences. Furthermore, when more than approximately 10%
correspondences are available, our proposed method consistently delivers high-quality results.

in Fig. 18, we display the intermediate shapes produced using different quantities of correspondences
during training. Here, S0 and S1 are the ground truth meshes. P0 and P1 are the sampled point
cloud inputs. Our method effectively handles different sparsity levels of correspondences and delivers
high-quality results when approximately 5% of the correspondences are available.

A.9 NOISY CORRESPONDENCES ANALYSIS

In this section, we show additional visualization of the local noise correspondence ablation together
with global noisy analysis.

For global noise on ground-truth correspondences. The test data contains 5% correspondences
relative to the total number of input points. We sample 1%, 5%, and 10% of the correspondences and
randomly swap them with other correspondences, regardless of whether the swapped correspondences
are neighboring. This represents an extreme case for noise simulation. In this scenario, as shown
in Fig. 19, our method produces satisfactory results with 5% wrong correspondences and still gives
reasonable deformation with 10% misaligned correspondences.

Additionally, we show one more results on local noise ablations. The test data contains 1%, 5%
correspondences with respect to the total number of input points. We sample 5%, 10%, and 20% of
the correspondences and swap them with their 5th nearest neighbor correspondences (see Fig. 20).

18

Published as a conference paper at ICLR 2025

Figure 19: The input data contain around 5% ground-truth correspondences. We add noise to the
correspondences by randomly swapping 1%, 5%, 10% of the correspondences globally. Qualitative
results show that our method is stable up to 5% error and still gives relatively reasonable results up to
10% error. Note that this is an extreme situation as mismatching happens globally.

A.10 COMPARE WITH MESH-BASED METHODS

Mesh-based surface deformation is a well-explored area, many papers have done mesh deformation
with Eisenberger & Cremers (2020); Alexa et al. (2023); Vyas et al. (2021) or without corre-
spondence Eisenberger et al. (2021); Cao et al. (2024b;a). In contrast to implicit-based methods,
mesh-based methods enable more stable, artifacts-free results as no surface fitting or estimation is
needed. We compare our method against the state-of-the-art mesh method, SmS Cao et al. (2024a).
SmS does not require ground truth correspondences and is capable of producing physically plausible
intermediate shapes. Our method achieves results comparable to SmS. As illustrated in Fig. 21.
However, while our approach successfully preserves all the fine details, it tends to create artifacts
around the surfaces and may result in less physically accurate deformations when the deformation
is too large, we show some failure cases in Fig. 23. Moreover, our method reconstructs smoother
meshes compared to SmS and GT meshes, because our implicit representation allows us to ren-
der higher-resolution meshes. On the contrary, mesh-based methods, like SmS keep the original
resolution (same vertices, triangles, and faces) of input meshes.

However, in some situations, such as inconsistent topology or incomplete shape without ground truth
complete shape, our method can handle these challenging scenarios. Mesh-based methods struggle
in these situations. Fig. 22 shows some challenging cases. In the cat (top row) example, the source
and the target point cloud are sampled from meshes that have holes in the meshes. The source and
target meshes are incomplete in different areas. The second example centaur shows that case of
complete source mesh but incomplete target mesh. The third example even though the source and
target meshes are complete, because of the overlapped feet, and overlapped arm in the target shape,
the topology of the meshes is different. These three challenging examples are not feasible for the
mesh-based methods. The mesh-based methods cannot handle them because the vertices and faces
are not one-to-one matches anymore, even with ground truth correspondences. Since the topology of
the deformed mesh is fixed, it is not trivial to deform to a shape that has a different topology. Our

19

Published as a conference paper at ICLR 2025

Figure 20: The input data contain around 5% ground-truth correspondences. We add noise to the
correspondences by randomly choosing 1%, 5%, 10%, 20% of the GT correspondences and swap
them with its 5th nearest neighbor correspondences. Qualitative results show that our method is
stable up to 10% correspondences and still gives relatively reasonable results up to 20% misaligned
correspondences.

method, on the other hand, uses implicit representation and does not define mesh topology explicitly.
Thus, our method can handle these cases.

A.11 FAILURE CASES

As mentioned in Sec. 5, our work has some limitations. Here, we present some failure cases and
discuss potential future improvements. Compared to mesh-based methods, our approach struggles
with large deformations. Fig. 23 illustrates a scenario where mesh-based methods succeed, but our

20

Published as a conference paper at ICLR 2025

Figure 21: Comparison results against state-of-the-art mesh-based method SmS Cao et al. (2024a).
We produce comparable results with the meshed-based methods. However, mesh-based methods
preserve more details such as human fingers. Implicit methods, on the other hand, enable rendering
arbitrary resolution meshes.

Figure 22: The proposed method can deal with inconsistent topology input, such as different
incomplete shapes or self-intersect shapes.

method produces unsatisfactory results (top two rows). In the second scenario (bottom row), although
mesh-based methods fail, our method also produces artifacts around the feet due to insufficient local
constraints in those areas. Another limitation occurs when there are large missing areas in the source
or target point clouds. Unlike smaller holes (as shown in Fig. 6 and Fig. 22), substantial missing parts
result in failure cases because our Velocity-Net cannot correctly move the points to the appropriate
locations.

21

Published as a conference paper at ICLR 2025

Figure 23: Failure cases of the proposed method. When the deformation is too large, our method
tends to create artifacts on the surfaces.

CD (×104) ↓HD (×102) ↓SAσ(×10) ↓P-RMSE (×10) ↓

NFGP Yang et al. (2021) 0.272 0.025 0.075 ✗
LipMLP Liu et al. (2022) 14.99 2.125 1.252 ✗
NISE Novello et al. (2023) 6.588 2.167 0.321 ✗
Ours 0.270 0.047 0.023 0.024

Table 1: We evaluate our method with comparison methods on the 4d-Dress Wang et al. (2024)
dataset where the intermediate shapes are given. We report the average Chamfer Distance (CD) and
Hausdorff Distance (HD) over 5 interpolated meshes. We also report the standard deviation of the
surface area SAσ to indicate the changes in mesh-area over the deformation. Moreover, to evaluate
our velocity field, we compute the per-point Euclidean distance as Root Mean Square Error (P-MSE)
over the ground truth meshes. For the comparison methods that cannot compute the per-point distance
error, we mark it as ✗.

A.12 PHYSICAL PLAUSIBLE QUANTITATIVE RESULTS

To quantitatively evaluate our method, we use the 4D-Dress dataset Wang et al. (2024), which
comprises high-frequency meshes capturing human movements. For evaluation, we select a mesh
pair with four intermediate meshes as source and target inputs. The four intermediate meshes serve as
ground truth. We compute the Chamfer Distance (CD) and Hausdorff Distance (HD) to quantitatively
assess the accuracy of our method. Additionally, to demonstrate that our approach preserves volume,
we report the standard deviation of the surface area across all interpolated meshes, verifying that the
meshes do not overstretch or shrink during deformation. The results are summarized in Tab. 1, with
visualizations provided in Fig. 24.

For the comparison method NFGP Yang et al. (2021), we manually identified handle points for five
time steps, defined the rotation and translation between these points, and trained the model for each
pair sequentially, requiring five separate training iterations.

A.13 CHANGE GENUS EXAMPLE AND DIRECTLY DEFORMING TRIANGLE MESHES

In this section, we demonstrate that our method effectively handles genus-changing deformations.
Additionally, we show that our approach can directly deform triangle meshes by treating mesh

22

Published as a conference paper at ICLR 2025

NISE

LipMLP

NFGP

Ours

Ours
Velocity Field

GT

Figure 24: Visualization results of 4D-Dress Wang et al. (2024). The dataset consists of high-
frequency meshes with deformations. We sample points from the first and fifth meshes as the source
and target inputs, respectively, and recover the intermediate shapes. Correspondences are visualized
using colored points (P0 and P1), with the bottom row showing the ground truth SMPL Loper et al.
(2015) model. Additionally, we visualize our velocity field as a sequence of point cloud deformations
in the second row from the bottom.

23

Published as a conference paper at ICLR 2025

Ours
Implicit Field

Ours
Velocity Field

Ours
Deformed Meshes

Figure 25: Change genus case. In this example, we present a case of genus change, showcasing
how the implicit representation enables arbitrary topological transformations. Furthermore, we
demonstrate that our method can directly deform triangle meshes using a velocity network by treating
mesh vertices as point cloud points. Notably, there is a clear resolution difference between the
deformed meshes and the reconstructed meshes produced by our implicit network.

vertices as points in a point cloud. Notably, the original triangle meshes contain 6, 890 vertices.
Leveraging our implicit network, which supports arbitrary resolution for output meshes, we rendered
the deformed meshes with approximately 106, 000 vertices.

A.14 NO CORRESPONDENCES AND PARTIAL CORRESPONDENCES

In this section, we highlight scenarios where no correspondences or only partial correspondences
are available. The results in Fig. 26 demonstrate that our velocity field remains consistent, and the
implicit network does not degenerate, unlike NISE Novello et al. (2023) or LipMLP Liu et al. (2022).
Remarkably, even without correspondences, our method can still recover reasonable deformations
between the two input point clouds, as shown in Fig. 27. We attribute this robustness to the joint
training of our implicit network with strong physical constraints. However, we observe that, in the ab-
sence of correspondences, the deformations are less smooth compared to cases with correspondences,
and some artifacts tend to appear around the recovered surfaces.

24

Published as a conference paper at ICLR 2025

Ours
Implicit Field

Ours
Velocity Field

Ours
Implicit Field

Ours
Velocity Field

Figure 26: No correspondences case. In this example, we present a case with no correspondences.
Remarkably, our method can still handle certain deformations, thanks to the volume-preserving
constraint, smoothness constraint, and joint training with the implicit network.

Figure 27: Partial shape interpolation. We demonstrate partial correspondences using a partial
target point cloud. The correspondence error is measured as the misaligned geodesic distance relative
to the ground truth, with the total mesh area normalized to 1. Despite the incomplete target shape,
our method successfully recovers the intermediate meshes.

25

	Introduction
	Related Works
	Method
	Time-Varying Implicit Fields
	Velocity Fields
	Direct Implicit Field Deformation
	Loss

	Experiments
	Shape Deformation
	Incomplete and Sparse Input
	Ablations

	Discussion
	Bibliography
	Appendix
	Mathematical Proofs
	Training Strategy
	Quantitative Results
	Divergence-Free Constraint Ablation
	Laplacian Constraint Ablation
	Modified Level Set Equation Ablation
	Detail Preserving
	Correspondence Sparsity Analysis
	Noisy Correspondences Analysis
	Compare With Mesh-based Methods
	Failure Cases
	Physical Plausible Quantitative Results
	Change Genus Example and Directly Deforming Triangle Meshes
	No Correspondences and Partial Correspondences

