A Rendering of Discovered SKkills

We present the rendered robotic locomotion tasks in this section. Videos of different locomotion skills
can be found on our project website https://sites.google.com/view/neurips22-rest.

A.1 HalfCheetah

We used HalfCheetah-v3 environment in OpenAl Gym [16].

(e) HalfCheetah Rolling Backward

Figure 7: Rendering of skills discovered with robot HalfCheetah.

A.2 Hopper

We used Hopper-v3 environment in OpenAl Gym [16].

14

https://sites.google.com/view/neurips22-rest

(b) Hopper Hopping Backward

(c) Hopper Small-Step Hopping Forward

Figure 8: Rendering of skills discovered with robot Hopper with termination.

A.3 Hopper Without Termination

We set the terminate_when_unhealthy parameter to False in the Hopper-v3 environment in
OpenAl Gym [16].

(d) Hopper Kung Fu

Figure 9: Rendering of skills discovered with robot Hopper without termination.

A.4 Walker2d

We used Walker2d-v3 environment in OpenAl Gym [16]]

15

(e) Walker2d Walking Backward

Figure 10: Rendering of skills discovered with robot Walker2d.
B Implementation Details

In this section, we introduce our implementation details of our proposed ReST algorithm and our
comparison baselines.

B.1 ReST

Our proposed ReST algorithm can incorporate with any reinforcement learning algorithm to maximize
the intrinsic reward. We choose Proximal Policy Optimization (PPO) as our algorithm to
maximize intrinsic reward. Detailed PPO related hyper-parameters can be found in Table [T}

We set the temperature coefficient o = 10 for 2D navigation environments and o = 1 for MuJoCo
environments. We train each skill for M = 20 epochs in all the environments. We used k£ = 5 output
channels for the RND networks. We update the RND networks 10 times per epoch and the learning
rate is same as the learning rate of the critic. For the RND networks to better record the visitation of
a certain skill, it needs to slightly overfit and we set the hidden dimensions for the RND networks as
[500, 500].

16

B.2 DIAYN

We use our own reproduction of DIAYN in the experiments talked about in this paper. For fair
comparison, we also used PPO to optimize the intrinsic reward of DIAYN. We basically followed
the hyper-parameter setting from the original DIAYN paper and added entropy term o = 0.1 to the
original DIAYN intrinsic reward. We update the discriminator 10 times per epoch during training and
the learning rate is the same as the learning rate of the critic.

For the independent neural network parameterization version of DIAYN, we used same initialization
for all the skills for fair comparison. We used exactly the same network architecture as our proposed
algorithm.

Detailed PPO hyper-parameters can be found in Table

B.3 DADS

We use our own reproduction of DADS in the experiments mentioned above. For a fair comparison,
we used PPO to optimize the intrinsic reward of DADS. We basically followed the hyper-parameter
setting, network architectures, and implementation details from the original DADS paper, like
predicting As in the skill-dynamics and using a Mixture-of-Experts [40] with 4 Gaussian experts to
model the output distribution. We don’t let the dynamics to predict Ax, Ay if the global coordinates
are excluded from the state s, as there is no goal-based navigation problems in our experiments. The
input (s, z) first goes through a two hidden layers MLP, whose capacity is the same as that of the
policy and critic networks, then the output will be linear tranformed to be the means of the Gaussian
experts and a discrete distribution over them. We fix the covariance matrix of each expert to be an
Identity Matrix. The skill dynamics is updated 32 times per epoch during training and the learning
rate is the same as that of the critic.

For the independent neural network parameterization version of DADS, we used same initialization
for all the skills for fair comparison. We used exactly the same network architecture as our proposed
algorithm.

Detailed PPO hyper-parameters can be found in Table]

B.4 Other Implementation Details

We implement all the algorithm using PyTorch 1.10.1 and Python 3.9.7. All the networks are trained
using NVIDIA RTX 3090 GPU and the CPU used for MuJoCo simulation is AMD EPYC 7H12.

C Details of Evaluation Metrics

C.1 State Coverage

We particlize the X-Y plane of the 2D navigation environments into 20 x 20 particles. We rollout 20
trajectories for each skill each algorithm. Therefore, 200 trajectories are generated for each algorithm.
We count the particles visited by any or the 200 trajectories and record the number as n,,, then the
state coverage rate is ET”O.

C.2 Mutual Information

We particlize the 4 dimensional state space, which is x, y, v, vy into 20 x 20 x 20 x 20 particles.
We rollout 20 trajectories for each skill each algorithm. We first count the visitation frequency of
particles p(s) where s is a 4 dimensional particle and calculate H(S) = —__ p(s)logp(s). We
then calculate the visitation frequency of particles for each skill p(s|z) and calculate H(S|Z) =
— > . p(s|z)logp(s|z. Therefore, we derive the mutual information between skills and states:

1(S:2) = H(S) = ¥y §H(S]z).

17

Table 1: Hyper-parameter Settings of PPO

Hyper- DIAYN DIAYN-i DADS DADS-i ReST (ours)
parameter

Hidden Lay- 2 2 2 2 2

ers

Hidden 256 64 256 64 64
Nodes

Activation tanh tanh tanh tanh tanh
Log std init -0.5 -0.5 -0.5 -0.5 -0.5
Discount fac- 0.99 0.99 0.99 0.99 0.99

tor 7y

Batch size 10° 10° 105 105 10°

(2D Naviga-

tion)

Batch size 2 x 10? 2 x 10* 2 x 10* 2 x 10* 10*
(MulJoCo)

Policy up- 10 10 10 10 10

dates per

epoch

Critic updates 10 10 10 10 10

per epoch

Max episode 1000 1000 1000 1000 1000
length

GAE X\ 0.95 0.95 0.95 0.95 0.95
Learning rate 3 x 1074 3x 1074 3x 1074 3x107% 3x 1074
for 7

Learning rate 1 x 1073 1x1073 1x1073 1x1073 1x1073
for V'

Clip factor 0.2 0.2 0.2 0.2 0.2

D Environment Details

D.1 2D Navigation Environments

We use our own implementation for the 2D navigation environments in Section[d.1. The environment
is a GPU based environment implemented using PyTorch 1.10.1 and Python 3.9.7. The state space
is the concatnation of (z,y, v, vy) and the action space is the acceleration (a,, a,). We use a fixed
episode length of 1000 in all 2D navigation environments. The X-Y plane of these environments is
[0.1] x [0, 1] whereas the velocity space is { (v, vy)|vZ 4 v < 0.01}.

D.2 MuJoCo Environments

We use OpenAl Gym [16] as our evaluation environment in Section[d.2. The maximum episode length
of the environments are set to 1000. We follow the setting of OpenAl gym where HalfCheetah-v3
does not terminate and run for 1000 time steps each episode whereas Hopper-v3 and Walker2d-v3
terminates when unhealthy or reaches the maximum time step. We expose all the state information
to the discriminator or dynamic model or RND modules and exclude current position from the
observation of the agents.

We also added Ant-v3 to our rendering of the learned skills. The Ant-v3 environments are adopted
from OpenAl Gym but does not terminate when unhealthy. Moreover, some of the skills demonstrated
in the rendering using Hopper-v3 also do not terminate when unhealthy. These are done by setting
the terminate_when_unhealthy=False. This modification makes some flipping skills and other
interesting ones emerged during training.

18

E Why ReST does not have the lack of exploration issue mentioned by
EDL [9]

Our proposed algorithm ReST not only addresses the parallel training issue, but can also solve the
issue mentioned by EDL [9]. EDL argues that the reason for the poor state coverage of previous
information theoretic unsupervised skill discovery approaches is that the mutual information reward
inherently do not encourage exploration. For a visited state, the intrinsic reward for the skill that
visited the state would be log N while for an unexplored state, the reward for arbitrary skill would
be 0. In this section, we demonstrate that our proposed algorithm doew not have this undesirable

property.
We make the same assumption as in Equation[8] which means we have perfect RND modules. For a
state s already visited by skill z;, the intrinsic reward would be:

] {)]\]'}7 ;ﬁ 6(a.HJﬁj(St+1)7f]‘()||2)
Z]e 1,2,..., YE] St+41
N —

(€))

r(s,2i) = —log

whereas for an unexplored state s, the reward function stays the same. We note that the above reward
function does not contain any term related to skill z;, which indicates that the reward function for z;
at a state has nothing to do with whether state s is an explored state by z;.

F More Comparison Baselines

We compare our proposed algorithm to several more comparison baselines in the 2D navigation
environments. The added comparison baselines are discussed in the following subsections.

F.1 DIAYN/DADS with state coverage-based intrinsic reward

We trained agents using the parallel training paradigm as DIAYN or DADS did with state coverage-
based intrinsic reward as shown in Equation (7). We added this comparison baseline to show the
effect of the recurrent training paradigm and the state coverage-based intrinsic reward respectively.
The result shows that without the recurrent training paradigm, the discovered skills perform worse
than those with the recurrent training paradigm while still performs better than those using mutual
information as intrinsic reward. As shown in Fig[TT] we denote this baseline as ReST-p.

F.2 ReST with MI as intrinsic reward

We also trained agents using the reverse formulation of the mutual information reward in Equation
as suggested by [9] together with the recurrent training paradigm. We added this comparison baseline
to demonstrate the effect of the recurrent training paradigm and the state coverage-based intrinsic
reward respectively. As shown in Fig[TT] we denote this baseline as MlIrecurrent.

F.3 LEXA

We trained agents using LEXA [22]). The empirical results show that LEXA does not perform well in
the 2D navigation environments. The LEXA framework does not work well in the 2D navigation
settings mainly because of it’s goal-conditioned setting. The LEXA framework takes in an image as a
goal and the intrinsic reward for the achiever 79 is encouraging the agent to go to and stay at the goal.
This is helpful for many real-world robotic tasks, for instance, pick and place manipulation. However,
despite the effectiveness, this goal based setting introduces some limitations in other domains. For
instance, the goal based intrinsic reward is one of the reasons why the DeepMind Control experiments
demonstrated by LEXA contain mainly ‘posing’ skills, since the reward encourages the agent to stay
at the state provided by the goal image. This setting is more problematic in our setting since the
observation space of the 2D navigation environment is a vector composed of the position in the z-y
plane and velocities v, vy. If the achiever is encouraged to stay at the goal, suppose it reached the
goal position and velocity at a certain timestep, then in the next time step, if v,, and v,, are not 0, the
agent would run away from the goal state immediately, which makes the agent get low reward. This
kind of scenario is common in robotics. For instance, if we use the LEXA framework in the legged

19

LEXA

Mlrecurrent

ReST-p

7

(a) DoorMaze

(b) CenterMaze

0.5

| 0a

0.3
0.2
0.1
0.0

0.4
0.3
0.2
0.1
0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

EEEF

ik
s

(c) 4RoomMaze
05
2.0
— — L — o4
= 1.5
. — 0.3
T AN\ — Z | 02 10
\ r 0.1 0.5
” H i i 0.0 0.0
(d) 9RoomMaze

Figure 11: Additional Results for 2D navigation experiments.

locomotion tasks, the observation space would contain joint positions and joint velocities, which
might bring trouble to the training process. We believe this is one of the reasons why LEXA does not
work in our low dimensional state settings. Our proposed approach ReST, however, does not have
such issues since it directly learns a set of skills and no explicit goal is given for the agent to reach
and stay during the training process.

G Quantitative Results for MuJoCo

We quantitatively evaluated the MuJoCo robotic locomotion tasks by calculating the variance of the
ending x position of each skill. The results are shown in Table 2]

H Broader Impact

Being able to acquire useful skills in the absence of reward functions is beneficial for a wide range of
applications. To this end, we introduce our Recurrent Skill Training algorithm to effectively explore
the state space of the environment without external supervision. This enables a fully autonomous
acquisition of skills, which might bring both positive and negative social impacts. On the positive
side, for instance, the fully autonomous procedure of acquiring diverse and state covering skills makes

20

Table 2: Quantitative Results for MuJoCo

Hyper- DIAYN DIAYN-i DADS DADS-i ReST (ours)
parameter

Hopper 0.454 0.01 0.40 0.37 76.49
HalfCheetah 54.47 294.89 45.59 0.55 3792.13
Walker2d 0.22 1.05 1.70 1.23 227.94

it possible for robots to explore in dangerous, unknown and unstructured environments to cover all
valid states, preventing human from being exposed to dangers. However, on the negative side, when
deployed incorrectly in the real world, the novelty-seeking nature of the proposed approach might
autonomously discover skills novel yet dangerous, which might be harmful for both the agent and the
environment. This indicates that we should be careful on the usage of such algorithms in the real
world.

21

	Introduction
	Preliminaries
	Markov Decision Process
	Unsupervised Skill Discovery

	Recurrent Skill Training
	Exploration Degradation
	Recurrent Skill Training

	Experiments
	2D Navigation Tasks
	Robotic Locomotion Tasks

	Related Work
	Discussion
	Rendering of Discovered Skills
	HalfCheetah
	Hopper
	Hopper Without Termination
	Walker2d

	Implementation Details
	ReST
	DIAYN
	DADS
	Other Implementation Details

	Details of Evaluation Metrics
	State Coverage
	Mutual Information

	Environment Details
	2D Navigation Environments
	MuJoCo Environments

	Why ReST does not have the lack of exploration issue mentioned by EDL campos2020explore
	More Comparison Baselines
	DIAYN/DADS with state coverage-based intrinsic reward
	ReST with MI as intrinsic reward
	LEXA

	Quantitative Results for MuJoCo
	Broader Impact

