
Published as a conference paper at ICLR 2025

GRAPH NEURAL NETWORKS CAN (OFTEN) COUNT
SUBSTRUCTURES

Paolo Pellizzoni, Till Hendrik Schulz, Karsten Borgwardt
Max Planck Institute of Biochemistry, Martinsried, Germany
{pellizzoni, tschulz, borgwardt}@biochem.mpg.de

ABSTRACT

Message passing graph neural networks (GNNs) are known to have limited ex-
pressive power in their ability to distinguish some non-isomorphic graphs. Be-
cause of this, it is well known that they are unable to detect or count arbitrary
graph substructures (i.e., solving the subgraph isomorphism problem), a task that
is of great importance for several types of graph-structured data. However, we
observe that GNNs are in fact able to count graph patterns quite accurately across
several real-world graph datasets. Motivated by this observation, we provide an
analysis of the subgraph-counting capabilities of GNNs beyond the worst case,
deriving several sufficient conditions for GNNs to be able to count subgraphs and,
more importantly, to be able to sample-efficiently learn to count subgraphs. More-
over, we develop novel dynamic programming algorithms for solving the subgraph
isomorphism problem on restricted classes of pattern and target graphs, and show
that message-passing GNNs can efficiently simulate these dynamic programs. Fi-
nally, we empirically validate that our sufficient conditions for GNNs to count
subgraphs hold on many real-world datasets, providing a theoretically-grounded
explanation to our motivating observations.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as powerful tools for learning on graph-structured
data, achieving significant empirical success across diverse domains including computational chem-
istry, bioinformatics, and social network analysis. However, the expressivity of these models in the
context of graph classification, i.e., their ability to distinguish non-isomorphic graphs, is intrinsically
limited by the capabilities of the Weisfeiler-Leman (1-WL) algorithm (Weisfeiler & Leman, 1968),
a heuristic used for the graph isomorphism problem (Morris et al., 2019; Xu et al., 2018). 1-WL is
known to fail to distinguish certain classes of graphs, such as regular graphs (Arvind et al., 2017).

Table 1: Test set results for subgraph counting
with a GNN on molecular graphs. Reported: AU-
ROC for multi-class classification and normalized
mean avg. error of the prediction (see Sect. D.1).

Pattern

Dataset Metric

Mutagenicity nMAE 0.074 0.043 0.161 0.167
AUC 0.870 0.910 0.949 0.926

MCF-7 nMAE 0.019 0.013 0.031 0.011
AUC 0.941 0.859 0.955 0.925

ZINC nMAE 0.029 0.009 0.025 0.009
AUC 0.957 0.963 1.000 0.995

ogbg-molhiv nMAE 0.001 0.004 0.011 0.002
AUC 0.923 0.915 0.917 0.972

ogbg-molpcba nMAE 0.000 0.000 0.000 0.000
AUC 0.945 0.944 0.952 0.962

Peptides-func nMAE 0.029 0.001 0.000 0.001
AUC 0.977 0.936 0.940 0.882

PCQM-Contact nMAE 0.006 0.000 0.002 0.001
AUC 0.948 0.987 0.986 0.999

As a consequence of this, in the seminal work
”Can Graph Neural Networks Count Substruc-
tures?” (Chen et al., 2020), it was shown that
GNNs are unable to count arbitrary subgraphs,
a capability that is crucial for many real-world
applications. The ability to detect and count
substructures in graphs is of particular impor-
tance in fields such as chemistry and biology,
where specific molecular substructures often
determine functional properties.

The limited expressivity of GNNs has moti-
vated the development of more expressive ar-
chitectures, including higher-order GNNs that
operate on k-tuples of nodes (Morris et al.,
2019; Maron et al., 2019), subgraph GNNs,
which transform the original graph into a set
of modified subgraphs before applying GNN
models (Cotta et al., 2021; Bevilacqua et al.,

1

Published as a conference paper at ICLR 2025

2021; Chen et al., 2020; Papp & Wattenhofer, 2022), and models that incorporate unique node
identifiers (Sato et al., 2021; Pellizzoni et al., 2024). However, these approaches often come at a sig-
nificant computational cost, limiting their practical applicability, or can show poor generalizability.

Interestingly, despite these theoretical limitations, we observe that standard GNNs are often able to
count graph patterns with surprising accuracy across a variety of real-world datasets. For example,
Table 1 reports the test set performance of a simple GNN model (Section A.1) for the subgraph
counting task, for several patterns (Section D.1), across several widely used molecular datasets, us-
ing only atom types as node labels. This shows a surprisingly good performance for a task that
is in principle unsolvable. While these experimental findings are somewhat limited in scope, they
suggest that GNNs possess the capacity to approximate subgraph counts, at least for certain patterns
and certain classes of target graphs. This apparent contradiction between theory and practice moti-
vates our work to better understand the subgraph-counting capabilities of GNNs beyond worst-case
scenarios, via a more nuanced analysis. Our contributions are the following:

(1) we provide conditions under which GNNs can efficiently realize functions on graphs that depend
only on local substructures around the nodes (Theorem 2), including subgraph counting;

(2) we propose novel dynamic programming algorithms for restricted variants of subtree isomor-
phism (Theorem 4), and show that GNNs can efficiently simulate them (Theorem 5);

(3) we show that, in practice, many real-world graph datasets satisfy the sufficient conditions of
point (1), and experimentally validate the claims of point (2) above.

Our work seeks to provide a theoretically-grounded explanation for the observed ability of GNNs in
subgraph counting, bridging the gap between theoretical limitations and practical performance.

1.1 RELATED WORK

Graph Neural Networks Expressivity Following the influential papers Morris et al. (2019); Xu
et al. (2018) that exposed the constraints of GNNs due to their expressiveness being limited by the
1-WL test (Weisfeiler & Leman, 1968), there has been a surge in research aimed at developing more
capable GNNs. A notable strategy has been to create GNNs that simulate higher-order WL (Grohe,
2017) or Folklore-WL (Cai et al., 1992) tests, as demonstrated by k-GNNs (Morris et al., 2019) and
k-FGNNsp (Maron et al., 2019). However, their computational and memory requirements are often
impractical. Some of the subsequent approaches exploited graph locality and sparsity (Morris et al.,
2022; Zhang et al., 2023; Frasca et al., 2022). An additional research direction involves subgraph
GNNs (Cotta et al., 2021; Qian et al., 2022; Bevilacqua et al., 2021). Finally, individualization
schemes (Pellizzoni et al., 2024; Bechler-Speicher et al., 2024) have been proposed by several works
(Murphy et al., 2019; Dasoulas et al., 2020; Franks et al., 2021) to enhance the expressivity of
GNNs and obtain universal function approximators (Abboud et al., 2021). Sato (2020); Morris
et al. (2023b) offer a more comprehensive overview. Xu et al. (2020) demonstrated that GNNs can
learn to mimic classical graph algorithms, and provided a framework for studying the complexity of
simulating combinatorial algorithms with different architectures. For a comprehensive overview of
GNNs’ capabilities in algorithmic tasks, readers are referred to Cappart et al. (2023).

Combinatorial subgraph counting Subgraph (both induced and not) isomorphism, and the re-
lated counting tasks, are NP-hard (Alon et al., 1995). Due to the practical relevance of the tasks,
several efficient search algorithms have been developed (Carletti et al., 2017; McCreesh et al., 2020).
Another line of research, called color-coding, uses a dynamic programming approach (Alon et al.,
1995; 2008; Arvind & Raman, 2002). For the task of finding all frequent subgraphs in a dataset,
there exist specialized algorithms (Nijssen & Kok, 2005; Kuramochi & Karypis, 2004).

Subgraph counting and GNNs Chen et al. (2020) showed that GNNs are unable to count arbitrary
subgraphs, and Zhang et al. (2024) obtain a full characterization of the subgraphs that can be counted
on arbitrary graphs, i.e., considering the worst-case scenario. The subgraph counting problem has
also been addressed on arbitrary graphs with ad-hoc architectures (Chen et al., 2020; Tahmasebi
et al., 2023; Huang et al., 2023b; Paolino et al., 2024), with positional encodings (Huang et al.,
2023a) or with random node features (Kanatsoulis & Ribeiro, 2024). In this work, we instead focus
on standard message-passing GNNs. Subgraphs have also been used to improve the expressivity of

2

Published as a conference paper at ICLR 2025

GNNs by using subgraph counts as features (Bouritsas et al., 2022) or by extending message-passing
to subgraphs (Wang et al., 2023).

2 PRELIMINARIES

In what follows, we define a graph as a tuple G = (VG, EG, LG), with VG a finite set of nodes, and
EG ⊆ {{u, v} : u ̸= v ∈ VG} a set of undirected edges. We define the vertex-label function as
LG : VG → Σ, with a finite set of labels Σ. For the sake of simplicity, we consider edges to be
unlabeled. We define the neighborhood of a node as N (v) = {w ∈ VG : {v, w} ∈ EG}. We say
that two graphs G and H are isomorphic, denoted as G ≃ H , if there exists a bijective mapping π :
VG → VH , called isomorphism, such that LG(v) = LH(π(v)), ∀v ∈ VG and {π(u), π(v)} ∈ EH if
and only if {u, v} ∈ EG. The isomorphism relation induces equivalence classes, which we call, with
abuse of notation, graphs. The group of isomorphisms from G to itself is called the automorphism
group Aut(G). A subgraph isomorphism from G into H is an injective mapping π : VG → VH

s.t. {π(u), π(v)} ∈ EH for every {u, v} ∈ EG and LG(v) = LH(π(v)), ∀v ∈ VG. We call it an
induced subgraph isomorphism if furthermore for all pairs u, v ∈ G, if {π(u), π(v)} ∈ EH then
{u, v} ∈ EG. With counting, we denote the task of counting such maps from a pattern P .

We denote sets of graphs by G. Moreover, given a graph G and nodes u, v ∈ VG, we say that they
belong to the same orbit if ∃π ∈ Aut(G) such that π(u) = v, and denote it with (G, u) ≃ (G, v).
We denote the set of orbits on a set of graphs G with VG = {(G, u) : G ∈ G, v ∈ VG}/≃.
Given two nodes u, v ∈ VG, we define with dG(u, v) their shortest-path distance in G. A tree
is a graph with no cycles. We denote with Tr the tree rooted in r ∈ VT , and define recursively
children(r) = N (r) and if q ∈ children(p) then children(q) = N (q) \ {p}. We define the height
of the tree as maxp∈VT

dT (r, p) and the truncated tree T ℓ
r as the subgraph of Tr induced by the

nodes p such that dT (r, p) ≤ ℓ. An egonet EGOk
u(G) of a node u ∈ VG is defined as the induced

subgraph of G on {v ∈ VG : dG(u, v) ≤ k}, with u marked with a dedicated ”root” label.

The Weisfeiler–Leman algorithm The color refinement algorithm, also known as 1-
Weisfeiler–Leman (denoted as WL), is a heuristic algorithm for the graph isomorphism problem.
Let WL0(G, v) = LG(v) ∈ N be the initial color of node v ∈ VG. Then the algorithm updates
vertex colors as WLℓ(G, v) = HASH

(
WLℓ−1(G, v), {{WLℓ−1(G,w) : w ∈ N (v)}}

)
∈ N, with

HASH an injective map, at iteration ℓ > 0. Two graphs are deemed ℓ-hop WL-isomorphic, denoted
as G ≃WLℓ

H , if {{WLℓ(G, v) : v ∈ VG}} = {{WLℓ(H, v) : v ∈ VH}}, and WL-isomorphic if it
holds for ℓ = |VG|, denoted as G ≃WL H . Note that G ≃ H =⇒ G ≃WL H , but the converse is
not true. We call a graph G WL-amenable if ∀H such that G ̸≃ H , G ̸≃WL H .

Coverings of graphs For graphs H and G, the mapping ϕ : VH → VG is called a homomorphism
if it preserves all edges and labels, i.e., if {ϕ(u), ϕ(v)} ∈ EG for all {u, v} ∈ EH and L(v) =
L(ϕ(v)) for all v ∈ VH . A homomorphism ϕ is called locally locally injective or bijective if for
every node v ∈ VH , the mapping ϕv : N (v) → N (ϕ(v)) is injective, respectively bijective. If
there exists a locally bijective homomorphism from a graph H to a graph G, we say that H covers
G. The universal cover (Angluin, 1980) of G given a node u ∈ VG is a (possibly infinite) tree,
denoted Uu(G), that covers any graph which covers G. It holds that U ℓ

u(G) ≃ U ℓ
v(H) if and only if

WLℓ(G, u) = WLℓ(H, v) (Krebs & Verbitsky, 2015). An illustration can be found in Figure 1.

Graph neural networks Message passing graph neural networks (GNNs), given a graph G, iter-
atively produce for each node v ∈ VG, at each level ℓ = 1, . . . ,L, the embeddings hℓ

v ∈ Rdℓ by
taking into account messages coming from its neighbors N (v). More formally, the embedding of
node v is updated as hℓ

v = fupd
(
hℓ−1
v , fagg

(
{{hℓ−1

u : u ∈ N (v)}}
))

, where fagg and fupd are the
aggregate and the update operations, respectively. The first layer of the GNN is fed with the initial
node embeddings h0

v , e.g. one-hot encodings of the node labels. Finally, one can get a graph-level
readout hL

G by aggregating the output node embeddings via a function fout. In Xu et al. (2018) it
was shown that there exist injective functions fagg, fupd and fout yielding GNNs that are provably
as expressive as color refinement. We denote as GNNnode

ℓ = {(G, v) 7→ hℓ
v} the class of para-

metric node-level functions formed by such a model with ℓ message passing layers. Moreover, let
GNNℓ = {G 7→ hℓ

G} be the class of parametric graph-level functions.

3

Published as a conference paper at ICLR 2025

u uu

r r r

Figure 1: Three graphs and their universal covers rooted in a node u. Since G1 is a tree, its universal
cover is G1 itself. The graphs G2 and G3 have isomorphic (infinite) universal covers. In fact, G3 is
a covering of G2.

3 UNIVERSALITY ON WL-DISTINGUISHABLE GRAPHS

The classical negative result of Chen et al. (2020, Theorem 3.3) is based on pairs of WL-
indistinguishable graphs such that, for a pattern P , one contains it as an induced subgraph while
the other one does not. This result, however, requires that the set of graphs at hand features specific
WL-indistinguishable graphs, a scenario that is unrealistic to happen in practice (e.g., see Table 2).

To overcome this limitation, we restrict to studying the ability of GNNs to solve the subgraph count-
ing tasks (for a fixed pattern graph P) on specific sets of graphs G, phrasing the task as a promise
problem (Even et al., 1984). In fact, if the graphs at hand can all be distinguished by WL, we have
the following positive result, which follows directly from Morris et al. (2023a).

Proposition 1. Let G be a set of graphs such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and |VG| ≤ n, ∀G ∈
G. Let f : G → R be any function. Then, there exists a function class GNNℓ=n realized by a GNN
model such that f ∈ GNNℓ=n.

In particular, if the function f is the (possibly induced) subgraph counting function, GNNs can count
subgraphs on G. In fact, if the set G is composed of WL-amenable graphs, the proposition always
holds. Therefore, for several classes of graphs, such as trees and forests, which are known to be
amenable (Arvind et al., 2017), as well as random graphs, which are known to be amenable with
high probability (Babai et al., 1980), GNNs are indeed able to count subgraphs. This result, although
it is the first step beyond the worst-case analysis of Chen et al. (2020), has several limitations.

First, the proof of universality of GNNs on WL-distinguishable graphs relies on a model with an
impractical number of layers, that is able to distinguish all graphs and remember by heart the value
of the function for each graph. Therefore, the size of the MLP after the graph-level pooling of the
node embeddings must be (at least) linear in |G|. In particular, |G| can in general grow exponentially
with the maximum graph size n. Thus, the results hold only for sets of bounded-size graphs.

Secondly, and relatedly to the first problem, the model used in the proof of the proposition has high
sample complexity. Informally speaking, the sample complexity of a model class is the number of
training samples needed for the model to generalize well to unseen data, and is usually proportional
to the number of parameters in the model. For real-valued function classes, one can characterize
their sample complexity via the pseudo-dimension (Anthony & Bartlett, 1999; Mohri et al., 2018), as
lower pseudo-dimension implies lower sample complexity. See Section A.2 for formal definitions.
Indeed, this model has pseudo-dimension Pdim(GNNℓ) = |G| (see Lemma 1, and Morris et al.
(2023a)), implying that the model is in general incapable of generalizing to unseen data.

Therefore, while such a model can count subgraphs on the training set, it’s hard to argue that it is
able to learn to count subgraphs. In the next sections, we address this issue.

4 UNIVERSALITY FOR LOCAL FUNCTIONS

The loose results of the previous section are partly due to the fact that we treat subgraph counting
as an arbitrarily complex function. In fact, we can exploit the fact that subgraph counting depends
only on local substructures around each node.

4

Published as a conference paper at ICLR 2025

�
��
��

���
�

�
��
��
��
�

��
��
��
��

Figure 2: The set of graphs on the left is not (2, 1)-identifiable, while the one on the right is.

Definition 1. We define a function f : G → R to be node-decomposable into g if it can be written
as f(G) =

∑
u∈VG

g(G, u), for some function g : VG → R. Moreover, g is said to be k-local if
g(G1, u) ̸= g(G2, v) implies EGOk

u(G1) ̸≃ EGOk
v(G2). With some abuse of notation, we say that

a function f that is node-decomposable into k-local functions is also k-local.

Subgraph counting and induced subgraph counting, i.e., counting the number of (induced) subgraph
isomorphisms ϕ from P to G, are indeed node-decomposable into rooted (induced) subgraph count-
ing, which only counts, for a node u ∈ VG, the number of (induced) subgraph isomorphisms such
that ϕ(p) = u for some fixed p ∈ VP (Lemma 2). Moreover, if P is the pattern at hand and there
exists a node p ∈ VP such that maxq∈VP

dP (p, q) ≤ k, i.e., the pattern has radius at most k, then
these functions are k-local. Indeed, if ϕ is a (induced) subgraph isomorphism from P to a subgraph
of G such that ϕ(p) = u, we have that ϕ(q) ∈ VEGOk

u(G), ∀q ∈ VP .

This gives hope for a GNN model that relies only on local structures around nodes to correctly solve
the subgraph counting tasks, thus having a number of parameters independent of n, the maximum
graph size. Nonetheless, the following impossibility result shows that message passing GNNs are
not able to represent all functions on node orbits, even when the graphs of the domain of such
functions are all distinguishable by WL. Indeed, if two non-isomorphic graphs have isomorphic
universal covers, such as G2 and G3 in Figure 1, then there exist nodes that are not distinguishable
by a GNN. In fact, GNNs are unable to perform rooted subgraph counting on these graphs.

Theorem 1. There exists a set of graphs G such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and a function
f : VG → R for which there exists no function class GNNnode

ℓ realized by a GNN model such that
f ∈ GNNnode

ℓ , ∀ℓ.

In fact, having no two graphs that have isomorphic universal covers is not only a necessary condition
for GNNs to represent any function on node orbits, but also a sufficient one (Krebs & Verbitsky,
2015). Nonetheless, the model might require a number of parameters that is exponential in the
maximum graph size n to distinguish all node orbits. In the next section, we discuss a finer grained
sufficient condition for node orbits to be distinguished by a GNN model with number of layers
and number of parameters independent of n, and show that it allows these models to learn sample
efficiently the subgraph counting tasks.

4.1 FINE-GRAINED DISTINGUISHABILITY OF NODES

Since the subgraph counting tasks are k-local, we do not need GNNs to be able to distinguish any
two node orbits, but rather to distinguish ego-nets of radius k. In general, one might need ℓ ≥ k
message passing layers to do so. Then, we can characterize the functions that can be realized by a
GNN with ℓ layers via the notion of (ℓ, k)-identifiability.

Definition 2. Let G be a set of graphs. We say that VG is (ℓ, k)-identifiable if ∀(G1, u), (G2, v) ∈
VG , U ℓ

u(G1) ≃ U ℓ
v(G2) implies that EGOk

u(G1) ≃ EGOk
v(G2). If VG is (ℓ, k)-identifiable, we also

say that G is (ℓ, k)-identifiable.

Figure 2 gives a visual representation of a set of graphs that is not (2, 1)-identifiable, as two non-
isomorphic ego-nets of radius 1 have the same truncated universal covers of depth 2, and thus the
same WL color. It also depicts a set of graphs that is (2, 1)-identifiable. Interestingly, both sets
are (3, 1)-identifiable. Indeed, as experimentally shown in Section 6, graph sets that are not (ℓ, k)-
identifiable are rare in practice. We define ηG,ℓ = |{U ℓ

u(G) : (u,G) ∈ VG}/≃|, the number of
truncated universal covers in G. We then have the following results.

5

Published as a conference paper at ICLR 2025

Theorem 2. Let G be a (ℓ, k)-identifiable set of graphs. Consider any k-local function f : VG → R.
Then, there exists a function class GNNnode

ℓ realized by a GNN model with O(η2ℓ,G · ℓ) parameters
and ℓ layers such that f ∈ GNNnode

ℓ .
Corollary 1. Let G be a (ℓ, k)-identifiable set of graphs. Let GNNℓ be a function class realized by
a GNN model with sum-aggregation fout({{hℓ

u : u ∈ VG}}) =
∑

u∈VG
hℓ
u. Then GNNℓ can perform

both subgraph counting and induced subgraph counting of patterns of radius at most k.

Notably, the GNN model that realizes Corollary 1 has number of parameters that is independent of
the maximum graph size n, depending only on ℓ and ηG,ℓ, and has a simple readout function. This
allows not only to count arbitrary (small) subgraphs on sets of graphs with unrestricted maximum
graph size, but also to learn such tasks sample efficiently, i.e., with fewer training samples.
Theorem 3. The function class GNNℓ of Cor. 1 has pseudo-dimension Pdim(GNNℓ) ≤ ηℓ,G + 1.

As implied by the previous theorem, the sample complexity of the simple model that realizes Corol-
lary 1 can be bounded based solely on the number of local structures around nodes, and indepen-
dently on global properties of the graphs.

5 ALGORITHMICALLY-ALIGNED GNNS FOR TREE PATTERNS

The positive results in previous sections solve subgraph counting by recognizing entire graphs or
ego-nets around nodes. This approach could solve tasks beyond subgraph counting, potentially pro-
ducing unnecessarily large models. We now explore the ability of GNNs to simulate combinatorial
algorithms for subgraph counting-related tasks, as it has been noted in the literature that GNNs align
well with dynamic programming (DP) algorithms (Xu et al., 2020; Nerem et al., 2025). We develop
novel algorithms solving the (non-induced) subgraph isomorphism problem on restricted pattern and
target graph classes. We demonstrate GNNs can efficiently simulate these algorithms, situating the
resulting models within the algorithmic alignment framework (Xu et al., 2020).

Our algorithms are inspired by the color coding algorithm (Alon et al., 1995; 2008), which finds
subgraph isomorphisms ϕ from the pattern tree T to the target graph G such that c(ϕ(p)) ̸=
c(ϕ(q)),∀p ̸= q ∈ VT , where c(u) represents a color assigned to node u. Enforcing that the
images of the pattern graph’s nodes have different colors ensures injectivity. In the original algo-
rithm, this condition is enforced by assigning random colors to the nodes of G, and repeating the
procedure multiple times to boost the success probability. This assignment of random colors is how-
ever impossible to simulate with message passing. Therefore, we will color the target nodes based
on WL colors, which can be obtained with message passing layers. This however requires to modify
the color coding algorithm to relax the condition on the target graphs’ colors, as it is unrealistic to
assume that any subgraph in G matching the pattern has all nodes belonging to different WL classes.

5.1 A DYNAMIC PROGRAM FOR COLORFUL SUBTREE ISOMORPHISM

We tackle the subgraph isomorphism problem from tree patterns. Say that the tree pattern at hand
is T , rooted in r and with nodes endowed with labels L : VT → Σ. We denote with Tp the
subtree of Tr rooted in p ∈ VT , i.e. the subgraph induced by the descendants of p. The nodes
of the target graph G are endowed with labels L : VG → Σ and colors c : VG → Ω such that
L(u) ̸= L(v) =⇒ c(u) ̸= c(v).

High-level description: Our dynamic program TREE-COLSI determines if a subgraph isomorphism
ϕ from Tp to G exists, where ϕ(p) = u, for nodes p ∈ VT and u ∈ VG. For a leaf p, we check if
u has the same label. For internal p with matching label to u, we build ϕ by mapping p to u and its
children to distinct neighbors of u, using inductively gathered information from N (u). Indeed, if
there exist subgraph isomorphisms ϕq from all the subtrees Tq , for q ∈ children(p), mapping each
q to distinct neighbors of u, one can create a homomorphism from Tp to G by mapping p to u and
the nodes in the Tq’s to their images in ϕq .

However, the resulting map could be not injective. Indeed, it could happen, e.g, that in the maps
ϕq1 , ϕq2 a child of q1 and a child of q2 are mapped to the same target graph’s node. To avoid this, for
each discovered map ϕq from Tq to G with ϕq(q) = v, we store a colorset Cϕq

with the colors of the
images of the descendants of q in a set Cv,q . Then, when we create the map ϕ such that ϕ(p) = u by

6

Published as a conference paper at ICLR 2025

Figure 3: A graph G and a tree pattern P . The copies of G on the right have colors (right half of the
nodes) obtained from one WL iteration. The subgraph isomorphism from P to the red-highlighted
subgraph of G is not quite-colorful, while the one to the green-highlighted subgraph of G is.

merging the maps ϕq from all the nodes q ∈ children(p) to distinct neighbors of u, we require that
the images of any two pattern graph’s nodes that could be mapped to the same target graph’s node
have different colors. This will allow to obtain injectivity.

Formal description: Let h be the height of the tree Tr and Th = {r}. Let T ℓ−1 = {q ∈
children(p) : p ∈ T ℓ}, ℓ = 1, . . . , h. Clearly, T 0 consists of only leaves of the tree. The dy-
namic program proceeds in layers, processing at the same time all the pattern graph’s nodes in T ℓ.
Therefore, the output of TREE-COLSIc(u, ℓ) will be a dictionary mapping nodes p ∈ T ℓ to sets
Cu,p. In particular, for nodes u ∈ VG, p ∈ VT , Cu,p is a set of colorsets C ∈ 2Ω. We have that if
Cϕ ∈ Cu,p, then there exists a subgraph isomorphism ϕ from Tp to G mapping p to u.

Algorithm 1: TREE-COLSIc(u, ℓ)
1 let Cu,ℓ be an empty dictionary
2 if ℓ > 0
3 for v ∈ N (u) do
4 Cv,ℓ−1 = TREE-COLSIc(v, ℓ− 1)

5 Cv,q = Cv,ℓ−1[q], ∀q ∈ children(p), ∀p ∈ T ℓ

6 for p ∈ T ℓ do
7 if children(p) == ∅
8 if L(u) ̸= L(p): Cu,ℓ[p] = ∅
9 else: Cu,ℓ[p] = {∅}

10 continue
11 if L(u) ̸= L(p): set Cu,ℓ[p] = ∅ and continue
12 let Cu,p = ∅ and (q1, . . . , qδ) = children(p)
13 for seq. of distinct nodes (v1, . . . , vδ) from N (u) do
14 if ∃i : Cvi,qi == ∅: continue
15 let {Cvi,j : j = 1, . . . , |Cvi,qi |} = Cvi,qi

16 for seq. of colorsets (Cv1,j1 , . . . , Cvδ,jδ) do
17 C = MERGE((Cv1,j1 , . . . , Cvδ,jδ))
18 if C ̸= ϵ
19 Cu,p = Cu,p ∪ {C}
20 Cu,ℓ[p] = Cu,p

21 return Cu,ℓ

Algorithm 2: MERGE((C1, . . . , Cδ))

1 flag = (c(u) ̸∈ Ci, ∀i)
2 flag = flag and (c(vi) ̸∈ Cj , ∀i ̸= j)
3 flag = flag and (Ci ∩ Cj == ∅ ∀i ̸= j)
4 if flag == false: return ϵ

5 let C̄i = Ci ∪ {c(vi)}, ∀i
6 let C =

⋃
i C̄i

7 return C

The dynamic program TREE-COLSIc, ap-
plied with colors c, is described in Algo-
rithm 1. It takes as input a target graph
node u and a level ℓ. It returns a dictio-
nary mapping from pattern graph nodes to
sets of colorsets. Lines 2-5 gather infor-
mation from the neighbors of u by recur-
sively calling the procedure on the nodes
in T ℓ−1, if ℓ > 0. The for-loop of line 6
iterates over the nodes p in T ℓ to compute
the sets Cu,p. Lines 7-10 handle the case
when p is a leaf. For an internal node p, if
L(p) = L(u), the for-loop on line 13 tries

all possible assignments of the nodes in children(p) to the nodes in N (u). The loop on line 16 tries,
for each such assignment, all the combinations of colorsets belonging to the sets Cv1,q1 , . . . , Cvδ,qδ .
For one such sequence C1, . . . , Cδ , the algorithm checks with MERGE if the recursively-obtained
sub-maps can be merged to create a map mapping p to u, by checking injectivity via the colors of
the image of the map. A dummy value ϵ is used to signal that the map cannot be created. If the map
can be created, the algorithm builds a colorset C(v1,...,vδ),(j1,...,jδ) associated with the map, which
is inserted in Cu,p. One would call the algorithm with TREE-COLSIc(u, h), with h the height of the
tree pattern, and would obtain the dictionary Cu,h. One can then access Cu,r, with r the root of the
tree, as Cu,h[r]. An example of the execution of the algorithm can be found in Section A.4

Due to the ”non-allowed colors” strategy for enforcing injectivity, the dynamic program will not
detect the subgraph isomorphisms from T to G where some specific pairs of pattern graph nodes
are mapped to target graph nodes with the same color. We now formally characterize the family of
maps that can be recognized.

7

Published as a conference paper at ICLR 2025

Definition 3. Let Tr be a tree, G be a graph whose nodes are endowed with colors c : VG → Ω,
and ϕ : VTr

→ VG a map. We say ϕ is quite-colorful (w.r.t. c) if (i) ∀p ∈ VTr
, ∀q ∈ children(p)

and ∀t ∈ children(q) it holds that c(ϕ(p)) ̸= c(ϕ(t)), and (ii) ∀p, q ∈ VTr
such that dTr

(p, q) ≥ 3
it holds that c(ϕ(p)) ̸= c(ϕ(q)).

Theorem 4. Let Tr be a tree of height h, G be a graph whose nodes are endowed with colors
c : VG → Ω. Then, TREE-COLSIc(u, h)[r] ̸= ∅ if and only if there is a quite-colorful subgraph
isomorphism ϕ from Tr to G such that ϕ(r) = u.

A visual representation for a subgraph isomorphism map that is not quite-colorful and for one that is
quite-colorful can be found in Figure 3. A simple sufficient (but not necessary) condition to ensure
that the algorithm solves subgraph isomorphism is that labels of the pattern graph itself respect the
conditions for quite-colorfulness, i.e., ∀p ∈ VTr

, ∀q ∈ children(p) and ∀t ∈ children(q) it holds
that L(ϕ(p)) ̸= L(ϕ(t)), and ∀p, q ∈ VTr

such that dTr
(p, q) ≥ 3 it holds that L(ϕ(p)) ̸= L(ϕ(q)),

as the map will be guaranteed to be parent-colorful. We call these quite-colorful patterns.

The algorithm is designed, rather than to minimize the computational complexity (Section A.3), to
align with message passing, as mapping p to u only requires information from u’s neighbors. This
allows GNNs to simulate the algorithm, as we show in the next section.

5.2 GRAPH NEURAL NETWORKS CAN SIMULATE TREE-COLSI

We show that a GNN model can simulate the execution of TREE-COLSIc, with the colors c of the
target nodes being WL colors, i.e., such that c(u) = c(v) iff U l

v(G) ≃ U l
u(G). Note that such WL

colors can be obtained by message passing on both labeled and unlabeled graphs.

The structure of the dynamic program is, by design, aligned with the message passing framework
used by GNNs. Indeed, in the dynamic program, the computation of a set Cu,ℓ depends uniquely on
the sets Cv,ℓ−1 for all v ∈ N (u), as well as the colors c(v) for v ∈ N (u) ∪ {u}. Indeed, while also
the labels L(u) are used, these are uniquely identified by the colors c(u) by construction.

Therefore, one can encode the information (Cv,ℓ−1, c(v)) in the node embedding hℓ−1
v and com-

municate this information to the neighbors of v. Special care needs to be taken in order for
fagg

(
{{hℓ−1

v : v ∈ N (u)}}
)

to uniquely represent the multiset {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}. The
function mapping (Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}} to (Cu,ℓ, c(u)) can then be realized
by a MLP in the fupd function, which therefore only simulates lines 6-21 of the dynamic program.
Because of this, the GNN algorithmically aligns (Xu et al., 2020, Definition 3.4) with the execution
of the dynamic program, which can lead to better generalization (Xu et al., 2020, Theorem 3.6).
Moreover, the MLP will have a number of parameters that depends on the maximum number of
distinct elements (Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}} over all u ∈ VG and ℓ = 1, . . . , h,
which we call ζl,T,G . Then, we have that a GNN can efficiently simulate the DP, and therefore we
can apply to GNNs the results of Theorem 4.

Theorem 5. Let G be a set of graphs of bounded degree, Tr be a tree of height h. Let f(G) = 1
if ∃u ∈ VG : TREE-COLSIc(u, h)[r] ̸= ∅ and 0 otherwise. Then, there exists a function class
GNNl+h realized by a GNN model with l + h layers and O

(
η2l,G · l + ζl,Tr,G · h

)
parameters such

that f ∈ GNNl+h.

We prove in Lemma 5 that the quantity ζl,T,G , which plays a crucial role in the complexity of the
model, can be upper bounded by ηl+h,G , recovering a dependency similar to the result of Theorem 2.
We show there that the quantity can also be bounded based on the maximum degree of the graph
∆, the size of the pattern κ and the number of used colors ηG,l as O

(
η∆+1
G,l /∆! · 2(∆+1)ηκ

G,l/(κ−1)!
)
.

However, when in practice there are few distinct elements (Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈
N (u)}}, e.g. if the subtrees of T appear rarely in the data or appear on target nodes with few distinct
colors, we get better model size bounds, which then leads to better sample complexity.

Comparison with previous work The result of Theorem 4 yields a generalization of Chen et al.
(2020, Theorem 3.5), as maps from stars are always quite-colorful. Moreover, Zhang et al. (2024,
Theorem 4.5) proves that GNNs can count subgraphs (on general graphs) if and only if the spasm of
the pattern at hand is composed of only trees. Indeed, the spasm of a quite-colorful tree is composed
of only trees. On the other hand, if a tree pattern has two nodes at distance at least 3 with the same

8

Published as a conference paper at ICLR 2025

Table 2: Number |G/≃WLℓ
| of WL isomorphism classes after ℓ iterations and number |G/≃| of

actual isomorphism classes on common molecular datasets. Ratio between the two in brackets.
Dataset |G/≃WLℓ

| |G/≃|
ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = ∞

Mutagenicity (Kersting et al., 2016) 3634 (0.839) 4274 (0.985) 4333 (0.999) 4337 (1.000) 4337 (1.000) 4337
MCF-7 (Kersting et al., 2016) 26058 (0.946) 27368 (0.994) 27525 (0.999) 27532 (1.000) 27538 (1.000) 27538
ZINC (Gómez-Bombarelli et al., 2018) 11988 (1.000) 11994 (1.000) 11994 (1.000) 11994 (1.000) 11994 (1.000) 11994
ogbg-molhiv (Hu et al., 2021; Wu et al., 2018) 38765 (0.942) 40942 (0.996) 41082 (0.999) 41102 (1.000) 41122 (1.000) 41122
ogbg-molpcba (Hu et al., 2021; Wu et al., 2018) 375291 (0.873) 428220 (0.996) 429584 (0.999) 429730 (1.000) 429802 (1.000) 429802
Peptides-func (Dwivedi et al., 2022; Singh et al., 2015) 14162 (0.937) 14679 (0.972) 14854 (0.983) 15075 (0.997) 15117 (1.000) 15117
PCQM-Contact (Dwivedi et al., 2022) 428356 (0.819) 521598 (0.998) 522786 (0.999) 522836 (1.000) 522837 (1.000) 522837

color, and thus is not quite-colorful, it will have a cyclic graph in its spasm, and cannot therefore be
counted by a GNN on general target graphs. Our Theorem 4 therefore helps understand the results of
Zhang et al. (2024, Theorem 4.5), by providing upper bounds on the number of layers, the parameter
count and the sample complexity of a GNN that is indeed able to count such substructures.

Our results however, go beyond this. Indeed, even when the pattern at hand is not quite-colorful (e.g.,
for an unlabeled pattern), the algorithm can exploit the colors of the target graph to elude the worst-
case analysis of Zhang et al. (2024, Theorem 4.5). Indeed, given that the target graphs have enough
asymmetries, the colors c obtained by l iterations of color refinement (or GNN message passing
layers) are enough to make the subgraph isomorphism maps quite-colorful. This, as we observe in
Section 6, indeed holds in practice on several real-world datasets. Note that, on adversarial examples
like regular graphs, quite-colorfulness cannot be obtained for any value of l.

5.3 EXTENSIONS

We obtained a message-passing-like dynamic program for quite-colorful subgraph isomorphism
from tree patterns. However, the quite-colorful condition can be too restrictive in some scenar-
ios. A similar problem is the locally injective homomorphism problem from tree patterns. In this
relaxation of the subgraph isomorphism problem, the map is required to be injective only on the
neighborhood of each pattern graph’s node. In Section B.1 we propose TREE-COLLIH, a slightly
modified algorithm that solves the locally injective homomorphism problem under a weaker condi-
tion with respect to quite-colorfulness.

The algorithms described in the previous sections, as the original algorithms (Alon et al., 1995), can
only deal with tree patterns. This is necessary due to the fact that the maps built on different subtrees
can be merged recursively without conflicts. In fact, in Section B.2 we discuss how to extend the
approach, which can still be simulated by a GNN, to cyclic patterns.

Moreover, our algorithms are described in the decision problem variant. As argued in a follow-up
to the original color-coding algorithm Alon et al. (2008), one can modify the dynamic program, and
the associated GNNs, to count maps. We describe how to do so in Section B.3.

6 EXPERIMENTAL EVALUATION

6.1 THE CONDITIONS FOR SUBGRAPH COUNTING HOLD IN PRACTICE

We study whether the sufficient conditions for subgraph counting that we have identified hold in
practice. As in Table 1, we focus on molecular graphs, where subgraph counting has been the focus
of extensive research, due to the relevance of subgraphs corresponding to functional groups. Table 2
reports the number |G/≃WLℓ

| of WL isomorphism classes after ℓ = 1, 2, 3, 4,∞ iterations. If one
compares this figure to the number |G/≃| of actual isomorphism classes, it is immediate to see that
the number of WL-indistinguishable graphs is negligible in practice, as observed in Zopf (2022).

Moreover, Table 3 reports the fraction of the nodes in the dataset that are (ℓ, k)-identifiable, namely
such that their universal cover of depth ℓ uniquely identifies their ego-net of radius k. We also report
the fraction of graphs for which all nodes are (ℓ, k)-identifiable. We can observe that already for
ℓ = k + 2, more than 97% of the ego-nets centered around nodes can be identified by the WL color
of the node after ℓ iterations. This result justifies the real-world applicability of Theorem 2.

9

Published as a conference paper at ICLR 2025

Table 3: Fraction of nodes in the dataset that are (ℓ, k)-identifiable. In brackets, fraction of graphs
in the dataset for which all nodes are (ℓ, k)-identifiable.

Dataset k = 1 k = 2 k = 3

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

Mutagenicity 0.880 0.978 0.997 0.999 0.647 0.945 0.992 0.997 0.663 0.952 0.994 0.997
(0.265) (0.766) (0.973) (0.994) (0.071) (0.634) (0.932) (0.994) (0.120) (0.673) (0.949) (0.993)

MCF-7 0.389 0.951 0.996 0.999 0.323 0.913 0.995 0.999 0.615 0.953 0.996 0.999
(0.002) (0.619) (0.960) (0.993) (0.004) (0.308) (0.937) (0.994) (0.029) (0.502) (0.954) (0.995)

ZINC 0.844 0.982 0.996 1.000 0.548 0.952 0.995 1.000 0.782 0.981 0.998 1.000
(0.116) (0.825) (0.934) (0.998) (0.003) (0.542) (0.934) (0.993) (0.054) (0.781) (0.970) (0.998)

ogbg-molhiv 0.734 0.961 0.998 1.000 0.477 0.952 0.996 0.999 0.739 0.968 0.996 0.999
(0.073) (0.708) (0.979) (0.998) (0.013) (0.598) (0.945) (0.996) (0.078) (0.669) (0.963) (0.995)

ogbg-molpcba 0.780 0.959 0.992 0.999 0.504 0.933 0.989 0.998 0.674 0.948 0.988 0.998
(0.036) (0.639) (0.905) (0.987) (0.002) (0.467) (0.861) (0.963) (0.025) (0.556) (0.861) (0.959)

Peptides-func 0.825 1.000 1.000 1.000 0.825 0.999 1.000 1.000 0.711 0.961 0.993 0.999
(0.000) (1.000) (1.000) (1.000) (0.001) (0.960) (1.000) (1.000) (0.004) (0.143) (0.551) (0.907)

PCQM-Contact 0.699 0.942 0.991 0.997 0.351 0.854 0.973 0.995 0.391 0.848 0.975 0.998
(0.001) (0.421) (0.870) (0.966) (0.001) (0.328) (0.805) (0.949) (0.006) (0.373) (0.841) (0.973)

Figure 4: Ratio of the number |Q| of subgraph isomorphisms that are quite-colorful to the total
number |S| of subgraph isomorphisms, reported for increasing numbers of WL iterations l and for
several (non quite-colorful) patterns.

Finally, Figure 4 reports the proportion of subgraph isomorphisms that are quite-colorful, for in-
creasing numbers of WL iterations l and for several (non quite-colorful) patterns. Full results are
reported in Section D.3. The results show that for real-world datasets, such as MCF-7 and ZINC,
nearly all subgraph isomorphisms are quite-colorful, already when target graphs are node-colored
using only l = 3 iterations of color refinement. In general, we notice that, for the vast majority of the
patterns, most subgraph isomorphism maps are indeed quite-colorful already for l = 2. There are
specific patterns for which not all maps are quite-colorful, no matter the choice of l. Understanding
the mechanisms for which these patterns can be counted, at least approximately, remains an open
question for future work.

6.2 ADDITIONAL EXPERIMENTAL RESULTS

In Section D we report additional experimental results. In particular, we report an extended version
of Table 1 with several more tree and cyclic patterns, showing that indeed GNNs can count quite well
several substructures. Moreover, we validate the ability of GNNs to count quite-colorful patterns on
challenging synthetic datasets, further proving the results of Section 5.

7 DISCUSSION AND CONCLUSIONS

Our work provides a theoretically-grounded explanation for the observed effectiveness of message
passing graph neural networks (GNNs) in subgraph counting tasks, bridging the gap between theo-
retical limitations and practical performance. Indeed, by moving beyond worst-case scenarios, we
provide a more nuanced analysis of the subgraph-counting abilities of GNNs.

In particular, we derived sufficient conditions under which GNNs can efficiently realize functions
on graphs that depend only on local substructures around nodes, such as subgraph counting, and
we have shown that they often hold in practice. Moreover, we developed novel algorithms for
subtree isomorphism and demonstrated that GNNs can efficiently simulate them, providing a new
perspective on the computational capabilities of GNNs in relation to classical graph algorithms.

Finally, we show that, in practice, more expressivity in GNN architectures is almost never needed,
as in many graph datasets there are no pairs of non-isomorphic graphs that cannot be distinguished
by GNNs. Therefore, having ruled out expressivity, an interesting research avenue is to investigate
the true reasons (e.g. lower sample complexity, or more ease in the optimization) why several GNN
architectures designed to go beyond the limitations of the 1-WL test (Morris et al., 2019) often show
better performance than their simpler counterparts in several prediction tasks.

10

Published as a conference paper at ICLR 2025

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In Proceedings of the Joint Conference
on Artificial Intelligence (IJCAI), 2021.

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, July 1995.
ISSN 0004-5411.

Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S Cenk Sahinalp.
Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):
i241–9, July 2008.

Dana Angluin. Local and global properties in networks of processors. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), STOC ’80, pp. 82–93, 1980.

Martin Anthony and Peter Bartlett. Neural network learning: Theoretical foundations. Cambridge
University Press, 1999.

Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized count-
ing problems. In ISAAC, pp. 453–464. Springer, 2002.

Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. Graph isomorphism, color
refinement, and compactness. Computational Complexity, 26:627–685, 2017.

László Babai, Paul Erdo˝s, and Stanley M. Selkow. Random graph isomorphism. SIAM Journal on
Computing, 9(3):628–635, 1980.

Maya Bechler-Speicher, Moshe Eliasof, Carola-Bibiane Schönlieb, Ran Gilad-Bachrach, and Amir
Globerson. On the utilization of unique node identifiers in graph neural networks. arXiv preprint
arXiv:2411.02271, 2024.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. In International Conference on Learning Representations (ICLR), 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research (JMLR), 24(130):1–61, 2023.

Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. Challenging the time com-
plexity of exact subgraph isomorphism for huge and dense graphs with vf3. IEEE transactions
on pattern analysis and machine intelligence, 40(4):804–818, 2017.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? In Advances in Neural Information Processing Systems (NeurIPS), volume 33,
pp. 10383–10395, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In Proceedings of the Joint Conference on Artificial Intelli-
gence (IJCAI), 2020.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

11

Published as a conference paper at ICLR 2025

Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61(2):159–173, 1984. ISSN
0019-9958.

Billy Joe Franks, Markus Anders, Marius Kloft, and Pascal Schweitzer. A systematic approach to
random data augmentation on graph neural networks. arXiv preprint arXiv:2112.04314, 2021.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, vol-
ume 47. Cambridge University Press, 2017.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS Central Science, 4(2):268–276, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graph neural networks. arXiv preprint
arXiv:2310.02579, 2023a.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power of
graph neural networks with i2-GNNs. In International Conference on Learning Representations
(ICLR), 2023b.

Charilaos Kanatsoulis and Alejandro Ribeiro. Counting graph substructures with graph neural net-
works. In International Conference on Learning Representations (ICLR), 2024.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. http://graphkernels.cs.tu-dortmund.de.

Andreas Krebs and Oleg Verbitsky. Universal covers, color refinement, and two-variable counting
logic: Lower bounds for the depth. In ACM/IEEE Symposium on Logic in Computer Science, pp.
689–700, 2015.

Michihiro Kuramochi and George Karypis. An efficient algorithm for discovering frequent sub-
graphs. IEEE transactions on Knowledge and Data Engineering, 16(9):1038–1051, 2004.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

Ciaran McCreesh, Patrick Prosser, and James Trimble. The glasgow subgraph solver: using con-
straint programming to tackle hard subgraph isomorphism problem variants. In International
Conference on Graph Transformation, pp. 316–324. Springer, 2020.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
aware permutation-equivariant graph networks. In International Conference on Machine Learning
(ICML), 2022.

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. In International
Conference on Machine Learning (ICML), 2023a.

12

http://graphkernels.cs.tu-dortmund.de

Published as a conference paper at ICLR 2025

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so
far. The Journal of Machine Learning Research, 24(1):15865–15923, 2023b.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning (ICML), pp. 4663–
4673. PMLR, 2019.

Robert R. Nerem, Samantha Chen, Sanjoy Dasgupta, and Yusu Wang. Graph neural networks ex-
trapolate out-of-distribution for shortest paths, 2025.

Siegfried Nijssen and Joost N Kok. The gaston tool for frequent subgraph mining. Electronic Notes
in Theoretical Computer Science, 127(1):77–87, 2005.

Raffaele Paolino, Sohir Maskey, Pascal Welke, and Gitta Kutyniok. Weisfeiler and leman go loopy:
A new hierarchy for graph representational learning. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2024.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network exten-
sions. In International Conference on Machine Learning (ICML), 2022.

Paolo Pellizzoni, Till Schulz, Dexiong Chen, and Karsten Borgwardt. On the expressivity and sam-
ple complexity of node-individualized graph neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered sub-
graph aggregation networks. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the SIAM International Conference on Data Mining (SDM), pp.
333–341. SIAM, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadullah
Usmani, Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, and Gajendra P S
Raghava. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res,
44(D1):D1119–26, November 2015.

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. The power of recursion in graph neural
networks for counting substructures. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2023.

Qing Wang, Dillon Ze Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan. N-WL: A
new hierarchy of expressivity for graph neural networks. In International Conference on Learning
Representations (ICLR), 2023.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, 1968.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chem. Sci., 9:513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2018.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representa-
tions (ICLR), 2020.

13

Published as a conference paper at ICLR 2025

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In International Conference
on Machine Learning (ICML), 2023.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for gnn expressiveness. In International Conference on Learn-
ing Representations (ICLR), 2024.

Markus Zopf. 1-wl expressiveness is (almost) all you need. In International Joint Conference on
Neural Networks (IJCNN), 2022.

14

Published as a conference paper at ICLR 2025

A ADDITIONAL DETAILS

A.1 EXPRESSIVE GRAPH NEURAL NETWORKS

An example of functions fagg, fupd and fout that leads to models that are provably as expressive as
color refinement (Morris et al., 2019), denoting ∥ as concatenation, is

hℓ
v = mlp

(
hℓ−1
v

∥∥∥ ∑
u∈N (v)

hℓ−1
u

)
∈ Rdℓ hG = mlp

(∑
v∈VG

hl
v

)
∈ R.

A.2 SAMPLE COMPLEXITY AND PSEUDO-DIMENSION

Let ℓ(f(x), y) be a loss. Learning theory (Mohri et al., 2018; Shalev-Shwartz & Ben-David, 2014)
is concerned with the task to bound the difference between the true risk R(f) and the empirical risk
R̂(f):

Rℓ(f) = E(x,y)∼D[ℓ(f(x), y)] and R̂D,ℓ(f) =
1

m

m∑
i=1

ℓ(f(xi), yi),

where D = {(xi, yi)}i ∼ Dm represents a training dataset of size m sampled i.i.d. from the data
generating distribution D.

In particular, given a class of functions F , we say that it has the uniform convergence property
(Shalev-Shwartz & Ben-David, 2014) if there exists a function mF (ϵ, δ) such that, for every ϵ, δ ∈
]0, 1[and every distribution D, drawing a dataset D of m ≥ mF (ϵ, δ) i.i.d. samples from D yields
that, with probability at least 1− δ over the choices of the samples, supf∈F |R̂D,ℓ(f)−Rℓ(f)| ≤ ϵ.
The function mF (ϵ, δ) is called the sample complexity of the function class.

In general, a model class that has low sample complexity needs fewer training samples in order
to generalize to unseen data. For models outputting real values, their sample complexity can be
characterizes via the pseudo dimension (Anthony & Bartlett, 1999; Mohri et al., 2018).

Definition 4. Let X be a set and F ⊆ f : X → R a class of real-valued functions. We
say that F pseudo-shatters a set S = (x1, . . . , x|S|) with witnesses (r1, . . . , r|S|) ∈ R|S|

if |(sign(f(x1)− r1), . . . , sign(f(x|S|)− r|S|)) : f ∈ F| = 2|S|. Then, we define the pseudo-
dimension of (X,F), denoted Pdim(X,F), as the size of the largest set S that can be pseudo-
shattered by F . If sets of arbitrary size can be pseudo-shattered, we say Pdim(X,F) = +∞.

Analogous to the VC dimension for binary classification, the pseudo-dimension provides upper
bounds on the number of samples required to learn a function from the class F with high probability
and low error. Specifically, for a given error ϵ and confidence δ, the sample complexity of for F is
Õ
(
ϵ−2(Pdim(X,F) + log 1

δ)
)

(Mohri et al., 2018, Theorem 19.2).

A.3 COMPUTATIONAL COMPLEXITY

As discussed in Section 5.1, the algorithm TREE-COLSI is designed, rather than to minimize the
computational complexity, to align with message passing and to allow to detect quite-colorful maps.

The algorithm, for a fixed node u and level ℓ, considers |T ℓ| pattern graph’s nodes. For each of such
nodes, it tries O(∆∆T) sequences of nodes on line 13, where ∆ is an upper bound to the degree of
any node in G and ∆T is an upper bound to the number of children of any node in the pattern tree.
A set Cv,q can contain in the worst case Q =

∑|VT |
i=0

(|Ω|
i

)
colorsets on |Ω| colors. Then, for each se-

quence of nodes (v1, . . . , vδ), the algorithm tries O(Q∆T) sequences of colorsets on line 14. There-
fore, summing over all u ∈ VG and ℓ ∈ 0, . . . , h, we obtain a total of O

(∑h
ℓ=0 |T ℓ||VG|

(
∆Q

)∆T
)

= O
(
|VG||VT | ·

(
∆Q

)∆T
)

calls to MERGE.

In contrast, the original color coding algorithm (Alon et al., 2008), would have a complexity of
O (|EG||VT | ·Q) = O (|VG||VT | ·∆Q).

15

Published as a conference paper at ICLR 2025

{ }DP(, 2) = : → { }

DP(, 0) = : { { } }
DP(, 0) = : { { } }
DP(, 0) = : { { } }

DP(, 0) = : { { } }
DP(, 0) = : { { } }
DP(, 0) = : { { } }

DP(, 0) = : { }
DP(, 0) = : { }
DP(, 0) = : { }

DP(, 0) = : { }
DP(, 0) = : { }
DP(, 0) = : { }

DP(, 1) = : { { }, { } }

DP(, 0) = : { }

DP(, 1) = : { { }, { } }

DP(, 0) = : { }

DP(, 1) = : { }

DP(, 0) = : { }

DP(, 1) = : { }

DP(, 0) = : { { }, { }, { } }

DP(, 2) = : { }

{ }, { }, { },
{ }, { }, { }

DP(, 2) = : → { }

DP(, 1) = : { }

DP(, 0) = : { { }, { }, { } }

{ }{ }, { }, { },
{ }, { }, { }

Figure 5: A simplified example of the execution of TREE-COLSI for a pattern P and graph G.

A.4 AN EXAMPLE OF THE EXECUTION OF TREE-COLSI

Figure 5 reports a (simplified) example of the execution of TREE-COLSI for a pattern P and target
graph G. The nodes of G are endowed with labels (depicted on the left half of the node) and colors
(depicted on the right half of the node) obtained by one iteration of color refinement. The original
graph can be seen in Figure 3.

At level 0, the algorithm returns for each node u ∈ VG a dictionary from the three leaves of P to
sets of colorsets. We report as an example four such u’s. For nodes u with black label, the algorithm
keeps track of the colors of the images of the pattern graph’s nodes (in fact, in the algorithm, these
colors are maintained implicitly). For nodes u with other labels, the algorithm returns an empty set
since the sub-patterns don’t match.

At level 1, the algorithm returns dictionaries from the two sub-patterns of height 1 of P to sets of
colorsets. For example, consider the first node u1 we report (i.e., with red label and white color).
Here, the sub-pattern rooted at the red-labeled node matches the red label of u1, and the colorsets
received from the two neighbors of u1 both allow for the construction of a subgraph isomorphism
map. Then, the algorithm keeps track of the sets of colors of the images of the pattern graph’s nodes
for the two maps. In particular, it keeps track of a set containing a white and pink color, and of a set
containing a white and purple color.

Finally, at level 2, the algorithm returns dictionaries from the entire pattern P to sets of colorsets.
The first node u1 we report (black label and green color), receives from its black-labeled neighbor
empty sets. Therefore, it also returns an empty set. The second node u2 we report (black label and
purple color) receives from both its two neighbors some colorsets. Here, one such combination of
colorsets is valid, which is then returned as a valid colorset. Since 2 is the height of the tree, it means
that there exists a subgraph isomorphism from the tree pattern to G rooted at u2. The third node u3

we report (black label and purple color) also receives from both its two neighbors some colorsets.
However, in all such combinations of colorsets, some colors collide. Therefore, it returns an empty
set. Indeed, even though there is a subgraph isomorphism rooted at u3, it is not quite-colorful.

B EXTENSIONS TO THE DYNAMIC PROGRAMMING ALGORITHM

B.1 A DYNAMIC PROGRAM FOR COLORFUL SUBTREE ISOMORPHISM

In Section 5.1, we obtained a message-passing-like dynamic program for quite-colorful subgraph
isomorphism from tree patterns. However, the quite-colorful condition can be too restrictive in
some scenarios. In this section, we tackle the locally injective homomorphism problem from tree
patterns. In this relaxation of the subgraph isomorphism problem, the map from the pattern to the

16

Published as a conference paper at ICLR 2025

target is required to be injective only on the neighborhood of each pattern graph’s node. We then pro-
pose TREE-COLLIH, a slightly modified algorithm that solves the locally injective homomorphism
problem under a weaker condition with respect to quite-colorfulness.

Algorithm 3: PARENTMERGE((C1, . . . , Cδ))

1 if ∃i : c(u) ∈ Ci: return ϵ
2 return {c(vi), i = 1, . . . , δ}

Inspired by the color coding technique, as
done in Section 5.1, we enforce local in-
jectivity by making sure that the colors
of the images of specific pairs of pattern
nodes are distinct. In particular, we now
require only that for each node p, the image of the parent of its parent has a different color from
the image of p. This condition is enforced by substituting the MERGE procedure of the dynamic
program TREE-COLSI, reported in Algorithm 1 with PARENTMERGE. In particular, the dynamic
program still returns, for nodes u ∈ VG, p ∈ VT , a set Cu,p of colorsets C ∈ {0, 1}|Ω|. If there is
no locally injective homomorphism from Tp to G mapping p to u the set is empty. If C ∈ Cu,p, then
there exists (at least) one associated map ϕ from Tp to G.

We now formally characterize the family of maps that can be recognized by the dynamic program.
Definition 5. Let Tr be a tree, G be a graph whose nodes are endowed with colors c : VG → Ω,
and ϕ : VTr → VG a map. We say ϕ is parent-colorful (w.r.t. c) if ∀p ∈ VTr , ∀q ∈ children(p) and
∀t ∈ children(q) it holds that c(ϕ(p)) ̸= c(ϕ(t)).
Theorem 6. Let Tr be a tree of height h, G be a graph whose nodes are endowed with colors
c : VG → Ω. Then, TREE-COLLIHc(u, h)[r] ̸= ∅ if and only if there is a parent-colorful locally
injective homomorphism ϕ from Tr to G such that ϕ(r) = u.

A simple sufficient (but not necessary) condition to ensure that the algorithm solves the locally in-
jective homomorphism problem is that the parent of the parent of any pattern node must have a
different label from the node itself, as the map will be parent-colorful. Moreover, if the discov-
ered homomorphism is (globally) injective, the dynamic problem solves the subgraph isomorphism
problem. A sufficient condition for this is that the cycles in the target graph are long enough.
Corollary 2. Let Tr be a tree of height h, G be a graph whose nodes are endowed with colors
c : VG → Ω. Let T be such that ∀p ∈ VT , ∀q ∈ children(p) and ∀t ∈ children(q) it holds
that L(p) ̸= L(t). Let also G be such that the minimum cycle length is at least 2h + 1. Then,
TREE-COLLIHc(u, h)[r] ̸= ∅ if and only if there is a subgraph isomorphism ϕ from T to G such
that ϕ(r) = u.

In particular, if we restrict ourselves to tree patterns with no node such that the parent of its parent has
its same label, the dynamic program solves the subgraph isomorphism problem if the target graphs
are trees. Moreover, in many molecular graphs from organic chemistry, the minimum cycle length
is 5. Therefore, on these graphs the dynamic program correctly solves the subgraph isomorphism
problem for (parent-colorful) tree patterns of height at most 2.

B.2 DEALING WITH CYCLIC PATTERNS

The algorithms described in the previous sections, as the original algorithms (Alon et al., 1995), can
only deal with tree patterns. This is necessary due to the fact that the maps built on different subtrees
can be merged recursively without conflicts.

One can deal with cyclic patterns, although with weaker guarantees, by using as a pattern the trun-
cated universal cover of the pattern. Let P be the pattern at hand and u ∈ VP , then one would use
P ′ = U l

u(P) as the new pattern, with l ≥ maxv dP (u, v). Then, using TREE-COLLIH one would
obtain a positive answer if P is a subgraph of G, as indeed there exists a locally injective homomor-
phism from U l

u(P) to G for each l. However, there could be false positives. For TREE-COLSI, one
would need to enrich the colorsets to ensure that tree nodes p, q ∈ VU l

u(P) that correspond to the
same node in P are enforced to have images with the same color, and that tree nodes that correspond
to different nodes in P are enforced to have different colors.

B.3 FROM SUBGRAPH DETECTION TO COUNTING

As argued in a follow-up to the original color-coding algorithm Alon et al. (2008), modifying the
dynamic program to count maps rather than solve the decision problem is relatively straightforward,

17

Published as a conference paper at ICLR 2025

and can be applied to all the presented versions of the algorithm. Indeed, we endow colorsets with
a counter cnt that keeps track of the number of maps associated with the colorset. Then, when
building the set Cu,p consider a choice of vertices v1, . . . , vδ and a sequence of colorsets C1, . . . , Cδ

with associated counters cnti, . . . , cntδ , which each representing the number of maps from Tqi to G
mapping qi to vi. Let then the resulting merged colorset be C ̸= ϵ. The number of maps from Tp to
G mapping p to u is then ¯cnt =

∏
i cnti. If C already belongs to Cu,p with associated counter cntC ,

we update the counter as cntC = cntC + ¯cnt. Otherwise, we insert C in Cu,p with cntC = ¯cnt. In
this variant of the algorithm there would be an increase in the size of the MLP for a GNN, to store
the counters, to be able to simulate the algorithm.

C PROOFS

C.1 SECTION 3

Proposition 1. Let G be a set of graphs such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and |VG| ≤ n, ∀G ∈
G. Let f : G → R be any function. Then, there exists a function class GNNℓ=n realized by a GNN
model such that f ∈ GNNℓ=n.

Proof. Since ∀G1, G2 ∈ G, G1 ̸≃WL G2, by Morris et al. (2023a, Proposition 9) the GNN model
can realize a one-hot encoding hG for each graph G. Then, by appending a linear layer to the model
such that WhG = f(G), we can realize f .

Lemma 1. The function class GNNℓ of Prop. 1 has pseudo-dimension Pdim(G,GNNℓ) = |G|.

Proof. We have Pdim(G,GNNℓ) ≤ |G| by definition. Moreover, by Morris et al. (2023a, Proposi-
tion 9) and the fact that no two graphs are WL-isomorphic, the GNN model can realize any binary
function on G. Then, taking as witnesses a vector of −1/2, we obtain the lower bound.

C.2 SECTION 4

Theorem 1. There exists a set of graphs G such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and a function
f : VG → R for which there exists no function class GNNnode

ℓ realized by a GNN model such that
f ∈ GNNnode

ℓ , ∀ℓ.

Proof. The theorem is proven by the two graphs G2, G3 in Figure 1, and f(G, u) the rooted sub-
graph isomorphism function, with as pattern the triangle K3 rooted in any of its nodes. Clearly
f(G2, u) = 1 and f(G3, u) = 0. These two graphs have isomorphic universal covers. In particular,
rooting the universal covers at u ∈ VG2

and u ∈ VG3
yields Uu(G2) ≃ Uu(G3). We then have that

WLℓ(G2, u) ≃ WLℓ(G3, u), by (Krebs & Verbitsky, 2015). Then, the GNN cannot assign different
outputs to (G2, u) and (G3, u) (Morris et al., 2019, Theorem 1).

Lemma 2. Subgraph counting and induced subgraph counting are node-decomposable into rooted
subgraph counting and rooted induced subgraph counting, respectively.

Proof. Let P be a graph and p ∈ VP any node. The (induced) subgraph counting function f(G)
maps a graph G to |ΦG|, where ΦG is the set of (induced) subgraph isomorphisms ϕ from P to
G. We let g(G, u) be the rooted subgraph counting function (resp. the rooted induced subgraph
counting function), that is g(G, u) = |ΦG,u| with ΦG,u the set of (induced) subgraph isomorphisms
ϕ from P to G such that ϕ(p) = u. We show that f(G) =

∑
u∈VG

g(G, u).

We have that any ϕ ∈ ΦG,u is a (induced) subgraph isomorphism, so ϕ ∈ ΦG. Conversely, if
ϕ ∈ ΦG, then ϕ ∈ ΦG,ϕ(p) by definition. Therefore ΦG =

⋃
u∈VG

ΦG,u. It then suffices to show
that the sets ΦG,u are disjoint. Indeed, let ϕ ∈ ΦG,u, then ϕ(p) = u. Therefore, ϕ ̸∈ ΦG,v for any
v ̸= u, since ϕ(p) ̸= v.

Note that an alternative and equally valid definition of the (induced) subgraph counting function
counts the number of (induced) subgraph isomorphisms up to automorphisms of the pattern graph.
In this case, the function f ′(G) maps a graph to |{V ⊆ VG : exists (induced) subgraph isomorphism

18

Published as a conference paper at ICLR 2025

ϕ from P to G such that ϕ(VP) = V }|. Note that f ′(G) = f(G)/Aut(P). Also this function is
node-decomposable, as f ′(G) =

∑
u∈VG

g′(G, u) with g′(G, u) = g(G, u)/Aut(P).

Theorem 2. Let G be a (ℓ, k)-identifiable set of graphs. Consider any k-local function f : VG → R.
Then, there exists a function class GNNnode

ℓ realized by a GNN model with O(η2ℓ,G · ℓ) parameters
and ℓ layers such that f ∈ GNNnode

ℓ .

Proof. Let h0
v be a one-hot encoding of node labels. Then, we apply (Morris et al., 2019, Theorem

2, Lemma 11) to a graph G composed by the disjoint union of the graphs in G. In particular, the
GNN layers require the dimensionality of the node embeddings to be ηℓ,G . Therefore, after ℓ layers
with O(η2ℓ,G) parameters each, we have that the embeddings ĥℓ

u outputted by the ℓ-th layer are
such that ĥℓ

u = ĥℓ
v iff U ℓ

v(G) = U ℓ
u(G). Moreover, ĥℓ

u ∈ {−1, 1}ηl,G . Let U1, . . . , Uηl,G be an
arbitrary enumeration of the truncated universal covers in G, and h1, . . . , hηℓ,G the corresponding
embeddings.

Let W ∈ Rηℓ,G×ηℓ,G with Wi,: = h⊤
i . Let b ∈ Rηℓ,G with bi = −ηl,G + 1. We let

hℓ
u = ReLU(Wĥℓ

u + b), then hℓ
u ∈ Rηℓ,G is a one-hot encoding for U ℓ

u(G). Therefore, by ap-
pending a linear layer we can assign any real value to U ℓ

u(G).

If, for any two (G1, u), (G2, v) ∈ VG , it holds that EGOk
u(G1) ̸≃ EGOk

v(G2), then we have
that U ℓ

u(G1) ̸≃ U ℓ
v(G2) by (ℓ, k)-identifiability, and therefore the GNN model can assign different

values to these two ego-nets. In particular, since f is k-local, we can realize f .

Finally, the number of parameters of the model is O(η2ℓ,G · ℓ).

Corollary 1. Let G be a (ℓ, k)-identifiable set of graphs. Let GNNℓ be a function class realized by
a GNN model with sum-aggregation fout({{hℓ

u : u ∈ VG}}) =
∑

u∈VG
hℓ
u. Then GNNℓ can perform

both subgraph counting and induced subgraph counting of patterns of radius at most k.

Proof. Both the rooted subgraph counting and rooted induced subgraph counting of patterns of
radius at most k are k-local functions, and we can apply Theorem 2. Then, the sum aggregation
computes the subgraph counting and induced subgraph counting functions at the graph level.

Theorem 3. The function class GNNℓ of Cor. 1 has pseudo-dimension Pdim(GNNℓ) ≤ ηℓ,G + 1.

Proof. Consider a function f ∈ GNNℓ, and the associated function g ∈ GNNnode
ℓ that produces the

node-level opuputs that are then aggregated via fout to produce f . We show f(G) can be written as
f(G) = w⊤xG, with xG ∈ Rηℓ,G the multiplicity vector of the truncated universal covers of height
ℓ rooted at the nodes of G. In particular, let U1, . . . , Uηℓ,G an enumeration of the truncated universal
covers. Then, the i-th entry of xG will be k iff there are k nodes u ∈ VG such that U ℓ

u(G)≃Ui. Note
that xG1

= xG2
if and only if G1 ≃WLℓ

G2. Therefore, we can set the i-th entry of the vector w to
the output of the model g(G, u) ∈ GNNnode

ℓ on a node u that has rooted universal cover Ui. Then,
f(G) =

∑
u∈VG

g(G, u) = w⊤xG.

By Anthony & Bartlett (1999, Theorem 11.6), the pseudo-dimension of a linear function on Rd

is d + 1. Then, by Anthony & Bartlett (1999, Corollary 11.5), we have that Pdim(GNNℓ) ≤
ηℓ,G + 1.

C.3 SECTION 5.1

Lemma 3. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors c. Let
ϕ be a quite-colorful subgraph isomorphism from T to G. Then Cϕ(r),r ̸= ∅.

Proof. Given a node p ∈ VT , we call Tp the subtree of Tr rooted at p. We show inductively that the
colorset {c(ϕ(q)) : q ∈ VTp

\ {p}} belongs to Cϕ(p),p.

We first address the base case of the dynamic program, p is a leaf. For each leaf p ∈ VT , we have
that Cϕ(p),p = {∅}, since L(ϕ(p)) = L(p).

19

Published as a conference paper at ICLR 2025

Let now p be a non-leaf. Then, there exists a sequence v1, . . . , vδ of distinct neighbors of ϕ(p) such
that vi = ϕ(qi), qi ∈ children(p) and, for each q, ϕ|VTq

is a quite colorful subgraph isomorphism
from Tq to G. We then have inductively that Cq := {c(ϕ(w)) : w ∈ VTq \ {q}} ∈ Cϕ(q),q ,
∀q ∈ children(p).

Since L(ϕ(p)) = L(p), the algorithm starts creating the set Cϕ(p),p in line 12. In particular, it will
try on line 13 the correct sequence of nodes (v1, . . . , vδ) = (ϕ(q1), . . . , ϕ(qδ)) and for that sequence
the algorithm will try on line 16 the sequence of colorsets Cq1 , . . . , Cqδ . For any two distinct q1, q2,
and ∀t1 ∈ VTq1

\ {q1}, t2 ∈ VTq2
\ {q2}, we have that dT (t1, t2) > 3. Since ϕ is quite-colorful,

the third flag condition is true. Moreover, dT (q1, t2) ≥ 3, and the second flag condition is true.
Finally, either dT (p, t2) ≥ 3 or p = parent(parent(t2)), and the first flag condition is true.
Therefore, all three conditions for flag are true and the algorithm inserts in Cϕ(p),p the colorset
C :=

⋃
q∈children(p)(Cq ∪ c(ϕ(q))) = {c(ϕ(q)) : q ∈ VTp \ {p}}.

Then, we have inductively that Cr ∈ Cϕ(r),r, and we have the claim.

Lemma 4. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors
c. If Cu,r ̸= ∅, then there exists a quite-colorful subgraph isomorphism ϕ from T to G such that
ϕ(r) = u.

Proof. Given a node p ∈ VT , we call Tp the subtree of Tr rooted at p. We show inductively that
if C ∈ Cu,p, then there exists a quite-colorful subgraph isomorphism ϕ from Tp to G such that
ϕ(p) = u and {c(ϕ(q)) : q ∈ VTp

\ {p}} = C.

We first address the base case of the dynamic program, p is a leaf. For each leaf p ∈ VT , we have
that Cu,p = {∅} ≠ ∅ iff L(u) = L(p), that is if p 7→ u is a (quite-colorful) subgraph isomorphism.

Let now C ∈ Cu,p for some non-leaf p. Then, there exists a sequence of distinct nodes
(v1, . . . , vδ) from N (u) such that C was obtained by a sequence of color sets (C1, . . . , Cδ), with
Ci ∈ Cvi,qi ,∀i = 1, . . . , δ, such that all three conditions for flag are true.

Then, we have inductively that there exists an isomorphism ϕi from Tqi to G such that ϕi : qi 7→
vi and {c(ϕi(t) : t ∈ VTqi

\ {qi})} = Ci, for each qi ∈ children(p). The domains of such
isomorphisms are all distinct, since the sets VTq

: q ∈ children(p) are pairwise disjoint. We can
therefore define a new map ϕ : VTp

→ VG as ϕ|VTqi
= ϕi and ϕ : p 7→ u. This map is a

homomorphism. Indeed, each ϕi is an homomorphism and therefore maps adjacent nodes in VTqi
to

adjacent nodes in VG. Moreover, each qi ∈ children(p) is mapped to a node vi ∈ N (u).

To show that ϕ is a subgraph isomorphism, we just need to show injectivity by showing that the
co-domains Hi= {ϕ(w) : w ∈ VTqi

} of the ϕi and the set {u} are all pairwise disjoint. We show
first that Hi ∩Hj = ∅. In particular, by flag condition (3) we have that Ci ∩ Cj = ∅, and therefore
z ̸∈ {ϕ(w) : w ∈ VTqj

\ {qj}} for each z ∈ {ϕ(w) : w ∈ VTqi
\ {qi}}. Moreover, c(vi) ̸∈ Cj by

flag condition (2), and therefore ϕ(qi) = vi ̸∈ {ϕ(w) : w ∈ VTqj
\{qj}}. Also by flag condition (2),

c(vj) ̸∈ Ci, so ϕ(qj) = vj ̸∈{ϕ(w) : w ∈ VTqi
\ {qi}}. Finally, ϕ(qi) = vi ̸= vj = ϕ(qj). Thus,

Hi ∩Hj = ∅. We now show that u ̸∈ Hi,∀i. First, we have by flag condition (1) that c(u) ̸∈ Ci,∀i
and therefore u ̸∈ {ϕ(w) : w ∈ VTqi

\ {qi}}. Moreover, u ̸= vi = ϕ(qi). Therefore, ϕ is injective
and is a subgraph isomorphism.

Moreover, we have {c(ϕ(q)) : q ∈ VTp \ {p}} =
⋃

q{c(ϕi(t) : t ∈ VTq \ {q})} ∪ {c(ϕ(q))} = C.
Finally, since the colors of the images of the nodes in Tp respect the flag conditions, ϕ is quite-
colorful.

Then, we have inductively that if C ∈ Cu,r, there exist a quite-colorful subgraph isomorphism ϕ
from T to G such that ϕ(r) = u, and we have the claim.

Theorem 4. Let Tr be a tree of height h, G be a graph whose nodes are endowed with colors
c : VG → Ω. Then, TREE-COLSIc(u, h)[r] ̸= ∅ if and only if there is a quite-colorful subgraph
isomorphism ϕ from Tr to G such that ϕ(r) = u.

20

Published as a conference paper at ICLR 2025

Proof. If there is a quite-colorful subgraph isomorphism ϕ from Tr to G such that ϕ(r) = u, then
by Lemma 3 we have that Cϕ(r),r ̸= ∅. Moreover, by Lemma 4, if Cu,r ̸= ∅, then there exists a
quite-colorful subgraph isomorphism ϕ from Tr to G such that ϕ(r) = u.

C.4 SECTION 5.2

Theorem 5. Let G be a set of graphs of bounded degree, Tr be a tree of height h. Let f(G) = 1
if ∃u ∈ VG : TREE-COLSIc(u, h)[r] ̸= ∅ and 0 otherwise. Then, there exists a function class

GNNl+h realized by a GNN model with l + h layers and O
(
η2l,G · l + ζl,Tr,G · h

)
parameters such

that f ∈ GNNl+h.

Proof. We simulate the DP algorithm with a GNN. We first use l layers to obtain colors. Then,
we use h layers to simulate the h recursive calls of the DP. Let the graphs be such that ∀u ∈
VG, |N (u)| < ∆.

Color construction We consider the GNNs of Section A.1. Let h0
v be a one-hot encoding of node

labels. Then, we use (Morris et al., 2019, Theorem 2, Lemma 11) applied to a graph G composed
by the disjoint union of the graphs in G. In particular, the GNN layers require the dimensionality of
the embeddings to be ηl,G . Therefore, after l layers with O(η2l,G) parameters each, we have that the
embeddings h̄l

u outputted by the l-th layer are such that h̄l
u = h̄l

v iff U l
v(G) = U l

u(G). Moreover,
h̄l
u ∈ {−1, 1}ηl,G . We take these embeddings as the colors c used by the dynamic program, and let

h̄1, . . . , h̄ηl,G be an enumeration of them.

Let C1, . . . , CD be an enumeration of the possible elements (Cu,ℓ, c(u)), i.e., for each possible u and
ℓ. We suppose, without loss of generality, that if node u has color c(u) = h̄i, then (Cu,ℓ=0, c(u)) =
Ci, for each i = 1, . . . , ηl,G . This is valid since Cu,ℓ=0 is uniquely determined by c(u).

Let W (1) ∈ Rηl,G×ηl,G with Wi,: = h̄⊤
i . Let b ∈ Rηl,G with bi = −ηl,G +1. Then ReLU(W (1)h̄l

u+

b) is the one-hot encoding for the color of u. We take W (2) ∈ R1×ηl,G , with W
(2)
1,i = ∆i−1, and let

hl
u = W (2)ReLU(W (1)h̄l

u + b) ∈ R. This is obtained by appending a two-layer MLP to the MLP
that outputs h̄l

u. We then have that hl
u = ∆i−1 if and only if (Cu,ℓ=0, c(u)) = Ci.

Message aggregation Then, the following h GNN layers have to simulate the dynamic program.
Suppose that hl+ℓ−1

v = ∆i−1 if and only if (Cv,ℓ−1, c(v)) = Ci. This is true by construction for
ℓ = 1. Then we have that ĥl+ℓ

u =
(
hl+ℓ−1
u ,

∑
v∈N (u) h

l+ℓ−1
v

)
∈ R2 is a pair of integers, obtained

via the sum-aggregation of the messages from N (u), that is a unique identifier for the element
E = ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}). Let E1, . . . , Eζl,Tr,G be an enumeration of the
possible elements E , and let ĥ1, . . . , ĥζl,Tr,G ∈ R2 be the associated vectors.

Mapping aggregated messages to DP states Not that, in the dynamic program, the computa-
tion of a set Cu,ℓ depends uniquely on the sets Cv,ℓ−1 for all v ∈ N (u), as well as the colors
c(v) for v ∈ N (u) ∪ {u}. Indeed, while also the labels L(u) are used, these are uniquely identi-
fied by the colors c(u) by construction. We then show that we can simulate the function mapping
((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}) to (Cu,ℓ, c(v)) using a MLP.

Note that the map ĥl+ℓ
u 7→ [∆ζl,Tr,G , 1]ĥl+ℓ

u ∈ R is injective. Let then W (1) ∈ Rζl,Tr,G×2 with
W

(1)
i,: = [∆ζl,Tr,G , 1] and b ∈ Rζl,Tr,G with bi = −[∆ζl,Tr,G , 1] ĥi. Then tri(W (1)ĥl+ℓ

u + b) is a
one-hot encoding for ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}).

Let then W (2) ∈ R1×ζl,Tr,G , with W
(2)
1,i = ∆j−1 such that Cj is the output of one iteration of the

dynamic program (i.e., lines 6 to 21) when it receives as input Ei. Then hl+ℓ
u = W (2)tri(W (1)ĥl+ℓ

u +
b) is equal to ∆i−1 if and only if (Cu,ℓ, c(v)) = Ci. Then, by induction on ℓ, we have that hl+h

u is a
unique identifier for (Cu,h, c(u)).

21

Published as a conference paper at ICLR 2025

Output layer In fact, we modify the last layer MLP by choosing W (2) with W
(2)
1,i = 1 if the output

of one iteration of the dynamic program when it receives as input Ei is an element (Cu,h, c(u)) with
Cu,h[r] ̸= ∅, and 0 otherwise. Then hl+h

u = 1 if and only if Cu,h[r] ̸= ∅. Note that we obtained a
valid simulation of the dynamic program by using h GNN layers as defined in Section A.1, at the
node level. Finally, if we take as fout({{hl+h

u : u ∈ VG}}) = lsig(
∑

u∈VG
hl+h
u), we have that the

model realizes the function f(G) = 1 if ∃u ∈ VG : TREE-COLSI(u, h)[r] ̸= ∅ and 0 otherwise.

We observe that the MLPs use either an triangle function tri or a linearized sigmoid lsig function.
Both can be simulated using ReLU as follows.

Let x ∈ R. Then tri(x) = W (2)ReLU(W (1)x + b) with W (1) = [1, 1, 1]⊤ ∈ R3×1, b =
[1, 0,−1]⊤ ∈ R3 and W (1) = [1,−2, 1] ∈ R1×3.

Let x ∈ R. Then lsig(x) = W (2)ReLU(W (1)x+ b) with W (1) = [1, 1]⊤ ∈ R2×1, b = [0,−1]⊤ ∈
R2 and W (1) = [1,−1] ∈ R1×2.

Moreover, in the proof, some parameters require a non-constant number of bits. We argue that such
parameters can be replaced by more parameters with constant number of bits. Indeed, it is enough
to maintain the invariant that hl+ℓ−1

v ∈ Rζl,Tr,G is an one-hot encoding for Ci rather than ∆i−1. In
this case, the number of parameters for each MLP grows from O(ζl,Tr,G) to O(ζ2l,Tr,G).

Lemma 5. Let G be a set of graphs such that ∀u ∈ VG, |N (u)| < ∆. Let T be a tree with |VT | = κ.
The number ζl,T,G of distinct elements E = ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}) satisfies

ζl,T,G ∈ O
(
min

(
ηl+h,G , η∆+1

G,l /∆! · 2(∆+1)ηκ
G,l/(κ−1)!

))
.

Proof. There are κ nodes in the pattern, and ηG,l distinct colors. Therefore, there are Q ≤∑κ
i=0

(
ηG,l

i

)
= O(ηκG,l/κ!) possible colorsets C.

Then, we have at most 2Q sets of colorsets Cu,p and 2κQ sets of colorsets Cu,ℓ. In turn, there can be
at most D = ηG,l · 2κQ elements (Cu,ℓ, c(u)). Therefore, we have D = O

(
ηG,l · 2κη

κ
G,l/κ!

)
. Then,

there are at most ζl,T,G = O(D∆/∆! ·D) = O
(η∆+1

G,l

∆! · 2(∆+1)ηκ
G,l/(κ−1)!

)
elements E .

Moreover, the element E = ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}) is fully characterized by
U l+h
u (G), for any ℓ = 1, . . . , h, so we also have ζl,T,G ≤ ηl+h,G .

C.5 SECTION B.1

Lemma 6. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors c. Let
ϕ be a parent-colorful locally injective homomorphism from T to G. Then Cϕ(r),r ̸= ∅.

Proof. Given a node p ∈ VT , we call Tp the subtree of T rooted at p. Let ϕ be a parent-colorful
locally injective homomorphism from Tp to G. We show inductively that C ∈ Cϕ(p),p with C =
{c(ϕ(q)) : q ∈ children(p)}.

We first address the base case of the dynamic program, p is a leaf. For each leaf p ∈ VT , we have
that Cϕ(p),p = {∅}, since L(ϕ(p)) = L(p).

Let now p be a non-leaf. Then, there exists a sequence v1, . . . , vδ of distinct neighbors of ϕ(p)
such that ϕ(qi) = vi, qi ∈ children(p) and, for each q, ϕ|VTq

is still a parent-colorful locally
injective homomorphism from Tq to G. We have inductively that Cq ∈ Cϕ(q),q , with Cq the colorset
associated with ϕ|VTq

, i.e, {c(ϕ(t)) : t ∈ children(q)}.

Since L(ϕ(p)) = L(p), the algorithm starts creating the set Cϕ(p),p in line 12. In particular, it will
try on line 13 the correct sequence of nodes (v1, . . . , vδ) = (ϕ(q1), . . . , ϕ(qδ)) and for that sequence
the algorithm will try on line 16 the sequence of colorsets Cq1 , . . . , Cqδ . Since ϕ is parent-colorful,

22

Published as a conference paper at ICLR 2025

for each q and t ∈ children(q) we have that c(ϕ(p)) ̸= c(ϕ(t)). Then, inductively, c(ϕ(p)) ̸∈ Cq

for each q. Therefore, the set Cp = {c(q) : q ∈ children(p)} is inserted in Cϕ(p),p.

Then we have inductively that Cr ∈ Cϕ(r),r, and we have the claim.

Lemma 7. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors c. If
Cu,r ̸= ∅, then there exists a parent-colorful locally injective homomorphism ϕ from T to G such
that ϕ(r) = u.

Proof. Given a node p ∈ VT , we call Tp the subtree of T rooted at p. We show inductively that if
C ∈ Cu,p, then there exists a parent-colorful locally injective homomorphism ϕ from Tp to G such
that ϕ(p) = u and {c(ϕ(q)) : q ∈ children(p)} = C.

Let p be a leaf. Then we have that Cu,p = {∅} iff L(u) = L(v), that is p 7→ u is a (parent-colorful)
locally injective homomorphism.

Let now C ∈ Cu,p for some non-leaf p. Then, there exists a sequence of distinct nodes (v1, . . . , vδ)
from N (u) such that C was obtained by a sequence of color sets (C1, . . . , Cδ), with Ci ∈ Cvi,qi ,
such that c(u) ̸∈ Ci,∀i.
Then, we have inductively that, for each qi ∈ children(p), there exists a locally injective homo-
morphism ϕi from Tqi to G such that ϕi(qi) = vi and there is no node t ∈ children(qi) with
c(ϕ(t)) = c(u).

The domains of such maps are all distinct, since the sets VTq : q ∈ children(p) are pairwise disjoint.
We can therefore define a new map ϕ : VTp → VG as ϕ|VTqi

= ϕi and ϕ(p) = u. This is a
homomorphism as children of p are mapped to neighbors of u.

We show that ϕ is locally injective for each node q ∈ VTp
. Note that, for each i, for nodes in

VTqi
\ {qi} the connectivity is the same as the one given by ϕi, and the claim therefore is true

inductively. Moreover, since the nodes v1, . . . , vδ = ϕ(q1), . . . , ϕ(qδ) are all distinct, ϕ is locally
injective on p.

Moreover, for qi,∀i, we have that N (qi) = children(qi) ∪ {p}. Clearly ϕ(t1) ̸= ϕ(t2), ∀t1, t2 ∈
children(qi) since ϕ is locally injective on VTqi

. Finally, ϕ(t) ̸= ϕ(p) = u ∀t ∈ children(qi) since
there is no node t ∈ children(qi) with c(ϕ(t)) = c(u). Because of this, the map ϕ is parent-colorful.
Moreover, we have that {c(ϕ(q)) : q ∈ children(p)} = C.

Theorem 6. Let G be a graph, Tr a tree of height h. Let nodes VG be endowed with colors c.
Then, TREE-COLLIHc(u, h)[r] = Cu,r ̸= ∅ if and only if there is a parent-colorful locally injective
homomorphism ϕ from Tr to G such that ϕ(r) = u.

Proof. If there is a parent-colorful locally injective homomorphism ϕ from Tr to G such that ϕ(r) =
u, then by Lemma 6 we have that Cϕ(r),r ̸= ∅. Moreover, by Lemma 7, if Cu,r ̸= ∅, then there exists
a locally injective homomorphism ϕ from Tr to G such that ϕ(r) = u.

Corollary 2. Let Tr a tree of height h, G be a graph whose nodes are endowed with colors c. Let T
be such that ∀p ∈ VT , ∀q ∈ children(p) and ∀t ∈ children(q) it holds that L(p) ̸= L(t). Let also
G be such that the minimum cycle length is at least 2h + 1. Then, TREE-COLLIHc(u, h)[r] ̸= ∅ if
and only if there is a subgraph isomorphism ϕ from T to G such that ϕ(r) = u.

Proof. Let the colors of nodes in G be their labels. Then, any locally injective homomorphism
ϕ from T to G such that ϕ(r) = u is parent-colorful since ∀p ∈ VT , ∀q ∈ children(p) and
∀t ∈ children(q) it holds that L(p) ̸= L(t) and therefore c(ϕ(p)) ̸= c(ϕ(t)).

We apply Theorem 6. We then obtain that Cu,r ̸= ∅ if and only if there is a locally injective
homomorphism ϕ from T to G such that ϕ(r) = u. We need to show injectivity. Suppose by
contradiction that ϕ(q1) = ϕ(q2) for some q1 ̸= q2 ∈ VT . Let p be the lowest common ancestor of q1
and q2. Let (p, t1, . . . , th1

= q1) and (p, s1, . . . , sh2
= q2) be the paths connecting p to respectively

q1 and q2. Since h1, h2 ≤ h, we have h1+h2 ≤ 2h, for any q1, q2. Then, (ϕ(p), ϕ(t1), . . . , ϕ(th1) =

23

Published as a conference paper at ICLR 2025

ϕ(sh2
), . . . , ϕ(s1), ϕ(p)) is a cycle of length at most 2h. This is a contradiction as the minimum

cycle length is at least 2h+ 1.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide further experimental results and supplement the experimental sec-
tion in the main paper. Our code and data are available at github.com/BorgwardtLab/
GNNsCanCountSubstructures.

D.1 COUNTING IN REAL-WORLD DATASETS

In order to showcase the subgraph counting capabilities of GNNs, we selected a subset of molecular
datasets. We focus on molecular benchmark datasets since subgraph mining and counting in molec-
ular data have been the focus of extensive research, due to the relevance of subgraphs corresponding
to functional groups. Such subgraphs play an essential role in generating molecular fingerprints.

Statistical properties of all considered datasets can be found in Table 5. We note that some datasets
include node attribute vectors encoding subgraph information (e.g., the 6-cycle). To mitigate such
biases, we retain only the atom type as node feature in the datasets ogbg-molhiv, ogbg-molpcba,
Peptides-func, and PCQM-Contact, also ensuring consistency with other datasets. All experiments
and statistics provided in this work are based on such reduced node features.

To identify a set of suitable pattern graphs, we used the subgraph miner FSG (Kuramochi & Karypis,
2004), to mine all patterns that occur with a frequency of at least 25% across all considered datasets.
We include all such tree patterns of size 5 and 6 as well as cyclic patterns of size 6 and 7. The condi-
tion on the frequency was implemented to ensure that subgraph counts are non-zero in a substantial
number of cases. To complement the set of patterns with an additional cyclic graph, we furthermore
include the (non-frequent) 5-cycle, which is often of particular interest in molecular structures. Since
node attributes vary between the considered datasets, in Table 4, we depict a pattern graph H with
node colors such that in each dataset the corresponding pattern is obtained by replacing the colors
of H with specific node attributes.

We use the GNNK architecture as described in Section A.1, with K = 4 MLP-layer-based message
passing layers. As some datasets include edge attributes, we modified the model to aggregate and
append edge attributes to the node features during the message passing process. The dimensionality
of the GNN embeddings is fixed at 512. We used the Adam optimizer with a variable learning rate
and a batch size of 128. The data is split into 80% for training and 20% for testing. Finally, we train
for 300 epochs and report the mean as well as the standard deviations over at total of 5 such runs.

We framed the learning problem as a classification task, where the classes correspond to discrete
count values ranging from zero to the maximum count observed in the training set. As evaluation

Table 4: Test set results for subgraph counting with a GNN on molecular graphs. Node colors
visualize different atom types. Reported: Normalized Mean Absolute Error (nMAE, see Def. in
Sect. D.1) and Area Under the Curve (AUC) for the multi-class classification problem.

Pattern

Dataset Metric

Mutagenicity
nMAE 0.071 0.046 0.074 0.048 0.077 0.066 0.057 0.072 0.043 0.071 0.007 0.161 0.167 0.102

±0.018 ±0.008 ±0.009 ±0.009 ±0.012 ±0.013 ±0.010 ±0.011 ±0.010 ±0.020 ±0.002 ±0.044 ±0.024 ±0.016

AUC 0.887 0.936 0.870 0.928 0.912 0.910 0.943 0.898 0.910 0.935 0.889 0.949 0.926 0.796
±0.039 ±0.018 ±0.022 ±0.022 ±0.014 ±0.028 ±0.011 ±0.010 ±0.031 ±0.022 ±0.099 ±0.015 ±0.028 ±0.029

MCF-7
nMAE 0.008 0.010 0.019 0.012 0.017 0.017 0.014 0.017 0.013 0.011 0.015 0.031 0.011 0.019

±0.001 ±0.000 ±0.001 ±0.001 ±0.001 ±0.002 ±0.003 ±0.002 ±0.002 ±0.003 ±0.001 ±0.005 ±0.001 ±0.001

AUC 0.920 0.943 0.941 0.937 0.959 0.913 0.919 0.897 0.859 0.910 0.918 0.955 0.925 0.904
±0.022 ±0.044 ±0.026 ±0.010 ±0.016 ±0.018 ±0.028 ±0.032 ±0.030 ±0.030 ±0.045 ±0.027 ±0.042 ±0.042

ZINC
nMAE 0.012 0.018 0.029 0.012 0.020 0.019 0.018 0.013 0.009 0.011 0.005 0.025 0.009 0.014

±0.001 ±0.003 ±0.004 ±0.001 ±0.003 ±0.002 ±0.003 ±0.001 ±0.002 ±0.001 ±0.001 ±0.007 ±0.002 ±0.002

AUC 0.904 0.966 0.957 0.967 0.940 0.965 0.974 0.906 0.963 0.980 0.991 1.000 0.995 0.972
±0.055 ±0.030 ±0.014 ±0.027 ±0.061 ±0.028 ±0.007 ±0.022 ±0.008 ±0.010 ±0.014 ±0.000 ±0.004 ±0.026

ogbg-molhiv
nMAE 0.002 0.001 0.001 0.017 0.005 0.021 0.002 0.003 0.004 0.002 0.004 0.011 0.002 0.003

±0.001 ±0.001 ±0.000 ±0.020 ±0.003 ±0.024 ±0.001 ±0.002 ±0.003 ±0.000 ±0.002 ±0.004 ±0.001 ±0.001

AUC 0.919 0.958 0.923 0.919 0.914 0.928 0.975 0.882 0.915 0.923 0.961 0.917 0.972 0.902
±0.021 ±0.013 ±0.024 ±0.022 ±0.038 ±0.007 ±0.011 ±0.057 ±0.040 ±0.017 ±0.028 ±0.033 ±0.017 ±0.020

ogbg-molpcba
nMAE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

AUC 0.946 0.961 0.945 0.971 0.983 0.958 0.972 0.902 0.944 0.946 0.998 0.952 0.962 0.921
±0.046 ±0.031 ±0.025 ±0.015 ±0.018 ±0.019 ±0.040 ±0.053 ±0.047 ±0.029 ±0.003 ±0.042 ±0.046 ±0.064

Peptides-func
nMAE 0.001 0.016 0.029 0.017 0.008 0.001 0.001 0.001 0.001 0.003 0.002 0.000 0.001 0.001

±0.000 ±0.006 ±0.010 ±0.015 ±0.003 ±0.001 ±0.000 ±0.000 ±0.001 ±0.000 ±0.001 ±0.000 ±0.001 ±0.001

AUC 0.949 0.987 0.977 0.930 0.970 0.941 0.897 0.952 0.936 0.980 0.929 0.940 0.882 0.964
±0.004 ±0.007 ±0.014 ±0.020 ±0.011 ±0.068 ±0.093 ±0.060 ±0.061 ±0.021 ±0.035 ±0.058 ±0.081 ±0.018

PCQM-Contact
nMAE 0.000 0.003 0.006 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001

±0.000 ±0.000 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.001 ±0.001 ±0.000 ±0.000

AUC 0.998 0.963 0.948 0.968 0.982 0.946 0.997 0.947 0.987 0.994 0.990 0.986 0.999 1.000
±0.002 ±0.005 ±0.009 ±0.017 ±0.013 ±0.008 ±0.002 ±0.040 ±0.002 ±0.001 ±0.006 ±0.027 ±0.002 ±0.000

24

github.com/BorgwardtLab/GNNsCanCountSubstructures
github.com/BorgwardtLab/GNNsCanCountSubstructures

Published as a conference paper at ICLR 2025

Table 5: Statistical properties of real-world molecular datasets. We report the number of graphs, as
well as the average number of nodes and edges. All datasets are endowed with node and edge labels.

Name # Graphs Avg. # nodes Avg. # edges

Mutagenicity (Kersting et al., 2016) 4337 30.32 30.77
MCF-7 (Kersting et al., 2016) 27770 26.40 28.53
ZINC (Gómez-Bombarelli et al., 2018) 12000 23.16 24.92
ogbg-molhiv (Hu et al., 2021; Wu et al., 2018) 41127 25.51 27.47
ogbg-molpcba (Hu et al., 2021; Wu et al., 2018) 437929 25.97 28.11
Peptides-func (Dwivedi et al., 2022; Singh et al., 2015) 15535 150.94 153.65
PCQM-Contact (Dwivedi et al., 2022) 529434 30.14 30.54

metrics, we used Area Under the Curve (AUC) as well as normalized Mean Absolute Error (nMAE).
For AUC, we employed the One-vs-One approach to evaluate the model’s performance across mul-
tiple classes. The nMAE is defined as the mean average error normalized by the true values. More
formally, for true and predicted values yi and ŷi with i ∈ [N], it is given by 1

N

∑N
i=1

|yi−ŷi|
max(1,|yi|)

where the max function is used to avoid divisions by zero.

Table 4 presents the predictive performance across a wide range of dataset and pattern graph combi-
nations. The results clearly demonstrate that subgraph counting on real-world molecular graphs can
be done quite accurately.

D.2 NUMBER OF TRUNCATED UNIVERSAL COVERS

In Table 6, we provide the numbers of distinct WLℓ node labels for ℓ ∈ [1, 6], or equivalently, the
numbers of non-isomorphic truncated universal covers ηℓ,G over a given dataset G. We observe that,
the Peptides-func dataset has low values of ηℓ,G , wich suggests the applicability of the results of
Section 4.

These values, as well as the values reported in Table 2 and Table 3, are obtained by taking into
account edge label information. Moreover, as discussed in the previous section, we retain only the
atom type as node features.

Table 6: Number of node and edge labels of common molecular datasets (where we restrict node
labels to atom types only), and number ηℓ,G of non-isomorphic truncated universal covers.

ηℓ,G

Dataset node
labels

edge
labels ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

Mutagenicity 14 3 334 4997 21118 43750 63568 76920
MCF-7 46 3 668 18163 112803 229231 328616 409294
ZINC 21 3 499 13006 70302 144592 198159 229065
ogbg-molhiv 55 7 1923 37286 169766 319986 446262 547678
ogbg-molhiv 44 11 1185 44190 314139 915519 1857547 3040681
Peptides-func 6 5 76 411 1308 4704 18248 68392
PCQM-Contact 15 4 1745 97914 913960 2812873 5249611 7492474

D.3 QUITE-COLORFULNESS IN MOLECULAR DATASETS

We now experimentally evaluate the assessment made in Section 5.2 on the quite-colorfulness of
subgraph isomorphisms in cases where the pattern at hand is not quite-colourful itself. Figure 6 re-
ports the proportion of quite-colorful subgraph isomorphisms from non-quite-colorful tree patterns.
Specifically, for a given dataset, we iterate over all subgraph isomorphisms from the pattern to the
disjoint union of dataset graphs, and check each subgraph isomorphism for whether it is quite colour-
ful. We report the ratio |Q|/|S| of quite-colorful subgraph isomorphisms |Q| to the total number of
subgraph isomorphisms |S| for increasing numbers of WL iterations l.

25

Published as a conference paper at ICLR 2025

Figure 6: Proportion of subgraph isomorphisms that are quite colourful, reported for colors c ob-
tained by increasing numbers of color refinement iterations l. The proportion is given as |Q|/|S|,
where |Q| is the number of quite colourful subgraph isomorphisms from the pattern to the dataset
graphs, and |S| is the total number of subgraph isomorphisms.

The results show that for several real-world datasets, such as MCF-7, Mutagenicity, and ZINC,
nearly all subgraph isomorphisms are quite colourful when target graphs are node-colored using 4
iterations of color refinement. Naturally, as the patterns themselves are not quite-colorful, none of
the subgraph isomorphisms are quite-colorful when target graphs are not node-colored with color
refinement (case l = 0). Notably, an interesting case arises in the Peptides-func dataset, where for
one of the tree patterns none of the subgraph isomorphisms are quite colourful, regardless of the
value of k.

D.4 RULING OUT STAR PATTERNS

We now empirically validate Corollary 2 and Theorem 5 on challenging synthetic datasets. More
specifically, we demonstrate that (non-induced) subgraph counting can be done in practice for sce-
narios fulfilling parent-colorfulness (see Def. 5) and quite-colorfulness (see Def. 3). Recall that
while Chen et al. (2020) show that subgraph counting cannot be done by GNNs in general, (non-
induced) counting of star-shaped patterns nonetheless remains possible. To rule out the possibility
that a model is leveraging this information in the following experiments, we specifically construct
datasets where every graph has the same multiset of star-shaped patterns.

In all experiments, we used a 4-layer GNN, as specified by the functions in Section A.1, with a
hidden dimension of 512, a batch size of 128, and the Adam optimizer. The data was split into 80%
for training and 20% for testing. We report the predictive performance after 1,000 epochs.

To verify the claim in Corollary 2, we randomly generated 2,000 graphs, each with 32 nodes and
39 edges, ensuring that the minimum cycle length was 5. Node labels were assigned based on node
degree to guarantee that the mappings from the patterns are parent-colorful. More precisely, we first

26

Published as a conference paper at ICLR 2025

generated trees of size 32 using a fixed node degree sequence, then added 8 edges while ensuring
that the resulting graphs have the same node degree set and contained no cycles of length 4 or less.

Table 7 (left) shows the predictive performance for several pattern graphs. In accordance with Corol-
lary 2, the results show a near perfect predictive performance on the test set on all pattern graphs.

We furthermore investigate the case where pattern mappings are quite-colorful. For this, we gener-
ated a more challenging dataset of 2,000 randomly generated graphs with 96 nodes and 120 edges
each, with no constraints on the minimum cycle length. More precisely, we randomly generated
the graphs using a fixed node degree sequence. Node labels were assigned based on node degree.
We consider patterns that ensure mappings are quite-colorful. Table 7 (right) shows that the model
learns to count very accurately. Note that the predictive performance increases for larger patterns,
which might be due to the usually large and diverse subgraph counts of small patterns.

Table 7: Predictive performance for non-induced subgraph counting in scenarios where pattern
matching is parent-colorful (left) and quite-colorful (right).

Metric

MAE 0.000 0.020 0.000 0.090 0.015
AUC 1.000 0.980 1.000 0.959 0.968

Metric

MAE 0.128 0.138 0.015 0.000 0.000
AUC 0.966 0.860 0.986 1.000 1.000

27

	Introduction
	Related work

	Preliminaries
	Universality on WL-distinguishable graphs
	Universality for Local Functions
	Fine-grained distinguishability of nodes

	Algorithmically-aligned GNNs for tree patterns
	A dynamic program for colorful subtree isomorphism
	Graph Neural Networks can simulate Tree-ColSI
	Extensions

	Experimental evaluation
	The conditions for subgraph counting hold in practice
	Additional experimental results

	Discussion and conclusions
	Additional Details
	Expressive graph neural networks
	Sample complexity and pseudo-dimension
	Computational complexity
	An example of the execution of Tree-colSI

	Extensions to the dynamic programming algorithm
	A dynamic program for colorful subtree isomorphism
	Dealing with cyclic patterns
	From subgraph detection to counting

	Proofs
	Section 3
	Section 4
	Section 5.1
	Section 5.2
	Section B.1

	Additional experimental results
	Counting in real-world datasets
	Number of truncated universal covers
	Quite-colorfulness in molecular datasets
	Ruling out star patterns

