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CP-Prompt: Composition-Based Cross-modal Prompting for
Domain-Incremental Continual Learning

Anonymous Author(s)

ABSTRACT
The key challenge of cross-modal domain-incremental learning
(DIL) is to enable the learning model to continuously learn from
novel data with different feature distributions under the same task
without forgetting old ones. However, existing top-performing meth-
ods still cause high forgetting rates, by lacking intra-domain knowl-
edge extraction and inter-domain common prompting strategy. In
this paper, we propose a simple yet effective framework, CP-Prompt,
by training limited parameters to instruct a pre-trained model to learn
new domains and avoid forgetting existing feature distributions. CP-
Prompt captures intra-domain knowledge by compositionally insert-
ing personalized prompts on multi-head self-attention layers and then
learns the inter-domain knowledge with a common prompting strat-
egy. CP-Prompt shows superiority compared with state-of-the-art
baselines among three widely evaluated DIL tasks. The source code
is available at https://anonymous.4open.science/r/CP_Prompt-C126.

CCS CONCEPTS
• Computing methodologies → Object recognition.

KEYWORDS
Prompts Learning, Cross-modal, Domain Incremental Learning

1 INTRODUCTION
Cross-modal models have garnered significant attention due to their
capability to process and integrate diverse types of data. However,
these models often encounter the challenge of different domains data
feature distributions in practical applications. Domain Incremental
Learning (DIL) [42] is a special incremental learning task, where the
learning model is trained on a sequence of domains over time, with
each domain or task presenting new and potentially information,
e.g. distributional shift [1]. Under this setting, the tasks in each
domain remain the same and the testing sample does not know
which domain it belongs to. A vivid example is shown in Figure
1, where the learned model was firstly trained with qickdraw-style
pictures, and then tested to classify the same category under different
styles, such as infographics, painting, and clipart. The key success of
DIL algorithm is to adapt and learn from sequential domains without
forgetting the knowledge it has acquired from previous ones.

A key challenge for domain incremental learning is how to deal
with the phenomenon of catastrophic forgetting [31, 32]. When
learning new domains in sequence, the model may forget previous
knowledge, leading to poor performance on old domains. To alleviate
this issue, previous work [14, 35, 38] utilizes a buffer containing
exemplars from previous tasks to facilitate learning new tasks. Then
remarkable progress has recently been made in DIL tasks using
prompt learning methods. Such as building prompt pool [46], adding
different classification tokens [9], employing prompt on multi-modal
pre-trained models [44].

Figure 1: A toy example of CP-Prompt in a domain-incremental
learning task.

Despite this, two challenges still remain: (1) How to make the
trade-off between common and personalized knowledge within
DIL process? Previous studies have shown that extracting common
patterns between domains and enhancing personalized knowledge
with each domain are both helpful in DIL. However, from the other
side, how to balance inter-domain and intra-domain feature learning
is still unaddressed. (2) How to depict the impact of domain con-
text on embedding tokens? For the transformer which is widely
adopted by DIL models, the effectiveness comes from routing in-
formation of lists of complex tokens to acquire the correlation by
self-attention. However, this structure is difficult to learn informa-
tion outside the fix-sized space of transformer [11]. Thus, additional
domain context information should be guided into the transformer
encoding process.

To this end, in this paper, we present a prompt learning framework,
namely CP-Prompt (Common & Personalized), to instruct a pre-
trained model to learn on incremental data domains with different
data styles. As Figure 1 depicts, CP-Prompt adopts a twin-prompt
strategy. The shared common prompts, embedding within shallow
part of the model, are employed to learn knowledge of new do-
mains sequentially and then frozen. Common prompts embedding
of models can preserve knowledge among domains. The personal-
ized prompts, called Prefix-One, embedded within the self-attention
layers of the pre-trained model, contribute to model inference with
domain style features. By incorporating these two prompts, the pre-
trained model can be continually learned without tuning its original
parameters.

The contributions of this paper are summarized as follows:

• We present a simple yet effective prompt tuning framework CP-
Prompt for cross-modal domain-incremental learning, with a
parameter-efficient twin-prompting design that preserved both
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inter-domain common knowledge and intra-domain personalized
knowledge.

• We further designed Prefix-One, which can incorporate domain
context information into the self-attention layer, therey guiding
the transformer to fully utilize domain knowledge at different
semantic levels for DIL process.

• CP-Prompt is evaluated on three widely used DIL benchmark
datasets and outperforms existing state-of-the-art sample-free
baselines. Furthermore, only minimal additional parameters (0.22%)
are tuned by CP-Prompt, and gaining at even 2.3% improvement,
showing its effectiveness in both parameter efficiency and model
accuracy.

2 RELATED WORK
Domain Incremental Learning. DIL refers to a type of contin-

uous learning scenario where the feature distribution of the same
task changes across different domains [42]. In other words, the
data in each domain is used to accomplish the same task but dif-
fers from each other significantly [20, 33]. The goal of DIL is to
enable the model to learn about newly added domains without re-
training from scratch while maintaining its generalization in the
original domains. Traditionally employed methods typically in-
clude architecture-, regularization-, and replay-based approaches.
Architecture-based methods create independent components for
each task or focus on task-specific subnetworks to avoid interfer-
ence between network parameters to alleviate forgetting, such as
XdG [30], DEN [48], PAE [17], and CPG [18]. Regularization-based
approaches [21] [34]constrain or penalize significant model changes
to keep memory on the previous domain with regularized losses
such as distillation loss [25], and parameter update loss [50]. Replay-
based methods mitigate catastrophic forgetting by preserving a small
subset of the previous domain and replaying them when training
new tasks, such as ER [39], DGR [2], iCaRL [38], BI-R [41], and
A-GEM [6].

Prompt Learning. Prompt learning originated from manually de-
signing templates as extra instructions to pre-trained models for
efficient adaptation to downstream tasks. Compared with human-
defined fixed ones, treating prompts as learnable parameters sig-
nificantly enhances the efficiency and effectiveness of the model
instruction [19, 29, 52]. In this setting, prompt learning only needs a
tiny set of parameters for training instead of tuning the entire pre-
trained model, benefiting much time- and cost-sensitive scenarios
such as incremental learning and transfer learning [12, 13]. This
parameter-efficient tuning method is primarily classified into three
types, including addition-, specification, and reparameterization-
based approaches. Addition-based methods introduce extra trainable
neural modules not present in the original model, such as Prompt
Tuning [22], Prefix Tuning [24], Adapter Tuning [15], and P-Tuning
[26, 27]. Specification-based methods specify certain parameters in
the original model as trainable and leave the rest frozen, such as
BitFit [49]. Reparameterization-based methods transform existing
parameters into a more parameter-efficient form, including LoRA
[16], AdaLoRA [51], and QLoRA [8].

Prompt Learning for DIL.. Compared with traditional approaches,
prompt learning-based DIL methods have shown prominent advan-
tages in both model performance and efficiency. For example, Dy-
Tox [9] applies the vision transformer in continual computer vision
tasks, eliminating the class token and devising personalized tokens
for each task. L2P [46] employs a learnable key/prompt mechanism
to select prompts added into image tokens based on the similarity be-
tween the keys and tokens. It introduces the concept of a prompt pool,
based on a key-value mechanism to learn specific prompts within
domains and make inferences by selecting appropriate prompts from
the pool. Recent approaches such as S-liPrompts [44] achieve re-
markable results which independently learn a set of prompts for
each domain using prompt tuning only, but still overlooking shared
knowledge between domains and leaving significant room for im-
provement in intra-domain training methods. Not only limited ti DIL
tasks, the class incremental learning (CIL) methods also employ
prompt to optimize models. Dual-Prompt [45] incorporates both gen-
eral and expert prompts embedded in the pre-trained model, aimed
at preserving personalized knowledge for retaining global shared
knowledge and category distribution. HiDe-Prompt [43] expands
the distance of category distribution using a contrastive loss penalty
term, and identifies different tasks by optimizing the output layers.

3 PRELIMINARY
Prompt Learning on Pre-trained Models. Pre-trained models fol-

low a paradigm that trains its parameters via massive self-supervised
labeled data for general ability and fine-tunes them with few la-
beled data for downstream tasks. Prompt learning provides a tiny-
parameter-sized embedding to guide a model to generate better re-
sponses, thereby significantly reducing the resource burden of model
training and tuning. Taking the visual-text pre-trained model CLIP
as an example, it comprises a visual encoder and a text one. In the
image encoder, an image 𝑥 ∈ R𝐻×𝑊 ×𝐶 in encoded as a sequence of
vectors 𝒙𝑒𝑚𝑏 ∈ R𝐸𝐼 ×𝐷 by the visual encoder, where𝐻,𝑊 represents
the resolution of the original image, 𝐶 is the number of channels, 𝐸𝐼
is the feature size after convolution, and 𝐷 is the embedding dimen-
sion. To perform prompt tuning on CLIP, we can inject tiny-sized
parameters into a pre-trained model and only train them to adapt to
downstream tasks. To formalize, the vector of image samples 𝒙𝑒𝑚𝑏

is concatenated with soft prompts 𝑃 ∈ R𝐿×𝐷 ,

𝒙𝑝 = [𝑃, 𝒙𝑒𝑚𝑏 ] ∈ R(𝐸𝐼 +𝐿)×𝐷 , (1)

where 𝐿 is the prompts length. Discovering the best prompts involves
picking specific tokens, which can be achieved through either manual
exploration or non-gradient-based search techniques [40].

The vector 𝒙𝑝 is then encoded by transformer layers, resulting
in a high-dimensional projection 𝒙ℎ ∈ R𝐻𝐼 ×𝐷 , where 𝐻𝐼 is the
number of image features in high dimensional space. Similarly, in
the text encoder, we encode words through vocabulary and positional
embedding 𝒕𝑒𝑚𝑏 ∈ R𝐸𝑇 ×𝐷 , which after transformer encoding also
yields 𝒕ℎ ∈ R𝐻𝑇 ×𝐷 , where 𝐸𝑇 is the feature size, and 𝐻𝑇 is the
number of text features in high dimensional space. The CLIP model
seeks the mapping relationship between the two high-dimensional
embeddings 𝒙ℎ and 𝒕ℎ through a contrastive loss. When predicting
new-coming data, all parameters of CLIP are frozen, and the loss

2
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Figure 2: The pipeline of CP-Prompt on new domain with twin-prompt structure. By taking CLIP as an example, the common prompts
are sequentially trained based on the one from the previous domain, while domain-specific personalized prompts are embedded into
key and value vectors to guide the model to learn the latent semantics. During the inference, similarity-based distances on embedding
by 𝐾-Means determine the personalized domain prompts.

gradient is only back-propagated to prompts parameters, thereby
significantly reducing model training cost.

Problem Definition. In this paper, we take the widely-used multi-
modal model-based image classification as the benchmark scenario
[44]. Suppose there is a set of domains which each domain is de-
noted as D𝑠 = {𝑥𝑠,𝑖 , 𝑦𝑠,𝑖 }𝑁𝑖=1 ∈ 𝑆 , where 𝑥𝑠,𝑖 ∈ R𝐻×𝑊 ×𝐶 is the 𝑖-th
image sample from the 𝑠 domain, and 𝑁 denotes the total number
of samples. 𝑦𝑠,𝑖 corresponds to the label associated with the sample.
The feature distribution of data among different domains is highly
heterogeneous, and each domain covers all the classes𝑈 of the gen-
eral task. In the DIL setting, only one domain data can be accessed
by the learning model at one time. Additionally, data from previously
visited domains cannot be used again when the model is training
on the following domains. Formally, the learning model M begins
training on D1 and progressively learns D2, . . . , D𝑆 . The crucial
challenge in DIL is to ensure that under D𝑆 , the model M can still
maintain the performance on D1, . . . ,D𝑆−1. The motivation of this
research is to enhance the accuracy of tasks across all domains in this
learning paradigm. Eventually, the objective of DIL is to optimize
the following objective function:

L =

𝑠∑︁
𝑖=1

argmin
𝑃

L𝑖 (𝐹 (𝑃,M) (𝑥)) (2)

where 𝐹 (𝑃,M) (𝑥) ∈ R𝑈 is the prediction projection by model param-
eter M as well as tuned prompts parameters 𝑃 , L𝑖 is the prediction
loss in 𝑖-th domain.

4 THE CP-PROMPT FRAMEWORK
4.1 Overall Structure
The overall pipeline of the proposed CP-Prompt is presented in Fig-
ure 2. In CP-Prompt, we propose a twin-prompting strategy. The
underlying assumption of this design is that the learning model
should be guided by inter-domain shared prompts to enhance the
generalization of common knowledge for the overall task. Simulta-
neously, personalized prompts within the domain guide the model to
capture personalized knowledge, improving accuracy for specifici-
ties. Specifically, personalized prompts are embedded into key and
value vectors in different transformer layers for guiding the model to
learn latent semantics with different granularities. During the infer-
ence, a simple 𝐾-Means algorithm is utilized to select appropriate
common and personalized prompts to guide the pre-trained model
to encode new image tokens for classification.
4.2 Common Prompts
As shown in Figure 2, we design a continually tuned common
prompting strategy for guiding the learning model to extract shared
knowledge across each domain. The common prompts are tiny-sized
parameters that are tuned by loss gradient calculated by prediction
on each domain data sample. At this moment, the entire parameters
of the pre-trained model are frozen so that the generation variation
of the model would only be affected by inputs and prompts.

For the sake of simplification, here we describe the prompting on
the image encoder side. Formally, for the 𝑖-th domain dataset D𝑠 =

{𝑥𝑠,𝑖 , 𝑦𝑠,𝑖 }𝑁𝑖=1, the image tokens 𝒙𝑠,𝑖
𝑒𝑚𝑏

∈ R𝐸𝐼 ×𝐷 are obtained by the
initial convolutional neural network embedding layer. Subsequently,
𝒙𝑠,𝑖
𝑒𝑚𝑏

is concatenated with the common prompts 𝑷𝑠C ∈ R𝐿C×𝐷 .
3
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Figure 3: Prefix-One prompting in the Multi-Head Self-
Attention (MSA) layer.

In the design of the common prompts, we composite prompt-
empowered embedding 𝒙𝑠𝑝 by domain globally shared prompts 𝑷𝑠C
and image tokens:

𝒙𝑠𝑝 ∈ R𝑀×𝐷 = [Img𝐶𝐿𝑆 ; 𝒙
𝑠,𝑖

𝑒𝑚𝑏
; 𝑷𝑠C], (3)

where [; ] denotes the vector concatenation operation. Img𝐶𝐿𝑆 de-
notes the image pre-training class tokens, and 𝑀= 𝐸𝐼 + 𝐿𝐶 + 1. The
shared prompts information we propose are directly integrated with
image tokens. As input for subsequent transformer encoding, this
approach enables the multi-head self-attention (MSA) mechanism
to effectively learn the prompt-guided token embeddings.

After the common prompts are tuned on one domain dataset, we
make a copy of these prompts as frozen ones to serve as common
prompts on domain 𝑠, and we sequentially tune the original prompts
to fit the next domain 𝑠 + 1, thereby obtaining 𝑷𝑠+1C sharing effective
information and minimizing forgetting.

4.3 Personalized Prompts
In addition to the complementary formation of common prompts,
personalized prompts are embedded across the transformer’s atten-
tion layers in the form of parameters, capturing semantics at different
granularities.

Prefix-One Prompting. The embeddings 𝒙𝑠𝑝 then undergo pro-
jection transformation by the transformer layers of the pre-trained
model. Therefore, inserting personalized prompts 𝑷𝑠P,𝑖𝑚𝑔

∈ R𝐿𝑃𝐼 ×𝐷
into MSA layers can help to instruct the attention-capturing domain-
individual semantics and knowledge, where 𝐿𝑃𝐼 denotes the length
of the personalized prompts.

Inspired by Prefix-Tuning [24], we incorporate prompts into the
prefix section of data features. To apply domain context into the
MSA layer, we add soft prompts to the 𝐾𝑒𝑦 matrix, and multiply it
by the 𝑄𝑢𝑒𝑟𝑦 matrix containing only the original data, then derive
attention score. The attention score calculates the original data and
the contextual information related to the domain style. The attention

score is then multiplied by the 𝑉𝑎𝑙𝑢𝑒 matrix that is the same as the
𝐾𝑒𝑦. The obtained output incorporates the contextual knowledge
within the current domain, and this attention extension is named
as Prefix-One, as presented in Figure 3. It enables the pre-trained
model to consider the particularity of personalized domain style and
achieve the effect of adapting to domain tasks with less training cost.

Formally, in Prefix-One within the MSA layers, we iteratively
obtain encoding by compositing personalized prompts into key and
value embeddings:

𝒉(𝑙+1)𝑚 = 𝑓
(𝑙 )
𝑃𝑟𝑒−𝑂𝑛𝑒

(
𝑷 (𝑙 )
P,𝑖𝑚𝑔

,𝒉(𝑙 )𝑚

)
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

©­­«
𝒉(𝑙 )𝑞 𝒉(𝑙 )

𝑘√︃
𝑑𝑞,𝑘

ª®®¬ · 𝒉
(𝑙 )
𝑣 ,

(4)

where 𝑙 = 0, 1, . . . 𝑅 (𝑅 indicates the number of transformer layers),
𝒉(0)𝑚 = 𝒙𝑠𝑝 , and 𝒉(𝑙 )𝑞 ,𝒉(𝑙 )

𝑘
,𝒉(𝑙 )𝑣 are calculated by:

𝒉(𝑙 )𝑞 ∈ R𝑀×𝐷 = 𝒉(𝑙 )𝑚 𝑊
(𝑙 )
𝑞 , (5)

𝒉(𝑙 )
𝑘

∈ R(𝑀+𝐿𝑃𝐼 )×𝐷 = [𝒉(𝑙 )𝑚 ; 𝑷 (𝑙 )
P,𝑖𝑚𝑔

]𝑊 (𝑙 )
𝑘
, (6)

𝒉(𝑙 )𝑣 ∈ R(𝑀+𝐿𝑃𝐼 )×𝐷 = [𝒉(𝑙 )𝑚 ; 𝑷 (𝑙 )
P,𝑖𝑚𝑔

]𝑊 (𝑙 )
𝑣 , (7)

where 𝑷 (𝑙 )
P,𝑖𝑚𝑔

represents the image personalized prompts parameters

for the 𝑙-th layer. 𝒉(𝑙 )𝑞 ,𝒉(𝑙 )
𝑘
,𝒉(𝑙 )𝑣 are outputs to the 𝑙-th MSA layer in

the image transformer.𝑊 (𝑙 )
𝑞 ,𝑊

(𝑙 )
𝑘
,𝑊

(𝑙 )
𝑣 represent the corresponding

model parameters. Since the prompts on the image side are em-
bedded in the MSA layer, for a pre-trained model with 𝑅 layers of
the transformer architecture, prompts can be embedded in multiple
layers of MSA to better learn domain-specific knowledge.

Generalizing to text encoder. The Prefix-One for text-based en-
coder is similar to the image one. Taking our adopted CLIP ar-
chitecture as an example, the complete label set 𝑌 = {𝑦 𝑗 }𝑈𝑗=1 is

transformed to texts. The encoded label text set 𝑌𝑒𝑚𝑏 = {𝑦 𝑗
𝑒𝑚𝑏

} ∈
R𝑈 ×𝐷 is concatenated with the text personalized prompts 𝑷𝑠P,𝑡𝑒𝑥 ∈
R𝐿𝑃𝑇 ×𝐷 , where 𝐿𝑃𝑇 is the length of the personalized prompt for text.
The high-dimensional projection after feature extraction by the text
transformer is 𝒕𝑠

ℎ
∈ R𝑈 ×𝐷 , and 𝐿𝑇 represents the feature count after

encoding the label set using the vocabulary and adding positional
vectors.

The composition of 𝑷𝑠P,𝑡𝑒𝑥 is similar to the shared prompts on
the image side. The encoded label 𝑦𝑒𝑚𝑏 is concatenated with the
class token Tex𝐶𝐿𝑆 and prompts 𝑷𝑠P,𝑡𝑒𝑥 , to derive 𝒆𝑠 :

𝒆𝑠 ∈ R(1+𝑈 +𝐿𝑃𝑇 )×𝐷 = [Tex𝐶𝐿𝑆 ; 𝑷𝑠P,𝑡𝑒𝑥 ;𝑌𝑒𝑚𝑏 ] . (8)

After feature extraction by the frozen pre-trained transformer’s
multi-head attention mechanism, the classification token 𝒕𝑠

ℎ
is ob-

tained by:
𝒕𝑠
ℎ
= 𝑔M (𝒆𝑠 ·𝑾𝑠 + 𝒃𝑠 ), (9)

where 𝑾𝑠 denotes the fixed parameters of the text pre-trained model,
and 𝒃𝑠 represents the associated bias values, and the rest of this
structure for text is the same as image one.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

CP-Prompt: Composition-Based Cross-modal Prompting for Domain-Incremental Continual Learning ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Method Buffer size Prompt AA AF

LRCIL × 76.39* -4.39*
iCaRL 100/class × 79.76* -8.73*
LUCIR × 82.53* -5.34*

LRCIL

50/class

× 74.01* -8.62*
iCaRL × 73.98* -14.50*
LUCIR × 80.77* -7.85*
DyTox ✓ 86.21* -1.55*

EWC

No Buffer

× 50.59* -42.62*
LwF × 60.94* -13.53*
DyTox ✓ 51.27* -45.85*
L2P ✓ 61.28* -9.23*
HiDe-Prompt ✓ 84.32 -2.61
S-liPrompts ✓ 88.79 -0.63
Dual-Prompt ✓ 92.51 -0.76
CP-Prompt(Ours) ✓ 93.65 -0.25

Table 1: DIL Results on CDDB-Hard. * represents the result is
quoted from [44].

4.4 Overall Objective for CP-Prompt
Finally, the logits 𝒛𝑠 ∈ R𝑈 , are computed by matrix multiplication
of the high-dimensional projections from the image and text sides:

𝒛𝑠 = 𝒉(𝑅)𝑚 · (𝒕𝑠
ℎ
)⊤ . (10)

It should be noted that, after continual training on 𝑠-th domain, 𝑷𝑠C
is not only used as common prompts for the current domain, but
also the initialization for the next one. However, the deep domain-
specific knowledge-oriented personalized prompts 𝑷𝑠P are isolated
and optimized in different domains.

During the inference stage, we adopt a simple yet effective unsu-
pervised clustering, 𝐾-Means, as domain selector to assign model
extracted features with 𝐾 domain centroids F = {𝒎 𝑗

𝑓
}𝑠
𝑗=1

as feature

pool. Given a new arriving sample 𝒙𝑛𝑒𝑤 , the domain selector selects
the most relevant personalized prompts for inference by measuring
the distance between 𝒙𝑛𝑒𝑤 and F. Following the multimodal pre-
training setting [44], the model inferences prediction 𝒛𝑠

′
is derived

by freezing prompts parameters and untuned pre-trained model:

𝒛𝑠
′
= 𝑓𝑃𝑟𝑒−𝑂𝑛𝑒 (𝑷𝑠C, 𝑷

𝑠
P,𝑖𝑚𝑔

) × 𝑔𝑀𝑝𝑟𝑒
(𝑷𝑠P,𝑡𝑒𝑥 ). (11)

The goal of the model is to optimize the following loss function
by tuning the tiny-sized prompts parameters 𝑷𝑠C, 𝑷

𝑠
P,𝑖𝑚𝑔

, 𝑷𝑠P,𝑡𝑒𝑥 :

L = − 1
2𝑛

𝑛∑︁
𝑖=1

𝑦 log(𝒛𝑠
′
) + (1 − 𝑦) log(1 − 𝒛𝑠

′
). (12)

The overall training process is formally described in Algorithm 1.

4.5 Model Analysis
We conduct model analysis to demonstrate the rationality behind
the simple design of CP-Prompt. We will demonstrate the relation-
ship with Dual-Prompt, a class-incremental learning model that
utilizes a combination of double prompts. We extracted Dual Prompt
core modules and transformed them for use in domain incremental
tasks. First we will explain the difference between General-Prompt

Method Buffer size Prompt AA

ER

50/class

× 79.75±0.84*
GDumb × 74.92±0.25*
BiC × 79.28±0.30*
DER++ × 79.70±0.44*
Co2L × 79.75±0.84*
L2P × 81.07±0.13*

EWC

No Buffer

× 74.82±0.60*
LwF × 75.45±0.40*
L2P ✓ 78.33±0.06*
HiDe-Prompt ✓ 80.81±0.76
S-liPrompts ✓ 87.07±0.65
Dual-Prompt ✓ 88.74±0.36
CP-Prompt(Ours) ✓ 90.67±0.55

Table 2: DIL Results on CORe50. * represents the result is
quoted from [44].

Algorithm 1 The training algorithm of the CP-Prompt.

Input: T : Pre-trained image model; G: Pre-trained language model;
D𝑠 = {𝑥𝑠,𝑖 , 𝑦𝑠,𝑖 }𝑁𝑖=1: Training data; 𝑌𝑒𝑚𝑏 = {𝑦 𝑗

𝑒𝑚𝑏
}: Text class

embeddings.
1: Initialization: Common Image Prompt Pool:𝑷 C ; Personalized

Image Prompt Pool: 𝑷P,𝑖𝑚𝑔; Personalized Language Prompt
Pool:𝑷P,𝑡𝑒𝑥 ; Domain centroids: F

2: for 𝑠 = 1, 2, ...𝑆 do
3: Initialize common prompt 𝑷𝑠C = 𝑷𝑠−1C for domain s
4: Initialize personalized image prompt 𝑷𝑠P,𝑖𝑚𝑔

for domain s
5: Initialize personalized language prompt 𝑷𝑠P,𝑡𝑒𝑥 for domain s
6: 𝒙𝑠𝑝 Propagate by Eq. (3)

7: 𝒉(𝑅)𝑝 Propagate by Eq. (4)
8: 𝒕𝑠

ℎ
Propagate by Eq. (8) and Eq. (9)

9: Calculate class embeddings 𝑌𝑒𝑚𝑏 by pre-trained model G
10: Compute the prediction probability by Eq. (11)
11: Compute the Cross-Entropy loss by Eq. (12)
12: Update 𝜃𝑃𝑠

C
;𝜃𝑃𝑠

P,𝑖𝑚𝑔
;𝜃𝑃𝑠

P,𝑖𝑚𝑔

13: end for
14: Calculate training sample features by T (𝑥𝑠,𝑖 )
15: Calculate domain clustering centroids {𝒎 𝑗

𝑓
}𝑠
𝑗=1

by K-Means

16: Save centroids in the list F

and Common-Prompt, and then demonstrate the difference between
Expert-Prompt and Personalized-Prompt.

Common prompts vs. General prompts. In CP-Prompt, we design
the common prompt as: 𝒙𝑝 = [𝑃, 𝒙𝑒𝑚𝑏 ] ∈ R(𝐸𝐼 +𝐿)×𝐷 , where 𝒙𝑝 is
the feature after initial encoding and 𝐿 is the prompts length. The
purpose of this design is to retain shared information based on the
characteristics of different data domains, and on the other hand, to
enable multi-layer personalized prompts to deeply extract shared
information. 𝑔 (𝑙 ) ∈ R𝐿𝑔×𝐷 is General prompts to be attached to the
𝑙-th MSA layers.

We explored embedding the General prompt in MSA layers, as
shown in the figure 5. As the number of embedding layers increases,
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Figure 4: The model performance variation results from inserting personalized prompts into different consecutive transformer layers.
The vertical axis represents the starting layer index for inserting personalized prompts, while the horizontal axis represents the ending
layer index.

Figure 5: Common prompts Comparison of different MSA layers
embedding General prompts. The vertical axis is the average
accuracy of the model. The horizontal axis from left to right is
the domain data sequentially learned by the model.

the forgetting rate of the model will increase significantly. The per-
formance of our proposed method is better than the shallowest em-
bedding of General Prompt.

Furthermore, targeting at the domain-incremental scenario, cate-
gory information in complete before the dataset transfer, while the
core challenge is to model the different feature distribution. Thus,
the class-incremental-oriented methods such as DualPrompt fails
to capture both the category-complete information and distribution
difference. In the CP-Prompt, we propose to insert common prompts
before the transformer structure is better than the design in the trans-
former, which the shared common prompts are employed to learn
knowledge of new domains sequentially and then frozen.

Personalized prompts vs. Expert prompts. In CP-Prompt, person-
alized prompt considers the relationship between attention score and
prompts, which the structure is formulated as: 𝑓 𝑃𝑟𝑒−𝑂𝑛𝑒

𝑝𝑟𝑜𝑚𝑝𝑡 (𝑝, ℎ) =

𝑀𝑆𝐴(ℎ𝑚, [𝑝𝑘 ;ℎ𝑘 ], [𝑝𝑘 ;ℎ𝑘 ]). However, Dual-Prompt[45] splits 𝑝
into 𝑝𝑘 , 𝑝𝑣 ∈ R(𝐿𝑝/2×𝐷 ) , and connect them to ℎ𝑘 , ℎ𝑣 respectively.
The method of directly adding parameters is certainly effective, but
in the attention layer, there is a lack of correlation between prompts.

In DIL scenarios, the parameters in the pre-training model are
fixed. We argure that the attention score for the prompts should
be further weighted, to learn the relationship between pre-training
knowledge and domain-specific one, rather than simply adding pa-
rameters to fit new domain knowledge. As shown in Figure 5(b) of

Method Buffer size Prompt AA

DyTox 50/class ✓ 62.94*

EWC

No Buffer

× 47.62*
LwF × 49.19*
SimCLR × 44.2*
BYOL × 49.7*
Barlow Twins × 48.9*
SupCon × 50.9*
HiDe-Prompt ✓ 60.15
S-liPrompts ✓ 67.78
Dual-Prompt ✓ 71.02
CP-Prompt(Ours) ✓ 73.35

Table 3: DIL Results on DomainNet. * represents the result is
quoted from [44].

the original manuscript, we compare the proposed tuning strategy,
prefix-one, with the prefix-tuning under the same environment set-
ting among the three benchmarks. The result shows that CP-Prompt
achieves optimal performance, with a 2% improvement.

5 EXPERIMENT
5.1 Experiment Setup

Dataset and Model Setting. To evaluate the effectiveness of CP-
Prompt, we test three widely used DIL benchmarks, including
CDDB-Hard [23], CORe50 [36], and DomainNet [28]. For a fair
performance comparison, we adopt the same dataset and experi-
ment setting with the previous studies [44]. A detailed description
of datasets and settings is available in supplementary materials.

Baselines. We compare the proposed CP-Prompt with state-of-
the-art DIL methods, including replay-based methods including
iCaRL [38], LUCIR [14], LRCIL [35], distillation-based method
BiC [47], regularization-based method EWC [21], self-supervised-
based method CaSSLe [10], and other non-prompt methods includ-
ing ER [7], GDumb [37], DER++ [3], and Co2L [5]. Furthermore,
prompting-based methods including L2P [46], DyTox [9] and S-
liPrompts [44] are also compared. In addition, we also extend two
class incremental learning methods, includung Dual-Prompt [45]
and HiDe-Prompt [43], to the DIL task as baselines. A detailed
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Figure 6: Performance variation of CP-Prompt by (a) using different prompt lengths; (b) adding new domain data.

Component CDDB-Hard CORE50 DomainNet

CP-Prompt 93.65 90.67 73.35
-Personalized 91.59 88.81 68.46
-Common 93.27 89.64 71.95
-Both 88.79 88.07 67.78

Table 4: Ablation results of CP-Prompt on three datasets
description of these baselines is also available in supplementary ma-
terials. For a fair model comparison, all methods utilizing pre-trained
models are standardized to use the image transformer encoder and
text transformer encoder from CLIP.

Evaluation Metrics. We employ widely used two standard metrics
in DIL, average classification accuracy (AA) and forgetting rate (AF)
as the evaluation metrics for comparing the CP-Prompt and other
baselines. Formally, let 𝐴𝑖,𝑛 represent the model evaluation score
(i.e., classification accuracy in our experiment) on the 𝑖-th domain
after training on the 𝑛-th domain. AA and AF are measured as
follows:

𝐴𝐴 =
1
𝑛

𝑛∑︁
𝑖=1

𝐴𝑖,𝑛, (13)

𝐴𝐹 =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

( 1
𝑛 − 𝑖 − 1

𝑛∑︁
𝑗=𝑖+1

(𝐴𝑖, 𝑗 −𝐴𝑖,𝑖 )) . (14)

It should be noted that AA evaluates the learning model’s overall
absolute performance, while AF measures the model’s ability to
overcome catastrophic forgetting. A successful DIL model should
strive for high AA while maximizing AF towards 0.

5.2 Experimental Results
Main Results. Experimental results from Table 1, 2 and 3 demon-

strate that our proposed CP-Prompt method significantly outper-
forms other exemplar-free methods, including the recently intro-
duced state-of-the-art domain incremental method S-liPrompt. We

slightly extend the Dual-Prompt and HiDe-Prompt to adopt to the
DIL setting. Both of them also take the same multi-modal pre-trained
model CLIP. It is observed that the prompt design proposed by
Dual-Prompt also shows a mild improvement. In contrast, adding
HiDe-Prompt produces negative optimizations, showing that the
idea of retaining finer-grained category features is not effective for
DIL tasks. In particular, we achieved the optimal average classifica-
tion accuracy in 2-class, 50-class, and 345-class DIL tasks, with the
highest improvement reaching 2.32%. Additionally, we attained the
optimal average forgetting rate, reduced to 0.25.

Compared to traditional historical replay-based methods, our
proposed prompting approach significantly enhances classification
performance for data with more similar features without using an
additional sample buffer. In fact, sampling a small amount of infor-
mation from the original domain is likely to introduce extra noise
and, consequently, fails to improve classification performance.

In contrast to the other approach of prompt methods, CP-Prompt
incorporates domain-wide shared prompts to facilitate the trans-
fer of common knowledge. Additionally, our approach employs a
multi-layered intra-domain prompting method, making full use of
self-attention mechanisms to merge prompt information with high-
dimensional latent features. The combination of these two prompts
optimally leverages shared information across domains and individ-
ualized information within each domain. Compared to the SOTA
model, our proposed method even surpasses the upper limit of S-
liPrompts on i.i.d. data in terms of the CDDB-Hard and DomainNet
tasks. This observation indicates that our proposed method is more
effective in handling data with similar categories and significant
feature differences in highly heterogeneous domains compared to
fine-tuning methods.

Ablation Study. We also perform the ablation study to evaluate
the effectiveness of each major component in CP-Prompt, as shown
in Table 4. We evaluate the performance by removing personalized,
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Figure 7: Attention weights (layer 1 - 3) of CP-prompt and Dual-Prompt when shifting on different domains.

Figure 8: Different 𝐾 values for 𝐾-Means.

common, and both prompting, which is denoted as ‘-Personalized’,
‘-Common’, and ‘-Both’, respectively. It is observed that both com-
mon and personalized prompts play a crucial role in improving
performance for DIL tasks. Removing the common prompts leads
to a decline in performance across the three tasks, as inter-domain
knowledge sharing becomes impaired. Similarly, omitting the per-
sonalized prompts results in an ineffective extraction of knowledge
within domains, leading to substantial performance loss.

Model Parameter Analysis. We further explore the optimal layers
for inserting domain prompts, as illustrated in Figure 6. We observe
that inserting prompts is widespreadly effective for transformer
layers. Additionally, for new arriving DIL samples from known
domains (CDDB-Hard and DomainNet), prompts within deep lay-
ers contribute to the performance more significantly by extracting
high-level individual information. In the case of a sample from un-
known domains (CORe50), adding prompts in both the shallow and
deep layers helps to guide the model to capture the common and
personalized knowledge of domains.

Prompt length is a hyper-parameter of CP-Prompt. As shown in
Figure 6-(a), the model’s performance is generally insensitive to
the length of common prompts. However, an excessively long com-
mon prompt may introduce information specific to certain domains,
leading to a slight performance decline. In the case of personalized
prompts, adopting a longer prompt length than common prompts
can significantly improve model accuracy to gain a larger encod-
ing space. However, compared with fine-tuning, our method has
a total parameter count of 150 million, with the actual fine-tuned
parameters being 335,360, accounting for 0.22% in each domain.

In Figure 6-(b), we compare the improvement in Prefix-One de-
sign with existing methods, namely S-liPrompts and Prefix Tuning.
The results indicate that our proposed solution exhibits superior
performance in each domain. Moreover, in domains with lower data
quality, CP-Prompt demonstrates lower forgetting rates, leading to
overall better performance. In Figure 8, we explore the effects of
the number of clustering points in each domain. The results indicate
that increasing the number of clustering points generally leads to an
imperceptible performance improvement. Thus, the choice of 𝐾 is
not a crucial setting of CP-Prompt.

Common Prompt Design Analysis. We further explore contrasting
different prompt design schemes between Dual-Prompt and the
propsoed CP-Prompt. As introduced above, Dual-Prompt embeds
the General Prompt within the attention layer, while CP-Prompt
embeds the Common Prompt before the attention layer. As shown in
Figure 7, we adopted the Dino visualization scheme [4] to map the
attention variation when the model continues to learn on different
domains. The attention weights of the first three layers of both
approaches are displayed. It is observed that the attentions of CP-
Prompt keep close to the object for identification alone side with
domain shifting, while the Dual-Prompt gradually lose correct focus.
It is evident that for cross-domain learning processes, embedding
multi-domain common knowledge before attention better preserves
key information in each domain. Particularly in info-graphs with
multiple informational elements, the CP-Prompt approach can more
accurately identify primary characteristic information.

6 CONCLUSION
In this paper, we propose CP-Prompt, which introduces common
and personalized prompts into the cross-modal domain-incremental
learning task. CP-Prompt integrates prompts into pre-trained models
based on the transformer architecture, learning common prompts
in the shallow layers and personalized prompts in the deep layers
to capture semantic knowledge at different granularity. CP-Prompt
significantly reduces the catastrophic forgetting rate by only tuning
tiny-sized parameters. Extensive experiments also show the superi-
ority of CP-Prompt over existing state-of-the-art approaches.
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