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1 DATASETS
We use public datasets to perform experiments and evaluate the
performance of CP-Prompt. The detailed descriptions and statistics
of these datasets are as follows:

• CDDB1 [11] is a dataset used for continuous deepfake detection,
where the DIL objective involves recognizing authentic and fake
images across different domains. We adopted the Hard Setting
from [Wang et al., 2022a], requiring learning on 5 continuous
deepfake detection domains: GauGAN, BigGAN, WildDeepfake,
WhichFaceReal, and SAN. This entails approximately 27,000
images.

• CORe502 [12] is designed for continuous object recognition,
consisting of 11 domains, each with 50 categories. In DIL, the goal
is to sequentially learn from 8 domains for incremental training
and assess performance on the remaining 3 domains (unseen).
This encompasses about 160,000 images.

• DomainNet3 [14] is a domain adaptation dataset commonly used
as a benchmark for DIL methods. It comprises 6 domains, each
with 345 categories. The DIL setup aligns with CaSSLe [Fini et
al., 2022]. This involves around 600,000 images in total.

2 BASELINES
In our experiments, the compared baselines mainly include replay-
based methods (iCaRL, LUCIR and LRCIL), distillation method
(BiC), regularization method (EWC), self-supervised (SimCLR,
BYOL, Barlow Twins and Supervised Contrastive), other non-prompt
methods (ER, GDumb, DER++, and Co2L), and prompt-related
methods (L2P, DyTox and S-liPrompts).

• iCaRL [16] proposes a prioritized exemplar selection based on
herding strategy to filter old samples.

• LUCIR [8] proposes three loss functions to constrain the bias
problem caused by the imbalance of old and new samples in the
Distillation-based method.

• LRCIL [13] proposes a method to store activations volumes at
some intermediate layer instead of storing a portion of past data.

• BiC [21] proposes a method to introduce a bias correction layer
after the fully connected layer to offset the domain shift phenome-
non.

• EWC [10] proposes a method to constrain historical model pa-
rameters to alleviate forgetfulness through a quadratic penalty
function.

1https://github.com/Coral79/CDDB
2https://vlomonaco.github.io/core50/index.html#dataset
3http://ai.bu.edu/M3SDA/

• SimCLR [4] utilizes a self-supervised framework of contrastive
learning architecture, converted to incremental learning loss under
the CaSSLe[6] architecture.

• BYOL [7] uses a self-supervised framework of contrastive learn-
ing architecture without negative sample pairs to perform domain
incremental learning under the CaSSLe architecture.

• Barlow Twins [22] uses high-dimensional embedding to improve
self-supervised learning performance and is applied in the CaSSLe
architecture.

• Supervised Contrastive [9] proposes a method to have multi-
ple anchors and multiple positive samole adaptive versions in a
minibatch, and is applied in the CaSSLe architecture.

• ER [3] proposes to use the current gradient and historical gradient
weighting when updating the gradient.

• GDumb [15] proposes that when learning new knowledge, the
sampler uniformly samples old samples to balance the sample
distribution.

• DER++ [1] proposes an experience replay method, which requires
the model to learn the process of outputting approximations to old
samples rather than the results.

• Co2L [2] proposes a decoupled representation-classifier scheme
with the aim of continuously learning and preserving representa-
tions.

• L2P [20] proposes a query strategy based on key-value pairs to
dynamically select the corresponding prompt for each input.

• DyTox [5] proposes a transformer architecture based on a ded-
icated codec framework. Encoders and decoders are shared be-
tween all tasks. Through dynamic expansion of special tokens, the
decoder network can be dedicated to personalized domain task
distribution.

• Dual-Prompt [19] is a class incremental learning method. It
proposes General Prompt and Expert Prompt to be embedded in
Attention in a prefix-tuning manner.

• HiDe-Prompt [17] proposes a hierarchical components such as
within-task prediction, task-identity inference and task-adaptive
prediction. It saves more fine-grained class features and optimizes
prompts through contrast loss to better distinguish class features.

• S-liPrompts [18] proposes a win-win strategy to solve the do-
main increment problem. By learning cross-domain independent
prompts, the model can get the best performance in each domain
without any mutual interference, and storing the learned prompts
to eliminate the catastrophic forgetting problem.
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Figure 1: Performance variation of CP-Prompt by (a) using different prompt lengths; (b) adding new domain data.

3 IMPLEMENTATION DETAILS
Running Environment. We conduct all experiments on Ubuntu

18.04.2 LTS server with Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, 256G RAM and 8 NVIDIA GeForce RTX 3090-24GB.
We implement CP-Prompt with Python 3.7.6 and PyTorch 1.7.0.

Hyper-parameter Settings. We implement our CP-Prompt in Py-
Torch. To ensure a fair comparison of experimental results, the
personalized prompt length is set to 16, and the common prompt
length is set to 6. The number of selected layers for personalized
prompts ranges from 0 to 10. Pre-trained models are uniformly
chosen as CLIP’s ViT-B/16 version. The maximum number of
epochs for CDDB-Hard dataset is set to 50, for CORe50 is 20,
and for DomainNet is 30. The learning rate is set to 0.01, and
the batch size is fixed at 128. For other details, please refer to
https://anonymous.4open.science/r/CP_Prompt-C126.

4 MORE INFORMATION ABOUT COMMON
PROMPT ATTENTION WEIGHTS

The common prompt architecture we designed can transfer knowl-
edge between domains more effectively. This design can pay atten-
tion to effective information faster. For example in Figure 1, the
CP-Prompt we propose can focus on core and effective information
faster.
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