
Under review as a conference paper at ICLR 2024

A DATA AND HYPERPARAMETER DETAILS

All 1-layer GPT2 models have 4 attention heads, embedding size of 128, and MLP dimension of
512. We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001, and train with
weight decay.

Experiment 1 We train a 1-layer GPT2 model on 60% of all possible datapoints for this task,
leaving the other 40% held out as a test set. For circuit probing, we train our mask on all examples
from the train set (See Appendix B for those training hyperparameters) using a batch size of 500,
and use updates generated from train set examples to train the 1-nearest neighbors classifier. We
evaluate on the held-out test set.

For linear and nonlinear probing, we train for 100 epochs, using a learning rate of 0.1. We use this
same learning rate for generating counterfactual embeddings. Our nonlinear classifier uses ReLU
nonlinearity, and has a hidden size of 256.

For Boundless DAS, we train for 250 epochs, with a 2500 training examples using the Adam opti-
mizer with a learning rate of 0.01.

For transfer experiments, we finetune on 60% of each dataset, using the Adam optimizer with a
learning rate of 0.001. We train with weight decay. We train for fewer epochs with a

2 because the
models converge very early in training.

Experiment 2 All details are the same as in Experiment 1.

Experiment 3 We train a 1-layer GPT2 model on 33.3% of all possible datapoints for this task,
which gives us the grokking behavior that we wish to investigate. All other details are the same as
Experiment 1.

Experiment 4 We train circuit probing on 2000 examples for each dataset and test on 1000 exam-
ples, otherwise all details are the same.

B CONTINUOUS SPARSIFICATION DETAILS

Continuous sparsification enables us to train binary masks over model weights. Our loss function is
defined as:

min
mi2{0,1}

Lsoft neighbors(C✓�mi) + �||m|| (1)

Where m is our binary mask, C✓ is a model component, with weights ✓, and ||m|| is our l0 regular-
izer, and Lsoft neighbors is the soft nearest neighbors loss described in Appendix C

Typically, optimizing such a binary mask is intractable, given the combinatorial nature of a discrete
binary mask over a large parameter space. Instead, continuous sparsification reparameterizes the
loss function by introducing another variable, s 2 Rd:

min
si2Rd

Lsoft neighbors(C✓��(�·si) + �||�(� · si)||1 (2)

In Equation 2, � is the sigmoid function, applied elementwise, and � is a temperature parameter.
During training � is increased after each epoch according to an exponential schedule to a large value
�max. Note that, as � �! 1, �(� · si) �! H(si), where H(si) is the heaviside function.

H(s) =

⇢
0, s < 0
1, s > 0

�
(3)

Thus, during training, we interpolate between a soft mask (�) and a discrete mask (H). During
inference, we simply substitute �(�max ·si)) for H(si). Notably, we apply continuous sparsification
to a frozen model in an attempt to reveal the internal structure of this model, whereas the original

15

Under review as a conference paper at ICLR 2024

Figure 7: MLP probe accuracy for Experiment 1. All methods decode a
2 and �1 ⇤ b2 worse in the

MLP than in the attention block. Note that chance accuracy for circuit probing is effectively 50%.

work introduced continuous sparsification in the context of model pruning, and jointly trained ✓ and
s.

For all experiments, we train binary masks with the Adam optimizer (Kingma & Ba, 2014), with
a learning rate of 0.001. We fix �max = 200, initialize the mask parameters to 0, and train for 90
epochs. The � parameter must scale with the number of parameters per layer. For all 1-layer GPT2
experiments, we set � = 1E � 6. For GPT2-small and medium, we set � = 1E � 7 and 1E � 8,
respectively.

C SOFT NEAREST NEIGHBORS LOSS

Given input embeddings x to a model component C and intermediate variable labels y, in a batch
with b samples, Equation 4 defines the full optimization objective. � is a hyperparameter that scales
the l0 regularization strength. Intuitively, this loss function pushes members of the same class to-
wards each other, according to some distance metric, and members of different classes far from each
other. Concretely, this partitions the output space of transformer layers into equivalence classes
defined by the variable that we are searching for.

minmn2{0,1} �
1

b

X

i21..b

P
j21...b,
j 6=i,
yi=yj

e
cosine dist(C✓�m(xi),C✓�m(xj))

P
k21...b,
k 6=i

ecosine dist(C✓�m(xi),C✓�m(xk))
+ �

X

n21...|m|

mn (4)

D EXPERIMENT 1: MLP RESULTS

In Figure 7, we present results from Experiment 1 for all probing methods on the MLP block. First,
we note that all methods perform worse at decoding a

2 and �1 ⇤ b2. We note that chance accuracy
for circuit probing is effectively 50%, whereas chance for probing methods is 0.8% (1 out of 113).
Circuit probing results are generated by a 1-nearest neighbors classifier trained on the outputs of the
MLP block after masking. For the variable a

2 and �1 ⇤ b2, there are only two distinct integers that
map to the same value of that variable (i.e. 42(mod 113) = 1112(mod 113) = 4). Because we are
training the classifier with 1 vector per variable label, 50% of underlying integers are represented
in the 1-NN training set. Thus, circuit probing accuracy of 50% means that the block is merely
decoding the identity of the underlying token, rather than meaningfully computing an intermediate
variable.

16

Under review as a conference paper at ICLR 2024

Variable Full Test Acc. Ablated Test Acc. % Parameters in Circuit

a
2 100% 0.8% 53.3%

�b
2 100% 0.9% 53.5%

a+ b 100% 100% 0%
a� b 100% 100% 0%

Table 3: Experiment 1 task performance after ablating the circuit returned by circuit probing. We
see that ablating the circuit responsible for either a2 or �b

2 destroys test accuracy. However, we see
that circuit probing returns an empty circuit for both a+ b and a� b, due to l0 regularization. Thus,
ablating this empty circuit has no effect.

Component a
2 �b

2
a+ b a� b

Attn. 98% 99% 1% 1%
MLP 2% 2% 2% 2%

Component Task a (mod P) b (mod P’) c (mod P”)

Attn. 1 93% 93% -
MLP 1 3% 3% -
Attn. 2 93% - 94%
MLP 2 4% - 4%

Table 4: Causal abstraction analysis results for Experiment 1 (top) and Experiment 2 (bottom).
Using boundless distributed alignment search, we reveal that the attention blocks in both models
contain the same causal intermediate variables that circuit probing discovers.

E EXPERIMENT 1: CIRCUIT ABLATION RESULTS

Table 3 contains the results from running an ablation analysis on the circuits discovered in Experi-
ment 1. We note two things: (1) ablating the circuits for a2 and �1 ⇤ b2 destroy model performance,
and (2) circuit probing returns empty subnetworks for a + b and a � b. This is a useful feature of
using l0 regularization when training binary masks – if there is no signal for a given variable, circuit
probing is encouraged to return a maximally sparse (i.e. empty) subnetwork.

F CAUSAL ABSTRACTION ANALYSIS RESULTS

In Table 4, we provide results from running causal abstraction analysis using Boundless DAS (Wu
et al., 2023) on both Experiment 1 and Experiment 2. Causal abstraction analysis creates interven-
tions on model representations in order to elicit counterfactual behavior in the downstream model.
For example, for the case of a2�b

2, the model might intervene to change the value of a2 to a
02. The

intervention is considered successful of the overall model outputs the answer to a
02 � b

2. Causal
abstraction analysis reports statistics in terms of the success of its counterfactual embeddings, rather
than its ability to decode model representations directly. Thus, these results answer the same ques-
tions as, but are not directly comparable to, circuit probing results.

Nevertheless, these results support the results generated by circuit probing in both Experiment 1 and
Experiment 2. In Experiment 1, causal abstraction analysis reveals evidence for a2 and �1 ⇤ b2, but
not a + b and a � b. In Experiment 2, causal abstraction analysis reveals evidence that the model
is using variables a(mod P) and b(mod P’) when solving Task 1, and a(mod P) and c(mod P”) when
solving Task 2.

G EXPERIMENT 1: COUNTERFACTUAL EMBEDDINGS

We present counterfactual embedding results from Experiment 1 in Table 5. Counterfactual em-
beddings are embeddings that are optimized to fool a probing classifier. Formally, given a probe,
P✓ trained to decode an intermediate variable, V , consider a residual stream state e such that

17

Under review as a conference paper at ICLR 2024

Counterfactual Embedding Success

Probe a
2 �b

2
a+ b a� b

Linear 100% 100% 100% 100%
Nonlinear 100% 100% 1% 1%

Counterfactual Behavior Success

Probe a
2 �b

2
a+ b a� b

Linear 1% 1% 1% 1%
Nonlinear 1% 1% 0% 0%

Table 5: Experiment 1 counterfactual embedding results. (Top) Counterfactual embedding success
– the percent of examples where the counterfactual optimization procedure creates an example that
changes probe outputs to a particular class. We see that this optimization process largely succeeds,
except for a + b and a � b in nonlinear probes. (Bottom) Counterfactual behavior success – the
percent of counterfactual embeddings that elicit counterfactual behavior in the model. We see very
poor performance on this metric, indicating that counterfactual embeddings are not producing the
expected behavioral outcomes.

P✓(e) = Vi. We freeze P✓ and optimize e such that P✓(e0) = Vj . If P✓ is decoding informa-
tion that is causally implicated in the underlying model, then replacing e with e

0 should change
the output to the output one would expect from setting variable V to Vj . We report counterfactual
embedding success – the percent of embeddings that are successfully optimized to fool the probing
classifier. We see that all linear probing classifiers can be fooled by counterfactual embeddings. We
see that nonlinear classifiers can be fooled by counterfactual embeddings only for a2 and �1 ⇤ b

2.
Recall that all classifiers performed poorly at decoding a+ b and a� b.

Next, we analyze counterfactual behavior success – the percent of counterfactual embeddings that
actually elicit counterfactual behavior in the overall model. We see that all sets of counterfactual
embeddings fail to elicit counterfactual behavior. Taken in isolation, one might conclude that these
probes are not decoding causally-relevant information, and thus that models are not actually com-
puting a

2 and �1 ⇤ b
2. However, given the success of every other analysis technique at causally

implicating a
2 and �1 ⇤ b2, we may instead conclude that counterfactual embeddings are acting as

adversarial examples to the probing classifier, and are destroying the embedding with respect to the
underlying model.

H EXPERIMENT 1: TRANSFER LEARNING

To further confirm our findings in Experiment 1, we analyze whether training on a
2 � b

2 confers
any benefits when finetuning on different tasks. In particular, we finetune the GPT2 model on a task
defined by a

2(mod 113), and separately on a task defined by a+ b(mod 113). If the model is solving
the task using a

2�b
2, we expect that finetuning should help the model solve a2 faster than training a

randomly initialized model, because the model already represents the variable necessary to solve the
finetuning task. Similarly, we expect the finetuning to a+ b will be slower than training a randomly
initialized model, because the model represents variables that are explicitly not useful for solving
the finetuning task. From Figure 8, that is exactly what we see.

I EXPERIMENT 2: CIRCUIT OVERLAP ANALYSIS

From Figure 9, we see that the two circuits computing the free variables in Task 1 and Task 2 are
largely distinct in attn.c_attn, but nearly completely overlapping in attn.c_proj. With
this insight, we ablate circuit parameters just within attn.c_attn. We can also visualize the
distribution of circuits through attention heads. In Figure 10, we see that circuit probing recovers
structures that exist between particular attention heads (i.e. no single attention head is fully devoted
to an intermediate variable) , but also partially localizes the two Free variables into specific heads
(head 1 for Task 1, head 2 for Task 2).

18

Under review as a conference paper at ICLR 2024

Figure 8: (Left) Transfer performance for a2. We see that pretraining on a
2 � b

2 confers a benefit to
the model when finetuning on a

2. (Right) Transfer performance for a + b. We see that pretraining
on a

2 � b
2 is a detriment when finetuning on a+ b.

Figure 9: Experiment 2: Visualizing the distribution of circuits throughout the tensors comprising
an attention block. We see that the circuits computing the free variables for Task 1 and Task 2 almost
completely overlap in the c proj tensor, but are mostly distinct in the c attn tensor.

19

Under review as a conference paper at ICLR 2024

Figure 10: Circuit probing recovers some elements of known structure within Transforemrs. In
particular, we see that Head 1 largely computes the Free variable in Task 1, and Head 2 largely
computes the Free variable in Task 2. However, we also note that circuits extend beyond individual
attention heads.

Train Task Test Task Probe Var. CE Success Model Acc.

1 1 Free 100% 2.1%
1 1 Other 100% 1.8%
2 2 Free 100% 2.1%
2 2 Other 100% 2.3%

Table 6: Experiment 2 counterfactual embedding modularity results. If the theory behind counter-
factual embeddings is correct, only counterfactual embeddings optimized to change the prediction
of a probe that decodes causal information should produce different output when patched into the
underlying model. Concretely, counterfactual embeddings affect the “free” variable probe should
result in a different prediction being made in the overall model. Counterfactual embeddings that
affect the “other” variable probe should have no effect on the overall model’s prediction. We see
that this does not happen. Though all counterfactual embeddings succeed at changing the probe
prediction (CE Sucess), they also all change the overall model prediction (CE Acc.).

J EXPERIMENT 2: COUNTERFACTUAL EMBEDDING MODULARITY
ANALYSIS

Here, we test for modularity using counterfactual embeddings. Counterfactual embeddings are de-
signed to reveal whether probes are reflecting information that is causally implicated in model be-
havior. We summarize the relevant details of their technique here, but defer to Tucker et al. (2021)
for a full treatment. Given a probe, P✓ trained to decode an intermediate variable, V , consider a
residual stream state e such that P✓(e) = Vi. We freeze P✓ and optimize e such that P✓(e0) = Vj .
If P✓ is decoding information that is causally implicated in the underlying model, then replacing e

with e
0 should change the output. If this information is not causally implicated in the underlying

model, then replacing e with e
0 should have no effect. For both tasks, we generate counterfactual

embeddings using the nonlinear probes trained to decode the “free” and “other” variables from the
residual stream after the attention block. From Table 6, we see that model performance drop to
near-zero after patching in counterfactual embeddings for either “free” or “other” variables. This
suggests that that counterfactual embeddings act more as adversarial examples to the probe, rather
than providing information about causally-relevant variables.

20

Under review as a conference paper at ICLR 2024

Figure 11: Experiment 3: MLP Probing results. We see chaotic results from both linear and circuit
probes, indicating that the intermediate variable a

2 is not computed in the MLP block.

Figure 12: Experiment 3: Selectivity Analysis. Linear and circuit probing results for b2 – a variable
that is not causally implicated in the task a

2 + b. Circuit probing reveals that this variable is not
represented at any point during training, whereas linear probing would imply that it is represented
from the start of training.

K EXPERIMENT 3: MLP PROBE ACCURACY

Here we present the linear and circuit probe accuracy on the MLP block throughout training for
Experiment 3. In Figure 11 see very messy results, further reinforcing that the intermediate variable
a
2 is computed in the attention block.

L EXPERIMENT 3: SELECTIVITY THROUGHOUT TRAINING

We present results of our selectivity analysis in Experiment 3 throughout training. We see that
linear probing consistently decodes the non-causal variable b

2, while circuit probing is consistently
at chance performance. This illustrates a key problem with linear probing – it can learn to represent
variables that the model does not explicitly represent.

Circuit probing results are generated by a 1-nearest neighbors classifier trained on the outputs of the
MLP block after masking. For the variable b

2, there are only two distinct integers that map to the
same value of that variable (i.e. 42(mod 113) = 1112(mod 113) = 4). Because we are training the
classifier with 1 vector per variable label, 50% of underlying integers are represented in the 1-NN
training set. Thus, circuit probing accuracy of 50% means that the block is merely decoding the
identity of the underlying token, rather than meaningfully computing an intermediate variable.

21

Under review as a conference paper at ICLR 2024

M EXPERIMENT 4: LANGUAGE PREFIX EXAMPLES

Here, we present several examples of sentence prefixes for subject-verb agreement and reflexive
anaphora.

Subject-Verb Agreement:

1. the farmers that the taxi driver admires (are)
2. the authors behind the assistants (are)
3. the consultant that the skaters like (is)

Reflexive Anaphora:

1. the consultants that the parents loved doubted (themselves)
2. the senators that the taxi drivers hate congratulated (themselves)
3. the mechanics thought the pilot hurt (herself).

N EXPERIMENT 4: GPT2-SMALL LANGUAGE KNN RESULTS

We present circuit probing KNN evaluations for both subject-verb agreement and reflexive anaphora
over all model components. Recall that causal analyses indicate that a circuit that is causally im-
plicated in computing syntactic number is located in layer 6’s attention block. We note that KNN
accuracy increases for every MLP block after layer 6. Because MLP blocks are applied token-wise,
this suggets that the information required to decode syntactic number of both subjects and referents
is present in the residual stream after this layer, but not before. See Figure 13.

O EXPERIMENT 4: GPT2-SMALL FULL ABLATION RESULTS

We present circuit probing ablation results for both subject-verb agreement and reflexive anaphora
over all model components. In all cases, we note that ablating the circuit in attention block in layer 6
provides the greatest drop in model performance. Randomly ablating subnetworks of the same size
does not harm model performance.

P EXPERIMENT 4: GPT2-MEDIUM RESULTS

P.1 REFLEXIVE ANAPHORA

We present results analyzing GPT2-Medium’s ability to compute the syntactic number of the referent
of a reflexive pronoun. We find that the attention block in layer 7 is most causally implicated in this
computation. See Figure 17. Ablating the discovered circuits harms model performance, regardless
of the pronoun used for evaluation. Ablating random subnetworks of the same size does not harm
model performance.

Turning to the reflexive anaphora KNN evalation, we see that the KNN accuracy of circuits trained
on MLP blocks increases during and after layer 7. Because MLP blocks operate token-wise, this
indicates that the information required to decode the syntactic number of referents is present in the
residual stream after this layer, but not before. This strengthens our causal results analysis. See
Figure 18.

For completeness, we include ablation results across all model components in Figures 19 and 20.

P.2 SUBJECT-VERB AGREEMENT

We do not find any particular circuits that drop subject-verb agreement performance substantially
when ablated (See Figure 21). This might indicate that multiple circuits across several blocks are
redundantly computing the syntactic number of the subject noun.

22

Under review as a conference paper at ICLR 2024

Figure 13: GPT2-Small KNN results for subject-verb agreement (Top) and reflexive anaphora (Bot-
tom). We notice that KNN accuracy increases for MLP block after layer 6, which is where our
ablation analysis located the causal circuits for both phenomena.

Figure 14: GPT2-Small subject-verb agreement ablation results for every model component. We
note that the attention block in layer 6 provides the greatest drop in performance after ablating the
discovered circuit.

23

Under review as a conference paper at ICLR 2024

Figure 15: GPT2-Small reflexive anaphora ablation results for every model component, evaluated
using the masculine pronoun. We note that the attention block in layer 6 provides the greatest drop
in performance after ablating the discovered circuit.

Figure 16: GPT2-Small reflexive anaphora ablation results for every model component, evaluated
using the feminine pronoun. We note that the attention block in layer 6 provides the greatest drop in
performance after ablating the discovered circuit.

24

Under review as a conference paper at ICLR 2024

Figure 17: GPT2-Medium reflexive anaphora ablation results for the attention block in layer 7.

Figure 18: GPT2-Medium reflexive anaphora KNN evaluation results across all model components.

25

Under review as a conference paper at ICLR 2024

Figure 19: GPT2-Medium reflexive anaphora ablation results across all model components, evalu-
ated using the masculine pronoun. Note that the largest drop in performance due to ablation occurs
at the attention block in layer 7.

26

Under review as a conference paper at ICLR 2024

Figure 20: GPT2-Medium reflexive anaphora ablation results across all model components, evalu-
ated using the feminine pronoun. Note that the largest drop in performance due to ablation occurs at
the attention block in layer 7.

27

Under review as a conference paper at ICLR 2024

Figure 21: GPT2-Medium subject-verb agreement ablation results across all model components.
These results do not implicate any specific circuit in computing the syntactic number of the subject
noun.

28

Under review as a conference paper at ICLR 2024

Figure 22: GPT2-Medium subject-verb agreement KNN results. We see KNN performance increase
for MLP blocks around layer 7.

Turning to the subject-verb agreement KNN evalation, we see that the KNN accuracy of circuits
trained on MLP blocks increases after layer 7. Because MLP blocks operate token-wise, this might
indicate that the information required to decode the syntactic number of referents is present in the
residual stream after this layer, but not before. However, our causal analysis does provide evidence
of this. See Figure 22.

Q EXPERIMENT 4: CIRCUIT OVERLAP

Surprisingly, we see that there is very little overlap between the circuits used to compute the syntactic
numbers of subjects and referents in GPT2-small, despite both circuits being present in the same
block. See Figure 23

R SUBJECT VERB AGREEMENT GPT2 MEDIUM QUALITATIVE RESULTS

We present qualitative results of ablating the subject-verb agreement circuit discovered by running
circuit probing on the attention block in layer 6 of GPT2-small (See Table 7). We note that the types
of tokens predicted by model qualitatively stay the same before and after ablation. This suggests
that we have not destroyed the model by ablating the discovered circuit. Interestingly, we see more
tokens that are explicitly consistent with the syntactic number of the subject before ablation, and
fewer after ablation. This provides qualitative evidence that we have indeed ablated a circuit that
was responsible for computing the syntactic number of the subject noun.

29

Under review as a conference paper at ICLR 2024

Figure 23: Circuit overlap between syntactic number and reflexive anaphora in GPT2-Small, at-
tention block 7. We see that the discovered circuits are largely distinct. We also note that certain
attention heads (0, 3, and 7) appear to be most important in computing syntactic number for both
subject nouns and referents.

30

Under review as a conference paper at ICLR 2024

Prefix Original Output Ablate Attn-6 Output

The surgeons behind the dancer
’s ’s
, ,
were .
. and
and
are)
said to

in
had who
have was
to).
who is
in said
was),
) were

The book from the executives
of of
at at
, who
’ ’
who and
, ,
. in
and .
in to
that that
was)
is on
to I
themselves were
on are

Table 7: Qualitative examples of the effect of ablating the circuit discovered in GPT2-small, layer 6.
We record the top 15 next-token predictions. Words that are explicitly consistent with the syntactic
number of the subject are bolded, words that are inconsistent are underlined.

31

	Introduction
	Circuit Probing
	Experiments
	Experiment 1: Deciphering Neural Network Algorithms
	Experiment 2: Modularity of Intermediate Variables
	Experiment 3: Circuit Probing as a Progress Measure
	Experiment 4: Circuit Probing for Language Models

	Discussion
	Ethics Statement
	Reproducibility Statement
	Data and Hyperparameter Details
	Continuous Sparsification Details
	Soft Nearest Neighbors Loss
	Experiment 1: MLP Results
	Experiment 1: Circuit Ablation Results
	Causal Abstraction Analysis Results
	Experiment 1: Counterfactual Embeddings
	Experiment 1: Transfer Learning
	Experiment 2: Circuit Overlap Analysis
	Experiment 2: Counterfactual Embedding Modularity Analysis
	Experiment 3: MLP Probe Accuracy
	Experiment 3: Selectivity Throughout Training
	Experiment 4: Language Prefix Examples
	Experiment 4: GPT2-Small Language KNN Results
	Experiment 4: GPT2-Small Full Ablation Results
	Experiment 4: GPT2-Medium Results
	Reflexive Anaphora
	Subject-Verb Agreement

	Experiment 4: Circuit Overlap
	Subject Verb Agreement GPT2 Medium Qualitative Results

