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A Proof of Nested SA Formulation and its Properties

Derivation of the rt-recursion: We let

α̃t(s, a) =

{
αtβt, for synchronous version,
αtβtτt(s, a), for asynchronous version.

Then for both (2) and (3), we can write the error dynamics as

rt+1(s, a) = (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
Rt(s, a, s

′) + γQBt (s′, a∗)−Q∗(s, a)
)

= (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
Rt(s, a, s

′) + γQAt (s′, a∗)− T̂tQ∗(s, a)

+T̂tQ∗(s, a)−Q∗(s, a) + γQBt (s′, a∗)− γQAt (s′, a∗)
)

= (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

+T̂tQ∗(s, a)−Q∗(s, a) + γQBt (s′, a∗)− γQAt (s′, a∗)
)

:= (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

+εt(s, a) + γQBt (s′, a∗)− γQAt (s′, a∗)
)
,

which is exactly (4).

Uniform bound of εt: It follows from the definition that

|εt(s, a)| =
∣∣∣T̂tQ∗(s, a)− T Q∗(s, a)

∣∣∣
=

∣∣∣∣Rt(s, a, s′) + γmax
a′∈A

Q∗(s′, a′)−Rs
′

sa − γEs′max
a′∈A

Q∗(s′, a′)

∣∣∣∣
≤ 1 + γ

(
max

(s,a)∈S×A
Q∗(s, a)− min

(s,a)∈S×A
Q∗(s, a)

)
= 1 +

γ

1− γ

=
1

1− γ
.

For brevity, we denote ‖εt‖ ≤ Vmax := 1
1−γ .

Derivation of the νt-recursion: We let

α̂t(s, a) =

{
α, for synchronous version,
ατt(s, a), for asynchronous version.

Then, based on (2) or (3), we have ∀t ≥ 1,

νt+1(s, a) = QBt+1(s, a)−QAt+1(s, a)

= (1− α̂t(s, a)(1− βt))QBt (s, a) + α̂t(s, a)(1− βt)
(
Rt(s, a, s

′) + γQAt (s′, b∗)
)

− (1− α̂t(s, a)βt)Q
A
t (s, a)− α̂t(s, a)βt

(
Rt(s, a, s

′) + γQBt (s′, a∗)
)

= (1− α̂t(s, a))νt(s, a) + α̂t(s, a)
[
(1− βt)

(
Rt(s, a, s

′) + γQAt (s′, b∗)−QAt (s, a)
)

+βt
(
QBt (s, a)−Rt(s, a, s′)− γQBt (s′, a∗)

)]
(i)
= (1− α̂t(s, a))νt(s, a) + α̂t(s, a)Ht(s, a), (18)

where (i) follows from the definition

Ht = (1−βt)
(
Rt(s, a, s

′) + γQAt (s′, b∗)−QAt (s, a)
)
+βt

(
QBt (s, a)−Rt(s, a, s′)− γQBt (s′, a∗)

)
.
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We further defineHt = E (Ht|Ft) and µt = Ht −Ht. Then (6) readily follows from (18).

Quasi-contractive Property of Ht(νt) (see also Xiong et al. (2020)): By direct calculation using
the definition of Ht and Ft, we have

E (Ht(s, a)|Ft) =
1

2
νt(s, a) +

γ

2
E
s′

(
QBt (s′, a∗)−QAt (s′, b∗)

)
, (19)

where we used the fact that E(βt) = 0.5. It follows from (19) that

|E (Ht(s, a)|Ft)| ≤
1

2
|νt(s, a)|+ γ

2
E
s′

∣∣QBt (s′, a∗)−QAt (s′, b∗)
∣∣

≤ 1

2
‖νt‖+

γ

2
E
s′

{
QBt (s′, a∗)−QAt (s′, b∗) if QBt (s′, a∗) ≥ QAt (s′, b∗)

QAt (s′, b∗)−QBt (s′, a∗) if QBt (s′, a∗) < QAt (s′, b∗)

≤ 1

2
‖νt‖+

γ

2
E
s′

{
QBt (s′, b∗)−QAt (s′, b∗) if QBt (s′, a∗) ≥ QAt (s′, b∗)

QAt (s′, a∗)−QBt (s′, a∗) if QBt (s′, a∗) < QAt (s′, b∗)

≤ 1 + γ

2
‖νt‖ ,

which implies that

‖E (Ht|Ft)‖ ≤
1 + γ

2
‖νt‖ .

Boundedness of µt: By the definition of Ht in (18) andHt in (19), we have if βt = 0,

|µt(s, a)| =
∣∣∣∣Rt(s, a, s′) + γQAt (s′, b∗)−QAt (s, a)− 1

2
νt(s, a) +

γ

2
E
s′

(
QBt (s′, a∗)−QAt (s′, b∗)

)∣∣∣∣
≤ |Rt(s, a, s′)|+γ

∣∣QAt (s′, b∗)
∣∣+ 1

2

(∣∣QAt (s, a)
∣∣+∣∣QBt (s, a)

∣∣)+ γ

2

(∣∣QBt (s′, a∗)−QAt (s′, b∗)
∣∣)

≤ 1 +
γ

1− γ
+

1

1− γ
+

γ

2(1− γ)

= 3Vmax.

The case of βt = 1 follows similarly and we omit the detailed proof here. Therefore, we conclude
that |µt(s, a)| ≤ 3Vmax.

B Proof of Theorem 1

We first give a high-level idea about the difference between our approach and that in Xiong et al.
(2020). Our central goal here is to bound the convergence error via a pair of nested SA recursions,
where the outer SA captures the learning error dynamics between one Q-estimator and the global
optimum, and the inner SA captures the error propagation between the two Q-estimators. Xiong et al.
(2020) constructed two block-wisely decreasing bounds for the nested SAs and characterized only
a block-wise convergence. Such an approach is rather complicated, and does not appear to extend
easily to the constant learning rate case. In contrast, we take a very different yet more direct approach
here. We devise new analysis techniques to directly bound both the inner and outer error dynamics
per iteration. We then treat the output of the inner SA as a noise term in the outer SA, and combine
the two bounds to establish the finite-time error bound of the learning error.

The main proof consists of five steps. The main proof utilizes a few propositions, the proofs of which
are provided in the next a few sections.

Step I: Deriving a template finite-time bound applicable to both SAs.

Consider the following general SA algorithm with the unique fixed point θ∗ = 0:

θt+1 = (1− αt)θt + αt (Gt(θt) + εt + γνt) , (20)

for all t ≥ 1, where θt ∈ Rn and αt ∈ [0, 1) is a general time-varying learning rate. Note that (20)
includes both (4) and (6) as special cases.

We bound θt in the following proposition. Note that differently from Wainwright (2019b), our analysis
below only requires the quasi-contractive property and the fact that αt ∈ [0, 1). Moreover, we treat
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the noise terms εt and νt separately rather than combining them together into the Wt-recursion. This
is because for double Q-learning, the noise term νt has its own dynamics which is significantly more
complex than the noise εt. Treating them together as one noise term does not yield sharp bounds.
Proposition 1. Consider an SA given in (20). Suppose Gt is quasi-contractive with a constant
parameter γ ∈ (0, 1), that is, ‖Gt(θt)‖ ≤ γ ‖θt‖ . Then for any learning rate αt ∈ [0, 1), the iterates
{θt} satisfy

‖θt‖≤
t−1∏
k=1

(1−(1−γ)αk) ‖θ1‖+γαt−1 (‖Wt−1‖+‖νt−1‖)

+γ

t−2∑
k=1

{
t−1∏
l=k+1

(1−(1−γ)αl)

}
αk (‖Wk‖+‖νk‖)+‖Wt‖ , (21)

where the sequence {Wt} is given by Wt+1 = (1− αt)Wt + αtεt with W1 = 0.

Proof. See Appendix C.

Note that the SA recursion (6) is a special case of (20) by setting νt = 0. Therefore, Proposition 1 is
readily applicable to both (4) and (6).

Step II: Bounding outer SA dynamics E ‖rt‖ by inner SA dynamics E ‖νt‖.
We apply Proposition 1 to the error dynamics (4) of rt. Recall that Gt in (4) is quasi-contractive,
which satisfies ‖Gt(rt)‖ ≤ γ ‖rt‖. Now construct the following recursion:

Wt+1 = (1− α̃t)Wt + α̃tεt, with initialization W1 = 0. (22)

Further define ν̃t(s, a) = νt(s
′, a∗) and note that ‖ν̃t‖ ≤ ‖νt‖ because all the elements of ν̃t come

from νt. Then applying Proposition 1 to the SA (4) yields

‖rt‖ ≤
t−1∏
k=1

(1− (1− γ)α̃k) ‖r1‖+ γα̃t−1 (‖Wt−1‖+ ‖ν̃t−1‖)

+ γ

t−2∑
k=1

{
t−1∏
l=k+1

(1− (1− γ)α̃l)

}
α̃k (‖Wk‖+ ‖ν̃k‖) + ‖Wt‖ .

Further taking the expectation on both sides of the above bound, and denoting h := 1− 1−γ
2 α, we

have

E ‖rt‖
(i)
≤ ht−1 ‖r1‖+

γ

2
α

t−1∑
k=1

ht−k−1 (E ‖Wk‖+ E ‖ν̃k‖) + E ‖Wt‖

(ii)
≤ ht−1 ‖r1‖+

γ

2
α

t−1∑
k=1

ht−k−1 (E ‖Wk‖+ E ‖νk‖) + E ‖Wt‖ , (23)

where (i) follows because {α̃t}t≥1 is a sequence of independent random variables, {α̃s}s≥t is
independent of Wt and ν̃t, and Eα̃t = αt

2 , and (ii) follows because ‖ν̃t‖ ≤ ‖νt‖.
The bound in (23) captures the coupling between the nested SAs of double Q-learning, where νt of
the inner SA enters as a tracking error term into the bound on rt of the outer SA. To further bound
the outer SA error, we need to handle both ‖νt‖ and ‖Wt‖, which is given in the next two steps.

Step III: Bounding E ‖Wt‖.
We provide the bound on the expectation of the sup-norm of Wt+1 in the following Proposition.
Recall D = |S| |A| denotes the dimension of the state-action space.
Proposition 2. Consider the sequence {Wt+1}t≥1 generated by the recursion (22). We have

E ‖Wt+1‖ ≤ 2D̃Vmax

√
α, (24)

where D̃ = 2
√

ln 2D +
√
π and Vmax is defined in (5).
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Proof. See Appendix D for the complete proof. Here we briefly describe the key idea of the proof,
which lies in the construction of an Ft-martingale sequence {W̃i}1≤i≤t+1 from the recursion (22),
where W̃t+1 = Wt+1 and W̃1 = 0. Based on the uniform bound of Wt proved in Lemma 1, we are
able to bound the difference sequence

∣∣∣W̃i+1 − W̃i

∣∣∣ by a geometric series (see Lemma 2). Then we

apply the Azuma-Hoeffding inequality (see Lemma 3) to {W̃i}1≤i≤t+1 and further use Lemma 4 to
obtain the claimed bound.

Step IV: Bounding inner SA dynamics E ‖νt‖.
Now our goal is to bound E ‖νt‖. The inner SA captures the difference between two Q-estimators,
and is an error existing specifically in double Q-learning. Bounding E ‖νt‖ is one of the key steps to
handle the coupling between two nested SAs.

Recall that in the νt-recursion (6), the operatorHt is quasi-contractive, which satisfies ‖Ht(νt)‖ ≤
1+γ
2 ‖νt‖. Then by constructing the following recursion:

Mt+1 = (1− α)Mt + αµt, with initialization M1 = 0, (25)
we apply Proposition 1 and take the expectations on both sides to have

E ‖νt‖ ≤ γ̃α
t−1∑
k=1

ht−k−1E ‖Mk‖+E ‖Mt‖ , (26)

where γ̃ := 1+γ
2 is the quasi-contractive coefficient ofHt and recall that with loss of generality we

assumed ν1 = 0.

We further provide the bound on E ‖Mt‖ in the following proposition.
Proposition 3. Consider the sequence {Mt+1}t≥1 generated by the recursion (25). We have

E ‖Mt+1‖ ≤ 2D̃Vmax

√
2α,

where D̃ := 2
√

ln 2D +
√
π.

Proof. See Appendix E.

Taking the expectation on both sides of (26) and using Proposition 3, we obtain

E ‖νt‖ ≤ γ̃α
t−1∑
k=2

ht−k−1E ‖Mk‖+ E ‖Mt‖

≤ 4

1− γ
D̃Vmax

√
2α.

The above bound indicates that the inner SA error can be controlled by the learning rate, which
thus plays an important role to guarantee the overall convergence by ensuring that such an error
asymptotically vanishes when entering into the outer SA error.

Step V: Deriving overall finite-time complexity.

Substituting the bounds on E ‖Wt‖ and E ‖νt‖ into (23), we have ∀t ≥ 3,

E ‖rt+1‖ ≤ ht−1 ‖r1‖+
γ

2
α

t−1∑
k=1

ht−k−1 (E ‖Wk‖+ E ‖νk‖) + E ‖Wt‖

≤ ht−1 ‖r1‖+
2D̃

(1− γ)2
√
α+

4D̃

(1− γ)3

√
2α

≤ ht−1 ‖r1‖+
6D̃

(1− γ)3

√
2α,

where D̃ = 2
√

ln 2D +
√
π. The above expectation bound is equivalent to the high probability

bound on ‖rt‖ by replacing ln 2D with c ln 2D
δ for some universal constant c > 0 (see for example

Wainwright (2019b)). We readily have that (8) holds with the probability of at least 1 − δ. This
completes the proof.
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C Proof of Proposition 1

To proceed the proof, we first construct the following useful recursions:
Wt+1 = (1− αt)Wt + αtεt, with initialization W1 = 0,

bt+1 = (1− (1− γ)αt) bt, with initialization b1 = ‖θ1‖1,
gt+1 = (1− (1− γ)αt) gt + γαt (‖Wt‖+ ‖νt‖)1, with initialization g1 = 0,

where 1 denotes all-ones vector and 0 denotes all-zeros vector with appropriate dimensions. Note
that {bt}t≥1 and {gt}t≥1 are both non-negative sequences satisfying bt = ‖bt‖1 and gt = ‖gt‖1
for all t ≥ 1.

Then we have the following sandwich bound on θt given by
−bt − gt +Wt � θt � bt + gt +Wt, (27)

where � denotes the elementwise ≤ relationship.

We next prove (27) by induction. For t = 1, we have −b1 � θ1 � b1, which holds easily since
b1 = ‖θ1‖1. Now suppose (27) holds for some t ≥ 1, and we prove it holds for t+ 1.

We first note that
‖θt‖1 � max {‖bt + gt +Wt‖1, ‖−bt − gt +Wt‖1}

� bt + gt + ‖Wt‖1, (28)
since xt = ‖xt‖1 for x ∈ {b, g}.
For the upper bound, we have

θt+1 = (1− αt)θt + αt (Gt(θt) + εt + γνt)

(i)
� (1− αt)(bt + gt +Wt) + αt (γ ‖θt‖1 + εt + γ ‖νt‖1)

(ii)
� (1− αt)(bt + gt +Wt) + αt [γ (bt + gt + ‖Wt‖1) + εt + γ ‖νt‖1]

= (1− (1− γ)αt)bt︸ ︷︷ ︸
bt+1

+ (1− (1− γ)αt)gt + γαt (‖Wt‖+ ‖νt‖)1︸ ︷︷ ︸
gt+1

+ (1− αt)Wt + αtεt︸ ︷︷ ︸
Wt+1

,

where (i) follows from the induction assumption and the quasi-contractive property of Gt, and (ii)
follows from (28).

For the lower bound, we have
θt+1 = (1− αt)θt + αt (Gt(θt) + εt + γνt)

(i)
� (1− αt)(−bt − gt +Wt) + αt (−γ ‖θt‖1 + εt − γ ‖νt‖1)

(ii)
� (1− αt)(−bt − gt +Wt) + αt [−γ (bt + gt + ‖Wt‖1) + εt − γ ‖νt‖1]

= −(1− (1− γ)αt)bt︸ ︷︷ ︸
−bt+1

+− [(1− (1− γ)αt)gt + γαt (‖Wt‖+ ‖νt‖)1]︸ ︷︷ ︸
−gt+1

+ (1− αt)Wt + αtεt︸ ︷︷ ︸
Wt+1

,

where (i) follows from the induction assumption and the quasi-contractive property of Gt, and (ii)
follows from (28).

Thus we have proven that (27) holds for t+ 1. By induction, it holds for all t ≥ 1. Finally, we have

‖θt‖ ≤
t−1∏
k=1

(1− (1− γ)αk) ‖θ1‖+ γαt−1 (‖Wt−1‖+ ‖νt−1‖)

+ γ

t−2∑
k=1

{
t−1∏
l=k+1

(1− (1− γ)αl)

}
αk (‖Wk‖+ ‖νk‖) + ‖Wt‖ ,
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where the first term on the right hand side is ‖bt‖ and the sum of the next two terms correspond to
‖gt‖.

D Proof of Proposition 2

We first prove some useful lemmas.

Lemma 1. Consider the sequence {Wt+1}t≥1 generated by the recursion (22). Then we have
|Wt+1| ≤ Vmax.

Proof. We prove it by induction. For t = 1, we have

|W2| = |α̃1ε1| ≤ αVmax < Vmax.

Suppose |Wt| ≤ Vmax for some t ≥ 2. Then it follows that,

|Wt+1| ≤ (1− α̃t) |Wt|+ |α̃tεt| ≤ (1− α̃t)Vmax + α̃tVmax = Vmax.

Thus by induction |Wt+1| ≤ Vmax for all t ≥ 1.

Lemma 2. Consider the martingale sequence {W̃i}1≤i≤T+1, defined in (31) where T ≥ 1. We have
the corresponding difference sequence bounded by∣∣∣W̃i+1 − W̃i

∣∣∣ ≤ W̃i+1 − W̃i = 2α
(

1− α

2

)(T−i)
Vmax, 1 ≤ i ≤ T, (29)

where Vmax is the uniform bound of the noise sequence {εt}t≥1 defined in (5).

Proof. By the definition of {W̃i}1≤i≤T+1, we have

W̃i+1 − W̃i = (1− α

2
)(T−i)αiΓi, 1 ≤ i ≤ T, (30)

where Γi := ( 1
2 − βi)Wi + βiεi, for all 1 ≤ i ≤ T . Since W1 = 0, we easily have |Γ1| ≤ Vmax. For

i ≥ 2, we have

|Γi| =
{∣∣− 1

2Wi + εi
∣∣ if βt = 1

1
2 |Wi| if βt = 0

≤ 1

2
|Wi|+ |εi|

(i)
≤ 3

2
Vmax < 2Vmax,

where (i) follows from Lemma 1. Substituting the above bound into (30) completes the proof.

Lemma 3. (Azuma-Hoeffding Inequality) Suppose {Sn}n≥1 is a martingale such that S0 = 0 and
|Si − Si−1| ≤ di almost surely for some constants di, 1 ≤ i ≤ n. Then, for all t ≥ 0,

P (|Sn| ≥ ρ) ≤ 2 exp

(
− ρ2

2
∑n
i=1 d

2
i

)
.

The following lemma slightly extends Wainwright (2019a, Exercise 2.8 (a)) to handle the case where
b = 0. The proof is similar and we include it here for completeness.

Lemma 4. Suppose Z is a non-negative random variable satisfying the concentration inequal-
ity P (Z ≥ ρ) ≤ C exp

(
−ρ2/σ2

)
, ∀ρ > 0, for some C > 1, σ > 0. Then we have E (Z) ≤

σ
(√

lnC +
√
π
2

)
.
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Proof. By the expectation formula of non-negative random variables, we have

E (Z) =

∫ ∞
0

P(Z ≥ ρ)dρ ≤
∫ ∞
0

1 ∧ C exp

(
− ρ

2

σ2

)
dρ

=

∫ σ
√
lnC

0

1dρ+

∫ ∞
σ
√
lnC

C exp

(
− ρ

2

σ2

)
dρ

= σ
√

lnC +

∫ ∞
σ
√
lnC

exp

(
−ρ

2 − σ2 lnC

σ2

)
dρ

(i)
≤ σ
√

lnC +

∫ ∞
σ
√
lnC

exp

−
(
ρ− σ

√
lnC

)2
σ2

 dρ

= σ
√

lnC +

∫ ∞
0

exp

(
− z

2

σ2

)
dz

= σ

(√
lnC +

√
π

2

)
,

where (i) follows because ρ2 − a2 ≥ (ρ− a)
2 for ρ ≥ a ≥ 0.

Proof of Proposition 2:

Recall the definition of Ft in (7), and we have

E (Wt+1 |Ft ) = E ((1− α̃t)Wt + α̃tεt |Ft )
(i)
= (1− α

2
)Wt +

α

2
E (εt |Ft )

(ii)
= (1− α

2
)Wt +

α

2
E (εt)︸ ︷︷ ︸
=0

= (1− α

2
)Wt,

where (i) follows because βt,Wt, εt are independent, σ(Wt) ⊂ Ft (because Wt is a measurable
function of {βk−1, sk}2≤k≤t), and E(α̃t) = αE(βt) = αt

2 ; (ii) follows because σ(εt) = σ(st+1)
which is independent of Ft. We then readily have E (Wt+1) = E (Wt+1 |F1 ) = 0.

Therefore, if we define

W̃i := (1− α

2
)t+1−iWi, 1 ≤ i ≤ t+ 1, (31)

then {W̃i}1≤i≤t+1 is a martingale sequence with W̃t+1 = Wt+1 and W̃1 = 0, for any t ≥ 1.

Now using Lemma 2, we have

di :=
∣∣∣W̃i+1 − W̃i

∣∣∣ ≤ 2α
(

1− α

2

)t−i
Vmax, 1 ≤ i ≤ t,

and thus
t∑
i=1

d2i ≤ 4α2V 2
max

t∑
i=1

(
1− α

2

)2(t−i)
≤ 16αV 2

max

4− α
.

Then using the Azuma-Hoeffding Inequality (see Lemma 3) and the union bound for the maximum
norm, we have,

P (‖Wt+1‖ ≥ ρ) = P
(

max
(s,a)∈S×A

|Wt+1| ≥ ρ
)

≤ DP (|Wt+1| ≥ ρ)
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≤ 2D exp

(
− ρ2

2
∑t
i=1 d

2
i

)

≤ 2D exp

(
− (4− α)ρ2

32αV 2
max

)
.

Then it follows that

E ‖Wt+1‖ =

∫ ∞
0

P(‖Wt+1‖ ≥ ρ)dρ,

≤ 2D

∫ ∞
0

exp

(
− (4− α)ρ2

32αV 2
max

)
dρ

(i)
≤ 4Vmax

√
2α

4− α

(√
ln 2D +

√
π

2

)
(ii)
= 2D̃Vmax

√
2α

4− α
(ii)
≤ 2D̃Vmax

√
α,

where (i) follows from Lemma 4, (ii) follows from the definition D̃ := 2
√

ln 2D +
√
π, and (iii)

follows because α < 1.

E Proof of Proposition 3

Since {µt}t≥1is a martingale difference sequence, we have

E (Mt+1 |Ft ) = E ((1− α)Mt + αµt |Ft )
= (1− α)Mt + αE (µt |Ft )
= (1− α)Mt.

Therefore, if we define

M̃i := (1− α)t−i+1Mi, 1 ≤ i ≤ t+ 1,

then {M̃i}1≤i≤t+1 is a martingale sequence with M̃t+1 = Mt+1 and E
(
M̃1

)
= 0, for any t ≥ 1.

By the construction of {M̃i}1≤i≤t+1, it can be derived that

M̃i+1 − M̃i = (1− α)t−iαµi, 1 ≤ i ≤ t.

Further using the bound |µt| ≤ 3Vmax := Ṽmax, we have

di :=
∣∣∣M̃i+1 − M̃i

∣∣∣ ≤ (1− α)t−iαṼmax, 1 ≤ i ≤ t,

and thus
t∑
i=1

d2i =

t∑
i=1

(1− α)2(t−i)α2Ṽ 2
max ≤

α

2− α
Ṽ 2
max.

Now using the Azuma-Hoeffding Inequality (see Lemma 3), we have for t ≥ 1,

P (|Mt+1| ≥ ρ) ≤ 2 exp

(
− ρ2

2
∑t
i=1 d

2
i

)
≤ 2 exp

(
− (2− α)ρ2

2αṼ 2
max

)
. (32)

It then follows from the union bound of the max operator that

P (‖Mt+1‖ ≥ ρ) = P
(

max
(s,a)∈S×A

|Mt+1| ≥ ρ
)
≤ DP (|Mt+1| ≥ ρ) .
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Furthermore, we have

E ‖Mt+1‖ =

∫ ∞
0

P(‖Mt+1‖ ≥ ρ)dρ

≤ 2D

∫ ∞
0

exp

(
− (2− α)ρ2

2αṼ 2
max

)
dρ

(i)
≤ Ṽmax

√
2α

2− α

(√
ln 2D +

√
π

2

)
(ii)
= 2D̃Vmax

√
2α

2− α
(iii)
≤ 2D̃Vmax

√
α,

where (i) follows from Lemma 4, (ii) follows from the definition D̃ := 2
√

ln 2D +
√
π, and (iii)

follows from the assumption that α < 1.

F Proof of Theorem 2

We first prove some useful lemmas. The following lemma captures how often an (s, a)-pair is updated.
Recall that µπ is the stationary distribution of the underlying Markov decision process under the
behavior policy π. Specifically, the lemma gives an probabilistic characterization of the number of
updates for an arbitrary (s, a)-pair of either Q-table after a sufficient number of iterations.

Lemma 5. Let βt, τt(s, a) be defined in Section 2. Suppose Assumption 1 holds. Fix any δ ∈ (0, 1)
and T ≥ t > 886tmix

µmin
ln
(
4DT
δ

)
:= tframe. Then

∀(s1, a1), P(s1,a1)

(
∃(s, a) :

t∑
i=1

βtτt(s, a) ≤ 1

2
tµπ(s, a)

)
≤ δ. (33)

Proof. The main idea of the proof lies in the construction of an auxiliary Markov chain which
has the same mixing time as the original MDP under the behavior policy but only has half of its
µmin. The construction is inspired by the following intuition. Since {βi} is a Bernoulli random
variable with expectation 1

2 , intuitively, double-Q learning should take two times of the iterations
needed by vanilla Q-learning to visit all the states of QA with the same high probability. To show
this formally, we construct an auxiliary Markov chain by augmenting the states with βt, namely,
M̄ := {X̄t}t≥1 = {st, at, βt}∀t≥1 with state space X̄ := S ×A× B, where B = {0, 1}. It is easy
to see that such an auxiliary Markov chain is aperiodic and irreducible (and thus uniformly ergodic)
given that the original Markov chain Mo := {Xt}t≥1 = {st, at}t≥1 is aperiodic and irreducible.
The transition probability can be calculated by

P
(
X̄t+1|X̄t

) (i)
= P (βt)P (st+1, at+1|st, at)

(ii)
=

1

2
π(at+1|st+1)P (st+1|st, at) , (34)

where (i) follows from the fact that {βt}t≥1 are i.i.d Bernoulli random variables which are independent
of {st, at}t≥1, and in (ii) we denote by π the underlying behavior policy of the Markov chain
following which we take samples. Let P̄ denote the transition probability matrix of M̄ where the
((s, a, β), (s′, a′, β′))th entry of P̄ is 1

2π(a′|s′)P (s′|s, a). For the ease of discussion, assume that the
top left |S||A|×|S||A| submatrix of P̄ corresponds to the transitions between (s, a, 1)’s. Furthermore,
let µ̄ ∈ ∆(S ×A× B) denote the stationary distribution of M̄ .

Let Po denote the transition probability matrix of Mo where the ((s, a), (s′, a′))-th entry of Po is
π(a′|s′)P (s′|s, a). Let µ ∈ ∆(S × A) be the stationary distribution of Mo, and thus we have
µPo = µ, assuming that µ is a row vector. Let P t(·|x) denote the distribution of Xt (assuming a row
vector). Then conditioned on X1 = x ∈ X , we have P t(·|x)Po = P t+1(·|x). By (34), we have for
M̄ that

P̄ =

[
1 1
1 1

]
⊗ 1

2
Po, (35)
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where⊗ denotes the Kronecker product. Similarly, we call P̄ t(·|x̄) the distribution of X̄t, conditioned
on X̄1 = x̄. It is easy to verify (using (35)) that P̄ t(·|x̄) = [12P

t(·|x), 12P
t(·|x)] with either x̄ = (x, 0)

or x̄ = (x, 1). Let t→∞, and we have the stationary distribution of M̄ as µ̄ = [ 12µ,
1
2µ]. It follows

that µ̄min = 1
2µmin.

We claim that the mixing times for M̄ and Mo are the same. To see this, we calculate the variation
distances ∀x ∈ X ,

dTV(P t(·|x), µ) =
1

2

∑
y∈X

∣∣P t(y|x)− µ(y)
∣∣ ,

dTV(P̄ t(·|x̄), µ̄) = dTV([
1

2
P t(·|x),

1

2
P t(·|x)], [

1

2
µ,

1

2
µ]) =

1

2

∑
y∈X

∣∣P t(y|x)− µ(y)
∣∣ ,

which are the same. Therefore we conclude that by the definition of the mixing time, the Markov
chain related parameter µmin is only half of that in the Q-learning case.

Finally, applying Lemma 5 of Li et al. (2020) to the auxiliary Markov chain, which has µ̄min = 1
2µmin

and the same tmix as double Q-learning, we obtain (33).

The next lemma provides a property to analyze the learning rates and the corresponding randomness.

Lemma 6. Let α̃t(s, a) = αβtτt(s, a) be defined in Section 3.1. Then,

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a) ≤ 1.

Proof. Based on the definition of τi(s, a), we have

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a) =
∑

i∈T t1 (s,a)

∏
j∈T ti+1(s,a)

(1− αβj)αβi

=

|T t1 (s,a)|∑
i=1

∏
j∈T tti+1(s,a)

(1− αβj)αβti ,

where ti denotes the time stamp when (s, a) is visited for the ith time in the window [1, t].

Suppose there are m ∈ [0, |T t1(s, a)|] non-zero βi’s in the set
{
βt1 , . . . , βt|Tt1(s,a)|

}
, i.e.,∑|T t1 (s,a)|

i=1 βti = m. Then we have

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a) =

|T t1 (s,a)|∑
i=1

∏
j∈T tti+1(s,a)

(1− αβj)αβti

=

m∑
i=1

(1− α)m−iα

≤ 1.

Since the above bound holds for any |T t1(s, a)| and any m ∈ [0, |T t1(s, a)|], we conclude the proof.

Proof of Theorem 2:

Differently from the proof of Theorem 1 that does per iteration analysis, the central idea to analyze
the asynchronous case is to capture the learning error in terms of the key noise and error terms over all
the preceding iterations. Another novel development lies in the new method for analyzing the noise
and error terms that involve the Bernoulli switching parameters specifically in double Q-learning.
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Such a new analysis approach plays a critical role in improving the complexity bound in terms of its
dependence on the sampling related parameters such as L in (15) or tmix in (16).

For the ease of presentation, we define the following notation, which denotes the index set of the
iterations at which the state-action pair (s, a) is updated.
Definition 1. We denote by T (s, a) the set of all the iteration indices at which the state-action pair
(s, a) is updated for either Q-estimator QA or QB . In addition, we denote by T t2t1 (s, a) ⊆ T (s, a)
the set of indices that are between time t1 and t2, that is,

T t2t1 (s, a) = {t : t ∈ [t1, t2] and t ∈ T (s, a)} .

The number of iterations updating (s, a) between time t1 and t2 is thus given by |T t2t1 (s, a)|, i.e., the
cardinally of T t2t1 (s, a).

Based on Definition 1, it is easy to observe that τt(s, a) in (3) can be rewritten as

τt(s, a) = 1t∈T (s,a).

In addition, we keep the notations rt = QAt −Q∗, νt = QBt −QAt .

Our proof proceeds with five steps as follows.

Step I: Deriving a template bound.

We first continue with the dynamics of rt(s, a) derived in Appendix A to characterize the error over
all the preceding iterations, and obtain

rt+1(s, a) = (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

)
+ α̃t(s, a)εt(s, a) + α̃t(s, a)γνt(s

′, a∗)

=

t∏
i=1

(1− α̃i(s, a))r1(s, a) +

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γνi(s
′, a∗).

Then we have

|rt+1(s, a)| =
∣∣∣∣ t∏
i=1

(1− α̃i(s, a))r1(s, a) +

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γνi(s
′, a∗)

∣∣∣∣
≤

t∏
i=1

(1− α̃i(s, a)) ‖r1‖︸ ︷︷ ︸
P1,t(s,a)

+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

∣∣∣∣︸ ︷︷ ︸
P2,t(s,a)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖νi‖ . (36)
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The next three steps will analyze the first two terms as well as ‖νi‖ in eq. (36), respectively.

Step II: Bounding ‖P1,t‖.
In this step, we prove a high probability bound for the term P1,t(s, a) in eq. (36). Note that
α̃t(s, a) = αβtτt(s, a) is either 0 or α. Thus the key to bound ‖P1,t‖ is to capture how many times
(s, a) is sampled to update QA between [1, t]. To this end, we construct an auxiliary Markov chain
with augmented states {st, at, βt}, and use it to derive a concentration inequality for the sequence
βtτt(s, a) (see Lemma 5). Then the following high probability bound readily follows from Lemma 5.

Proposition 4. Fix any δ ∈ (0, 1) and T > 0 satsifying T > 886tmix
µmin

ln
(
4DT
δ

)
:= tframe where

D = |S||A|. Suppose Assumption 1 holds. Then with probability at least 1− δ, we have

‖P1,t‖ ≤ (1− α)
1
2 tµmin ‖r1‖ , (37)

holds simultaneously for all t satisfying tframe ≤ t ≤ T .

Step III: Bounding ‖P2,t‖.
In this step, we carefully analyze the coefficient of P2,t consisting of the learning rates, which is the
key to keep the dependence order on the sampling related parameters tight. The following proposition
provides the bound for term P2,t(s, a).

Proposition 5. Fix any δ ∈ (0, 1). Then with probability at least 1− δ, we have

‖P2,t‖ ≤

√
2α ln

(
2DT

δ

)
Vmax, (38)

holds simultaneously for all t ∈ [1, T ], where D = |S||A|.

Proof. See Appendix G.

Step IV: Bounding ‖νt‖.
The following proposition provides the bound on ‖νt‖.
Proposition 6. Fix any δ ∈ (0, 1). Then with probability at least 1− δ, we have

‖νt‖ ≤ 3

√
2α ln

(
2DT

δ

)
Vmax

1− γ
, (39)

holds simultaneously for all t ∈ [1, T ], where D = |S||A|.

Proof. See Appendix H.

Step V: Overall convergence.

In this final step, we apply the above propositions to (36) and obtain that, with probability at least
1− 3δ, the following holds simultaneously for all (s, a)-pair and all t satisfying tframe ≤ t ≤ T ,

|rt+1(s, a)| ≤
t∏
i=1

(1− α̃i(s, a)) ‖r1‖+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

∣∣∣∣
+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖νi‖

≤ (1− α)
1
2 tµmin ‖r1‖+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖
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+

√
2α ln

(
2DT

δ

)
Vmax + 3

√
2α ln

(
2DT

δ

)
γVmax

1− γ

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)

(i)
≤ (1− α)

1
2 tµmin ‖r1‖+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖

+

√
2α ln

(
2DT

δ

)
Vmax + 3

√
2α ln

(
2DT

δ

)
γVmax

1− γ

, (1− α)
1
2 tµmin ‖r1‖+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖+ C, (40)

where (i) follows from Lemma 6, and the last equality follows from the following definition,

C :=

√
2α ln

(
2DT

δ

)
Vmax + 3

√
2α ln

(
2DT

δ

)
γVmax

1− γ
. (41)

We further define the following quantities for the ease of presentation:

µframe :=
1

2
µmintframe, (42)

ρ := (1− γ) (1− (1− α)µframe) , (43)

where tframe is defined in Proposition 4.

The following proposition follows from a direct application of Li et al. (2020, Lemmas 3 and 4) to
the rt bound of the double Q-learning in (40). Note that the constants C, tframe here are of different
values from those in Li et al. (2020, Lemmas 3 and 4).

Proposition 7. Suppose the inequality dynamics of rt in (40) holds. For any δ ∈ (0, 14 ), ε ∈
(0, 1

(1−γ) ], then with probability at least 1− 4δ, we have

‖rt‖ ≤
C

1− γ
+ (1− ρ)k

‖r1‖
1− γ

+ ε, (44)

where C is defined in (41), k = max
{

0, b t−tth
tframe
c
}

, and tth := max

{
2 ln 1

(1−γ)ε
αµmin

, tframe

}
.

Now to derive the time complexity, first, it is easy to verify that C
1−γ ≤ ε by choosing

α ≤ (1− γ)6ε2

32 ln 2DT
δ

. (45)

Next, we have (1− ρ)k ‖r1‖1−γ ≤ exp(−ρk)‖r1‖1−γ ≤ ε if k ≥ ln ‖r1‖
(1−γ)ε

/
ρ. Recalling the definition of k

in Proposition 7, we solve for t and obtain

t ≥ tth + tframe +
tframe

ρ
ln
‖r1‖

(1− γ)ε
. (46)

Further, by the Bernoulli’s inequality, we have (1− α)µframe ≤ 1− αµframe
2 if α < 1

µframe−1 . Then we
have

ρ = (1− γ) (1− (1− α)µframe) ≥ αµframe(1− γ)

2
. (47)
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Last, we derive an upper bound on the RHS of (46),

RHS of (46)
(i)
≤ tth + tframe +

2tframe

αµframe(1− γ)
ln
‖r1‖

(1− γ)ε

(ii)
= tth + tframe +

4

αµmin(1− γ)
ln
‖r1‖

(1− γ)ε

(iii)
≤ tth + tframe +

4

µmin(1− γ)
ln
‖r1‖

(1− γ)ε
·max

{
32 ln 2DT

δ

(1− γ)6ε2
, µframe

}

= tth + tframe +
4

µmin(1− γ)
ln
‖r1‖

(1− γ)ε
·max

{
32 ln 2DT

δ

(1− γ)6ε2
, 443tmix ln

4DT

δ

}
.

where (i) follows from (47), (ii) follows from the definition (42), and (iii) follows from the bounds (45)
and α ≤ 1

µframe
. Thus, continuing with (44), we conclude that for any δ ∈ (0, 1/7), with probability at

least 1− 7δ, we have ‖rT ‖ ≤ 3ε as long as

T = Ω̃

(
1

µminε2(1− γ)7
ln

1

ε(1− γ)2
+

tmix

µmin(1− γ)
ln

1

ε(1− γ)2

)
.

G Proof of Proposition 5

We first provide a useful lemma, which provides a bound on the summation of a sequence of
discounted random variables (not necessarily independent).

Lemma 7. Fix k > 0 and α ∈ (0, 1). Given a sequence of random variables {Xi} and a filtration
{Fi} satisfying E(Xi|Fi) = 0 and |Xi| ≤ c̄, then for any w > 0,

P

(∣∣∣∣ k∑
i=1

(1− α)k−iαXi

∣∣∣∣ ≥ w
)
≤ 2 exp

(
− w2

2αc̄2

)
.

Proof. Define {Mi}1≤i≤k as

Mi+1 = (1− α)Mi + αXi, with M1 = 0.

Clearly we have Mk+1 =
∑k
i=1(1− α)k−iαXi, and

E(Mi+1|Fi) = E((1− α)Mi + αXi|Fi)
= (1− α)Mi + E(αXi|Fi)
= (1− α)Mi.

Next, we construct {M̃i} as

M̃i := (1− α)k−i+1Mi, 1 ≤ i ≤ k + 1.

Then {M̃i}1≤i≤k+1 is a martingale sequence with M̃k+1 = Mk+1 and E
(
M̃1

)
= 0. We refer to

{M̃i}1≤i≤k+1 as the martingale surrogate of {Mi}1≤i≤k+1.

Further observe that

di :=
∣∣∣M̃i+1 − M̃i

∣∣∣ ≤ (1− α)k−iMi+1 − (1− α)k−i+1Mi = (1− α)k−iαXi, 1 ≤ i ≤ k.

Then it follows that
d2i ≤ (1− α)2(k−i)α2|Xi|2 ≤ (1− α)k−iα2c̄2,

where the last inequality follows because (1− α)2 < 1− α and |Xi| ≤ c̄.
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Applying the Azuma-Hoeffding Inequality (see Lemma 3) yields

P

(∣∣∣∣ k∑
i=1

(1− α)k−iαXi

∣∣∣∣ ≥ w
)

= P (|Mk+1| ≥ w)

≤ 2 exp

(
− w2

2
∑k
i=1 d

2
i

)

≤ 2 exp

(
− w2

2
∑k
i=1(1− α)k−iα2c̄2

)

≤ 2 exp

(
− w2

2αc̄2

)
.

We now proceed the proof of Proposition 5 as follows. Recall that

P2,t(s, a) =

∣∣∣∣ t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

∣∣∣∣
=

∣∣∣∣ ∑
i∈T t1 (s,a)

∏
j∈T ti+1(s,a)

(1− αβj)αβiεi(s, a)

∣∣∣∣
=

∣∣∣∣ |T
t
1 (s,a)|∑
i=1

∏
j∈T tti+1(s,a)

(1− αβj)αβtiεti(s, a)

∣∣∣∣,
where ti denotes the time stamp at which (s, a) is sampled for the ith time in the window [1, t].

It suffices to show that for any fixed m := |T t1(s, a)| ∈ [0, t] and w ∈ (0, 1), we have

P (P2,t(s, a) ≥ w) = P

∣∣∣∣ m∑
i=1

∏
j∈T tti+1(s,a)

(1− αβj)αβtiεti(s, a)

∣∣∣∣ ≥ w


≤ 2 exp

(
− w2

2αV 2
max

)
.

Then letting the upper bound to be δ
DT where δ ∈ (0, 1), solving w, and further using the union

bound will yield the desired result stated in Proposition 5.

To this end, we observe that

P (P2,t(s, a) ≥ w) = P

(
P2,t(s, a) ≥ w

∣∣ m∑
i=1

βti = 0

)
P

(
m∑
i=1

βti = 0

)

+ P

(
P2,t(s, a) ≥ w

∣∣ m∑
i=1

βti = 1

)
P

(
m∑
i=1

βti = 1

)
+ · · ·

+ P

(
P2,t(s, a) ≥ w

∣∣ m∑
i=1

βti = m

)
P

(
m∑
i=1

βti = m

)
. (48)
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For any k ∈ [0,m], we have

P

(
P2,t(s, a) ≥ w

∣∣ m∑
i=1

βti = k

)

= P

∣∣∣∣ m∑
i=1

∏
j∈T jti+1(s,a)

(1− αβj)αβtiεti(s, a)

∣∣∣∣ ≥ w∣∣ m∑
i=1

βti = k


(i)
= P

(∣∣∣∣ k∑
i=1

(1− α)k−iαεt′i(s, a)

∣∣∣∣ ≥ w
)

(ii)
≤ 2 exp

(
− w2

2αV 2
max

)
, (49)

where in (i) t′i denotes the time stamp of the ith non-zero βti in the sequential array
(βt1 , βt2 , . . . , βtm), and (ii) follows from Lemma 7 with the fact that E(εi(s, a)) = 0 and
|εi(s, a)| ≤ Vmax.

Thus, substituting eq. (49) into eq. (48), we obtain

P (P2,t(s, a) ≥ w) ≤ 2 exp

(
− w2

2αV 2
max

) m∑
k=0

P

(
m∑
i=1

βti = k

)
= 2 exp

(
− w2

2αV 2
max

)
, (50)

which completes the proof.

H Proof of Proposition 6

We first prove a useful lemma.
Lemma 8. Fix δ ∈ (0, 1). With probability at least 1− δ, the following inequality holds simultane-
ously for all (s, a) and all t ∈ [1, T ],∣∣∣∣ t∑

i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣ ≤ 3

√
2α ln

(
2DT

δ

)
Vmax, (51)

where D = |S||A|.

Proof. Observe that
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

=
∑

i∈T t1 (s,a)

(
1− α

2

)|T t1 (s,a)|−i
αµi(s, a)

=

|T t1 (s,a)|∑
i=1

(
1− α

2

)|T t1 (s,a)|−i
αµti(s, a),

where ti denotes the time stamp when (s, a) is sampled for the ith time in the window [1, t].

It suffices to show that for any m = |T t1(s, a)| ∈ [0, t], we have

P

∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣ ≥ w


= P

(∣∣∣∣ m∑
i=1

(
1− α

2

)m−i
αµti(s, a)

∣∣∣∣ ≥ w
)

≤ 2 exp

(
− w2

18αV 2
max

)
:=

δ

DT
.
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where the last inequality follows from Lemma 7 by observing that |µi(s, a)| ≤ 3Vmax and
E(µti(s, a)|F ′i) = E(µti(s, a)|Fti) = 0 as derived in Appendix A. Thus, letting the probabil-
ity be bounded by δ

DT and using the union bound over all (s, a)-pair and all t ∈ [1, T ], we complete
the proof.

We now proceed the proof of Proposition 6 by starting with the dynamics of νt derived in Appendix A,
and have

νt+1(s, a) = QBt+1(s, a)−QAt+1(s, a)

= (1− α̂t(s, a))νt(s, a) + α̂t(s, a)Ht(s, a) + α̂t(s, a)µt(s, a)

= (1− α̂t(s, a))νt(s, a) + α̂t(s, a)

1

2
νt(s, a) +

γ

2
E
s′

(
QBt (s′, a∗)−QAt (s′, b∗)

)
︸ ︷︷ ︸

Jt(s,a)


+ α̂t(s, a)µt(s, a)

=

(
1− α̂t(s, a)

2

)
νt(s, a) +

γα̂t(s, a)

2
Jt(s, a) + α̂t(s, a)µt(s, a)

=

t∏
i=1

(
1− α̂i(s, a)

2

)
ν1(s, a) +

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
γα̂i(s, a)

2
Ji(s, a)

+

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

(i)
=

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
γα̂i(s, a)

2
Ji(s, a)

+

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a),

where (i) follows because ‖ν1‖ = 0.

Next, we have

|νt+1(s, a)| ≤
∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γJi(s, a)

∣∣∣∣
+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣
(i)
≤

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γ ‖νi‖

+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣, (52)

where (i) follows from the property |Ji(s, a)| ≤ ‖νi‖ derived in Appendix A.

Next, following from Lemma 8, we have with probability at least 1− δ that the following inequality
holds simultaneously for all t ∈ [1, T ] and all (s, a)-pair,

|νt+1(s, a)| ≤
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γ ‖νi‖+ 3

√
2α ln

(
2DT

δ

)
Vmax.
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We finally complete the proof by induction. For the ease of presentation, denote b :=

3
√

2α ln
(
2DT
δ

)
Vmax

1−γ . The base case holds trivially since ‖ν1‖ = 0. Suppose that ‖νt‖ ≤ b

for any t ≥ 2. Then for the case of t+ 1, we have

‖νt+1‖ ≤
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γ ‖νi‖+ (1− γ)b

≤
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γb+ (1− γ)b

(i)
≤ γb+ (1− γ)b

= b,

where (i) follows from Lemma 6 by replacing βi = 1
2 which does not affect the upper bound.
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