
Appendix
Due to the space limit, many interesting findings, discussions, and further details are included in
Appendix. We start by discussing the detailed motivation of our work in (A) and introducing related
work in (B). We then describe our datasets in (C.1) and the implementation of all models in (C.2).
For the experimental results, we provide detailed and extended results for all findings presented in
the main paper in (D), with more visualizations, score tables, and additional evaluations on more
functions, datasets, and properties. In (E), we present additional interesting findings and visualizations
which have not been discussed so far in the main paper. Lastly, we provide a more profound discussion
in (F).

A Further Motivations of LIFT 25
A.1 Explainability . 25

A.2 Updatability via Information Retrieval . 25

B Detailed Related Works 25

C Experimental Setup 28
C.1 Datasets . 28

C.2 LIFT and Baseline Implementation . 30

C.2.1 Pretrained Language Models and Baselines 30

C.2.2 Computing Resources . 31

C.2.3 Hyperparameter Selection . 31

D Detailed and Extended Results of Experiments in the Main Paper 32
D.1 Results for Basic Findings of LIFT (Section 3) 32

D.1.1 How Well Does LIFT Perform on Standard ML Tasks? 32

D.1.2 How Many Samples Does LIFT Need? 37

D.1.3 Can We Understand the Inductive Biases of Language Models via LIFT? . 37

D.1.4 How Robust Is LIFT? . 40

D.1.5 Does LIFT Need Large-Scale Models Pretrained on Natural Language Data? 42

D.2 Results for LIFT-Specific Learning Properties (Section 4) 42

D.2.1 Does LIFT Benefit from Incorporating Feature Names? 42

D.2.2 Is LIFT Calibrated? . 45

D.2.3 Can we use LIFT for Generation? . 45

D.3 Results for Improving Techniques of LIFT (Section 5) 47

D.3.1 Two-Stage Intermediate Fine-Tuning for LIFT 47

E Additional Experiments and Findings (NOT Discussed in the Main Paper) 49
E.1 What Is the Effect of Replacing the Input or Output Layers? 49

E.2 Does LIFT Benefit from Larger LMs? . 50

E.3 Quantitative Classification Evaluations on Neural-Net-Based Synthetic Datasets . . . 51

E.4 Can LIFT Perform Ridge Regression via Data Augmentation? 51

E.5 LIFT’s Training Curve . 52

23

F Additional Discussion 52
F.1 Limitations and Open Questions . 53

F.2 Broader Impact . 54

24

A Further Motivations of LIFT

While we mainly emphasized the “no-code-ML” property of LIFT, indeed, it has a lot of potentials
to be more useful and powerful than many of the current ML models. Particularly, LIFT can bring an
entirely novel approach to enable (i) explainability and (ii) updatability via information retrieval.

A.1 Explainability

Most ML models cannot interpret their predictions. While specific algorithms are developed to enable
such models’ explainability, their efficacy is still in question. On the other hand, LMs have been
shown to be able to explain their predictions [93, 94]. This ability has been used in many fields such
as human moral judgements [95] and mathematical reasoning [96]. Therefore, LIFT, based on a
large pretrained LM, can be made to explain its prediction using its reasoning capabilities.

Consider the German-credit dataset [97], which aims to predict whether the bank should approve
or decline loan applications. After asking GPT-3 if one should approve/decline a loan application
via LIFT, one can also ask GPT-3 to explain its own prediction result. This can be implemented
by making two consecutive inference calls, as shown in Table 13. Here, we provide five different
responses generated with different random seeds.

Note that these explanations are generated without seeing any reasoning examples, i.e., these are
solely based on the zero-shot reasoning capability of language models. While these explanations are
not even close to perfect, they are still reasonable. Improving the few-/zero-shot reasoning capabilities
of language models is a fast-growing research field, so incorporating new techniques can further
improve the explainability of LIFT.

A.2 Updatability via Information Retrieval

Another drawback of current ML models is that it is difficult to “update” models when a distribution
shift occurs. Handling these distribution shifts in a compute-efficient manner has recently become
one of the most active research areas in the field. Recently, augmenting LMs [98, 99, 100, 101]
with a retrieval mechanism has shown to be an efficient way of updating LMs. With such a retrieval
mechanism equipped, LMs can be efficiently updated as one can simply update its associated database,
or even connect LMs to the Internet [101].

While we only used LMs not equipped with a retrieval mechanism in this paper, it is straightforward
to apply our framework to other LMs that can retrieve information from databases or the Internet, i.e.,
LIFT can support a compute-efficient update mechanism.

B Detailed Related Works

This section provides detailed related work.

Pretraining and adapting language models (LMs). Our work uses modern large LMs, which
promoted significant advances in the field of natural language processing (NLP) [4]. Most popular
LMs use transformer architectures [12, 13] as the backbone, from early models like BERT [102] built
on Transformer encoders to GPT variants [103, 21] built on Transformer decoders. Multiple modern
large LMs have been proposed, including RoBERTa [104], ALBERT [105], XLNet [106], and the
latest models with billions or trillions of parameters, such as GPT-3 [107], Switch-Transformers [108],
and PALM [109].

LMs are trained to encode a large amount of linguistic knowledge from multiple sources in their
contextual representations [110], which are helpful and can be easily adapted to various other tasks.
Thus, starting with BERT [102], it has become a standard practice to pretrain and then fine-tunes
a large LM for plenty of downstream tasks in lieu of training a model from scratch for a specific
task [102, 19, 4, 104, 111]. This technique dramatically impacts a wide range of NLP tasks, such
as language modeling [19, 109], question answering systems [112, 113], text summarization [114],
neural machine translation [115], and reasoning [116, 117].

However, the excellent performance of fine-tuned LMs without architecture changes has been mainly
limited to NLP tasks so far. This work, instead, investigates whether we can leverage LM fine-tuning

25

Table 13: An example illustrating the reasoning capability of large pretrained language models.
We convert a data sample from German-credit dataset [97] into text and use GPT-3 to predict whether
the bank should approve or decline the individual’s loan application. After receiving the first response
of “accept”, we add “The bank will accept this loan application. Let’s think logically. This is because”
to the original prompt and use it as the new input of GPT-3. The five different responses generated by
GPT-3 with different random seeds demonstrate the reasoning ability of language models. Note that
these explanations are generated without seeing any reasoning examples, i.e., these are solely based
on the zero-shot reasoning capability of language models.

Prompt or Generated Text
Raw input Checking Account: less than 200 DM; Loan Duration: 48 months; Credit History:

no credits/paid back duly; Loan Purpose: education; Number of applying for credits:
18424; Savings Account: less than 100 DM; Employment Time: 1 4 years; Installment
Rate: 1%; Sex: Female; Other Debtors: No; Property: building society savings
agreements/life insurance; Age: 32; Housing: self-owned house; Job: highly qualified
employee/ self-employed; Foreigner: no

First
prompt
(soliciting
predic-
tion)

A 32-year-old female is applying for a loan of 18424 credits for 48 months for other
purposes. She has a checking account with less than 200 Deutsche Mark and a savings
account with less than 100 Deutsche Mark. She had no credits or paid back all credits
duly. The installment rate of this applicant in percentage is 1%. She is employed for
more than one year but less than four years and is recognized as a highly qualified
employee or is self-employed. She has lived in a self-owned house. She owns some
building society savings agreements or life insurance. Given such information, will the
bank accept or decline this loan application?

First re-
sponse

accept

Second
prompt
(soliciting
explana-
tion)

A 32-year-old female is applying for a loan of 18424 credits for 48 months for other
purposes. She has a checking account with less than 200 Deutsche Mark and a savings
account with less than 100 Deutsche Mark. She had no credits or paid back all credits
duly. The installment rate of this applicant in percentage is 1%. She is employed for
more than one year but less than four years and is recognized as a highly qualified
employee or is self-employed. She has lived in a self-owned house. She owns some
building society savings agreements or life insurance. Given such information, will the
bank accept or decline this loan application?
The bank will accept this loan application. Let’s think logically. This is because

Second
response
(random
seed 1)

the applicant is employed and is qualified in a high level. Since she is employed, she
is able to make all the payments. Furthermore, she has a self-owned house and owns
some building society savings agreements or life insurance. She has less than 2000
Deutsche Mark in checking and savings account. She had no credits or paid back all
credits duly. She is able to pay the loans. All of these are positive factors to this loan.
The bank will accept this loan.

Second
response
(random
seed 2)

the applicant has a high income. She has lived in a self-owned house. She has some
savings agreements or life insurance. She is a highly qualified employee. She has no
negative credits. All of these facts show that she is not in danger of not being able to
pay back the loan. Therefore, the bank will accept this loan application.

Second
response
(random
seed 3)

the applicant has a checking account with less than 200 Deutsche Mark and savings
account with less than 100 Deutsche Mark. Hence she is a low-risk customer. Further-
more, she has no credits or paid back all credits duly. And the installment rate of this
applicant is 1%. She is employed for less than four years and is recognized as a highly
qualified employee. She has lived in a self-owned house. She owns all the building
society savings agreements or life insurance. Hence she is considered a good customer.
So the bank will accept her loan application

Second
response
(random
seed 4)

the applicant is employed with a high salary and is economically stable. She is not
likely to file for bankruptcy. She can pay back the loan. All in all, we can see that the
bank will accept this loan application.

Second
response
(random
seed 5)

the bank will accept all applications with a very low risk of default. There is a very low
probability that she will be unemployed in the near future. She can afford to pay off
this loan. Furthermore, this applicant has a high annual income.

26

for non-language tasks across different modalities. Our work is highly motivated by Frozen Pretrained
Transformer (FPT) [18], which directly adapts GPT-2 [21] pretrained on language tasks and textual
data to other modalities. FPT freezes most pretrained parameters except the layer normalization
layers and adds input and output layers for fine-tuning. The authors empirically show that GPT-2
can be efficiently fine-tuned for different modalities and domains, including vision and numeric
computation. Nevertheless, FPT requires changes in the architecture and objective function to adapt
to different data representations, while our method LIFT does not. Furthermore, we mainly focus on
basic machine learning tasks, such as function approximation or tabular data classification.

Several works have attempted to extend the existing LMs to handle different types of input data,
such as images [75, 76], audio [77], tabular data [78], and knowledge bases [79] by updating the
pretraining phase with these data and their corresponding tasks. For instance, XGPT [118] takes
images as the input and uses the image captioning task as the primary task in the pretraining stage for
GPT to generate images’ captions. Similarly, multiple works utilize pretrained LMs for generating
text descriptions of images or videos in image captioning (VisualGPT [119]) and video captioning
(VideoBERT [120], Unified VLP [121], UniVL [122]). SpeechBERT [77] also integrates LMs for
speech recognition in the weakly-supervised setting to reduce the need for scarce supervised data.
LMs can also adapt to numeric tasks [123] or other domains such as protein folding [124] or symbolic
math solvers [125]. Recent works [126, 127, 78] pretrain LMs with large tabular datasets, improving
the question answering systems by reasoning over the tables. Compared with these existing works,
our work is unique in that it is based on GPT language models trained only on textual data.

Analyzing the adaptability of LMs. Similar to our work, recent works [20, 81] have made efforts
to understand and quantify the feasibility and limitations of the adaptability of large LMs for upstream
performance and downstream tasks. For instance, the recent work [20] built a benchmark of 500
small language tasks for testing the adaptability of LMs, observing that the LMs [128] can adapt
well to an extensive range of complex tasks rather than just memorizing the learned patterns. BIG-
bench [82] is recently introduced as a new benchmark for quantifying the capacity of LMs, consisting
of more than 200 tasks on a diverse set of topics. Another relevant work [83] attempts to understand
the effect of LM pretraining by studying how the transformer architecture, the backbone of LMs,
succeeds at a designed synthetic task. Similar efforts in this line of work are to analyze the behaviors,
representations, and inductive bias of pretrained LMs [129, 130, 131] or investigate different aspects
of LMs [132, 133, 134]. For instance, a recent work [132], in the investigation of the difficulty of
numeracy in LMs observes that transformer-based language models do not work well on complex
numeric tasks and are sensitive to different formats of numeracy. Note that these existing works focus
primarily on downstream language tasks, while we focus on adapting LMs on non-language tasks
without any modification of the loss or architecture.

Methods for adapting LMs. The most common method for adapting LMs is fine-tuning [66] which
aims to slightly adjust pretrained parameters for learning the downstream tasks [135, 136]. Fine-
tuning can involve simple architecture modifications, such as adding linear layers [67, 68] or freezing
parts of the network [18, 69, 70]. Fine-tuning can be improved with advanced techniques, such as
multi-stage methods [137], intermediate fine-tuning [138, 139, 140], or self-supervised training [141].
The recent progress in fine-tuning LMs focuses on the parameter-efficient techniques for minimizing
the number of fine-tunable parameters, including adapter-based fine-tuning [25, 26, 27] that adds
and trains small residual blocks between transformer layers, freezing-based fine-tuning [71, 18, 72]
that freezes most of the pretrained parameters and fine-tunes only tiny parts of the networks, and
distillation-based fine-tuning [73]. In this line of work, LoRA [24] further reduces the number of
trainable parameters in large LMs by approximating the weight updates using low-rank matrices
without changing pretrained parameters. LoRA is used as the fine-tuning method for GPT-J in our
LIFT/GPT-J framework. To directly adopt these fine-tuning methods used in LMs for non-language
tasks, it is common practice to modify the input/output layers and the loss functions. However, these
modifications might lead to undesired behaviors like catastrophic forgetting [66, 74]. On the other
hand, our method LIFT uses the language interface for fine-tuning without making any changes to
the architecture or the loss function.

In-context few-shot learning paradigm [142, 143, 28, 29, 144] suggests modifying only the inputs
of LMs by adding a few examples of the downstream task. A critical part of these methods is
reformulating the downstream task samples to the language modeling inputs [47, 59], resulting in
multiple efforts in generating [145], searching [48], and properly tuning the prompts [146, 147, 148].

27

While these methods have shown great effectiveness for multiple NLP downstream tasks, it is unclear
how to apply them to downstream tasks of other modalities. On the other hand, our work successfully
adapts LMs for non-language tasks, further pushing the application boundaries of large-scale LMs.

Deep learning for tabular datasets. While deep neural networks have been successfully applied
to various data types, such as images or text, they still face difficulties with a few classification and
regression tasks on tabular data [149, 150], one of the most popular data types in practice. This may
be due to the heterogeneous nature of tabular data, with their features being sparse, type-mixed, and
weaker in correlation than natural image-language data [151, 149]. Multiple deep learning methods
and architectures have been proposed for tabular datasets, from making discrete decision trees more
differentiable [152, 153], regularizing neural networks’ weights [154, 155], to recent attempts using
attention-based modules [156, 157, 158]. Though these transformer-based models are the closest
works to us in this line of work, their works focus on designing and improving architecture designs
for specifically learning the tabular data rather than adapting the LMs. To the best of our knowledge,
we are the first to thoroughly study large LM adaptation for tabular learning without architecture
changes. Our work shows promising results of LMs in closing the gap to the best-performing methods,
including tree-based ensemble algorithms (Random Forest [159] or XGBoost [160]).

General-purpose models (generalist models). A primary goal of our work is to push the limit of
the existing generalist language models (e.g., GPT-3 [19]) to other modalities and domains, supporting
the idea of building a domain-and-modality agnostic generalist model. Early works [161, 14, 162]
explored this idea by developing and training multi-task and multi-modal models on a wide range of
diverse tasks to obtain better generalization and adaptation. The development of large-scale LMs has
significantly contributed to the area of generalist models for languages [19, 84, 3], vision [85], visual
language [86, 87, 88], and control problems [89]. These generalist models are usually trained with
the scale on an extensive range of corpora, probably containing multiple modalities and domains.
In this line of work, a general-purpose architecture [80] has also been studied to handle different
input and output data types. Although LIFT primarily focuses on the LMs, it can be applied to
other generalist models with LM-like architectures, such as GATO [89]. Furthermore, it is worth
noticing that our work shares the general goal with automated machine learning (AutoML) [90, 91]
in improving the usability of machine learning. AutoML automates the standard machine learning
pipeline for model selection and hyperparameter tuning from a set of existing algorithms. At the
same time, LIFT uses only a single pretrained LM for solving all tasks.

C Experimental Setup

C.1 Datasets

�4 �2 0 2 4
X0

�4

�2

0

2

4

X
1

2 Classes

�4 �2 0 2 4
X0

�4

�2

0

2

4

3 Classes

�4 �2 0 2 4
X0

�4

�2

0

2

4

5 Classes

Figure 14: Rolls dataset of 2, 3, 5 classes with 300 samples per dataset (all classes are balanced).

Classification datasets. Table 16 summarizes the datasets used for classification tasks. We use
two additional types of synthetic datasets: neural-net-based datasets used for understanding the
inductive biases of algorithms (in Sec. 3.4 and Appendix D.1.3) and Gaussian pretext datasets for
the two-stage fine-tuning experiments (in Sec. 5.1). The neural-net-based datasets are generated as
follows. For binary classification, we train a 2-layer neural network with tanh activation functions
using the Rolls dataset shown in the leftmost figure in Fig. 14, and take six snapshots of the decision
boundary of the trained neural network shown in Fig. 15; we took snapshots at training epochs 10,
40, 80, 210, 320 and 490. Then, for each snapshot, we define a synthetic dataset (what we call a
neural-net-based dataset) having labels as the neural network’s prediction for randomly chosen 2000
samples. For 3-class and 5-class classifications, we also use 2000 samples to train a 2-layer neural

28

network using the Rolls dataset shown as the second and the third figure in Fig. 14. The decision
boundaries of networks trained on more epochs are visually more complex. Hence, the corresponding
classification tasks are becoming more complicated, from the left column to the right column in
Fig. 15. In the manuscript, we tested on three out of six datasets, obtained by snapshots at 10, 80, and
490 epochs, respectively. Given a target dataset of n classes and d features, Gaussian pretext datasets
are generated as follows: using scikit-learn2, we randomly generate datasets of n clusters, where
each cluster has 100 normally distributed samples in the d-dimensional space.

10 Epochs 40 Epochs 80 Epochs 210 Epochs 320 Epochs 490 Epochs

Figure 15: Neural-net-based datasets. Given Rolls dataset in Fig. 14, we train a 2-layer neural
network for 10, 40, 80, 210, 320, 490 epochs, and get six decision boundaries at each column. We
define six neural-net-based datasets from here: each decision boundary is used as a labeling function
of each neural-net-based dataset. In the main manuscript, we used three out of six datasets, obtained
by snapshots at 10, 80, and 490 epochs.

(Image datasets) For MNIST-based datasets, as the context length of LMs is limited, we (center)
scale and crop the size of images from 28 ⇥ 28 into 18 ⇥ 18 and use the integral format of pixel
values [0, 255]. We convert each image into a sequence of pixels in the order of left to right and top to
bottom. Each pixel sequence is then converted into the sentence input as of our language-interfaced
framework.

Regression datasets. We test LIFT/GPT on regression problems for both synthetic/real datasets.
(Synthetic datasets) To assess the regression performance of LIFT in different datasets, we generate
synthetic datasets based on six different functions types, including smooth functions, non-smooth
functions, and non-continuous functions:

1. Linear functions y = f(x) = x>1/p

2. Quadratic functions y = f(x) = xT Ix/p, where I is the identity matrix
3. Continuous exponential function y = f(x) =

Pp
i=1 e

0.2xi/p

4. Cosine functions y = f(x) =
Pp

i=1 cos(0.5⇡xi)/p

5. (Non-smooth) `1-norm function y = f(x) = kxk1 /p
6. (Non-continuous) Piecewise linear function

f(x) =
1

p

pX

i=1

f̃(xi) :=

(
xi � 1 �10  xi < �3,

0 �3  xi < 3,
xi + 1 3  xi  10.

)
.

We let xi ⇠ Unif(�10, 10) for each coordinate i, and the noise level � = 0.1 by default. We
normalize all the functions above for fair comparison among different functions so that y 2 [�9, 9]
when x 2 [�10, 10]p. In particular, to assess whether LIFT is better at dealing with positive
numbers or integers, we generate additional datasets by further manipulating the (x, y) distribution
of linear and piecewise functions. For datasets with real numbers, we generate the 1D dataset
x ⇠ Unif(�150,�150). For datasets with only positive numbers, we generate the dataset xi ⇠
Unif(0, 300). To generate the datasets with all integer prompts, we round down all the features to
integers. For visualization, in addition to the training, validation, and test datasets, we generated grid
datasets. Unless otherwise stated, we generate uniformly spaced 200 samples for 1D visualizations
and 2,500 samples for 2D visualizations, with each coordinate xi 2 [�10, 10] for i = 1, . . . , p. To
visualize the extrapolation performance, we let the xi 2 [�15, 15].

(Real datasets) We consider four real datasets: Medical Insurance dataset [41] with 1,338 samples
and 6 features, Combined Cycle Power Plant (CCPP) dataset [42] with 9,568 samples and 4 features,
Servo [43] dataset with 167 samples and 4 features, and Student [44] dataset with 649 samples and 33

2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

29

Table 16: Classification datasets. We have three non-language types of data: synthetic data, real
tabular data, and vision data. We use five synthetic datasets. For the real tabular data, we select
datasets from OpenML with a wide range of number of features, types of features, number of classes,
and number of training samples. We use MNIST, Fashion MNIST, and their permuted variants for
the vision datasets.

Data Type Dataset ID Abbreviation No. Features No. Classes No. Instances Note

Synthetic

9Gaussians 1 - 2 9 2000 -
Blobs 2 - 2 4 2000 -
Circle 3 - 2 2 2000 non-linear boundary
TwoCircles 6 - 2 2 2000 non-linear boundary
Moons 4 - 2 2 2000 -

Tabular

wholesale-customers 1511 Customers 8 2 440 Imbalance
pollution 882 Pollution 15 2 60 1 symbolic feature
spambase 44 Spambase 57 2 4601 1 symbolic feature
hill-valley 1479 Hill-Valley 100 2 1212 1 symbolic feature
tae 48 TAE 5 3 151 Categorical data
cmc 23 CMC 9 3 1473 Meaningful feature Names
wine 187 Wine 13 3 178 Integral features

(OpenML) vehicle 54 Vehicle 18 4 846 Meaningful feature Names
LED-display-domain-7digit 40496 LED 7 10 500 1 symbolic feature
optdigits 28 OPT 64 10 5620 1 symbolic feature
mfeat-factors 12 Mfeat 216 10 2000 1 symbolic feature
pollen 871 Pollen 5 2 3848 -
climate-model-simulation-crashes 1467 Climate 20 2 540 -
one-hundred-plants-margin 1491 Margin 64 100 1600 1 symbolic feature
one-hundred-plants-shape 1492 Shape 64 100 1600 1 symbolic feature
one-hundred-plants-texture 1493 Texture 64 100 1599 1 symbolic feature
breast-cancer 13 Breast 9 2 286 -
iris 61 Iris 4 3 150 -
visualizing_hamster 893 Hamster 5 2 73 -
PizzaCutter3 1444 Pizza 37 2 1043 -

Vision
MNIST - - 784 10 70k -
Permuted MNIST - P-MNIST 784 10 70k -
Fashion MNIST - FMNIST 784 10 70k -
Permuted Fashion MNIST - P-FMNIST 784 10 70k -

features. The Medical Insurance and Student datasets contain feature names that can be interpreted
using common knowledge (see feature lists in Table 35), while CCPP and Servo do not.

C.2 LIFT and Baseline Implementation

This section provides details of our models and implementation. We describe our pretrained lan-
guage models and the baseline implementations (C.2.1), the computing resources used for running
experiments (C.2.2), and how to fine-tune and select the hyperparameters (C.2.3).

C.2.1 Pretrained Language Models and Baselines

Pretrained language models. Our main results are with two pretrained language models: GPT-
J [31] and GPT-3 [19]. We mainly focus on GPT-J for the reproducibility purpose and provide
additional results on GPT-3 as reference. For GPT-J, we use a quantized version3 of 6 billion
parameters with 8-bit weights. For GPT-3, we use the GPT-3 OpenAI API4 and employ the Ada
version by default. In Sec. E.2, we compare two previously mentioned models with three bigger
versions of GPT-3 (Baggage, Curie, Davinci). The largest one is Davinci-GPT-3 containing
approximately 175 billions of parameters.

Since GPTs can output any language token, the output might not be appropriate for the desired task.
For example, GPT might output non-numerical words for regression task approximating a function
f : Rn ! R. In such a case, we categorize this as invalid output.

Baselines. For XGBoost, we use the open-source XGBoost module5. For other baselines, we
implement them using scikit-learn module6.

3https://huggingface.co/hivemind/gpt-j-6B-8bit
4https://openai.com/api/
5https://xgboost.readthedocs.io/
6https://scikit-learn.org/

30

C.2.2 Computing Resources

For experiments on GPT-J, we use GPU computing from two 24GB-RTX3090 GPUs and AWS EC2
instances7 (p3.8xlarge, p3.2xlarge). For other models, we run experiments on CPU instances.

C.2.3 Hyperparameter Selection

In fine-tuning GPT-J, we use Adam-8bit optimizer implementation8 with weight decay of 0.01
and 6 warm-up steps. The learning rate is chosen from 1e-4 and 2e-4 for the synthetic/OpenML
datasets, and 1e-5 for the vision datasets. We use a linear learning scheduler for the optimizer. For
classification, the batch size depends on the number of features of the datasets. We set the batch size
to be 128, 32, 16, and 2 for datasets with the number of features being no greater than 2, between
2 and 6, between 6 and 20, and greater than 20, respectively. For regression, we set batch size as 4
by default and reduce it to 1 to avoid the memory issue when the number of features increases. For
GPT-3, we use the API provided by OpenAI to perform black-box GPT-3 fine-tuning with the default
setting. Our implementation is with PyTorch framework9.

We perform hyperparameter selection based on validation results for all methods for a fair comparison.
The hyperparameter tuning scheme for all methods is detailed as follows:

Classification methods.

• LIFT/GPT-J: number of epochs 2 {5, 10, 15}
• LIFT/GPT-3: learning rate multiplier 2 {0.05, 0.1, 0.2}
• Random Forest (RF): maximum depth 2 {3, 5, 10}, minimum number of samples required

to split an internal node 2 {2, 5, 10}
• Decision Tree (DT): maximum depth of the tree 2 {3, 5, 20} and criterion 2

{Gini impurity, Shannon information gain}
• Support Vector Machine (SVM): kernel 2 {linear kernel, radial basis function}, regulariza-

tion parameter 2 {1, 10, 100}
• Multilayer Perceptron (MLP): initial learning rate 2 {0.001, 0.01, 0.1}
• Logistic regression (LogReg): inverse of regularization strength 2 {1, 10, 100}
• K-Nearest Neighbor (KNN): number of neighbors to use 2 {1, 3, 5}, power parameter for

the Minkowski metric 2 {1, 2}
• XGBoost (XG): maximum depth 2 {3, 5, 10}

Regression methods

• LIFT/GPT-J: number of epochs 2 {2, 6, 10}
• LIFT/GPT-3: learning rate multiplier 2 {0.05, 0.1, 0.2}
• Polynomial Regression (PR): no hyperparameter selection but fixed the degree at 3 since

higher-order polynomial regression introduces out-of-memory error, especially for high-
dimensional datasets

• K-Nearest Neighbor (KNN): number of neighbors 2 {2, 5, 8}
• Kernel Regression (KR): Gamma parameter of Radial Basis Kernel 2 {0.01, 0.1, 1}
• Multilayer Perceptron (MLP): initial learning rate 2 {0.0001, 0.001, 0.01}
• Gradient Boosting Tree (GBT): learning rate 2 {0.001, 0.01, 0.1}
• Random Forest (RF): maximum depth 2 {4, 6}
• Gaussian Process (GP): the number of optimizer restarts used to find parameters of the

kernel that maximize the log marginal likelihood 2 {5, 10}.

Note that we perform model selection based on validation RAE, instead of validation loss.
7https://aws.amazon.com/ec2/
8https://huggingface.co/hivemind/gpt-j-6B-8bit
9https://pytorch.org/

31

D Detailed and Extended Results of Experiments in the Main Paper

In this section, we provide the extended version of experimental results presented in the main paper,
including the primary findings of LIFT (D.1), the specific learning properties of LIFT (D.2), and
improving techniques for LIFT (D.3).

D.1 Results for Basic Findings of LIFT (Section 3)

D.1.1 How Well Does LIFT Perform on Standard ML Tasks?
Table 17: Accuracies (") on various classification datasets. We evaluate LIFT/GPTs on different
classification datasets: 2D synthetic datasets, tabular datasets in OpenML [36] , and image datasets,
varying number of features (p) and number of classes (c). Overall, LIFT/GPTs perform comparably
well across all tasks. LIFT/GPTs can be adapted well to non-linear datasets (circles, two circles),
beyond the capacity of logistic regression. On the OpenML data, LIFT/GPTs achieves competitive
performances with the best methods, such as XGBoost or RBF-SVM. The performance of LIFT/GPTs
degrades as the number of classes is large, e.g., when the number of classes c=100. On the vision
data, LIFT/GPTs perform comparably well, achieving highly competitive accuracies on both MNIST
and Fashion MNIST. We note that the classes of MNIST are not fully balanced. Thus MCC gets
11.35% instead of 10% as MCC returns the optimal class learned from the training dataset.

Type Dataset (ID) p/c MCC LogReg KNN DT MLP RBF-SVM RF XG LIFT/GPT-J LIFT/GPT-3

Synthetic

circles (3) 2 / 2 50.00 48.58±1.94 81.25±0.20 77.42±0.24 82.00±0.54 83.08±0.59 82.42±1.33 81.42±0.31 79.95±1.53 81.17±0.42
two circles (6) 2 / 2 50.00 49.83±4.18 81.83±0.62 75.50±0.20 68.42±3.86 80.00±0.54 76.08±0.59 79.25±0.35 75.92±1.65 81.42±0.82

blobs (2) 2 / 4 25.00 96.75±0.00 95.50±0.20 96.08±0.82 96.58±0.42 96.75±0.00 97.17±0.24 96.17±0.12 96.17±0.59 96.67±0.24
moons (4) 2 / 4 50.00 88.58±0.12 100.00±0.00 99.25±0.41 98.75±1.08 100.00±0.00 99.75±0.00 99.83±0.12 99.58±0.42 100.00±0.00

9Clusters (1) 2 / 9 11.25 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.75±0.00 100.00±0.00

Tabular

Customers (1511) 9 / 2 68.18 87.12±0.54 88.64±0.00 85.98±0.53 86.36±1.86 86.36±0.00 85.23±0.00 85.23±0.00 85.23±1.61 84.85±1.42
Pollution (882) 16 / 2 50.00 58.33±11.79 66.67±6.81 77.78±3.93 66.67±0.00 58.33±6.81 77.78±3.93 63.89±7.86 63.89±3.93 63.89±7.86
Spambase (44) 58 / 2 60.59 93.27±0.00 90.77±0.00 90.7±0.14 94.35±0.00 93.70±0.00 95.01±0.00 95.87±0.00 94.03±0.54 94.90±0.36

Hill-Valley (1479) 101 / 2 49.79 77.78±0.00 56.38±0.00 56.38±0.89 50.21±0.00 68.72±0.00 51.44±0.00 59.26±0.00 100.00±0.20 99.73±0.19
TAE (48) 6 / 3 35.48 45.16±4.56 60.22±4.02 65.59±5.49 54.84±2.63 53.76±6.63 67.74±7.90 66.67±8.05 61.29±6.97 65.59±6.63
CMC (23) 10 / 3 42.71 49.49±0.83 50.85±1.91 56.72±0.32 57.29±0.73 56.50±0.97 53.45±1.05 52.43±0.42 49.83±0.28 57.74±0.89
Wine (187) 14 / 3 38.89 100.00±0.00 96.29±1.31 93.52±2.62 98.15±2.62 100.00±0.00 100.00±0.00 97.22±0.00 93.52±1.31 92.59±1.31

(OpenML) Vehicle (54) 19 / 4 25.88 80.39±1.00 69.61±0.74 63.92±2.37 79.21±0.28 81.18±0.48 75.88±1.27 73.14±0.28 64.31±2.37 70.20±2.73
LED (40496) 8 / 10 11.00 68.67±0.94 63.67±6.13 66.33±2.87 72.00±0.82 68.00±0.82 64.33±0.94 66.00±0.82 65.33±0.47 69.33±2.05

OPT (28) 65 / 10 10.14 96.53±0.22 96.92±0.16 89.8±1.09 97.36±0.27 97.95±0.00 97.69±0.14 97.48±0.17 98.22±0.11 98.99±0.30
Mfeat (12) 217 / 10 10.00 97.67±0.12 97.67±0.31 87.67±1.05 96.5±0.35 98.83±0.24 97.75±0.35 96.75±0.00 94.17±1.75 93.08±0.24

Margin (1491) 65 / 100 0.94 81.35±0.15 77.60±0.97 43.86±1.21 77.71±1.91 81.98±0.30 77.71±1.98 70.21±0.29 50.23±1.33 59.37±0.92
Texture (1493) 65 / 100 0.94 81.67±0.97 80.62±0.76 46.88±1.93 76.88±2.44 83.44±0.89 73.12±0.76 70.73±1.41 50.32±2.18 67.50±1.42

Images
MNIST

784 / 10
11.35 91.95±0.69 96.71±0.11 87.42±0.64 97.30±0.16 97.70±0.97 94.91±0.18 97.69±0.04 97.01±1.15 98.15±0.67

P-MNIST 11.35 92.58±0.04 96.74±0.08 87.87±0.69 97.39±0.14 98.06±0.31 94.59±0.18 97.62±0.09 95.80± 0.07 96.25±0.35
FMNIST 10.00 85.59±0.09 85.59±0.03 80.52±0.40 88.86±0.02 90.59±0.02 85.25±0.13 90.19±0.04 85.10 ± 0.19 90.18 ±0.12

P-FMNIST 10.00 84.95±0.84 85.15±0.61 79.91±0.93 88.86±0.61 88.04±1.69 84.93±0.59 89.93±0.14 82.25±0.27 88.92±0.71

We now provide full results of classification and regression performances with all baselines, including
the investigation of the interpolation and extrapolation performance of LIFT for regression tasks.

Classification. Table 17 presents the classification performance with other baselines, including
KNN, MLP, and Random Forest. We further consider two additional baselines here, which has larger
model sizes compared to the baselines we discussed in Sec. 2. TabNet [157] and TabTransformer [156]
are deep neural network models based on architectures specifically designed for tabular data. The
results are presented in Table 18. We observe that LIFT achieves comparable performance to TabNet
and TabTransformer. This further highlight the good performance of LIFT.

Regression. Table 19 provides the regression evaluation with all regression baselines on synthetic
datasets, and Table 20 provides the results for real datasets. Since experiments with LIFT/GPT-J are
conduced on AWS and local server and due to this limitation of memory resources, we fail to run
experiments of LIFT/GPT-J on high-dimensional datasets. Therefore, for 50D and 120D synthetic
datasets, only results of LIFT/GPT-3 are reported.

We further provide the visualization of regression models. Fig. 21 and 22 visualize the 2D predictions
for various functions with 200 and 1000 samples training datasets, respectively. Each coordinate of
the training sample is drawn uniformly from [�10, 10]. Specifically, the prediction is performed on
the interval [�12, 12].

Fig. 23 and Fig. 24 visualize the interpolation and extrapolation of various methods. All methods
fail to extrapolate and interpolate well for all functions. It turns out that LIFT is not having good
interpolation performance except in the linear regression case. An interesting observation is that
LIFT tends to output seen values (from training data) for extrapolation. For example, in Fig. 24b,
the outputs of LIFTs for x /2 [�10, 10] (extrapolation) lie in the range of outputs for x 2 [�10, 10]
(trained data), and similar behaviors are observed for other functions as well.

32

�8 0 8 �8
0

8G
P

T
3

�10
0

10

RAE: 0.15

�8 0 8 �8
0

8G
P

T
J

�10
0

10

RAE: 0.11

�8 0 8 �8
0

8

P
R

�10
0

10

RAE: 0.02

�8 0 8 �8
0

8

K
R

�10
0

10

RAE: 0.09

�8 0 8 �8
0

8

K
N

N

�10
0

10

RAE: 0.10

�8 0 8 �8
0

8

N
N

�10
0

10

RAE: 0.02

�8 0 8 �8
0

8

X
G

�10
0

10

RAE: 0.11

�8 0 8 �8
0

8

R
F

�10
0

10

RAE: 0.11

�8 0 8 �8
0

8

G
P

�10
0

10

RAE: 0.01

�8 0 8 �8
0

8T
R

U
E

�10
0

10

(a) linear

�8 0 8 �8
0

8�10
0

10

RAE: 0.18

�8 0 8 �8
0

8�10
0

10

RAE: 0.22

�8 0 8 �8
0

8�10
0

10

RAE: 0.02

�8 0 8 �8
0

8�10
0

10

RAE: 0.19

�8 0 8 �8
0

8�10
0

10

RAE: 0.22

�8 0 8 �8
0

8�10
0

10

RAE: 0.06

�8 0 8 �8
0

8�10
0

10

RAE: 0.16

�8 0 8 �8
0

8�10
0

10

RAE: 0.25

�8 0 8 �8
0

8�10
0

10

RAE: 0.02

�8 0 8 �8
0

8�10
0

10

(b) quadratic

�8 0 8 �8
0

8�10
0

10

RAE: 0.21

�8 0 8 �8
0

8�10
0

10

RAE: 0.24

�8 0 8 �8
0

8�10
0

10

RAE: 0.05

�8 0 8 �8
0

8�10
0

10

RAE: 0.16

�8 0 8 �8
0

8�10
0

10

RAE: 0.15

�8 0 8 �8
0

8�10
0

10

RAE: 0.06

�8 0 8 �8
0

8�10
0

10

RAE: 0.11

�8 0 8 �8
0

8�10
0

10

RAE: 0.12

�8 0 8 �8
0

8�10
0

10

RAE: 0.05

�8 0 8 �8
0

8�10
0

10

(c) exponential

�8 0 8 �8
0

8�10
0

10

RAE: 0.59

�8 0 8 �8
0

8�10
0

10

RAE: 0.80

�8 0 8 �8
0

8�10
0

10

RAE: 1.03

�8 0 8 �8
0

8�10
0

10

RAE: 0.71

�8 0 8 �8
0

8�10
0

10

RAE: 0.79

�8 0 8 �8
0

8�10
0

10

RAE: 1.01

�8 0 8 �8
0

8�10
0

10

RAE: 0.42

�8 0 8 �8
0

8�10
0

10

RAE: 0.77

�8 0 8 �8
0

8�10
0

10

RAE: 0.35

�8 0 8 �8
0

8�10
0

10

(d) cosine

�8 0 8 �8
0

8�10
0

10

RAE: 0.19

�8 0 8 �8
0

8�10
0

10

RAE: 0.30

�8 0 8 �8
0

8�10
0

10

RAE: 0.26

�8 0 8 �8
0

8�10
0

10

RAE: 0.17

�8 0 8 �8
0

8�10
0

10

RAE: 0.19

�8 0 8 �8
0

8�10
0

10

RAE: 0.05

�8 0 8 �8
0

8�10
0

10

RAE: 0.16

�8 0 8 �8
0

8�10
0

10

RAE: 0.26

�8 0 8 �8
0

8�10
0

10

RAE: 0.07

�8 0 8 �8
0

8�10
0

10

(e) l1-norm

�8 0 8 �8
0

8�10
0

10

RAE: 0.35

�8 0 8 �8
0

8�10
0

10

RAE: 0.39

�8 0 8 �8
0

8�10
0

10

RAE: 0.42

�8 0 8 �8
0

8�10
0

10

RAE: 0.37

�8 0 8 �8
0

8�10
0

10

RAE: 0.35

�8 0 8 �8
0

8�10
0

10

RAE: 0.23

�8 0 8 �8
0

8�10
0

10

RAE: 0.19

�8 0 8 �8
0

8�10
0

10

RAE: 0.39

�8 0 8 �8
0

8�10
0

10

RAE: 0.36

�8 0 8 �8
0

8�10
0

10

(f) piecewise

Figure 21: Performance of LIFT/GPTs and baselines in approximating various functions. The
first row visualizes the true values of the functions, and the second & third rows visualize the predicted
values of LIFT/GPTs after fine-tuning for the corresponding regression tasks with 200 training
samples. We compared with other baselines with the same training samples.

33

�8 0 8 �8
0

8G
P

T
3

�10
0

10

RAE: 0.11

�8 0 8 �8
0

8G
P

T
J

�10
0

10

RAE: 0.08

�8 0 8 �8
0

8

P
R

�10
0

10

RAE: 0.01

�8 0 8 �8
0

8

K
R

�10
0

10

RAE: 0.03

�8 0 8 �8
0

8

K
N

N

�10
0

10

RAE: 0.05

�8 0 8 �8
0

8

N
N

�10
0

10

RAE: 0.02

�8 0 8 �8
0

8

X
G

�10
0

10

RAE: 0.06

�8 0 8 �8
0

8

R
F

�10
0

10

RAE: 0.07

�8 0 8 �8
0

8

G
P

�10
0

10

RAE: 0.01

�8 0 8 �8
0

8T
R

U
E

�10
0

10

(a) linear

�8 0 8 �8
0

8�10
0

10

RAE: 0.13

�8 0 8 �8
0

8�10
0

10

RAE: 0.11

�8 0 8 �8
0

8�10
0

10

RAE: 0.01

�8 0 8 �8
0

8�10
0

10

RAE: 0.06

�8 0 8 �8
0

8�10
0

10

RAE: 0.10

�8 0 8 �8
0

8�10
0

10

RAE: 0.05

�8 0 8 �8
0

8�10
0

10

RAE: 0.08

�8 0 8 �8
0

8�10
0

10

RAE: 0.22

�8 0 8 �8
0

8�10
0

10

RAE: 0.01

�8 0 8 �8
0

8�10
0

10

(b) quadratic

�8 0 8 �8
0

8�10
0

10

RAE: 0.13

�8 0 8 �8
0

8�10
0

10

RAE: 0.11

�8 0 8 �8
0

8�10
0

10

RAE: 0.03

�8 0 8 �8
0

8�10
0

10

RAE: 0.07

�8 0 8 �8
0

8�10
0

10

RAE: 0.07

�8 0 8 �8
0

8�10
0

10

RAE: 0.06

�8 0 8 �8
0

8�10
0

10

RAE: 0.06

�8 0 8 �8
0

8�10
0

10

RAE: 0.07

�8 0 8 �8
0

8�10
0

10

RAE: 0.02

�8 0 8 �8
0

8�10
0

10

(c) exponential

�8 0 8 �8
0

8�10
0

10

RAE: 0.50

�8 0 8 �8
0

8�10
0

10

RAE: 0.32

�8 0 8 �8
0

8�10
0

10

RAE: 1.01

�8 0 8 �8
0

8�10
0

10

RAE: 0.28

�8 0 8 �8
0

8�10
0

10

RAE: 0.44

�8 0 8 �8
0

8�10
0

10

RAE: 0.73

�8 0 8 �8
0

8�10
0

10

RAE: 0.14

�8 0 8 �8
0

8�10
0

10

RAE: 0.76

�8 0 8 �8
0

8�10
0

10

RAE: 0.06

�8 0 8 �8
0

8�10
0

10

(d) cosine

�8 0 8 �8
0

8�10
0

10

RAE: 0.13

�8 0 8 �8
0

8�10
0

10

RAE: 0.11

�8 0 8 �8
0

8�10
0

10

RAE: 0.25

�8 0 8 �8
0

8�10
0

10

RAE: 0.06

�8 0 8 �8
0

8�10
0

10

RAE: 0.09

�8 0 8 �8
0

8�10
0

10

RAE: 0.04

�8 0 8 �8
0

8�10
0

10

RAE: 0.08

�8 0 8 �8
0

8�10
0

10

RAE: 0.25

�8 0 8 �8
0

8�10
0

10

RAE: 0.04

�8 0 8 �8
0

8�10
0

10

(e) l1-norm

�8 0 8 �8
0

8�10
0

10

RAE: 0.21

�8 0 8 �8
0

8�10
0

10

RAE: 0.16

�8 0 8 �8
0

8�10
0

10

RAE: 0.41

�8 0 8 �8
0

8�10
0

10

RAE: 0.26

�8 0 8 �8
0

8�10
0

10

RAE: 0.22

�8 0 8 �8
0

8�10
0

10

RAE: 0.19

�8 0 8 �8
0

8�10
0

10

RAE: 0.10

�8 0 8 �8
0

8�10
0

10

RAE: 0.37

�8 0 8 �8
0

8�10
0

10

RAE: 0.18

�8 0 8 �8
0

8�10
0

10

(f) piecewise

Figure 22: Performance of LIFT/GPTs in approximating various functions. The first row
visualizes the true values of the functions, and the second & third rows visualize the predicted values
of LIFT/GPTs after fine-tuning for the corresponding regression tasks with 1000 training samples.
We compared with other baselines with the same training samples.

34

�5

0

5

G
P

T
J

(a) linear function
True

Prediction

(b) quadratic function (c) exponential function (d) cosine function (e) l1-norm function (f) piecewise function

�5

0

5

G
P

T
3

�5

0

5

P
R

�5

0

5

K
R

�5

0

5

K
N

N

�5

0

5

M
L
P

�5

0

5

X
G

�5

0

5

R
F

�7 0 7

�5

0

5

G
P

�7 0 7 �7 0 7 �7 0 7 �7 0 7 �7 0 7
x

Figure 23: Interpolation performance on synthetic regression tasks. Each algorithm is trained
with samples in the white background region (3  |x|  10), and tested on the interpolation area
|x|  3. LIFT/GPTs are having worse interpolation performances compared with existing methods.

35

Table 18: Comparison of accuracies(") between LIFT and deep neural network models designed
for tabular datasets. We consider two baselines here: TabNet [157] and TabTransformer [156]. We
observe that LIFT achieves comparable performance to TabNet and TabTransformer, which is more
evidence of the good performance of LIFT.

Dataset (ID) MCC LIFT/GPT-3 LIFT/GPT-J TabNet TabTransformer
Blobs (2) 25.00 96.67± 0.24 96.17± 0.59 96.75± 0.00 50.00± 0.00

Two Circles (6) 50.00 81.42± 0.82 75.92± 1.65 74.25± 12.39 49.25± 1.29
Iris (61) 33.33 97.0± 0.00 96.67± 0.00 97.78± 1.92 72.22± 5.09

Customers (1511) 68.18 84.85± 1.42 85.23± 1.61 85.22± 3.93 87.12± 0.66
Wine (187) 38.89 92.59± 1.31 93.52± 1.31 94.44± 5.56 90.74± 13.70

LED (40496) 11.0 69.33± 2.05 65.33± 0.47 67.00± 2.46 41.00± 12.49

Table 19: Comparison of regression methods in approximating various functions. The regression
performance is measured by RAE(#), and we tested on six functions with various p, the number of
features. LIFT can approximate different types of functions in low-dimensional cases (p = 1, 2),
although it fails to achieve performance comparable to that of strong baselines. We observed that
LIFT fails to achieve satisfying regression performance in high-dimensional cases (p = 50, 100).
Results of LIFT/GPT-J on high-dimensional datasets are not available due to the resource limitation.

Dataset
Method PR KR KNN MLP GBT RF GP LIFT/GPT-J LIFT/GPT-3

Linear

p = 1 0.01 ± 0.0 0.05 ± 0.0 0.04 ± 0.0 0.03 ± 0.0 0.05 ± 0.0 0.04 ± 0.0 0.01 ± 0.0 0.08 ± 0.0 0.06 ± 0.0
p = 2 0.03 ± 0.0 0.09 ± 0.0 0.12 ± 0.0 0.04 ± 0.0 0.12 ± 0.0 0.12 ± 0.0 0.01 ± 0.0 0.12 ± 0.0 0.19 ± 0.0
p = 50 0.71 ± 0.0 1.02 ± 0.0 0.78 ± 0.0 1.85 ± 0.1 0.97 ± 0.0 0.87 ± 0.0 0.13 ± 0.0 - 1.18 ± 0.2
p = 100 0.95 ± 0.0 1.02 ± 0.0 0.88 ± 0.0 3.02 ± 0.0 0.99 ± 0.0 0.94 ± 0.0 0.64 ± 0.0 - 2.14 ± 0.5

Quadratic

p = 1 0.01 ± 0.0 0.05 ± 0.0 0.05 ± 0.0 0.03 ± 0.0 0.06 ± 0.0 0.05 ± 0.0 0.01 ± 0.0 0.11 ± 0.0 0.13 ± 0.0
p = 2 0.03 ± 0.0 0.16 ± 0.0 0.17 ± 0.0 0.06 ± 0.0 0.15 ± 0.0 0.25 ± 0.0 0.02 ± 0.0 0.28 ± 0.1 0.22 ± 0.0
p = 50 1.12 ± 0.0 5.19 ± 0.0 1.33 ± 0.0 2.28 ± 0.0 0.98 ± 0.0 0.96 ± 0.0 0.69 ± 0.0 - 0.99 ± 0.2
p = 100 1.02 ± 0.0 7.30 ± 0.0 1.29 ± 0.0 2.89 ± 0.0 1.01 ± 0.0 0.98 ± 0.0 0.89 ± 0.0 - 1.06 ± 0.1

Exponential

p = 1 0.04 ± 0.0 0.07 ± 0.0 0.05 ± 0.0 0.02 ± 0.0 0.05 ± 0.0 0.04 ± 0.0 0.01 ± 0.0 0.11 ± 0.0 0.09 ± 0.0
p = 2 0.04 ± 0.0 0.15 ± 0.0 0.13 ± 0.0 0.07 ± 0.0 0.09 ± 0.0 0.11 ± 0.0 0.04 ± 0.0 0.19 ± 0.0 0.20 ± 0.0
p = 50 0.94 ± 0.0 10.23 ± 0.0 1.04 ± 0.0 3.18 ± 0.2 1.05 ± 0.0 0.96 ± 0.0 0.53 ± 0.0 - 1.15 ± 0.0
p = 100 0.96 ± 0.0 14.12 ± 0.0 1.03 ± 0.0 4.14 ± 0.0 0.97 ± 0.0 0.93 ± 0.0 0.79 ± 0.0 - 1.03 ± 0.0

Cosine

p = 1 1.05 ± 0.0 0.12 ± 0.0 0.14 ± 0.0 0.38 ± 0.1 0.15 ± 0.0 0.35 ± 0.0 0.04 ± 0.0 0.38 ± 0.1 0.44 ± 0.1
p = 2 1.04 ± 0.0 0.74 ± 0.0 0.83 ± 0.1 1.06 ± 0.0 0.41 ± 0.0 0.80 ± 0.0 0.31 ± 0.0 0.82 ± 0.2 0.65 ± 0.1
p = 50 1.01 ± 0.0 1.01 ± 0.0 1.00 ± 0.0 1.59 ± 0.0 1.00 ± 0.0 0.99 ± 0.0 1.01 ± 0.0 - 1.25 ± 0.1
p = 100 1.02 ± 0.0 1.00 ± 0.0 1.09 ± 0.0 2.43 ± 0.1 1.04 ± 0.0 1.06 ± 0.0 1.00 ± 0.0 - 1.20 ± 0.3

L1norm

p = 1 0.23 ± 0.0 0.06 ± 0.0 0.05 ± 0.0 0.03 ± 0.0 0.06 ± 0.0 0.06 ± 0.0 0.03 ± 0.0 0.10 ± 0.0 0.09 ± 0.0
p = 2 0.24 ± 0.0 0.17 ± 0.0 0.19 ± 0.0 0.06 ± 0.0 0.15 ± 0.0 0.29 ± 0.0 0.07 ± 0.0 0.24 ± 0.0 0.20 ± 0.0
p = 50 1.09 ± 0.0 1.00 ± 0.0 1.28 ± 0.0 1.97 ± 0.1 0.98 ± 0.0 0.94 ± 0.0 0.96 ± 0.0 - 1.12 ± 0.1
p = 100 1.01 ± 0.0 1.01 ± 0.0 1.22 ± 0.0 2.80 ± 0.1 1.03 ± 0.0 1.01 ± 0.0 0.99 ± 0.0 - 1.27 ± 0.2

Piecewise

p = 1 0.45 ± 0.0 0.17 ± 0.0 0.08 ± 0.0 0.08 ± 0.0 0.06 ± 0.0 0.07 ± 0.0 0.10 ± 0.0 0.15 ± 0.0 0.17 ± 0.0
p = 2 0.39 ± 0.0 0.34 ± 0.0 0.33 ± 0.0 0.20 ± 0.0 0.19 ± 0.0 0.38 ± 0.0 0.29 ± 0.0 0.40 ± 0.1 0.40 ± 0.1
p = 50 0.93 ± 0.0 1.00 ± 0.0 0.97 ± 0.0 2.11 ± 0.0 1.00 ± 0.0 0.94 ± 0.0 0.93 ± 0.0 - 1.35 ± 0.1
p = 100 1.01 ± 0.0 1.00 ± 0.0 1.08 ± 0.0 4.20 ± 0.1 1.02 ± 0.0 1.01 ± 0.0 1.01 ± 0.0 - 1.11 ± 0.0

Table 20: Comparison of regression methods in real datasets. The regression performance is
measured by RAE(#). We observe that LIFT/GPT-3 achieves the top 2 regression performance
among all the real datasets.

Dataset
Method PR KR KNN MLP GBT RF GP LIFT/GPT-J LIFT/GPT-3

ccpp 0.22 ± 0.00 21.60 ± 0.00 0.45 ± 0.00 0.30 ± 0.00 0.17 ± 0.00 0.21 ± 0.00 0.69 ± 0.00 0.24 ± 0.01 0.18 ± 0.01

servo 0.92 ± 0.00 0.95 ± 0.00 0.86 ± 0.00 0.82 ± 0.00 0.25 ± 0.00 0.25 ± 0.00 1.03 ± 0.00 1.17 ± 0.16 0.29 ± 0.02

insurance 0.48 ± 0.00 1.48 ± 0.00 1.03 ± 0.00 0.44 ± 0.00 0.25 ± 0.00 0.26 ± 0.00 1.30 ± 0.00 0.53 ± 0.11 0.14 ± 0.05

student 0.47 ± 0.00 1.56 ± 0.00 0.66 ± 0.00 0.37 ± 0.00 0.39 ± 0.00 0.36 ± 0.00 0.45 ± 0.00 0.36 ± 0.02 0.27 ± 0.01

36

�10

0

10

L
IF

T
/G

P
T

-J

(a) linear function
True

Prediction

(b) quadratic function (c) exponential function (d) cosine function (e) l1-norm function (f) piecewise function

�10

0

10

L
IF

T
/G

P
T

-3

�10

0

10

P
R

�10

0

10

K
R

�10

0

10

K
N

N

�10

0

10

M
L
P

�10

0

10

G
B

T

�10

0

10

R
F

�15 0 15

�10

0

10

G
P

�15 0 15 �15 0 15 �15 0 15 �15 0 15 �15 0 15

Figure 24: Comparison of the extrapolation performance of LIFT and various baselines on
synthetic regression tasks of approximating six functions f . Each algorithm is trained by 200
samples (x, y) where the input x is drawn from interval [�10, 10] and the output is defined as
y = f(x). We test the how each algorithm perform regression for x /2 [�10, 10].

D.1.2 How Many Samples Does LIFT Need?

Fig. 25a and Fig. 25b provide the sample complexity comparisons between evaluated methods in the
classification and regression settings.

D.1.3 Can We Understand the Inductive Biases of Language Models via LIFT?

Continuing from Sec. 3.4, here we provide more experiments with detailed measurements that
quantify the similarity between decision boundaries.

Visualizing decision boundary. We construct datasets with various classification complexities to
investigate the adaptability of LIFT. In particular, we construct three datasets: a binary classification
dataset, a 3-class and a 5-class dataset (shown in the first column of Fig. 26a, Fig. 26b, and Fig. 26c).
We call these datasets neural-net-based synthetic datasets since we generate them using a 2-layer

37

	�

�
��

��

��

��

��

�
$
$
0
-
#
$
1

�#/#.%/�����
�$(#..%.

	�

�
��

�

�

��

��

��

	��
�#/#.%/�	
��	��$(#..%.

	�

�
��

�

�

��

��

�#/#.%/�	��	��	���$(#..%.

	�

�
��

�� -#'*'*&��#),(%.

�

�

��

��

��

	��

�
$
$
0
-
#
$
1

�#/#.%/�	�����
�$(#..%.

	�

�
��

�� -#'*'*&��#),(%.

�

�

��

��

�#/#.%/��������	��$(#..%.

	�

�
��

�� -#'*'*&��#),(%.

�

	�

�

��

��

�#/#.%/�	��
��	���$(#..%.

��� ��� �� �+&�%& ��� � ��� �!� �� "� ���

(a) Classification tasks on OpenML tabular datasets. The classification performance is measured in terms
of accuracy ("). Here, ODC denotes optimal deterministic classifier, which is identical to the majority class
classifier (MCC) in the main paper.

1 2 3
0

2

4

6
(a) linear

1 2 3
0

2

4

6
(b) quadratic

1 2 3
0

2

4

6
(c) exponential

1 2 3
0

3

6

9
(d) cosine

1 2 3
0

2

4

6
(e) l1-norm

1 2 3
0

3

6

9
(f) piecewise

LIFT/GPT-J LIFT/GPT-3 GP PR KNN KR MLP GBT RF

log10(# of samples)

R
M

SE

(b) Regression tasks (function approximation). The regression performance is reported in RMSE (#).

Figure 25: Sample complexity evaluations on classification and regression tasks. Each figure
presents the comparison of performance evaluated on LIFT/GPTs and baselines varying numbers
of training samples (10–500 for classification and 10–1000 for regression). LIFT needs a slightly
larger sample complexity to start achieving similar performances to the best baseline methods. For
regression tasks, we note that LIFT achieves competitive or even better performance when around
1000s of samples are given, especially for the discontinuous functions, e.g., piecewise function.

neural network. See Fig. 14 and Appendix C.1 for detailed explanations of how we generated these
datasets. Note that Fig. 26a is the same as Fig. 6 in Sec. 3.4, which we put for completeness here.

Fig. 26 visualizes the decision boundaries of models trained on the neural-net-based synthetic data. In
addition, we also visualize the decision boundaries of models trained on the label-corrupted versions
of three binary classification datasets, with the corruption probabilities being 5% and 20% (see details
in Sec. D.1.4), shown in Fig. 26d and Fig. 26e. Specifically, we consider the binary classification
tasks and flip the training data labels with the provided probabilities. Overall, the same observation of
Sec. 3.4 also holds for the 3-class and 5-class datasets — both GPT-J and GPT-3 models fine-tuned
with LIFT can adapt well to different boundaries. They can capture the rough shapes of the decision
boundaries in all three settings.

Besides, when the level of corruption increases, decision trees and XGboost are the most affected
baselines. While roughly capturing the boundary, LIFT/GPT-J also shows more noisy predictions.
In contrast, LIFT/GPT-3 displays great robustness against the corrupted labels while capturing the
correct boundary shapes. Nevertheless, this experiment indicates the different behaviors of LIFTs
from the baseline algorithms and their adaptability to different types of decision boundary.

One interesting observation here is that LIFT’s decision boundaries are axis-parallel and show a lot
of fractals. The axis-parallel boundary looks similar to the boundary of tree-based classifiers, and the

38

True Function LogReg KNN DT MLP RBF-SVM RF XG LIFT/GPT-J LIFT/GPT-3

(a) Binary classification
True Function LogReg KNN DT MLP RBF-SVM RF XG LIFT/GPT-J LIFT/GPT-3

(b) 3-way classification
True Function LogReg KNN DT MLP RBF-SVM RF XG LIFT/GPT-J LIFT/GPT-3

(c) 5-way classification
True Function LogReg KNN DT MLP RBF-SVM RF XG LIFT/GPT-J LIFT/GPT-3

(d) Binary classification with label corruption (corruption ratio is 5%)
True Function LogReg KNN DT MLP RBF-SVM RF XG LIFT/GPT-J LIFT/GPT-3

(e) Binary classification with label corruption (corruption ratio is 20%)

Figure 26: Classification decision boundary visualizations on neural-net-based synthetic datasets.
The first column of each row shows the decision boundary of the training datasets. In (a), (b), and (c),
we visualize the decision boundaries of models trained on datasets with two, three, and five classes.
In (d) and (e), we consider the label-corrupted version of the binary-class datasets, with corruption
probabilities of 5% and 20%. We find that LIFT/GPTs adapt well and roughly estimate the true
decision boundaries. The shapes of LIFT’s decision boundary are likely to be axis-parallel and show
multiple fractals.

39

Table 27: Quantifying the similarity between decision boundaries of LIFT/GPT-3 and those of
various baselines. We use different settings of the baselines, where their hyperparameters are given
with the baseline name, and the selected values of hyperparameters are specified in the second line.
Each column reports the matching accuracy (") between the predictions of LIFT/GPT-3 with those of
the baseline. Each score is a percentage similarity of both LIFT/GPT-3 and the baseline classifying
a point with the same class. For example, a score of 100 for model A signifies that LIFT/GPT-3
classified all sampled test points in the same manner as model A, regardless of their true dataset
accuracy. The last row reports the average matching accuracy. We highlight the highly matched
algorithms, namely RBF-SVM, MLP (W=100), and Random Forest (E=100).

Dataset (ID)

Similarity Method SVM (kernel) LogReg KNN (k) DT (depth D) MLP (width W) XG RF (# estimators E)

poly rbf sigmoid K=1 K=3 K=5 D=3 D=5 W=10 W=100 W=200 E=20 E=50 E=100
9clusters (1) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 76.00 100.00 100.00 100.00 100.00 97.50 100.00 100.00 100.00
blobs (2) 98.50 97.50 92.00 97.50 94.00 95.50 96.00 94.50 91.00 97.00 97.00 97.00 93.50 94.50 94.00 94.00
circles (3) 54.00 93.50 48.00 51.00 85.50 88.50 88.50 67.00 80.00 84.00 92.50 92.50 87.50 85.00 87.50 89.00
moons (4) 90.50 97.50 74.50 87.50 99.00 99.00 99.00 91.00 98.50 92.50 98.50 98.50 97.50 95.50 94.50 96.00
two circles (6) 63.00 62.50 48.50 62.50 59.50 58.00 59.00 57.50 59.50 60.50 64.00 65.00 58.50 64.00 63.50 65.00

CMC (23) 59.50 61.00 68.00 63.50 50.50 52.50 51.00 65.00 72.00 62.50 53.50 53.50 63.00 56.00 55.50 59.00
Pollen (871) 66.00 74.50 66.00 67.50 60.00 63.00 64.50 69.50 66.00 60.00 59.50 58.00 63.50 64.50 62.50 67.00
Climate (1467) 100.00 100.00 100.00 94.50 92.50 98.50 100.00 94.50 91.00 98.00 97.50 97.50 94.50 99.50 99.50 100.00
LED (40496) 88.00 87.00 82.50 91.50 74.00 76.50 84.50 69.00 84.50 85.50 94.50 91.50 92.00 91.50 91.50 90.50

Average 79.94 85.94 75.5 79.5 79.4 81.28 82.50 76.00 82.50 82.22 84.11 83.72 83.06 83.39 81.17 84.5

fractal shapes of LIFT’s boundaries are similar to the observations on the decision boundaries of
some convolution neural networks [49]. However, the main reason why LIFT’s decision boundary
has such patterns seems to be due to the way it interprets numbers. Since we rely solely on the
language interface, there are some artifacts due to the decimal numeral system. For instance, 0.98
and 0.99 are only one-character different, but 0.99 and 1.00 are three-characters different. We believe
that such an artifact is the reason behind axis-parallel decision boundaries and fractal-like patterns.

Quantifying the similarity of decision boundaries. To further verify whether LIFTs behave
similarly to any standard algorithm, we quantify the similarity between the decision boundaries of
LIFT/GPT-3 and those of the baselines. Specifically, the similarity score is the percentage of the
exact classification matches between LIFT/GPT-3 and the compared method. We randomly sample
two sets of 200 data points from the original dataset for training and evaluation, respectively, and the
results of all methods are reported in Table 27. Based on the similarity score, while we observe no
similar discernible pattern between LIFT/GPT-3 and the baselines, we find that LIFT/GPT-3 appear
to share the most similar behavior pattern to RBF-SVM, random forest (E=100), and MLP (W=100).

D.1.4 How Robust Is LIFT?

Robustness to outliers in training data. Fig. 28 visualizes the outlier robustness results discussed
in Sec. 3.5.

Robustness to label corruption. We choose a subset of samples and corrupt the label of the
chosen samples, using two corruption schemes: (1) random errors (randomly select another label
with an equal probability for all labels) and (2) systematic errors [163] (replace a label with its next
label in the target label list, e.g., 0 ! 1, 1 ! 2, 2 ! 0 for a 3-way classification). As shown in
Fig. 29 , LIFT/GPT-3 can perform well under label corruption; it follows the general trend of other
baselines, not outperforming or underperforming. Note that LIFT/GPT-3 almost always displays
greater robustness than KNN.

Table 30 and Table 31 extend the results reported in Fig. 29. These additional datasets follow a similar
trend to what was discussed in Sec. 3.5.

Robustness to class-imbalance of training data. We evaluate LIFT on class-imbalanced clas-
sification tasks (OpenML datasets Pizza, Climate, and Customers having IDs 1444, 1467, and
1511), shown in Table 32. We use additional metrics: F1, precision, and recall (higher scores indicate
better performance), which are considered as better measurements for the imbalanced data than the
accuracy. The higher values of the MCC’s accuracy imply the higher levels of imbalance in the data

40

P
R

K
R

K
N

N

M
L
P

G
B

T

R
F

G
P

L
IF

T
/G

P
T

-J

L
IF

T
/G

P
T

-3

0.0

0.5

(a) linear function

Witout Outliers

With Outliers

P
R

K
R

K
N

N

M
L
P

G
B

T

R
F

G
P

L
IF

T
/G

P
T

-J

L
IF

T
/G

P
T

-3

0.0

0.5

1.0
(b) quadratic function

P
R

K
R

K
N

N

M
L
P

G
B

T

R
F

G
P

L
IF

T
/G

P
T

-J

L
IF

T
/G

P
T

-3
0.0

0.5

1.0

(c) exponential function

P
R

K
R

K
N

N

M
L
P

G
B

T

R
F

G
P

L
IF

T
/G

P
T

-J

L
IF

T
/G

P
T

-3

0.0

0.5

1.0

(d) cosine function

P
R

K
R

K
N

N

M
L
P

G
B

T

R
F

G
P

L
IF

T
/G

P
T

-J

L
IF

T
/G

P
T

-3

0.0

0.5

(e) l1-norm function

P
R

K
R

K
N

N

M
L
P

G
B

T

R
F

G
P

L
IF

T
/G

P
T

-J

L
IF

T
/G

P
T

-3

0.25

0.50

0.75

(f) piecewise functionR
A

E

(a) When 2% of datasets are outliers

10 20
0.0

0.5

1.0

(a) linear function

LIFT/GPT-J

LIFT/GPT-3

Median 5NN

Median 3NN

10 20
0

1

2

(b) quadratic function

10 20
0.0

0.5

1.0

1.5

(c) exponential function

10 20

0.5

1.0

(d) cosine function

10 20
0.0

0.5

1.0

(e) l1-norm function

10 20
0

1

2

(f) piecewise function

Percentage of Outliers

R
A

E

(b) For various portions of outliers (1%, 2%, 5%, 10%, 20%)

Figure 28: Comparing robustness of methods against outliers on regression tasks when the
datasets contain (a) 2% outliers and (b) various portions of outliers. We report each algorithm’s
regression error measured by Related Absolute Error (RAE). (a) When training datasets contain
2% outliers, all LIFT models are highly robust against outliers compared with baselines. (b) When
we increase the fraction of outliers (up to 20%), LIFT/GPT-3 is comparable to the strong baseline
(median KNN), while LIFT/GPT-J fails.

(50% shows the perfect balance). For the reference, we report the performances of the deterministic
classifiers that always return the label of class 0 (DC-0) and class 1 (DC-1).

Though evaluated datasets all have high class-imbalance ratios, we find that LIFT can perform well,
achieving high F1, precision, and recall scores across the tasks. For instance, on the Customers
dataset (the class-imbalance ratio is nearly 8), MCC gets 0 for both precision and recall as all
predicted labels of MCC are 0 (that is, the major class), while LIFT/GPT-J achieves the best recall
(82.61± 7.10) and F1 scores (84.43± 1.43). Here, the 0 value of precision and recall in MCC means
that MCC classifies all samples as negative, which is the major class in the training dataset.

Robustness to feature corruption on test data. Here we provide detailed experiment setting and
experiment results on random noise perturbation. Given a perturbation budget ✏ � 0, we consider
two types of perturbation � with k�k1  ✏: random noise and adversarial perturbation [164]. For
random noise �, we test on two types: (1) random Gaussian noise � ⇠ N (0, Ip) scaled to satisfy
k�k1 = ✏, and (2) signed constant noise � where each element �i has magnitude ✏ and random sign.
For adversarial perturbation �, we test on the transfer attack [51], i.e., we generate an adversarial
example (x+ �, y) for a source neural network (that we can access) with constraint k�k  ", and
test whether the target network correctly classifies the adversarial examples.

Table 33 shows the results of LIFT and baselines for the MNIST classification problem. We test on
random noise (Gaussian and signed constant) and PGD attacks transferred from LeNet-5 and MLP.
We compare the results for three networks: LeNet-5, MLP (having 2 hidden layers, each with 300
neurons and 100 neurons), and LIFT/GPT-3. LIFT/GPT-3 is observed to tolerate random noise (both
Gaussian and signed constant) for small perturbation radius ✏ = 0.01.

We do not include the result for LIFT/GPT-J since it is not even robust against simple noise. Please
refer to Section 5.2 to check the vulnerability of LIFT/GPT-J against test-time noise and how data
augmentation improves the robustness of LIFT/GPT-J.

41

80

85

90

95

100

0.0% 5.0% 10.0% 20.0%
50

A
cc

u
ra

cy

Dataset 4, 2 classes, Random

80

85

90

95

100

0.0% 5.0% 10.0% 20.0%
25

Dataset 2, 4 classes, Random

80

85

90

95

100

0.0% 5.0% 10.0% 20.0%
25

Dataset 2, 4 classes, Systematic

0.0% 5.0% 10.0% 20.0%

45

50

55

Label Corruption

A
cc

u
ra

cy

Dataset 23, 3 classes, Random

40

50

60

70

0.0% 5.0% 10.0% 20.0%
10

Label Corruption

Dataset 40496, 10 classes, Random

40

50

60

70

0.0% 5.0% 10.0% 20.0%
10

Label Corruption

Dataset 40496, 10 classes, Systematic

LogReg KNN DT MLP SVM RF XG LIFT/GPT-3 ODC

Figure 29: Robustness against label corruption. Each figure presents classification accuracies (")
evaluated under different percentages of corruption in the training data (0% – 20%). We use synthetic
data Blobs and Moons (ID 2 & 4) and real OpenML datasets CMC and LED (ID 23 & 40496). We
simulate random errors (the first two columns) and systematic errors (the last column). LIFT/GPT-3
displays robustness across the datasets. Here, ODC denotes optimal deterministic classifier, which is
identical to the majority class classifier (MCC) in the main paper.

D.1.5 Does LIFT Need Large-Scale Models Pretrained on Natural Language Data?

Continuing from Sec. 3.6, we provide the detailed setup of this experiment. We obtain the Gibberish
model by fine-tuning the entire GPT-J model (rather than LoRA [24]) on the Gibberish dataset [55]
for 10 epochs at learning rate 0.1. For LIFT/Code-Gen, LIFT/CodeParrot, and LIFT/Gibberish, we
follow the same e as LIFT/GPT-J, which we have discussed in Appendix C. To fine-tune LIFT/Rand-
GPT-J for specific tasks, we set the temperature as 1 instead, as we observed the 0 temperature
consistently gives us poor performances. Note that only 10%–15% of LIFT/Rand-GPT-J’s outputs
of are valid. The accuracies listed in the table are computed among valid outputs. Other settings of
LIFT/RAnd-GPT-J are the same as LIFT/GPT-J.

D.2 Results for LIFT-Specific Learning Properties (Section 4)

D.2.1 Does LIFT Benefit from Incorporating Feature Names?

Continuing from Sec. 4.1, we provide more details of experiment settings, further evaluations with
GPT-J models (Table 34), and results on regression tasks (Table 35) here.

Prompt templates. We design five prompts templates to assess how incorporating fea-
ture names affects the performance of LIFT. For instance, consider a data sample “x =
(English speaker, 23, 3, summer, 19), y = 3” from TAE dataset where the feature names are
“native speaker, instructor, course, semester, class size”, and the target attribute
is teaching performance. We can incorporate the contextual information by either simply replac-
ing the “xi” in the prompts with the corresponding feature names or converting this sample into a
coherent sentence. Meanwhile, we also investigate how shuffled feature names affect the performance
of LIFT by designing the prompts accordingly. For illustration purposes, we provide the example of
the five prompt templates as below.

• (W/O Names) “When we have x1 = 1, x2 = 23, x3 = 3, x4 = 1, x5 = 19, what should
be y value?”

• (Correct-Names I) “When we have native speaker=English speaker, course
instructor=23, course=3, semester=summer, class size=19, how is the
teaching performance?”

42

Table 30: Accuracy(") comparison of various methods fitted to randomly corrupted classification
labels. In this regime, we corrupt a sample by assigning it another random label in the label space.

Dataset (ID) Corruption MCC LogReg KNN DT MLP SVM RF XG LIFT/GPT-3 LIFT/GPT-J

Blobs (2)

0% 25.00 96.75 95.50 97.00 97.00 96.75 97.00 96.00 96.58 96.17
5% 25.00 97.00 95.25 95.75 97.25 96.50 96.75 95.50 96.08 94.83
10% 25.00 96.50 94.50 95.00 97.00 96.75 96.75 95.25 95.08 91.38
20% 25.00 93.75 90.00 95.50 97.50 97.00 96.75 94.25 93.83 83.12

Moons (4)

0% 50.00 88.75 100.00 99.25 99.75 100.00 99.75 99.75 99.83 99.58
5% 50.00 89.25 100.00 97.25 100.00 100.00 99.75 99.50 99.08 96.50
10% 50.00 89.50 99.00 99.00 99.50 100.00 99.50 99.25 98.50 94.00
20% 50.00 89.50 94.75 94.75 99.50 100.00 99.50 92.00 94.25 79.88

CMC (23)

0% 42.71 50.51 52.20 56.61 56.27 57.63 52.88 52.54 57.18 49.83
5% 42.71 49.15 50.17 57.29 57.29 55.93 53.90 54.92 55.82 50.28
10% 42.71 49.49 46.44 55.59 55.93 54.24 53.90 56.95 57.06 48.47
20% 42.71 47.12 46.78 52.54 55.25 54.92 50.17 48.14 55.71 45.42

TAE (48)

0% 35.48 51.61 61.29 67.74 58.06 61.29 77.42 64.52 50.54 61.29
5% 35.48 54.84 61.29 67.74 45.16 67.74 64.52 74.19 45.16 53.76
10% 35.48 41.94 45.16 54.84 32.26 32.26 51.61 54.84 52.69 46.24
20% 35.48 29.03 48.39 48.39 32.26 45.16 48.39 45.16 47.31 35.48

Pollen (871)

0% 50.00 49.09 46.88 48.96 49.22 51.56 45.97 48.31 49.57 50.39
5% 50.00 51.43 48.18 49.22 50.26 49.74 48.44 46.62 50.65 48.61
10% 50.00 48.70 48.70 47.27 50.00 46.49 51.17 47.01 48.96 48.66
20% 50.00 50.39 49.22 50.52 47.01 50.52 47.14 49.61 50.74 50.82

Climate (1467)

0% 91.67 89.81 89.81 91.67 91.67 87.96 91.67 90.74 91.67 87.04
5% 91.67 89.81 91.67 87.04 91.67 91.67 90.74 87.96 91.36 85.49
10% 91.67 90.74 88.89 90.74 88.89 91.67 91.67 88.89 91.67 83.80
20% 91.67 90.74 81.48 83.33 88.89 91.67 89.81 87.04 91.67 76.39

LED (40496)

0% 12.00 70.00 69.00 64.00 72.00 67.00 63.00 65.00 68.00 67.33
5% 12.00 72.00 69.00 68.00 72.00 65.00 73.00 67.00 68.33 60.33
10% 12.00 72.00 61.00 66.00 73.00 67.00 69.00 65.00 70.33 56.00
20% 12.00 70.00 43.00 63.00 69.00 64.00 69.00 62.00 66.67 47.00

Table 31: Accuracies(") of various methods fitted to systematically corrupted classification labels.
In this regime, we corrupt a label by assigning all corrupted labels of one class to a single label.

Dataset ID Corruption MCC LogReg KNN DT MLP SVM RF XG LIFT/GPT-3 LIFT/GPT-J

Blobs (2)

0% 25.00 96.75 95.50 97.00 97.00 96.75 97.00 96.00 96.50 96.17
5% 25.00 94.25 95.50 94.75 97.50 96.75 96.50 94.25 96.25 94.75
10% 25.00 90.75 94.25 94.75 96.75 96.75 96.00 95.00 94.92 90.17
20% 25.00 85.25 87.00 97.00 94.50 96.75 96.50 91.50 92.58 81.07

LED (40496)

0% 12.00 70.00 69.00 64.00 72.00 67.00 63.00 65.00 65.67 67.33
5% 12.00 71.00 69.00 67.00 67.00 68.00 64.00 65.00 69.33 58.00
10% 12.00 72.00 64.00 70.00 70.00 64.00 68.00 65.00 70.00 55.67
20% 12.00 70.00 63.00 67.00 74.00 66.00 66.00 65.00 63.33 53.00

Table 32: Comparing accuracy ("), F1 ("), Precision ("), and Recall (") on imbalanced datasets
in OpenML (Pizza, Climate, Customers). All datasets are for binary classification and are highly
imbalanced. The class-imbalance ratio (Imb. Ratio) is defined as the ratio of the number of samples
in the majority class and that in the minority class. Here, DC-0 and DC-1 refer to deterministic
classifiers that constantly predict all samples as class 0 and 1 respectively. MCC refers to the majority
class classifier that returns the major class learned from the training dataset. LIFT/GPTs achieve
comparably high scores across the three tasks. For instance, LIFT/GPT-J achieves the best F1 on
datasets Pizza and Customers.

Dataset (ID) Imb. Ratio MCC DC-0 DC-1 LogReg KNN DT MLP RBF-SVM RF XG LIFT/GPT-J LIFT/GPT-3

Pizza (1444) 7.36

Accuracy 88.04 88.04 11.96 86.92±0.23 87.56±0.68 87.24±0.60 86.28±1.37 88.04±0.00 88.04±1.04 88.04±0.68 83.89±0.45 85.17±1.35
F1 0.00 0.00 21.37 10.77±2.74 16.84±5.26 9.01±12.74 11.77±3.43 0.00±0.00 15.79±6.45 35.50±3.68 35.83±3.61 24.52±1.78
Precision 0.00 0.00 11.96 28.97±3.41 42.86±10.10 13.89±19.64 32.69±12.26 0.00±0.00 51.67±23.21 52.21±7.28 38.84±5.24 32.41±6.55
Recall 0.00 0.00 100.00 6.67±1.89 10.67±3.77 6.67±9.43 8.00±3.27 0.00±0.00 9.33±3.77 28.00±5.66 33.33±2.36 20.00±0.00

Climate (1467) 11.00

Accuracy 91.67 8.33 91.67 88.89±0.76 90.74±0.76 88.89±2.27 91.67±0.00 87.96±0.00 91.36±0.44 89.51±0.87 87.04±2.27 91.67±0.00
F1 95.65 0.00 95.65 94.00±0.43 95.13±0.40 94.04±1.27 95.65±0.00 93.47±0.00 95.48±0.24 94.37±0.48 94.51±1.08 95.65±1.00
Precision 91.67 0.00 91.67 93.07±0.06 91.85±0.43 92.26±1.20 91.67±0.00 93.00±0.00 91.64±0.04 92.83±0.43 92.10±0.36 91.67±0.00
Recall 100.00 0.00 100.00 94.95±0.82 98.65±0.48 95.96±2.86 100.00±0.00 93.94±0.00 99.66±0.48 95.96±0.82 97.08±2.57 100.00±0.00

Customers (1511) 2.14

Accuracy 68.18 68.18 31.82 87.12±0.54 88.64±0.00 85.98±0.53 86.36±1.86 86.36±0.00 85.23±0.00 85.23±0.00 85.23±1.61 84.85±1.42
F1 0.00 0.00 48.28 79.76±0.89 80.51±0.36 78.60±1.00 77.80±2.79 78.82±0.35 76.64±0.39 76.91±0.39 84.43±1.43 75.28±2.60
Precision 0.00 0.00 31.82 79.79±1.23 88.64±1.61 76.40±0.38 81.00±4.65 77.94±0.90 77.14±0.91 76.50±0.91 87.57±7.11 78.18±1.97
Recall 0.00 0.00 100.00 79.76±1.68 73.81±1.68 80.95±1.68 75.00±2.91 79.76±1.68 76.19±1.68 77.38±1.68 82.61±7.10 72.62±3.37

• (Correct-Names II) “In the course 3 offered in the summer semester, there
was a native English-speaking teaching assistant and an instructor
whose ID is 23. How is the teaching performance?”

43

Table 33: Accuracies (") of LIFT and baselines (LeNet-5, MLP) under the perturbation on
the input feature of MNIST data. Given the perturbation budget " 2 [0, 1], we test on four types
of perturbations within L1 ball of radius ". (1): adding random Gaussian noise that is scaled to
reach the L1 ball, (2): adding signed constant noise vector where each element has magnitude ✏ and
random sign, (3) & (4): adversarial examples generated from a source network (LeNet-5 & MLP,
respectively) using PGD attack [165] from foolbox [166]. For small perturbation radii (✏ = 0.01),
LIFT/GPT-3 maintains high accuracy for random noise, both for Gaussian and signed constant noise
types. When ✏ = 0.01 or ✏ = 0.1, the performance of LIFT/GPT-3 for random noise and transferred
adversarial attacks have significant gap, showing that the adversarial examples generated at LeNet-5
and MLP are transferred to LIFT/GPT-3.

Source Random noise (Gaussian) Random noise (signed const.) PGD attack on LeNet-5 PGD attack on MLP
Target LeNet-5 MLP LIFT/GPT-3 LeNet-5 MLP LIFT/GPT-3 LeNet-5 MLP LIFT/GPT-3 LeNet-5 MLP LIFT/GPT-3

" = 0 99.22 98.09 98.15 99.22 98.09 98.15 99.22 98.09 98.15 99.22 98.09 98.15
" = 0.01 99.25 98.05 98.28 99.26 98.08 88.05 97.27 97.77 44.88 99.15 96.89 44.46
" = 0.1 99.20 97.70 88.38 99.06 97.39 68.80 26.80 93.99 33.66 96.98 23.12 23.62
" = 0.3 98.01 87.69 54.80 79.80 74.20 29.68 0.00 36.62 20.31 41.51 0.00 20.29

• (Shuffled-Names I) “When we have semester=English speaker, class size=23,
semester=3, course instructor=summer, native speaker=19, how is the
teaching performance?”

• (Shuffled-Names II) “In the course summer offered in the 3 semester,
there was a 19 teaching assistant and an instructor whose ID is
summer. How is the teaching performance?”

We note that the sentence generated using the (Shuffled-Names II) template can be incoherent.

Settings. (Datasets) Among the OpenML datasets evaluated in Table 4, we select three datasets:
CMC, TAE, and Vehicle (with IDs being 23, 48, and 54) whose all provided feature names are
meaningful and relevant to the prediction task and the response values. (Baselines) We compare
our target model LIFT when feature names are correctly incorporated (Correct-Names I, II)
with the versions of LIFT when feature names are incorrectly incorporated with randomly shuffled
orders (Shuffled-Names I, II) and when feature names are not included (W/o Names). Also, we
compare all models with the simple baseline MCC and the strong baseline XGBoost.

Classification. We provide additional evaluation of LIFT/GPT-J on three datasets used in the main
paper. Table 34 presents our result with the same settings in the main paper. We can see that correctly
using feature names helps improve the performance of LIFT from the models without feature names
or the models with randomly shuffled feature names. This finding is consistent with the finding in the
main papers on the usefulness of incorporating the feature names.

Table 34: The effect of using feature names on LIFT/GPT-J. We compare the classification
accuracy (") of LIFT/GPT-J when feature names are and are not incorporated in prompts.

Dataset (ID) MCC XGBoost LIFT/GPT-J
W/o Names Shuffled-Names I Shuffled-Names II Correct-Names I Correct-Names II

CMC (23) 42.71 52.43±0.42 49.49±0.56 51.30±1.05 51.30±2.51 48.82±3.12 50.39±1.05
TAE (48) 35.48 66.67±8.05 60.22±4.02 63.44±6.08 58.06±7.90 60.21±10.64 65.59±8.47

Vehicle (54) 25.88 73.14±0.28 64.31±2.37 66.87±1.54 65.49±1.69 69.02±3.67*

Regression. To investigate whether incorporating feature names in prompts improves the regression
performance of LIFT, similar to the datasets selection process of classification tasks, we evaluate
the effect of feature names on the datasets Insurance and Student, whose tasks can be helped
by common knowledge. To be more specific, while the task of Insurance dataset is to predict the
insurance costs, the key features of Insurance dataset are age, body mass index, and smoke or
not, which are intuitively closely related to the task. For the Student dataset, the task is to predict
students’ grades based on their weekly study time, previous grades, etc. Therefore, the features and
task of Student are also highly correlated. Table 35 presents our evaluation of regression tasks. We
find that fine-tuning with feature names does not necessarily help with the regression tasks.

44

Table 35: Investigating if incorporating feature names to LIFT improves sample efficiency in
regression tasks. The experiments are conducted on Insurance and Student datasets. The second
column indicates the fraction of samples used for training the model. We observe no significant
improvements in the performance when feature names are properly included.

Dataset Frac. RF LIFT/GPT-3
W/O Names Shuffled-Names I Shuffled-Names II Correct-Names I Correct-Names II

insurance

0.2 0.31 ± 0.00 0.89 ±0.03 0.76 ±0.11 0.59 ±0.09 0.59 ±0.11 0.89 ±0.03
0.4 0.26 ± 0.00 0.42 ±0.15 0.30 ±0.02 0.20 ±0.03 0.35 ±0.10 0.21 ±0.01
0.6 0.26 ± 0.00 0.30 ±0.10 0.24 ±0.03 0.19 ±0.02 0.30 ±0.12 0.22 ±0.08
0.8 0.27 ± 0.00 0.31 ±0.07 0.19 ±0.04 0.18 ±0.03 0.14 ±0.01 0.11 ±0.02
1.0 0.26 ± 0.00 0.14 ±0.05 0.17 ±0.03 0.19 ±0.01 0.17 ±0.04 0.10 ±0.03

student

0.2 0.40 ± 0.00 0.32 ±0.01 0.32 ±0.01 0.34 ±0.02 0.31 ±0.01 0.31 ±0.01
0.4 0.36 ± 0.00 0.32 ±0.02 0.31 ±0.01 0.30 ±0.00 0.32 ±0.01 0.35 ±0.01
0.6 0.36 ± 0.00 0.31 ±0.01 0.31 ±0.01 0.31 ±0.01 0.31 ±0.01 0.30 ±0.00
0.8 0.38 ± 0.00 0.28 ±0.01 0.27 ±0.01 0.29 ±0.02 0.28 ±0.01 0.28 ±0.00
1.0 0.35 ± 0.00 0.27 ±0.01 0.28 ±0.01 0.28 ±0.01 0.28 ±0.01 0.35 ±0.02

�10

0

10

y

(a) linear
Observation

Prediction

�10

0

10
(b) quadratic

�10

0

10
(c) exponential

�10

0

10
(d) cosine

�10

0

10
(e) l1-norm

�10

0

10
(f) piecewise

�10 0 10
0

2

4

St
an

da
rd

D
ev

ia
ti

on

�10 0 10
0

2

4

�10 0 10
0

2

4

�10 0 10
0

2

4

�10 0 10
0

2

4

�10 0 10
0

2

4

X

Figure 36: Investigating calibrated prediction effect of LIFT. Prediction standard deviations of
LIFT/GPT align well to the observations (top), across datasets, implying the well calibration.

D.2.2 Is LIFT Calibrated?

�8

0

8

y

(a) linear (b) quadratic (c) exponential (d) cosine (e) l1-norm (f) piecewise

�8 0 8
0

2

4

St
an

da
rd

D
ev

ia
ti

on

Observation

Prediction

�8 0 8 �8 0 8 �8 0 8 �8 0 8 �8 0 8
x

Figure 37: Visualization of LIFT/GPT-3 predictions under varying noise levels. The predictions
are made on grid datasets consisting of 103 eveny-spaced samples in [�10, 10]. The standard deviation
of LIFT/GPT-J predictions are computed based 20 repeated random predictions. We observe that the
standard deviations of predictions from LIFT/GPT-3 aligns well with that of noisy training samples
(observations), implying that LIFT/GPT-3 can reflect the confidence, i.e., LIFT/GPT-3 is calibrated.
Continuing the discussion in Sec. 4.2, Fig. 37 indicates that LIFT/GPT-3 is calibrated.

D.2.3 Can we use LIFT for Generation?

Here we provide the detailed experiment setting of Sec. 4.3.

Data pre-processing. We preprocess the MNIST dataset as below. First, we crop each 28 ⇥ 28
image at the center to make an 18 ⇥ 18 image. Then, we represent the cropped image as a sequence
of 324 pixel values, where each pixel is an integer in {0, 1, · · · , 255}.

45

The training process for both tasks (i) and (ii) are identical, detailed as below. Given an image in the
training set, we put the digit of the image into a prompt and put the sequence of 324 pixel values into
the completion, as in the example shown below.

• (Train Prompt) “Generate an image of digit 9.###”

• (Train Completion) “0 1 90
255 254 255 96 0 0 0 0 0 0 0 0 0 0 0 24 139 253 253 253 253 247 95
0 0 0 0 0 0 0 0 0 24 211 253 231 134 12 125 251 175 0 0 0 0 0 0 0 0
0 196 253 215 26 0 0 0 63 47 0 0 0 0 0 4 61 21 48 239 211 28 0 0 0 0
14 59 181 206 19 0 0 26 181 64 230 249 63 0 0 0 0 0 165 253 253 253
36 0 0 0 0 166 253 98 0 0 0 0 33 198 252 210 242 253 36 0 0 0 0 234
253 31 0 0 13 63 250 253 207 44 235 253 36 0 0 0 0 234 253 162 6 137
221 253 250 169 25 79 253 224 21 0 0 0 0 148 253 253 253 253 243 161
42 0 0 100 253 186 0 0 0 0 0 6 81 155 155 111 41 0 0 0 0 182 253 186
0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 223 253 84 0 0 0 0 0 0 0 0 0 0 0 0 0
0 32 253 246 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 129 253 233 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 135 253 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 186 253
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 253 59 0 0 0 0 @@@”

The testing process is different for tasks (i) and (ii). For task (i), we put the prompt as above and
check the image drawn by pixel values generated in the completion. For task (ii), the test prompt is
set as follows. First, we randomly sample an image with the target digit from the MNIST set. We
then include its digit number and the top half pixels (first 162 pixels) in the prompt. Once this test
prompt is given, we observe the remaining 162 pixel values generated in the completion, and check
how the entire 324 pixels look like. Examples of the test prompt are given below.

• (Test Prompt for task (i)) “Generate an image of digit 9.###”

• (Test Prompt for task (ii)) “Generate an image of digit 9.### 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 90 255 254 255 96 0 0 0 0 0 0
0 0 0 0 0 24 139 253 253 253 253 247 95 0 0 0 0 0 0 0 0 0 24 211 253
231 134 12 125 251 175 0 0 0 0 0 0 0 0 0 196 253 215 26 0 0 0 63 47
0 0 0 0 0 4 61 21 48 239 211 28 0 0 0 0 14 59 181 206 19 0 0 26 181
64 230 249 63 0 0 0 0 0 165 253 253 253 36 0 0 0 0 166 253 98 0 0 0
0 33 198 252 210 242 253 36 0 0 0 0 234 253 31 0 0 13 63 250 253 207
44 235 253 36 0 0”

Experiment setup. For GPT-3, we fine-tune with the pre-processed MNIST training set for 15
epochs. For GPT-J, we fine-tune for three epochs. We use the learning rate 10�5. In the inference
phase, as described above, we use different prompts for the two tasks and collect the first 324 and
162 white space-separated tokens in the output for tasks (i) and (ii), respectively. In addition, for task
(ii), we concatenate the provided 162 tokens in the prompt and the 162 tokens from the model output
into a sequence of 324 tokens. The collected 324 tokens are converted to an 18 ⇥ 18 image if all of
them are valid numbers in {0, 1, · · · , 255}. We assess the performance of LIFT as a generator under
different temperatures 2 [0, 0.3, 0.5, 0.7, 0.9, 1]. Under a fixed temperature, we generate images of
each digit 5 times. We use the standard perplexity score to evaluate the performance of the obtained
generative models. Here perplexity is a standard metric for assessing the performance of a generative
model, which reflects the inverse of the probability of the given data samples being produced by the
model. In this experiment, we assess the generalization performance of models by comparing the
perplexity scores between training and test sets. If the gap between the training perplexity and the
test perplexity is small, it indicates that the model generalizes well. [167].

Results. Fig. 38 visualizes the output of LIFT in generating the images of different digits under
different temperatures. We observe that LIFT is able to generate reasonable images when both the
digit number and top half pixels are given, as shown in Fig. 38c and Fig. 38d. In contrast, Fig. 38a
and Fig. 38b show that LIFT is able to work only under high temperatures (e.g., Temp = 0.9, 1).
This might be because, under low temperatures, the model is likely to generate output associated with
the highest probability. In contrast, a higher temperature gives chances to generate outputs associated
with slightly lower probability, which introduces more variety and creativity. It has been observed in

46

compositional text generation tasks such as completing stories, high temperature leads to better and
more creative performance [168].

Table 39: Efficacy of LIFT as generative models. Perplexity (#) is a metric for measuring the
probability of the sample produced by the model on a dataset. We report the average perplexity
of LIFT trained for generating MNIST images. Note that the difference between the average test
perplexity and average training perplexity is small, implying the good generalizability of LIFT as
generative models.

LIFT/GPT-J LIFT/GPT-3
Avg Training Perplexity (#) 3.56 ± 1.42 3.58 ± 1.46

Avg Test Perplexity (#) 3.57 ± 1.44 3.62 ± 1.51

D.3 Results for Improving Techniques of LIFT (Section 5)

D.3.1 Two-Stage Intermediate Fine-Tuning for LIFT

We provide an additional evaluation of the two-stage intermediate fine-tuning with LIFTGPT-J on
four more datasets. For any given dataset, we first generate two pretext tasks with simple synthetic
Gaussian samples (discussed in C.1). We fine-tune the GPT with pretext tasks for a few (2–3) epochs,
then fine-tune the newly fine-tuned GPT with the target (given) dataset. Here, due to the black-box
API of GPT-3, we currently can neither keep the order of samples unchanged (pretext, target) during
the fine-tuning stage nor fine-tune the model twice. Hence, we only use GPT-J in this experiment.

Fig. 40 presents results from eight datasets, including a regression task, three OpenML tasks, and
other synthetic tasks. We see that two-stage intermediate LIFT helps to improve the original fine-
tuning, especially when the number of training samples is small. Its effect is more clearly shown
in synthetic classification datasets (Blobs, Circles, Moon, and Two Circles). We also observe
that besides the number of features and number of classes, the pretexts do not need to represent any
other characteristics of the target dataset, such as the linear/non-linear correlation or the relevance of
features. This makes it simpler to generate the pretexts.

47

(a) Images generated by LIFT/GPT-J given the digit number in the prompt.

(b) Images generated by LIFT/GPT-3 given the digit number in the prompt.

(c) Images generated by LIFT/GPT-J given the digit number and top half pixels of the pictures with the
corresponding digit number in the prompt.

(d) Images generated by LIFT/GPT-3 given the digit number and top half pixels of the images with the
corresponding digit number in the prompt.
Figure 38: Output of LIFT as generative models. We apply LIFT to generate new MNIST
images. Each figure contains six subfigures, where each subfigure visualizes the output of LIFT
when different temperatures 2 [0, 0.3, 0.5, 0.7, 0.9, 1] of LMs are chosen. We generate five images
for each digit by using LIFT to make the prediction five times. Task (i): when only the digit number
is given, we observe that the LIFT can generate reasonable images under high temperatures. Task
(ii): when both digit number and top half pixels are given, LIFT can generate images of comparably
high quality under different temperatures.

48

10 50 200 1000
0

50

100

A
cc

ur
ac

y

Blobs

10 50 200 1000
0

50

100
Circles

10 50 200 1000
0

50

100
Moon

10 50 200 1000
0

50

100
Two Circles

10 50 200 1000
0

50

100

A
cc

ur
ac

y

OpenML-28

10 50 200 1000
0

50

100
OpenML-54

10 50 200 1000
0

50

100
OpenML-40496

10 50 200 1000
0

50

100
OpenML-187

1 2 10 50 200
0

20

40

60

R
M

SE

y = x2

1 2 10 50 200
0

2

4
y = ex

1 2 10 50 200
0

5

y = cos(x)

1 2 10 50 200
0

1

2

y = 0.2x1 + 0.4x2

Number of training samples

Two-stage LIFT/GPT-J LIFT/GPT-J Pretext only MCC

Figure 40: Two-stage fine-tuning with LIFT/GPT-J. We apply LIFT in two consecutive stages:
first on synthetic pretext data, then on the target data. We evaluate on classification tasks (with
accuracy) and a regression task (RMSE error). The two-stage fine-tuning LIFT(blue) outperforms
the original fine-tuning LIFT (green) when the number of training samples is small, across all tasks.

E Additional Experiments and Findings (NOT Discussed in the Main Paper)

Here, we provide results of additional experiments that have not been discussed in the main manuscript.
To be more specific, we study the effect of replacing the input or output layers (E.1), effect of large
LMs (E.2), quantitative classification evaluation on neural-net-based synthetic datasets (E.3), and the
ability of LIFT performing the ridge regression (E.4). We also provide the visualization of LIFT’s
training curve in Section E.5.

E.1 What Is the Effect of Replacing the Input or Output Layers?

In this experiment, we assess the performance of transformer fine-tuned with replaced input/output
layer, following the methods used in Frozen Pretrained Transformers (FPT) [18]. We consider vanilla
FPT and its two variants. Specifically, for vanilla FPT, we reinitialized a trainable input layer and a
trainable output layer, with frozen pretrained GPT-J transformer architectures in the middle. As in
[18], the input dimension equals to the number of features and the output dimension equals to the
number of classes, which varies depending on the tasks. Table 41 compares the result of our method
LIFT/GPT-J, FPT and the two variants of FPT: (i) FPT (Output Only) which only replaces the output
layer, and (ii) FPT (Input Only), which only replaces the input layer. We observe that both FPT and
FPT (Output Only) perform slightly better than LIFT on almost all tested cases, while FPT (Input
Only) performs the worst. Our justification for this observation is that training an output layer is
similar to training a linear classifier, which might be easier than training an input layer as an encoder.

49

Table 41: Accuracies(") of LIFT, Frozen Pretrained Transformer (FPT) [18] and its two
variants — FPT (Output Only) and FPT (Input Only). We employ GPT-J in this experiment. We
observe that replacing the output layer can slightly improve the performance of LIFT, while only
replacing the input layer performs the worst.

Dataset (ID) LIFT/GPT-J FPT/GPT-J FPT (Output Only)/GPT-J FPT (Input Only)/GPT-J
Blobs (2) 96.17±0.59 96.75±0.00 96.67±0.12 96.75±0.00
Two Circles (6) 75.92±1.65 74.33±0.31 76.33±2.49 69.83±1.31
Iris (61) 96.67±0.00 96.67±0.00 97.78±1.57 81.11±3.14
Customers (1511) 85.23±1.61 87.88±0.54 88.26±0.54 86.74±1.42
Wine (187) 93.52±1.31 100.00±0.00 99.07±1.31 92.59±3.46
LED (40496) 65.33±0.47 73.00±2.94 71.67±1.25 68.67±1.89

Table 42: The effects of larger LMs under different classification settings. Recall that our previous
results on GPT-3 are based on the smallest model Ada. Here we use larger GPT-3 versions (Babbage,
Curie, Davinci) as the pretrained LMs in our framework and evaluate the classification accuracy
(") of them in three settings: classification without feature name, classification with feature name
and in-context classification. For the setting of classification with feature names, we incorporate
names of features (columns) into the input prompts (see more details in Sec. 4.1). For in-context
learning, the OpenML dataset ID and number of prompts are written together at each column, e.g.,
TAE (48)/50 means that we run experiments on the OpenML dataset TAE having ID 48, by using 50
input prompts. For the first two settings when LIFT is applied, larger LIFT/GPT-3 models (Babbage,
Curie, Davinci) perform better than the smaller models LIFT/GPT-3-Ada and LIFT/GPT-J, but
the performance gains are not always consistent and significant with model sizes. For the in-context
classification (LIFT is not used), we observe more consistent improvement by using larger models.

Tasks LIFT Classification W/O Feat. Names LIFT Classfication W/ Feat. Names

Dataset (ID) Customers (1511) Texture (1493) Margin (1491) TAE (48) Vehicle (54) TAE (48) CMC (23) Vehicle (54)

LIFT/GPT-J 93.97±1.00 50.32±2.18 50.23±1.33 61.29±6.97 64.31±2.37 67.74±11.48 48.36±0.97 69.02±3.67

LIFT/GPT-3
Ada 95.39±0.67 67.50±1.42 59.37±0.92 65.59±6.63 70.20±2.73 67.74±2.63 57.48±1.14 72.16±2.00

Babbage 96.81±0.07 62.19±1.80 67.50±3.87 61.29±6.97 72.06±3.82 64.52±6.97 57.06±2.15 70.00±1.44
Curie 95.21±0.06 62.50±0.97 61.88±1.48 66.67±6.09 74.27±0.73 65.59±4.02 55.42±0.84 70.66±2.28

Davinci 96.81±0.41 57.19±0.70 58.13±2.50 64.52±9.50 71.47±0.88 65.59±6.63 56.31±0.04 68.16±1.69

Tasks In-context Classifction

Dataset (ID) / #Prompts TAE (48)/50 Breast (13)/35 LED (40496)/32 Customers (1511)/28 Vehicle (54)/42 Hamster (893)/13

GPT-J 34.33±1.47 56.90±19.51 10.00±0.82 56.06±17.14 25.49±0.55 48.89±3.14

GPT-3
Ada 37.64±4.02 62.07±1.41 8.00±1.63 60.61±1.42 28.82±2.10 57.78±6.29

Babbage 47.31±3.04 71.26±0.81 11.00±0.00 53.79±12.07 24.32±0.56 53.33±5.44
Curie 32.26±0.00 70.69±0.00 20.67±4.78 67.80±0.53 26.28±2.22 53.33±0.00

Davinci 49.46±4.02 67.82±4.06 20.67±6.60 68.94±0.54 26.28±2.22 55.55±3.14

Table 43: Comparison of LIFT on different LMs across regression tasks. The regression
performance is measured by RAE (#). In general, LIFT/GPT-3 with Davinci model performs the
best, but the gaps to other models are not always significant.

Function
Method LIFT/GPT-J LIFT/GPT-3

Ada Babbage Curie Davinci

linear 0.08±0.01 0.06±0.01 0.06±0.00 0.06±0.01 0.06±0.00
quadratic 0.11±0.00 0.13±0.00 0.11±0.02 0.10±0.01 0.09±0.00
exponential 0.11±0.02 0.09±0.00 0.09±0.01 0.08±0.00 0.08±0.00
cosine 0.38±0.08 0.44±0.10 0.41±0.06 0.38±0.01 0.38±0.05
L1-norm 0.10±0.00 0.09±0.01 0.10±0.01 0.08±0.01 0.09±0.01
piecewise 0.15±0.01 0.17±0.05 0.15±0.02 0.15±0.01 0.14±0.01

E.2 Does LIFT Benefit from Larger LMs?

In this experiment, we apply LIFT to different pretrained LMs to verify whether LIFT benefits more
from larger LMs. Together with previously used GPT-J and GPT-3 (the version named Ada), we
consider three bigger versions of GPT-3, namely Baggage, Curie, and Davinci (in the ascending

50

order of the number of parameters). We compare all models on several classification tasks in Table 42
and regression tasks in Table 43. Overall, we find that the performance gain of using larger LMs is
not consistently significant for LIFT. Although larger LMs outperform smaller LMs in many cases,
the improvements are relatively small.

Verifying the capability of large LMs, when LIFT is not used. We first verify if larger LMs are
more helpful for the evaluated downstream tasks. We evaluate LMs in the in-context classification
when no fine-tuning (LIFT) is involved. Table 42 shows consistent improvements in classification
performance when the size of LMs increases across all the tasks. Thus, larger LMs, with larger
embedded knowledge, are more useful for these downstream tasks.

When LIFT is used. Both Table 42 and Table 43 show that using larger LMs may positively affect
LIFT in several tasks and settings compared to the smaller LMs. However, the performance gains
from replacing the smaller LMs with larger LMs are not consistent across the settings. For instance,
in the classification settings without feature names, Davinci performs better than GPT-J on four
datasets and worse than on one dataset. For the setting with feature names, GPT-J performs better
than Davinci on two out of three tasks. Furthermore, the performance gains of large LMs over the
smaller models are not relatively significant. We note that LIFT always outperforms the in-context
learning using the same pretrained LMs in most cases. The regression results shown in Table 43
further confirm that the improvement from utilizing larger LMs is relatively small.

E.3 Quantitative Classification Evaluations on Neural-Net-Based Synthetic Datasets

10 40 80 300 490
60

80

100

A
cc

ur
ac

y

Clean Data

10 40 80 300 490
Epochs Used For Generating Neural-Net-Based Synthetic Data

60

80

100
Corrupted Label (5%)

10 40 80 300 490
60

80

100
Corrupted Label (20%)

LogReg KNN DT MLP RF XGBoost LIFT/GPT-J LIFT/GPT-3

Figure 44: How accuracy (") changes as the target classification problem becomes more complex,
i.e., the ground-truth decision boundary becomes more complex. The x-axis shows the number of
epochs we used to train the neural network on the Rolls dataset. Note that the network becomes more
complex as the number of epochs increases. Thus the classification problem also gets challenging.
We measure the performances on three cases: (left) clean data, (middle) label-corrupted data with
corruption probability 5% and (right) 20%.

In Sec. 3.4 and Appendix D.1.3, we assess how well LIFT/GPTs adapt to different shapes of decision
boundaries on neural-net-based synthetic datasets. We now provide the test accuracies for all models.
For binary-class datasets, Fig. 44 shows the accuracies on three binary-class datasets when the
difficulty of classification tasks varies by using different network checkpoints at different epochs. As
the difficulty increases or the level of corruption increases, all methods tend to decrease classification
accuracy. We provide three settings of training data: clean data, 5% label corruption, and 20%
label corruption. We observe that LIFT/GPT-3 outperforms logistic regression and decision tree,
especially when the label corruption is up to 20%. However, LIFT/GPT-J is performing worse than
other baselines in the data corruption scenarios. For 3-class and 5-class datasets, both LIFT/GPT-J
and LIFT/GPT-3 achieve approximately 90%, while the best baselines (MLP and XGBoost) obtains
approximately 92% and 91% for the 3-class and 5-class data, respectively.

E.4 Can LIFT Perform Ridge Regression via Data Augmentation?

As shown in Fig. 2, LIFT can perform linear regression. We take one step further and study whether
LIFT can perform Ridge regression. Note that this is a non-trivial task as the LIFT framework does
not allow any changes to the loss function. Consider a standard ridge regression problem solving the
optimal w with p parameters so that ky � Xwk22 + �kwk22 is minimized. Note that this problem is
equivalent to minimizing k[yT , 0]T � [XT ,

p
�I]Twk22. Therefore, if we add p additional training

51

Table 45: Performance of LIFT on Ridge regression. We measure the RAE (#) of LIFT corre-
sponding to Linear Regression (LR) and Ridge Regression. The RAEs indicate that LIFT does not
perform well on the Ridge regression problem.

p �
LIFT/GPT-J LIFT/GPT-3

LR Ridge LR Ridge

1 0 0.000 ± 0.000 0.000 ± 0.000 0.915±0.000 0.000±0.000
1 10 0.000 ± 0.000 0.016 ± 0.000 0.915±0.000 0.016±0.000
1 50 0.000 ± 0.000 0.403 ± 0.000 0.915±0.000 0.402±0.000
1 100 0.000 ± 0.000 1.691 ± 0.000 0.915±0.000 1.690±0.000
1 1000 0.000 ± 0.000 170.406 ± 0.000 0.915±0.000 170.612±0.000

10 0 0.532 ± 0.000 0.532 ± 0.000 0.915±0.000 0.521±0.000
10 10 0.374 ± 0.000 0.369 ± 0.000 0.915±0.000 0.504±0.000
10 50 0.417 ± 0.000 0.523 ± 0.000 0.915±0.000 0.563±0.000
10 100 0.365 ± 0.000 1.307 ± 0.000 0.915±0.000 1.539±0.000
10 1000 0.414 ± 0.000 114.042 ± 0.000 0.915±0.000 111.357±0.000

50 0 0.688 ± 0.000 0.688 ± 0.000 0.915±0.000 1.064±0.000
50 10 0.628 ± 0.000 0.635 ± 0.000 0.915±0.000 0.909±0.000
50 50 0.553 ± 0.000 0.732 ± 0.000 0.915±0.000 1.296±0.000
50 100 0.774 ± 0.000 1.857 ± 0.000 0.915±0.000 2.311±0.000
50 1000 0.970 ± 0.000 118.241 ± 0.000 0.915±0.000 133.122±0.000

samples
p
�I , one can perform ridge regression via data augmentation. Inspired by this, we study

whether one can perform ridge regression via data augmentation within the framework of the LIFT
framework. The results of LIFT on Ridge regression are reported in Table 45.

We observe that LIFT fails to perform Ridge regression. This is expected, as LIFT is shown to be
robust to outliers (in Sec. 3.5 and Appendix D.1.4).

E.5 LIFT’s Training Curve

We report the learning curves of LIFT in terms of LM-loss and accuracies/RAE for several classifica-
tion and regression tasks. We observe a decrease in training loss over the tasks and datasets. We select
the best models based on the validation criteria (accuracy for classification and RAE for regression)
on the validation sets. Fig. 46 visualize the accuracy and loss of LIFT/GPT-J in the training and
validation process for classification tasks. For the regression task, Fig. 47 shows that the decrease in
RAE does not necessarily imply a decrease in loss. Furthermore, we observe that LIFT only requires
a few epochs to achieve good performance.

0 10 20 30
60

70

80

90

100

A
cc

ur
ac

y

Synthetic Dataset 2: Blobs

Train

Validation

0 10 20 30

60

80

100
Synthetic Dataset 6: Two Circles

0 10 20 30
20

40

60

80

100
OpenML Dataset 187

0 10 20 30
0

20

40

60

80
OpenML Dataset 882

0 10 20 30
0

20

40

60

OpenML Dataset 40496

0 10 20 30
0.0

0.5

1.0

L
os

s

0 10 20 30
0.0

0.5

1.0

0 10 20 30
0

1

2

3

0 10 20 30
0

2

4

6

0 10 20 30

0.5

1.0

1.5

Number of Training Epochs

Figure 46: Learning curves of LIFT/GPT-J on several synthetic/OpenML classification datasets.
We plot the accuracy (top row) and the loss (bottom row) of LIFT varying the number of training
epochs.

F Additional Discussion

Continuing from Sec. 7, here we elaborate on the difficulty of regression tasks and the broader impact
of LIFT, and discuss the limitation on classification tasks and other open questions.

52

0

5

R
A

E

linear

0

1

quadratic

0.0

0.5

exponential

0

1

cosine

0

1
l1norm

0

1

piecewise

Validaiton

Train

0 10 20 30 40
0.0

2.5

L
os

s

0 10 20 30 40
0.0

2.5

0 10 20 30 40
0.0

2.5

0 10 20 30 40
0

2

0 10 20 30 40
0

10

0 10 20 30 40
0

5

#epochs

Figure 47: Regression RAE and Loss curves of LIFT/GPT-J on the synthetic regression datasets.
We observe that LIFT/GPT-J only requires a few epochs to achieve good performance.

F.1 Limitations and Open Questions

The difficulty of regression tasks. For regression tasks, in addition to poor performance on
high-dimensional functions, some interesting phenomena observed in the classification tasks are
not consistently observed in the regression tasks. For example, incorporating feature names in the
prompts does not consistently improve LIFT in the regression tasks (see Sec. D.2.1).

As previously discussed in Sec. 3.1, the difficulty of regression tasks on LIFT may come from the
classification loss function used in LMs. Due to the adoption of the classification loss function,
two different predictions will lead to the same loss, even if one of the predictions is closer to the
true y value. As a result, we also observe that a reduction in RAE does not necessarily imply a
reduction in LM loss (see Fig. 47). Therefore, we use RAE as the criterion for model selection.
Moreover, how LIFT understands numerical values may also limit the regression performance of
LIFT. Recent works [169, 134, 170, 171] have illustrated the difficulty and failures of the existing
LMs in understanding the numbers because two numbers with close values can have very different
tokenizations [134]. Recent attempts [132, 172, 173, 174, 175] propose new encoding schemes of
numbers to improve the LMs’ numerical capabilities, probably helping LIFT in the regression tasks.

A promising method for improving LIFT on regression is level encoding. The idea of level encoding
is to discretize the continuous values of the output y to better utilize the classification loss of LMs.
Assuming that the range of y is known, we can partition this range into a finite number of bins and
represent all values in the same bin by a unique canonical representation in a way that the number of
mismatched bits between the representations of two values is proportional to their absolute difference.
For instance, for all real-value y 2 [0, 3], we can define three bins as {[0, 1), [1, 2), [2, 3]} with the
canonical representations being 00, 01, 11. With these bins, 0.3 and 0.7 are represented as 00, and
1.5 and 1.1 are represented as 01. The distance between representations of 0.3 and 1.1 is only 1
bit, which is proportional to their absolute distance of 0.8. For the training of LIFT, we convert all
output values in the original training dataset into the level-encoding canonical representation and
use them as the target values. By using the level encoding technique, the loss function of LMs can
better capture the distance between the prediction and the true values, thus potentially improving the
generalization of LIFT on regression tasks. We leave this as one of the interesting directions for our
future investigation.

The limitation of LIFT on classification tasks. We observe that LIFT does not perform compa-
rably well on classification tasks when the number of classes is large. For instance, Table 4 shows
that the accuracies of LIFT/GPT-3 are lower than RBF-SVM and XGboost on the datasets with 100
classes. Another limitation is that the dimension of features LIFT can handle is upper bounded due
to the limited context length of LMs. This limitation may be mitigated by using LMs with a more
memory-efficient variant or implementation of transformer models, e.g., see [176].

Other open questions. In addition to previously discussed questions of improving LIFT for
regression and classification tasks, our pioneering work on LIFT is also expected to open up
interesting research questions on generalist models. First, can generalist LMs (e.g., GPTs) play a
leading role in developing universal models that can adapt well to any data? Second, can we apply
LIFT to different generalist models, such as GATO [89]?

53

F.2 Broader Impact

LIFT greatly simplifies the machine learning pipeline that requires only the reformatting of training
datasets of the target task. This simplicity helps enable no-code ML for the masses, where general
users without prior knowledge of the ML frameworks can use LIFT for their target non-language
tasks by properly designing the input/output prompt format. Therefore, LIFT can apply to a wide
range of applications and areas, such as credit loaning, disease diagnosis, and criminal sentencing.
This is closely related to the line of automated machine learning research [90, 91], which aims to
automate the standard machine learning methods pipeline.

Employing LIFT without careful justification or understanding will lead to undesired outcomes, such
as discrimination. Since most existing language models (LMs) are pretrained on a large amount of
human-annotated data, LIFT could exhibit discrimination against different demographic groups (e.g.,
gender, race, ethnicity) due to the bias existing in the training datasets. In other words, LIFT may
prefer certain groups while making decisions in downstream tasks, especially when feature names and
different demographic contexts are fed at training and inference time. This effect is exacerbated by
the use of large pretrained LMs (i.e., GPT-J and GPT-3), which have been known to inherently contain
bias [177]. The bias in the pretraining data for these large language models adds an opaque layer to
regression and classification tasks beyond bias within the downstream data. Therefore, adopting LIFT
in tasks that consider demographic information requires more consideration to avoid discrimination.
To further remove the bias, users can combine LIFT with the existing fairness-aware reweighting
mechanisms [178, 179] or data augmentation and parameter-efficient fine-tuning techniques [180].

Finally, we emphasize that more model evaluation steps are required when applying LIFT instead of
using it as a panacea for all applications. We believe our work can significantly benefit society by
providing a simple tool for handling various tasks with proper justification.

54

	Introduction
	Methodology and Experimental Setup
	Basic Findings of LIFT
	How Well Does LIFT Perform on Standard ML Tasks?
	How Many Samples Does LIFT Need?
	Language-Interfaced Learning: LIFT versus In-Context Learning (ICL)
	Can We Understand the Inductive Biases of Language Models via LIFT?
	How Robust is LIFT?
	Does LIFT Need Large-Scale Models Pretrained on Natural Language Data?

	Evaluation of LIFT-Specific Learning Properties
	Does LIFT Benefit from Incorporating Feature Names?
	Is LIFT Well Calibrated?
	Can We Use LIFT for Data Generation?

	Improving LIFT with Existing Techniques
	Two-Stage Fine-Tuning for LIFT with Synthetic Pretext Tasks
	Data Augmentation

	Related Works
	Discussion and Conclusion
	Further Motivations of LIFT
	Explainability
	Updatability via Information Retrieval

	Detailed Related Works
	Experimental Setup
	Datasets
	LIFT and Baseline Implementation
	Pretrained Language Models and Baselines
	Computing Resources
	Hyperparameter Selection

	Detailed and Extended Results of Experiments in the Main Paper
	Results for Basic Findings of LIFT (Section 3)
	How Well Does LIFT Perform on Standard ML Tasks?
	How Many Samples Does LIFT Need?
	Can We Understand the Inductive Biases of Language Models via LIFT?
	How Robust Is LIFT?
	Does LIFT Need Large-Scale Models Pretrained on Natural Language Data?

	Results for LIFT-Specific Learning Properties (Section 4)
	Does LIFT Benefit from Incorporating Feature Names?
	Is LIFT Calibrated?
	Can we use LIFT for Generation?

	Results for Improving Techniques of LIFT (Section 5)
	Two-Stage Intermediate Fine-Tuning for LIFT

	Additional Experiments and Findings (NOT Discussed in the Main Paper)
	What Is the Effect of Replacing the Input or Output Layers?
	Does LIFT Benefit from Larger LMs?
	Quantitative Classification Evaluations on Neural-Net-Based Synthetic Datasets
	Can LIFT Perform Ridge Regression via Data Augmentation?
	LIFT's Training Curve

	Additional Discussion
	Limitations and Open Questions
	Broader Impact

