
A Data Augmentation Loop301

A.1 Pseudo Code302

Algorithm 1 DATA AUGMENTATION LOOP

Require: Human data D = (G, aW ), training set Dt ∈ D, high-level planner πH , low-level
controller πL, augmentation iteration L, data augment function Laug(), wrist pose trajec-
tories Gt = (gt, gt+1, ..., gt+T−1), goal trajectory of the object and its geometric features
aW
t =(aW

t ,aW
t+1,...,a

W
t+T−1).

1: Initialize πH , πL, Dt={}.
2: for iteration m=0,1,...,L do
3: while until convergence of πH do
4: Generate augmented data Laug(D)
5: Append into training set Dt←Dt+Laug(D)
6: Train πH on Dt

7: end while
8: while until convergence of πL do
9: Train πL on (πH(G),G)

10: end while
11: Rollout success trajectories Dt

s=(aW
t ,Gt) with πL

12: Append into human data D←DT +Dt
s

13: end for

A.2 Detail of the Data Augmentation Loop303

Below are the details for each augmentation. The unit of length is centimeters and the unit of angle304

is degrees.305

• Random the object’s mesh scales with a small scale:306

– The scale of the width of the manipulated object ranges from 0.9 to 1.1.307

– The scale of the length of the manipulated object ranges from 0.9 to 1.1.308

– The scale of the height of the manipulated object ranges from 0.9 to 1.1.309

• Random the object’s initial pose with a small scale:310

– The x-coordinate of the manipulated object ranges from -0.02 to 0.02.311

– The y-coordinate of the manipulated object ranges from -0.02 to 0.02.312

– The manipulated object’s z-axis Euler degree ranges from 0 to 30.313

• Modify the goal trajectories of the object with waypoint interpolation:314

– The x-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.315

– The y-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.316

– The z-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.317

B Detail Implementation of RL in Simulation318

B.1 Observation Space319

Table.5 gives the specific information of the observation space.320

B.2 Reward Design321

Denote the ĝR
i , ĝT

i and ĝJi is the current 3D translation, 3D rotation and joint angle of the object322

respectively, the desired object 3D rotation gR
i , the desired object 3D translation gT

i , and the desired323

10



Figure 2: Setup of the cameras.

Index Description
0 - 60 right arm-hand dof position, velocity

60 - 120 left arm-hand dof position, velocity
120 - 133 right hand end-effector position, velocity, linear velocity, angle velocity
133 - 146 left hand end-effector position, velocity, linear velocity, angle velocity
146 - 159 object base position, rotation, linear velocity, angle velocity
159 - 172 articulated object top part position, rotation, linear velocity, angle velocity
172 - 185 articulated object bottom part position, rotation, linear velocity, angle velocity
185 - 187 object dof position, velocity
187 - 257 desired object motion trajectory G=(gt,gt+1,...,gt+T )
257 - 397 sequence of 6-DoF wrist actions (aW

t ,aW
t+1,...,a

W
t+T ) generated by high-level planner

397 - 462 right hand fingertip pose, linear velocity, angle velocity
462 - 527 left hand fingertip pose, linear velocity, angle velocity

Table 5: Observation space of our framework in simulation.

object joint angle gJi . λ1, λ2 and λ3 is the hyperparameters to balance the weight of each component324

of the reward.325

The reward function is defined as:326

rt=exp−(λ1∗∥gR
t −ĝR

t ∥2+λ2∗∥gT
t −ĝT

t ∥2+λ3∗∥gJ
t −ĝJ

t ∥2) (1)

where λ1=20, λ2=1, and λ3=5.327

We use an exponential map in the reward function, which is an effective reward shaping technique328

used in the case to minimize the distance, introduced by [64, 65]. To improve the calculation efficiency,329

we use quaternion to represent the object orientation. The angular position difference is then computed330

through the dot product between the normalized goal quaternion and the current object’s quaternion.331

C Detail Implementation in Real-World332

C.1 Perception333

Our perception setup is shown in Figure 2. We arranged 4 identical Femto Bolt cameras around the334

table and face towards the object. We use FoundationPose [66] to estimate the articulated object pose.335

To remove the abnormal results, we compare each pose to the desired pose and remove the pose if336

11



the error is smaller than a threshold (5 centimeters in translation and 0.5 radians in orientation). Finally,337

we average the rest of the poses as our observation for the policy. If none of the poses is smaller than338

the threshold, we continue to use the pose from the previous frame.339

C.2 Policy Distillation340

We use the DAgger [67] algorithm for policy distillation. Table.6 gives the specific information of341

the observation space of the distilled policy.342

Index Description
0 - 24 right hand dof position

24 - 48 left hand dof position
48 - 55 right hand end-effector position, rotation
55 - 62 left hand end-effector position, rotation
62 - 69 articulated object top part position, rotation
69 - 76 articulated object bottom part position, rotation
76 - 77 object dof position

77 - 147 desired object motion trajectory G=(gt,gt+1,...,gt+T )
147 - 287 sequence of 6-DoF wrist actions (aW

t ,aW
t+1,...,a

W
t+T ) generated by high-level planner

Table 6: Observation space of our framework in the real-world.

C.3 Resets343

In the real-world evaluation, we used a trajectory from the ARCTIC dataset as our goal trajectory.344

In terms of resets in our real-world experiments, we pose the object within 3 centimeters and 0.5345

radians of the initial pose of the goal trajectory during resets. We evaluated 20 times and reported346

the completion rate.347

C.4 Evaluation348

When evaluating real-world experiments, we take the same metric (completion rate) as in simulation.349

It will fail if the tolerance is exceeded(5 centimeters in translation, 2.5 centimeters in object’s longest350

dimension multiplied by rotation angle, and 0.5 radians in joint angle), and record the completion rate.351

D Hyperparameters of the PPO352

Table.7 gives the hyperparameters of the PPO.353

Hyperparameters Value
Num mini-batches 4
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 1024, 512, 256]
Clip range 0.2

Max grad norm 1
Learning rate 3.e-4
Discount (γ) 0.998

GAE lambda (λ) 0.95
Init noise std 0.8
Desired kl 0.02
Ent-coef 0

Table 7: Hyperparameters of PPO.

12



E Domain Randomization354

Isaac Gym provides lots of domain randomization functions for RL training. We add the randomization355

for all the tasks as shown in Table. 8 for each environment. we generate new randomization every356

1000 simulation steps.357

Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.5, 1.5]
Scale Scaling uniform [0.95, 1.05]

Position Noise Additive gaussian [0.0, 0.02]
Rotation Noise Additive gaussian [0.0, 0.2]

Observation
Obs Correlated. Noise Additive gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive gaussian [0.0, 0.002]
Action
Action Correlated Noise Additive gaussian [0.0, 0.015]

Action Uncorrelated Noise Additive gaussian [0.0, 0.05]
Environment

Gravity Additive normal [0, 0.4]

Table 8: Domain randomization of all the tasks.

F Goal Representation358

Our framework requires the full 6D pose of the object trajectory at each time-step. For downstream359

tasks, we are able to get the trajectories in many ways. For example, we can specify a few key poses360

of the object based on the task, and use linear interpolation to generate the pose trajectories between the361

key poses. Another solution is to use some object motion synthesis methods in the field of graphics to362

generate the 6D pose of the object trajectory, such as [68]. We design an additional experiment to prove363

that our method can work with this setup. Taking a task “lifting up the box in the air and dropping it364

down” as an example, we can just simply manually define the pose of the box in the air and the landing365

point after picking it up as the key poses, then interpolate it as our goal trajectory, and train the robot366

to manipulate the object to follow the goal trajectory. The results are shown in Table 9 and the snapshot367

are shown in Figure 3. The results show that we can complete the task under this setting, and shows368

that our framework is extensible.

Box Manually Designed Trajectory

Our 100±0.0 100±0.0

Table 9: Results for the goal representation experiments.

369

13



Figure 3: Snapshots of the goal representation experiment.

G Time-indexed of the Goal Trajectory370

For the time-indexed of the goal trajectory, we randomize the sampling of input trajectories with371

various time gaps during training. We added an additional experiment to show that varying the time gap372

does not significantly affect our performance, indicating that our approach maintains generalization373

despite these temporal constraints. Using Coffee Maker as an example, we interpolated the goal374

trajectories provided by ARCTIC datasets to varying levels, and tested the completion rate of our375

policy on it. Origin represents the original goal trajectory from ARCTIC, and Skip 2 and Skip 1376

represent skipping 2/1 poses between every two poses on the basis of origin goal trajectory. Inter 2 and377

Inter 1 represent insertion of 2/1 pose between every two poses according to the linear interpolation378

method on the basis of origin goal trajectory. Our policy generates robot actions conditioned on a379

sequence of object goal poses, with the time gaps defined by the distance between each consecutive380

goal pose. In this experiment, we randomly use time gaps of 0 to 3 units when sampling the object381

trajectory to test whether the policy is sensitive to these time gaps (Random Sample). The results is382

shown in Table 10, the performance of the trained policy will not vary greatly.

Skip 2 Skip 1 Origin Inter 1 Inter 2 Random Sample

Our 85.7±7.5 86.5±3.4 86.1±5.5 85.4±8.1 87.2±4.8 86.2±6.2

Table 10: Results for the time-indexed experiments.

383

H Model-base Baselines384

We add a baseline of the model-based method in the simulation, the result is shown in Table 11. We use385

the sample-based model predictive control method that is modified from [69] as our low-level controller386

in our tasks. Our method outperforms the sample-based model predictive control by 46.3% on average.387

14



Box Coffee
Maker

Espresso
Machine Ketch Micro-

wave Mixer Note-
book

Scis-
sors Laptop

MPC 31.6±1.5 22.8±0.7 30.4±2.3 24.8±1.3 28.6±1.9 26.8±0.5 19.2±2.0 23.6±0.8 24.0±1.4

Ours 100±0.0 86.1±5.5 81.1±8.6 41.2±13.3 100±0.0 57.6±4.9 38.7±3.3 41.4±14.9 100±0.0

Table 11: Results for the experiments of using one policy per object.

15


	Introduction
	Related Works
	Dexterous Manipulation
	Learning from Human Motion

	Task Formulation
	Method
	High-Level Planner
	Low-Level Controller

	Experiments
	Performance of the high-level planner
	Effectiveness of learning from human with hierarchical pipeline
	Generalization to unseen scenarios
	Transfer from simulation to real-world

	Conclusion
	Data Augmentation Loop
	Pseudo Code
	Detail of the Data Augmentation Loop

	Detail Implementation of RL in Simulation
	Observation Space
	Reward Design

	Detail Implementation in Real-World
	Perception
	Policy Distillation
	Resets
	Evaluation

	Hyperparameters of the PPO
	Domain Randomization
	Goal Representation
	Time-indexed of the Goal Trajectory
	Model-base Baselines



