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ABSTRACT

In this work, we tackle the problems of efficiency and scalability for predictive
coding networks (PCNs) in machine learning. To do so, we propose a library, called
PCX, that focuses on performance and simplicity, and use it to implement a large
set of standard benchmarks for the community to use for their experiments. As
most works in the field propose their own tasks and architectures, do not compare
one against each other, and focus on small-scale tasks, a simple and fast open-
source library and a comprehensive set of benchmarks would address all these
concerns. Then, we perform extensive tests on such benchmarks using both existing
algorithms for PCNs, as well as adaptations of other methods popular in the bio-
plausible deep learning community. All this has allowed us to (i) test architectures
much larger than commonly used in the literature, on more complex datasets;
(ii) reach new state-of-the-art results in all of the tasks and datasets provided;
(iii) clearly highlight what the current limitations of PCNs are, allowing us to state
important future research directions. With the hope of galvanizing community
efforts towards one of the main open problems in the field, scalability, we release
code, tests, and benchmarks.1

1 INTRODUCTION

In 1999, Rao & Ballard (1999) proposed a formulation of predictive coding (PC) to model hierarchical
information processing in the brain. It was recently realized that this framework could be used to train
neural networks using a bio-plausible learning rule (Whittington & Bogacz, 2017). This has led to
different research directions, whose focus was either to explore interesting properties of PC networks
(Song et al., 2024; Alonso et al., 2022), or to propose variations that improve the performance on
specific tasks (Salvatori et al., 2024; Ororbia & Kifer, 2022). These lines of research, however,
have the tendency of not comparing their results against other works, and to focus on small-scale
experiments. The field is hence avoiding what we believe to be the most important open problem:
scalability.

There are multiple reasons why the problem of scalability has been overlooked. First, it is a
hard problem, and it is still unclear why so far PC has been able to perform as well as classical
gradient descent with backpropagation (BP) only up to a certain scale, which is that of small
convolutional models trained to classify the CIFAR10 dataset (Salvatori et al., 2024). Understanding
this would allow us to develop regularization techniques that stabilize learning, and hence allow better
performance on more complex tasks. Second, the lack of specialized libraries makes PC models
extremely slow: a full hyperparameter search on a small convolutional network can take several
hours. Third, the lack of a common framework makes reproducibility and iterative contributions hard,
as implementation details or code are rarely provided. In this work, we make the first steps toward
addressing these problems with three contributions, that we call tool, benchmarking, and analysis.

∗Corresponding author: tommaso.salvatori@verses.ai
1Link to the library: https://github.com/liukidar/pcx
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Tool. We release an open-source library for accelerated training for predictive coding called
PCX. This library runs in JAX (Bradbury et al., 2018), and offers a user-friendly interface with a
minimal learning curve through familiar syntax inspired by Pytorch. We also provide extensive
tutorials. It is also fully compatible with Equinox (Kidger & Garcia, 2021), a popular deep-learning-
oriented extension of JAX, ensuring reliability, extendability, and compatibility with ongoing research
developments. It also supports JAX’s Just-In-Time (JIT) compilation, making it efficient and allowing
both easy development and execution of PC networks, gaining efficiency with respect to existing
libraries.

Benchmarking. We propose a uniform set of tasks, datasets, metrics, and architectures that should
be used as a skeleton to test the performance of future variations of PC. The tasks that we propose are
the standard ones in computer vision: image classification and generation. The models that we use,
as well as the datasets, are picked according to two criteria: First, to allow researchers to test their
algorithm from the easiest task (feedforward network on MNIST) to more complex ones; Second, to
favor the comparison against related fields in the literature, such as equilibrium and target propagation
(Scellier & Bengio, 2017; Bengio, 2014). To this end, we have picked some of the models that
are consistently used in their research papers. As learning algorithms, we consider standard PC,
incremental PC (Salvatori et al., 2024), PC with Langevin dynamics (Oliviers et al., 2024), and
nudged PC, as done in the Eqprop literature (Scellier & Bengio, 2017; Scellier et al., 2024). Note
that this is the first time nudging algorithms are applied in PC models.

Analysis. We get state-of-the-art (SOTA) results for PC on multiple benchmarks and show for
the first time that it is able to perform well on more complex datasets, such as CIFAR100 and Tiny
Imagenet, where we get results comparable to those of backprop. In image generation tasks, we
present experiments on datasets of colored images, going beyond MNIST and FashionMNIST as
performed in previous works. We thoroughly discuss the results and highlight areas of improvement,
the main one being generalization to very deep models, and report analysis on the credit assignment
of PC in such cases, to better understand the reasons behind some failures. To conclude, in the
supplementary material we provide a detailed explanation of hyperparameters/techniques/tricks that
allowed us to reach SOTA results, to also provide a cookbook for researchers in the field.

2 RELATED WORKS

Rao and Ballard’s PC. The most related works are those that explore different properties or
optimization algorithms of standard PC in the deep learning regime, using formulations inspired
by Rao and Ballard’s original work (Rao & Ballard, 1999). Examples are works that study their
associative memory capabilities (Salvatori et al., 2021; Yoo & Wood, 2022; Tang et al., 2023; 2024),
their ability to train Bayesian networks (Salvatori et al., 2022; 2023b), and theoretical results that
explain, or improve, their optimization process (Millidge et al., 2022a;b; Alonso et al., 2022). Results
in this field have allowed either to improve the performance of such models in different tasks, or to
study different properties that could benefit from the use of PCNs.

Variations of PC. In the literature, there are multiple variations of PC algorithms. Important
examples are biased competition and divisive input modulation (Spratling, 2008), or the neural
generative coding framework (Ororbia & Kifer, 2022). The latter is already used in multiple
reinforcement learning and control tasks (Ororbia & Mali, 2023; Ororbia et al., 2023), and has its
own JAX-based open source library called NGCLearn. For a review on how different PC algorithms
evolved through time, from signal processing to neuroscience, we refer to (Spratling, 2017); for
a more recent review specific to machine learning applications, to (Salvatori et al., 2023a). It is
also worth mentioning the original literature on PC in the neurosciences has evolved from Rao and
Ballard’s work into a general theory that models information processing in the brain using probability
and variational inference, called the free energy principle (Friston, 2005; Friston & Kiebel, 2009;
Friston, 2010).

Neuroscience-inspired deep learning. Another line of related works is that of neuroscience
methods applied to machine learning, like equilibrium propagation (Scellier & Bengio, 2017), which
is the most similar to PC (Laborieux & Zenke, 2022; Millidge et al., 2022a). Other methods able to
train models of similar sizes are target propagation (Bengio, 2014; Ernoult et al., 2022; Millidge et al.,
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2022b) and SoftHebb (Moraitis et al., 2022; Journé et al., 2022). The first two communities, that
of targetprop and eqprop, consistently use similar architectures in their research papers to test their
methods. In our benchmarking effort, some of the architectures proposed are the same ones, to favor
a more direct comparison. There are also methods that differ more from PC, such as forward-only
methods (Kohan et al., 2023; Nøkland, 2016; Hinton, 2022), and methods that back-propagate the
errors using a designated set of weights (Lillicrap et al., 2014; Launay et al., 2020).

3 BACKGROUND AND NOTATION

Predictive coding networks (PCNs) are hierarchical Gaussian generative models that consist of L
levels. Each level models a multi-variate distribution, parameterized by the activation of the preceding
level, which depends on both the model parameters θ = θ0, θ1, θ2, ..., θL and the model state h.
Let hl ∈ h be the realization of the vector of random variables Hl of level l, then we have that the
likelihood

Pθ(h0, h1, . . . , hL) = Pθ0(h0)Pθ1(h1|h0) · · ·PθL(hL|hL−1).

Where we write Pθl(hl) instead of Pθl(Hl = hl), that is the likelihood of Hl evaluated at hl. We
refer to each of the scalar random variables of Hl as a neuron. In PC both the prior on h0 and the
relationships between levels are governed by a normal distribution parameterized as follows:

Pθ0(h0) = N (h0, µ0,Σ0), µ0 = θ0,

Pθl(hl|hl−1) = N (hl;µl,Σl), µl = fl(hl−1, θl),

where θl are the learnable weights parametrizing the transformation fl, and Σl is a covariance matrix,
that will be fixed to the identity matrix throughout this work. If, for example, θl = (Wl, bl) and
fl(hl−1, θl) = σl(Wlhl−1+ bl), then the neurons in level l−1 are connected to neurons in level l via
a linear operation, followed by a non-linear map, analogously to a fully connected layer. Intuitively,
θ is the set of learnable weights of the model, while h = {h0, h1, ..., hL} is data-point-dependent
latent state, containing the abstract representations for the given observations.

Training. In supervised settings, training consists of learning the relationship between given pairs
of input-output observations (x, y). In PC, this is performed by maximizing the joint likelihood
of our generative model with the latent vectors h0 and hL respectively fixed to the input and label
of the provided data-point: Pθ(h|h0=x,hL=y) = Pθ(hL = y, . . . , h1, h0 = x). This is achieved by
minimizing the so-called variational free energy F (Friston et al., 2007):

F(h, θ) = − lnPθ(h) = − ln

(
N (h0|µ0)

L∏
l=1

N (hl; fl(hl−1, θl))

)
=

L∑
l=0

1

2
(hl − µl)

2 + k. (1)

The quantity ϵl = (hl − µl) is often referred to as prediction error of layer l, being the difference
between the predicted activation µl and the current state hl. For a full derivation of Eq. (1) we refer to
the appendix. To minimize F , the Expectation-Maximization (EM) (Dempster et al., 1977) algorithm
is used by iteratively optimizing first the state h, and then the weights θ according to the equations

h∗ = argminhF(h, θ), θ∗ = argminθF(h∗, θ). (2)
We refer to the first step described by Eq. (2) as inference and to the second as learning phase.
In practice, we do not train on a single pair (x, y) but on a dataset split into mini-batches that are
subsequently used to train the model parameters. Furthermore, both inference and learning are
approximated via gradient descent on the variational free energy. In the inference phase, firstly h is
initialized to an initial value h(0), and then, it is optimized for T iterations. Then, during the learning
phase, we use the newly computed values to perform a single update on the weights θ. The gradients
of the variational free energy with respect to both h and θ are as follows:

∇hl =
∂F
∂hl

=
1

2

(
∂ϵ2l
∂hl

+
∂ϵ2l+1

∂hl

)
, ∇θl =

∂F
∂θl

=
1

2

∂ϵ2l
∂θl

. (3)

Then, a new batch of data points is provided to the model and the process is repeated until convergence.
As highlighted by Eq. (3), each state and each parameter is updated using local information as the
gradients depend exclusively on the pre and post-synaptic errors ϵl and ϵl+1. This is the main reason
why, in contrast to BP, PC is a local algorithm and is considered more biologically plausible. In
Appendix A, we provide an algorithmic description of the concepts illustrated in these paragraphs,
highlighting how each equation is translated to code in PCX.
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In NN, the vector       is fixed to 
a target                                  ,
instead of y, and the sign of the 
weight update is inverted:

In PN, the vector       is fixed to 
a target                                 ,
instead of y.

Generative Mode Discriminative Mode

0 0 0 1 0 0

Latent Space
Dirac Delta
Prior

Observations
Observations

Tasks:
● Image Classification;
● Image Generation;
● Associative Memory.

Algorithms:
● Predictive Coding;
● Incremental Predictive Coding;
● Positive Nudging;
● Negative Nudging;
● Centered Nudging;
● Monte Carlo Predictive Coding

Models:
● Feedforward Networks;
● Convolutional Networks;
● De-convolutional Networks.

Datasets:
● MNIST;
● FashionMNIST;
● CIFAR10/100;
● Tiny ImageNet;
● CelebA

1.
2. MCPC:  Each latent variable is updates as 
3. PN:              is fixed to a target 
4. NN:              is fixed to a target                  

  and the update is inverted, i.e., 
5. CN:       Let              and               be the updates of PN and              

             NN. Then, the update performed by CN is

In iPC, each      is updated at every 
timestep t.

In MCPC, the update of every latent 
variable is corrupted via the addition of 
Gaussian noise                             .

(a) (b)

Figure 1: (a): Generative and discriminative modes; (b): Pseudocode of PC in supervised learning, where both
the latent variables hl and the weight parameters θl are updated to minimize the variational free energy F . In
the colored boxes, informal description of the different algorithms considered in this work.

Evaluation. Given a test point x̄, we fix h0 = x̄ and compute the most likely value of the latent
states h∗|h0=x̄, again using the state gradients of Eq. (3). We refer to this as discriminative mode. In
practice, for discriminative networks, the values of the latent states computed this way are equivalent
to those obtained via a forward pass, that is setting h

(0)
l = µ

(0)
l for every l ̸= 0, as it corresponds to

the global minimum of F (Frieder & Lukasiewicz, 2022).

Generative Mode. PCNs can also be used to perform unsupervised learning tasks. Given a data
point x, the goal is to compress the information of x into a latent representation, conceptually similar
to how variational autoencoders work (Kingma & Welling, 2013). Such a compression is computed by
fixing the state vector hL to the data point, and running inference – that is, we maximize Pθ(h|hL=x)
via gradient descent on h. The compressed representation will then be the value of h0 at convergence
(or, in practice, after T steps). If we are training the model, we then perform a gradient update on the
parameters to minimize the variational free energy of Eq. (1), as we do in supervised learning. A
sketch of the discriminative and generative ways of training PCNs is represented in Fig. 1(a).

4 EXPERIMENTS AND BENCHMARKS

The benchmark that we propose is a standardized set of models, datasets, and testing procedures
that have been consistently used to evaluate predictive coding, but in a non-uniform way. Here,
for a comprehensive evaluation, we test models of increasing complexity on multiple computer
vision datasets, with both feedforward and convolutional/de-convolutional layers; and multiple
learning algorithms present in the literature. This section is divided into two areas that correspond to
discriminative (supervised) and generative (unsupervised) inference tasks. For the former mode, we
focus on supervised classification, and unsupervised generation for the latter. A sketch illustrating the
two modes is in Fig. 1. For every class of experiments, we have performed a large hyperparameter
search, and the details needed to reproduce the experiments, as well as a discussion about ‘lessons
learned’ during such a large search, are in the Appendix B and C.

To provide a comprehensive evaluation, we have tested on multiple computer vision datasets, MNIST
(LeCun & Cortes, 2010), FashionMNIST (Xiao et al., 2017), CIFAR10/100 (Krizhevsky et al.,
2009), CelebA (Liu et al., 2018), and Tiny ImageNET (Le & Yang, 2015); on models of increasing
complexity, and multiple learning algorithms present in the literature. The results, averaged over 5
seeds are reported in Tab. 1 when we used discriminative models, and in Tab. 2 for generative models.
Note that, besides a very recent exception on CelebA (Sennesh et al., 2024), this is the first time
that PCNs with local message passing are tested on datasets such as CelebA, CIFAR100, and Tiny
ImageNet.

Algorithms. We consider various learning algorithms present in the literature: (1) Standard PC,
already discussed in the background section; (2) Incremental PC (iPC) (Salvatori et al., 2024), a
simple and recently proposed modification where the weight parameters are updated alongside the
latent variables at every time step; (3) Monte Carlo PC (MCPC) (Oliviers et al., 2024), obtained by
applying unadjusted Langevin dynamics to the inference process; (4) Positive nudging (PN), where
the target used is obtained by a small perturbation of the output towards the original, 1-hot label; (5)
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Table 1: Test accuracies of the different algorithms on different datasets.

% Accuracy PC-CE PC-SE PN NN CN iPC BP-CE BP-SE

MLP
MNIST 98.11±0.03 98.26±0.04 98.36±0.06 98.26±0.07 98.23±0.09 98.45±0.09 98.07±0.06 98.29±0.08

FashionMNIST 89.16±0.08 89.58±0.13 89.57±0.08 89.46±0.08 89.56±0.05 89.90±0.06 89.04±0.08 89.48±0.07

VGG-5
CIFAR-10 86.61±0.14 87.98±0.11 88.42±0.66 88.83±0.04 89.47±0.13 85.51±0.12 88.11±0.13 89.43±0.12

CIFAR-100 (Top-1) 60.00±0.19 54.08±1.66 64.70±0.25 65.46±0.05 67.19±0.24 56.07±0.16 60.82±0.10 66.28±0.23

CIFAR-100 (Top-5) 84.97±0.19 78.70±1.00 84.74±0.38 85.15±0.16 86.60±0.18 78.91±0.23 85.84±0.14 85.85±0.27

Tiny ImageNet (Top-1) 41.29±0.2 30.28±0.2 34.61±0.2 46.40±0.1 46.38±0.11 29.94±0.47 43.72±0.1 44.90±0.2

Tiny ImageNet (Top-5) 66.68±0.09 57.31±0.21 59.91±0.24 68.50±0.18 69.06±0.10 54.73±0.52 69.23±0.23 65.26±0.37

VGG-7
CIFAR-10 84.62±0.1 81.91±0.3 85.97±0.3 87.26±0.1 88.40±0.12 80.15±0.18 88.60±0.1 89.91±0.1

CIFAR-100 (Top-1) 56.80±0.14 37.52±2.60 56.56±0.13 59.97±0.41 64.76±0.17 43.99±0.30 59.96±0.10 65.36±0.15

CIFAR-100 (Top-5) 83.00±0.09 66.73±2.37 81.52±0.17 81.50±0.41 84.65±0.18 73.23±0.30 85.61±0.10 84.41±0.26

Tiny ImageNet (Top-1) 41.15±0.14 21.28±0.46 25.53±0.77 39.49±2.69 35.59±7.69 19.76±0.15 45.32±0.11 46.08±0.15

Tiny ImageNet (Top-5) 66.25±0.11 44.92±0.27 50.06±0.84 64.66±1.95 59.63±6.00 40.36±0.22 69.64±0.18 66.65±0.20

VGG-9
CIFAR-10 78.12±0.14 75.33±0.25 76.90±0.18 85.90±0.14 87.19±0.41 79.02±0.21 89.18±0.08 90.02±0.18

CIFAR-100 (Top-1) 58.25±0.13 39.57±0.18 43.21±0.21 60.74±0.75 58.92±1.61 44.76±0.40 60.63±0.28 65.51±0.23

CIFAR-100 (Top-5) 83.28±0.06 66.90±0.26 71.13±0.23 83.19±0.38 81.56±0.63 72.88±0.29 85.25±0.11 84.70±0.28

Tiny ImageNet (Top-1) 39.64±0.17 21.78±0.15 23.62±0.23 41.59±0.27 31.5±0.70 26.34±0.03 45.66±0.09 45.51±0.15

Tiny ImageNet (Top-5) 64.60±0.09 44.43±0.09 46.89±0.11 66.15±0.32 54.67±0.68 50.48±0.05 69.65±0.09 65.62±0.17

ResNet-18
CIFAR-10 43.19±0.61 53.74±0.43 62.45±0.52 62.33±0.93 55.29±1.65 70.44±0.81 92.83±0.18 93.21±0.07

CIFAR-100 (Top-1) 16.01±0.42 22.83±0.38 25.86±0.86 26.91±0.55 15.45±1.7 29.45±1.36 72.32±0.26 71.89±0.16

CIFAR-100 (Top-5) 40.67±0.70 50.18±0.52 53.80±1.13 55.57±0.80 39.42±2.8 56.70±1.73 92.14±0.12 87.80±0.18

Tiny ImageNet (Top-1) 09.52±0.32 14.19±0.25 15.79±1.10 15.95±0.27 04.40±0.49 06.19±1.09 58.00±0.23 55.30±0.16

Tiny ImageNet (Top-5) 26.21±0.50 34.55±0.20 37.36±1.57 37.76±0.52 14.30±1.92 16.51±3.09 79.94±0.06 74.98±0.36

Negative nudging (NN), where the target is obtained by a small perturbation away from the target,
and updating the weights in the opposite direction; (6) Centered nudging (CN), where we alternate
epochs of positive and negative nudging (Scellier et al., 2024). Among these, PC, iPC, and MCPC
will be used for the generative mode, and PC, iPC, PN, NN, and CN for the discriminative mode. See
Fig. 1, and the supplementary material, for a more detailed description.

4.1 DISCRIMINATIVE MODE

We test the performance of PCNs on image classification tasks by comparing PC against BP, using
both Squared Error (SE) and Cross Entropy (CE) loss, by adapting the energy function as described
in Pinchetti et al. (2022). For the experiments on MNIST and FashionMNIST, we use feedforward
models with 3 hidden layers of 128 hidden neurons, while for CIFAR10/100 and Tiny ImageNET,
we compare ResNets and VGG-like models (He et al., 2016; Simonyan & Zisserman, 2014).

Results. Table 1 shows that the best performing algorithms, at least on the most complex tasks,
are the nudging ones (PN, NN, and CN). Among them, CN is almost always the best performing
one, a result that is in line with previous findings in the Eqprop literature (Scellier et al., 2024). The
only case where nudging algorithms are outperformed is on Tiny Imagenet on VGG7, where PC-CE
performs better than them. However, the results obtained by PC-CE are still worse than the ones
obtained by CN on VGG5. The recently proposed iPC, on the other hand, performs well on small
architectures, as it is the best performing one on MNIST and FashionMNIST, but its performance
worsens when it comes to the training of large architectures. More broadly, the performance of
models of depth up to 7 is comparable to those of backprop, while those of deeper models lag behind.

Discussion on depth. An interesting observation is that all the best results for PC have been
achieved using a VGG5, with the performance trend being VGG5 > VGG7 > VGG9 > ResNet, as
shown in Fig 2. Conversely, we observe the opposite for backprop-trained models, with deeper
models like VGG9 outperforming VGG5. A similar trend was observed in ResNet18 experiments,
where PCNs yielded significantly lower test accuracies, with none of the models coming close to the
performance of a VGG5. In contrast, backprop-trained ResNet18 models outperformed all previously
tested VGG models, further emphasizing the gap in scalability between the two. Future work should
investigate the reason of such a phenomenon, as scaling up to more complex datasets will require the
use of much deeper architectures. In Section 5, we analyze possible causes, as well as comparing the
wall-clock time of the different algorithms.
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Figure 2: Test accuracies of different PC algorithms on the CIFAR10 dataset, using models of different depths.

Table 2: MSE loss for image reconstruction of BP, PC, and iPC on different datasets.

MSE (×10−3) PC iPC BP

MNIST 9.25±0.00 9.09±0.00 9.08±0.00

FashionMNIST 10.56±0.01 10.11±0.01 10.04±0.00

MSE (×10−3) PC iPC BP

CIFAR-10 6.67±0.10 5.50±0.01 6.17±0.46

CELEB-A 2.35±0.12 1.30±0.12 3.34±0.30

4.2 GENERATIVE MODE

In this section, we test the performance of PCNs on image generation tasks. We perform three different
kinds of experiments: (1) generation from a posterior distribution; (2) generation via sampling from
the learned joint distribution; and (3) associative memory retrieval. In the first case, we provide a
test image y to a trained model, run inference to compute a compressed representation x̄ (stored in
the latent vector h0 at convergence), and produce a reconstructed ȳ = hL by performing a forward
pass with h0 = x̄). The models we consider have three layers, and we compare against autoencoders
with a three-layer encoder/decoder structure (so, six layers in total). In the case of MNIST and
FashionMNSIT we use feedforward layers, in the case of CIFAR10 and CelebA (de-)convolutional
ones. The results in Tab. 2 and Fig. 3 report comparable performance, with a small advantage for
PC compared to BP on the more complex tasks. In this case, iPC is the best performing algorithm,
probably due to the small size of the considered models which allows for better stability.

Then, we tested the capability of PCNs to learn, and sample from, a complex probability distribution.
MCPC extends PC by incorporating Gaussian noise to the activity updates of each neuron. This
change enables a PCN to learn and generate samples analogous to a variational autoencoder (VAE).
This change shifts the inference of PCNs from a variational approximation to Monte Carlo sampling
of the posterior using Langevin dynamics. Data samples can be generated from the learned joint Pθ(h)
by leaving all states hl free and performing noisy inference updates. Figure 4 illustrates MCPC’s
ability to learn multimodal distributions using the iris dataset (Pedregosa et al., 2011) and shows
generative samples for MNIST. When comparing MCPC to a VAE, both models produced samples of
similar quality. MCPC achieved a lower FID score (MCPC: 2.53±0.17 vs. VAE: 4.19±0.38), whereas
the VAE attained a higher inception score (VAE: 7.91±0.03 vs. MCPC: 7.13±0.10).

+ Mask + Noise

Figure 5: Memory recalled images. Top: Original
images. Left: Noisy input (guassian noise, σ = 0.2)
and reconstruction. Right: Masked input (bottom half
removed) and reconstruction.

In the associative memory (AM) experiments,
we test how well the model is able to reconstruct
a training image, after it is provided with an in-
complete or corrupted version of it, as done in
a previous work (Salvatori et al., 2021). Fig. 5
show the results obtained by a PCN with 2 hid-
den layers of 512 neurons given noise or mask
corrupted images. In Tab. 3, we study the mem-
ory capacity as the number of hidden layers in-
creases. No visual difference between the recall
and original images can be observed for MSE up
to 0.005. To evaluate efficiency we then trained
a PCN with 5 hidden layers of 512 neurons on 500 TinyImagenet samples, with a batch size of 50
and 50 inference iterations during training. Training takes 0.40 ± 0.005 seconds per epoch on an
Nvidia V100 GPU.

Discussion. The results show that PC is able to perform generative tasks, as well as associative
memory ones using decoder-only architectures. Via inference, PCNs are able to encode complex
probability distributions in their latent state which can be used to perform a variety of different tasks,
as we have shown. While this highlights the flexibility of PCNs when used in the generative mode,
this comes at a higher computational cost due to the number of inference steps to perform.
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Figure 3: CIFAR10 image reconstruction via autoen-
coding convolutional networks. In order: original, PC,
iPC, and BP.
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Figure 4: Generative samples obtained by MCPC. Left:
Contour plot of learned generative distribution compared
to Iris data samples (x). Right: Samples obtained for
a PCN. In order: unconditional generation, conditional
generation (odd), conditional generation (even).

Table 3: MSE (×10−4) of associative memory tasks given noisy (left) or masked (right) inputs as keys. Columns
indicate the number of hidden neurons while rows shows the training images to memorize. Results over 5 seeds.

Noise 512 1024 2048

50 6.06±0.11 5.91±0.14 5.95±0.06

100 6.99±0.19 6.76±0.23 6.16±0.07

250 9.95±0.05 10.14±0.06 8.90±0.06

Mask 512 1024 2048

50 0.06±0.02 0.01±0.00 0.00±0.00

100 1.15±0.78 1.01±0.79 0.11±0.03

250 39.1±10.8 3.74±0.73 0.22±0.06

5 ANALYSIS AND METRICS

In this section, we report several metrics that we believe are important to understand the current
state and challenges of training networks with PC and compare them with standard models trained
with gradient descent and backprop when suitable. The first study we perform analyzes how the
initialization of the network states h influences the performance of the model. In the literature, they
have been either initialized to be equal to zero, randomly initialized via a Gaussian prior (Whittington
& Bogacz, 2017), or initialized via a forward pass. This last technique has been the preferred option
in machine learning papers as it sets the errors ϵl ̸=L = 0 at every internal layer of the model. This
allows the prediction error to be concentrated in the output layer only, and hence be equivalent to the
SE. To provide a comparison among the three methods, we have trained a 3-layer feedforward model
on FashionMNIST. The results, plotted in Fig. 6(a), show that forward initialization is indeed the
better method, although the gap in performance shrinks the more iterations T are performed.

Energy propagation. Concentrating the total error of the model to the last layer makes it hard
for the inference process to then propagate such an energy back to the first layers. As reported in
Fig. 6(b), we observe that the energy in the last layer is orders of magnitude larger than the one in
the input layer, even after performing several inference steps. An easy way of quickly propagating
the energy through the network would be to use learning rates equal to 1.0 for the updates of the
states, that do not produce any energy imbalance, as also shown in Fig. 6(d). However, both the

(a) (b) (c) (d)

Figure 6: (a): Highest test accuracy reported for different initialization methods and iteration steps T used
during training; (b): Energies per layer during inference of the best performing model (which has γ = 0.003);
(c) Decay in accuracy when increasing the learning rate of the states γ, tested using both SGD and Adam; (d)
Imbalance between energies in the layers. Figures are obtained using a three layer model on FashionMNIST.
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Table 4: Comparison of the training times of BP against PC on different
architectures and datasets.

Epoch time (seconds) BP PC (ours) PC (Song)

MLP - FashionMNIST 1.82±0.01 1.94±0.07 5.94±0.55

AlexNet - CIFAR-10 1.04±0.08 3.86±0.06 17.93±0.37

VGG-5 - CIFAR-100 1.61±0.04 5.33±0.02 13.49±0.05

VGG-7 - Tiny ImageNet 7.59±0.63 54.60±0.10 137.58±0.08
×1 ×2 ×3 ×4 ×5 ×6

Multiplicative Factor

1
.0

2
.0

3
.0

4
.0

Seconds per epoch

Batch size
Network width
T
# of layers
# of layers (vmap)

Figure 8: Training time for different
network configurations.

results reported in Fig. 6(b), as well as our large experimental analysis of Section 4 show that the best
performance was consistently achieved for state learning rates γ significantly smaller than 1.0. This
raises the question of whether better initialization or optimization techniques could result in a more
balanced energy distribution and thus better weight updates.

To better understand how the energy propagation relates to the performance of the model, we have
analyzed both the test accuracy and the ratio of the energies of subsequent layers as a function of the
state learning rates γ. The results, reported in Fig 6(c,d), show that small learning rates lead to better
performance, but also to large energy imbalances among layers. On the one hand, the energy in the
first hidden layer is similar to that of the last layer for γ = 1, and about 6 orders of magnitude lower
for γ = 0.01. On the other hand, models trained with a learning rate of γ = 1 achieve much worse
performance. Such results show that the current training setup favors large energy imbalances among
different layers, a problem that leads to exponentially small gradients when the depth of the model
increases. We provide implementation details and results on other datasets in Appendix D.
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Figure 7: Updating weights with AdamW becomes unstable for
wide layers as the accuracy plummets to random guessing for pro-
gressively smaller state learning rates as the network’s width in-
creases. Contrarely to using SGD, the optimal state learning rate
depends on the width of the layers.

Training stability. We have ob-
served a link between the weight opti-
mizer and the influence of the hidden
dimension on the performance of the
model. To better study this, we trained
feedforward PCNs with different hid-
den dimensions, state learning rates
γ and optimizers, and reported the re-
sults in Fig. 7. The results show that,
when using Adam, the width strongly
affects the values of the learning rate
γ for which the training process is sta-
ble. Interestingly, this phenomenon
does not appear when using both the
SGD optimizer, nor on standard net-
works trained with backprop. This
behavioral difference with BP is unex-
pected and suggests the need for better
optimization strategies for PCNs, as AdamW was still the best choice in our experiments, but could
be a bottleneck for larger architectures.

6 LIBRARY, RESOURCES AND IMPLEMENTATIONS DETAILS

In this section, we discuss PCX, the tool that we have used to perform the experiments, and that we
release open source. PCX is developed on top of JAX, focusing on performance and versatility, and
is built upon the following concepts: compatibility, modularity, and efficiency.

Compatibility. PCX shares the same philosophy of equinox (Kidger & Garcia, 2021), according
to which models are just PyTrees. Consequently, it is fully compatible, using a complete functional
approach, with both libraries and many other tools developed for JAX, such as diffrax (Kidger,
2021) and optax (DeepMind et al., 2020). To this end, it will be straightforward to implement
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novel development in deep learning into PCX. However, it also offers an imperative object-oriented
interface, which allows researchers to build PCNs following a PyTorch-like style.

Modularity. Thanks to the object-oriented abstraction, we built the modular primitives that can be
combined to create a PCN, mainly: a module class, representing abstract energy-based models; the
vectorised nodes storing the states h; the optimizers, to perform the inference and learning process in
a predictive coding network; and various standard Layers. Each benchmark we showcase in this work
can be obtained by combining and configuring different blocks as needed.

Efficiency. PCX extensively relies on just-in-time compilation. From our initial benchmarks, we
observed a speed-up of up to 50x when compiling a PCN. We believe that this stark difference is due
to the nature of PC, which relies on multiple smaller operations compared to backpropagation, i.e.,
the T inference step performed in each layer, and thus is more affected by the function calls overhead
present in eager execution mode.

PCX offers a unified interface to test multiple variations of PC on several tasks. Our modular code
base can easily be expanded in the future to support new variations of PC, as we show complete
compatibility with existing variations and training techniques. This is different from, for example, the
monolithic or low-level approaches used in (Song, 2024) and (Ororbia & Kifer, 2022), respectively.

6.1 COMPUTATIONAL RESOURCES AND LIMITATIONS.

We measured the wall-clock time of our PCNs implementation against another existing open-source
library (Song, 2024) used in many PC works (Song et al., 2024; Salvatori et al., 2021; 2022; Tang
et al., 2023), as well as comparing it with equivalent BP-trained networks (developed also with PCX
for a fair comparison). Tab. 4 reports the measured time per epoch, averaged over 5 trials, using a
A100 GPU. We also outperform alternative methods such as Eqprop: using the same architecture on
CIFAR100, the authors report that one epoch takes ≈ 110 seconds, while we take ≈ 5.5 on the same
hardware (Scellier et al., 2024). However, this is not an apple-to-apple comparison, as the authors are
more concerned with simulations on analog circuits, rather than achieving optimal GPU usage.

Limitations. The efficiency of PCX could be further increased by fully parallelizing all the opera-
tions. In fact, in its current state, JIT is unable to parallelize the execution of the layers; a problem
that can be addressed with the JAX primitive vmap, but only in the unpractical case where all the
layers have the same dimension. To test how different hyperparameters of the model influence the
training speed, we have taken a feedforward model, and trained it multiple times, each time increasing
a specific hyperparameter by a multiplicative factor. The results, reported in Fig. 8, show that the
two parameters that increase the training time are the number of layers L and the number of steps T .
Ideally, only T should affect the training time as inference is an inherently sequential process that
cannot be parallelized, but this is not the case, as the time scales linearly with the amount of layers.
Details are reported in Appendix G.

7 DISCUSSION

The main contribution of this work is the introduction and open-source release of PCX, a library that
can be used to perform deep learning tasks using PCNs. Its efficiency relies on JAX’s Just-In-Time
compilation and carefully structured primitives built to take advantage of it. A second advantage of
our library is its intuitive setup, tailored to users already familiar with other deep learning frameworks
such as PyTorch. This, together with the large number of tutorials we release, will make it easy for
new users to train networks using PC. We have then used PCX to perform an extensive comparative
study among different models and training algorithms present in the literature, obtained by testing a
large number of parameter combinations and activation functions.

In terms of results, we have shown that predictive coding networks perform comparably to standard
deep learning ones trained with BP, conditioned on the fact that small/medium size architectures
are used, such as VGG 7. When this condition is relaxed, the performance of predictive coding
fails to match that of BP, able to scale along with model size. In the supplementary material, we
add rigorous studies that provide more details about how the energy flows inside PCNs over time,
and their training stability, as well as show how PCNs classify out-of-distribution data, and possible
solutions for training extremely deep networks via the use of skip connections.
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APPENDIX

Here we provide the details on how experiments were conducted and results obtained. We opt for a
more descriptive approach to convey the fundamental concepts, and leave all details for reproducibility
in the provided code, as well as in the next sections. There, each section will link to the exact directory
corresponding to the described experiments.

A PCX – A BRIEF INTRODUCTION

In this section, we illustrate the core ideas of PCX by describing the main building blocks necessary
to train and evaluate a feedforward classifier in predictive coding. For more detailed and complete
explanations, please refer to the tutorial notebooks in the examples folder of the library.

In Section 3, we defined PCNs as models with parameters θ = {θ0, . . . , θL} and state h =
{h0, . . . , hL}. In PCX, we divide a model in two main components: layers (i.e., the traditional
deep-learning transformations such as ’Linear’ or ’Conv2D’) and vodes (i.e., vectorized nodes that
store the array of neurons representing state hl). A PCN is defined as follows:

import jax.nn as jnn
import pcx.predictive_coding as pxc
import pcx.nn as pxnn

class MLP(pcx.EnergyModule):
def __init__(self, in_dim, h_dim, out_dim):

self.layers = [
pxnn.Linear(in_dim, h_dim),
pxnn.Linear(h_dim, h_dim),
pxnn.Linear(h_dim, out_dim)

]

self.vodes = [
pxc.Vode((dim,)) for dim in (h_dim, h_dim, out_dim)

]

def __call__(self, x, y = None):
for layer, vode in zip(self.layers, self.vodes):

u = jnn.leaky_relu(layer(x))
x = vode(u)

if y is not None:
self.vodes[-1].set("h", y)

return u

In the __call__ method, we forward the input x through the network. Note that every time we call a
vode, we are effectively storing in it the activation ul (so that we can later compute the energy ϵ2l
associated to the vode) and return its state hl (i.e., x = vode(u) corresponds to vode.set("u", u); x =
vode.get("h")). During training, the label y is provided to the model and fixed to the last vode by
overwriting its state h(L). Note that, since both during training and evaluation the state of the first
vode would be fixed to the input x, we avoid defining it (i.e., we avoid computing Pθ0(h0) since it
would be constant), and directly forward x to the first layer transformation.

The class pxc.EnergyModule provides a .energy() function that computes the variational free energy
F as per Eq. (1). We can compute the state and parameters gradients as per Eqs. (3) by calling
pxf.value_and_grad, a wrap around the homonymous JAX function. Having defined two optimizers,
optim_w and optim_h, for parameters and state respectively, we can define training on a pair (x, y) as
following:

import pcx.utils as pxu
import pcx.functional as pxf
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def energy(x, y, *, model):
model(x, y)
return model.energy()

grad_h = pxf.value_and_grad(
pxu.Mask(pxc.VodeParam, [False, True])

)(energy)

grad_w = pxf.value_and_grad(
pxu.Mask(pxc.LayerParam, [False, True])

)(energy)

def train(T, x, y, *, model, optim_h, optim_w):
model.train()

# Initialization
with pxu.step(model, pxc.STATUS.INIT, clear_params=pxc.VodeParam.Cache):

model(x)

# Inference steps
for i in range(T):

with pxu.step(model, clear_params=pxc.VodeParam.Cache):
_, g_h = grad_h(x, y, model=model)
optim_h.step(model, g_h["model"], True)

# Learning step
with pxu.step(model, clear_params=pxc.VodeParam.Cache):

_, g_w = grad_w(x, y, model=model)
optim_w.step(model, g_w["model"])

A few notes on the above code:

• JAX (Bradbury et al., 2018) is a functional library, PCX is not. Modules in PCX are PyTrees,
using the same philosophy as another popular JAX library, equinox (Kidger & Garcia, 2021),
with which PCX modules are fully compatible. However, their state is managed by PCX
so that each parameter transformation is automatically tracked. The user can opt in for
this behavior by passing arguments as keyword arguments (such as in the above example).
Positional function parameters, instead are ignored by PCX and it is the user’s duty to track
their state as done in JAX or equinox.

• pxf.value_and_grad allows to specify a Mask object to identify which parameters to target
with the given transformation. In the case above, we first compute the gradient of F with
respect of the state (VodeParam) and, then, of the weights (LayerParam) of the model.

• In the train function, we use pxu.step to set the model status to pxc.STATUS.INIT to perform
the state initialization. In PCX, forward initialization is the default method, however other
ones can be easily specified. pxu.step is also used to clear the PCN’s cache which is used to
store intermediate values such as the activations ul.

• The actual examples in the library are on mini-batches of data, so all transformations above
are vmapped in the actual experiments.

For the evaluation function, being in discriminative mode, we simply perform a forward pass through
the PCN which sets ϵl = 0 for all layers.

def eval(x, *, model):
with pxu.step(model, pxc.STATUS.INIT, clear_params=pxc.VodeParam.Cache):

return model(x)
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B DISCRIMINATIVE EXPERIMENTS

Model. We conducted experiments on three models: MLP, VGG-5, and VGG-7. The detailed
architectures of these models are presented in Table 5.

Table 5: Detailed Architectures of base models

MLP VGG-5 VGG-7
Channel Sizes [128, 128] [128, 256, 512, 512] [128, 128, 256, 256, 512, 512]
Kernel Sizes - [3, 3, 3, 3] [3, 3, 3, 3, 3, 3]

Strides - [1, 1, 1, 1] [1, 1, 1, 1, 1, 1]
Paddings - [1, 1, 1, 0] [1, 1, 1, 0, 1, 0]

Pool window - 2 × 2 2 × 2
Pool stride - 2 2

For each model, we conducted experiments with the following different algorithms:

1. Standard PC with Cross-Entropy Loss (PC-CE) / Mean Squared Error Loss (PC-SE):
already discussed in the background section.

2. PC with Positive Nudging (PC-PN):
Unlike standard Predictive Coding with Mean Squared Error Loss (PC-SE), where the output
is clamped to the target, we “nudge” the output towards the target in PC with nudging. This
is achieved by fixing the representation h of last layer hL to µL + β(y − µL), where µL

is the predicted activation of the last layer after forward initialisation, y is the target, and
β ∈ (0, 1) is a scalar parameter that controls the strength of nudging. Note that when β = 1,
PC with nudging is equivalent to the standard PC.
During training procedure, as the model output gradually approaches to the target, we
employ a strategy of increasing β. At the end of each epoch, the value of β is incremented
by a fixed rate βir. When β becomes greater than or equal to 1, we set it to 1. This strategy
allows the model more stable to learn and explore in the early stages of training, while
gradually transitioning to the standard PC in the later stages.

3. PC with Negative Nudging (PC-NN):
In this algorithm, we do the opposite of positive nudging: we push the output away from the
target. Therefore, we fix the representation h of the last layer to µL − β(y − µL). We use
the same strategy of dynamically increasing β. When β becomes greater than or equal to -1,
we set it to 1.
In the learning stage, to ensure that the direction of the weight update is consistent with
the target (since we fixed hL to the opposite direction), we invert the weight update: θl ←
θl −∆θl where ∆θl defined in the Eq. (3).

4. PC with Center Nudging (PC-CN):
Center Nudging (Scellier et al., 2024) is used in equilibrium propagation to improve and
stabilize performance compared to both positive and negative nudging, and it is obtained
as an average of the gradients produced by the two methods. Here, we approximate this
behavior by randomly alternating between epochs in which we train with either negative or
positive nudging. In this way, the training model can benefit from both methods without any
extra computational cost.

5. Incremental PC (iPC), a simple and recently proposed modification where the weight
parameters are updated alongside the latent variables at every time step (Salvatori et al.,
2024).

6. Standard Backpropagation with Cross-Entropy Loss (BP-CE) / Mean Squared Error Loss
(BP-SE): the most popular way to do the credit assignment in the neural networks. The
model is trained by computing the gradients of the loss function with the weights of the
network using the chain rule.
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Experiments. The benchmark results of MLP are obtained with MNIST and Fashion-MNIST, the
results of VGG-5 are obtained with CIFAR-10, CIFAR-100 and Tiny ImageNet, the results of VGG-7
are obtained with CIFAR-100 and Tiny ImageNet. The data is normalized as in Table 6.

Table 6: Data normalization

Mean (µ) Std (σ)
MNIST 0.5 0.5

Fashion-MNIST 0.5 0.5
CIFAR-10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]

CIFAR-100 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]
Tiny ImageNet [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

For data augmentation on the training sets of CIFAR-10, CIFAR-100, and Tiny ImageNet, we apply
random horizontal flipping with a probability of 50%. Additionally, we employ random cropping
with different settings for each dataset. For CIFAR-10 and CIFAR-100, images are randomly cropped
to 32×32 resolution with a padding of 4 pixels on each side. In the case of Tiny ImageNet, random
cropping is performed to obtain 56×56 resolution images without any padding. And on the testing set
of Tiny ImageNet, we use center cropping to extract 56×56 resolution images, also without padding,
since the original resolution of Tiny ImageNet is 64x64.

The model hyperparameters are determined using the search space shown in Table 7. The results
presented in Table 1 were obtained using 5 seeds with the optimal hyperparameters.

As for the optimizer and scheduler, we use mini-batch gradient descent (SGD) with momentum as
the optimizer for the h, and we utilize AdamW Loshchilov & Hutter (2017) with weight decay as the
optimizer for the θ. Additionally, we apply a warmup-cosine-annealing scheduler without restart for
the learning rates of θ.

Table 7: Hyperparameters search configuration

Parameter PC iPC BP
Epoch (MLP) 25

Epoch (VGG and ResNet) 50
Batch Size 128
Activation [leaky relu, gelu, hard tanh] [leaky relu, gelu, hard tanh, relu]

β [0.0, 1.0], 0.051 - -
βir [0.02, 0.0] - -
lrh (1e-2, 5e-1)2 (1e-2, 1.0)2 -
lrθ (1e-5, 3e-4)2 (3e-5, 3e-4)2

momentumh [0.0, 1.0], 0.051 -
weightdecayθ (1e-5, 1e-2)2 (1e-5, 1e-1)2 (1e-5, 1e-2)2

T (MLP and VGG-5) [4,5,6,7,8] -
T (VGG-7) [8,9,10,11,12] -
T (VGG-9) [9,10,12,15,18] -

T (ResNet-18) [6,10,12,18,24] -
1: “[a, b], c” denotes a sequence of values from a to b with a step size of c.

2: “(a, b)” represents a log-uniform distribution between a and b.

Results. All the results presented in this study were obtained using forward initialization, a tech-
nique that initializes the model’s parameters by performing a forward pass on a zero tensor with
the same shape as the input data. Besides, in our experiments, we limited the range of T to ensure
a fair comparison with BP in terms of training times. Higher T correspond to a greater number
of optimization rounds of h, which can lead to improved model performance but also increased
computational costs and longer training durations. To maintain comparability with BP, we restricted
our searching space of T that resulted in training times similar to those observed in BP-based training.
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Momentum helps significantly. In Figure 9, we present the accuracy of the VGG-7 model trained
on CIFAR-100 using different momentum values, both without nudging(Figure 9a) and with nudg-
ing(Figure 9b). It is evident from Figure 9 that selecting an appropriate momentum value can
substantially improve model accuracy. By comparing Figures 9a and 9b, we can observe that dif-
ferent training algorithms have different optimal momentum values. The optimal momentum for
training with nudging is generally higher than that for training without nudging. Furthermore, the
optimal momentum for negative nudging is larger than that for positive nudging. These differences
in optimal momentum values highlight the importance of carefully tuning the momentum hyperpa-
rameter based on the specific training algorithm and nudging method employed. For reference, the
optimal model parameters and momentum values for various tasks and models can be found in the
example/discriminative_experiments folder of the PCX library.
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Figure 9: Comparison of the accuracy of the VGG-7 model trained on CIFAR-100 using different momentum
values

Activation function also plays a crucial role in improving model accuracy. For models using
Cross-Entropy Loss, the “HardTanh” activation function is a better choice. In the case of models
using Mean Squared Error Loss without nudging, the “LeakyReLU” activation function tends to
perform better. When using Positive Nudging, the optimal activation function varies depending on
the model architecture. For Negative Nudging, the “GeLU” activation function is the most suitable
choice.

Nudging improves performance. Fig. 10 illustrates the relationship between the learning rate of
h and accuracy with or without nudging. From the plot, we can observe that when nudging is not
used (red dots), the model achieves better results at lower learning rates. However, when nudging is
employed (purple and blue dots), regardless of whether it is positive nudging or negative nudging,
the model can attain better accuracy at higher learning rates compared to the case without nudging.
Additionally, Fig. 9b shows the relationship between momentum and accuracy. We can see that after
applying nudging, the model can achieve better results at higher momentum values. We believe this
is the reason why nudging can improve performance. The ability to use higher learning rates and
momentum values without sacrificing accuracy is a significant advantage of nudging, as it can lead to
faster convergence and improved generalization performance.

C GENERATIVE EXPERIMENTS

C.1 AUTOENCODER

An Autoencoder is a network that learns how to compress a high-dimensional input into a much
smaller dimensional space, called the bottleneck dimension or the hidden dimension, as accurately
as possible. Thus, a backpropagation-based Autoencoder consists of two parts: an encoder, that
compresses the input from the original high-dimensional space into the bottleneck dimension, and a
decoder, that reconstructs the original input from the bottleneck dimension. A mean-squared error
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Figure 10: Comparison of the accuracy of the VGG-7 and VGG-5 model trained on CIFAR-100 using different
learning rates for h.

Figure 11: Left. An Autoencoder implemented with backpropagation consists of both an encoder
and a decoder. The encoder compresses the input data into the bottleneck dimension, and the decoder
restores the original image. Right. An Autoencoder implemented with Predictive Coding. The state
of the first PC layer is the bottleneck dimension. The state of the last PC layer is the original input,
and the predicted state of the last PC layer is the predicted input. Inference steps update the bottleneck
dimension to make it a good compressed representation.

(MSE) between the original and the reconstructed input is used as a loss to train the Autoencoder
network in an unsupervised manner.

Predictive Coding (PC) alleviates the need in the encoder part of an Autoencoder. Specifically, only
the decoder part of an Autoencoder is used, with a PC layer acting as the bottleneck dimension and
as an input to the decoder. Moreover, PC layers are inserted after each layer of the decoder.

A PC-based Autoencoder works as follows:
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Table 8: Hyperparameters and search spaces for deconvolution-based autoencoders

Parameter PC iPC BP
Number of layers 3 conv layers: 3 deconv layers: 3

Internal state dimension 4x4
Internal state channels 8

Kernel size [3, 4, 5, 7]
Activation function [relu, leaky_relu, gelu, tanh, hard_tanh]

Batch size 200
Epochs 30

T 20 -
Optim h SGD+momentum -

lrh (1e-2, 5e-1)2 (1e-2, 1.0)2 -
momentumh [0.0, 0.95] -

Optim θ AdamW
lrθ 3e-5, 1e-32

weightdecayθ (1e-5, 1e-2)2 (1e-5, 1e-1)2 (1e-5, 1e-2)2

Table 9: Hyperparameters and search spaces for linear-based autoencoders

Parameter PC iPC BP
Number of layers 3 encoder: 3 decoder: 3

Internal state dimension 64
Activation function [relu, leaky_relu, gelu, tanh, hard_tanh]

Batch size 200
Epochs 30

T 20 -
Optim h SGD+momentum -

lrh (1e-2, 5e-1)2 (1e-2, 1.0)2 -
momentumh [0.0, 0.95] -

Optim θ AdamW
lrθ (3e-5, 1e-3)2

weightdecayθ (1e-5, 1e-2)2 (1e-5, 1e-1)2 (1e-5, 1e-2)2

1. The energy function of the last PC layer is set to MSE upon its creation. In PCX, the squared
error is the default energy function. The squared error is then summed across all dimensions
in the input and averaged over the batch, that approximates the MSE up to a multiplication
constant.

2. The current state of the last PC Layer L, hL, is fixed to the original input data, which means
that hL is not changed during inference steps.

3. Since the energy of the last layer L now encodes the MSE loss between the predicted image
µL and the original input stored as hL, the inference steps will update the current states hl

of all PC layers but the last one, including the one that represents the bottleneck dimension,
to minimize this MSE loss.

4. Once the inference steps are done, the state of the bottleneck dimension PC layer will
converge to the compressed representation of the original input.

C.2 MCPC

Model. Monte Carlo predictive coding (MCPC) is a version of predictive coding that can be used
for generative learning. MCPC differs from PC by its noisy neural dynamics. Unlike PC where the
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neural activity converges to a mode of the free-energy, the neural activity of MCPC performs noisy
gradient descent which is used for Monte Carlo sampling. When an input is provided, the noisy
neural activity samples the posterior distribution of the generative model given the sensory input.
When no input is provided the neural activity samples the generative model encoded in the model
parameters. Specifically, the neural dynamics of MCPC leverage the following Langevin dynamics:

∆hl = −γ∇hl
Fhl

(h, θ) +
√
2γN (4)

where N is a Gaussian random variable with variance σ2
mcpc. These neural dynamics can be extended

to 2nd-order Langevin dynamics for faster sampling:

∆hl = γrl (5)

∆rl = γ∇hl
F(h, θ)− γ(1−m)rl +

√
2(1−m)γN (6)

where m is a momentum constant.

An MCPC model is trained following a Monte Carlo expectation maximisation scheme which iterates
over the following two steps: (i) MCPC’s neural activity samples the model’s posterior distribution
for the given data, and (ii) the model parameters are updated to increase the model log-likelihood
under the samples of the posterior. In practice, we run MCPC inference for a limited number of steps
after which we update the model parameters with a single sample of the posterior similarly to how
model parameters are updated in variational auto encoders.

After training, samples of a trained model are generated by leaving all neurons unclamped and
recording the activity of input neurons (the neurons clamped to data during training). The activity
is recorded after a limited number of activity update steps. This process is repeated for each data
sample.

MCPC’s implementation in PCX utilizes a noisy SGD optimizer for the state h. Compared to PC
than uses an SGD or Adam optimizer, MCPC incorporates an optimizer that merges the addition
of noise to the model’s gradients with an SGD optimizer. The variance of the noise added to the
gradients needs to be carefully crafted to scale appropriately with the learning rate and the momentum
as shown in equations (4 - 6).

Experiments. All the MCPC experiments use feedforward models with Squared Error (SE) loss. The
SE loss of the state layer hL is also scaled by a variance parameter σ2

hL
. This additional parameter is

introduced to prevent the Gaussian layer hL from having a variance much larger than the variance of
the data which would prevent learning. Moreover, for unconditional learning and generation, the layer
h0 is left unclamped during both training and generation. In contrast, for the conditional learning
task on MNIST, the layer h0 is clamped to labels during training and generation.

For the iris dataset, we train a model with layer dimensions [2 x 64 x 2], tanh activation function and
default parameter values (state learning rate γ=0.01, state momentum = 0.9 , noise state variance
σ2
mcpc = 1, parameter learning rate lrθ, parameter decay = 0.0001, Adam parameter optimizer, layer

variance σ2
hL

= 0.01 and a batch size of 150). We use 500 state update steps during learning and
10000 for generation.

For the unconditional learning task on MNIST, we train models with layer dimensions [30 x 256
x 256 x 256 x 784]. The model hyperparameters for MCPC and VAE were determined using the
hyperparameter search shown in table 10 to optimize the FID and the inception score separately.
Refer to the code for exact optimal parameter values. We use 1000 state update steps during learning
and 10000 for generation.

For the conditional learning task on MNIST, we train models with layer dimensions [2 x 256 x 256 x
256 x 784]. The labels used in this task, clamped to h0, specify whether an image corresponds to an
even or odd number. The model hyperparameters are determined using the search space shown in
table 10. We use 1000 state update steps during learning and 10000 for generation.

Results. Figure 12 shows samples generated by the trained models for hyperparameters that maximize
the inception score.

C.3 ASSOCIATIVE MEMORIES

This section describes the experimental setup of associative memory tasks.
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Table 10: Bayes hyperparameter search configuration for MCPC and VAE (where applicable) on
MNIST.

Parameter Value
activation {ReLU, Silu, Tanh, Leaky-ReLU, Hard-Tanh}

γ log-uniform(0.0001, 0.05)
momentum {0.0, 0.9}

σ2
mcpc {1.0, 0.3, 0.01, 0.001}
lrθ log-uniform(0.0001, 0.1)

parameter decay {0.0, 0.1, 0.01, 0.001, 0.0001}
σ2
hL

log-uniform(0.03, 1.0)
batch size {150, 300, 600, 900}

Figure 12: Samples generated by trained models that optimize the inception score under the uncondi-
tional and conditional learning regimes.

Model. A generative PCN is first trained on n images sampled from the Tiny ImageNet dataset
until its parameters have converged. Then, a corrupted version of the training images is presented to
the sensory layer of the model (hL) and we run inference ∇hl on all layers, including the sensory
layer, until convergence. Note that in masked experiments, the intact top half of the images is kept
fixed during inference. Intuitively, suppose the model has minimized its free energy with its sensory
layer fixed at each of the n training examples during training. In that case, it has formed attractors
defined by these training examples and would thus tend to “refine" the corrupted images to fall back
into the energy attractors.

Experiments. Here, the benchmark results are obtained with Tiny ImageNet, corrupted with
either Gaussian noise with 0.2 standard deviation, or a mask on the bottom half of the images
(examples shown in Fig. 5). We vary the model size and number of training examples to memorize,
to study the capacity of the models. Specifically, we use a generative PCN with architecture
[512, d, d, 12288] where d = [512, 1024, 2048] (12288 being the flattened Tiny ImageNet images)
and varied n = [50, 100, 250]. We performed a hyperparameter search for each d and n on the
parameter learning rate lrθ ∈ {1× 10−4 + k · 5× 10−5 | k ∈ Z, 0 ≤ n ≤ 18}, the state learning rate
γ ∈ {0.1 + k · 0.05 | k ∈ Z, 0 ≤ n ≤ 18}, training inference steps Ttrain ∈ [20, 50, 100] and recall
inference steps Trecall ∈ [50000, 100000]. We fix the activation function of the model to Tanh, and
the number of training epochs to 500 and a batch size of 50. The results in Table 3 are obtained with
5 seeds with the searched optimal hyperparameters.

D ENERGY AND STABILITY

This section describes the experimental setup of Section 5, provides replications on other datasets
and ablations.
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Figure 13: Model accuracies for a range of combinations of activation functions and model widths.
Adam perfers small learning rates and tends to be less stable than SGD. Obtained on FashionMNIST.

D.1 ENERGY PROPAGATION

We test a grid of models on multiple datasets to examine the energy propagation in the models. We test
on the FashionMNIST, Two Moons, and, Two Circles datasets. The Two Circles dataset is particularly
interesting, as poor energy distribution intuitively results in a linear inductive bias (we primarily learn
a one-layer network). This linear inductive bias harms the performance on Two Circles (linear model
accuracy ≈ 50%) more than FashionMNIST (≈ 83%) and Two Moons (≈ 86%).

Experimental Setup. We train a grid of feedforward PCNs with 2 hidden layers. We train on
three datasets: FahionMNIST (as reported in the main body) and additionally Two Moons and Two
Circles. For all models, we train for 8 epochs with T = 8 inference steps. States are optimized with
SGD and forward initialization. The grid is formed over weight learning rate lrθ ∈ {1× 10−5, 1×
10−4, . . . , 1}, state learning rate γ ∈ {1×10−3, 3×10−3, 1×10−2, 3×10−2, 1×10−1, 3×10−1, 1},
activation functions f ∈ {LeakyReLU,HardTanh} (the former is unbounded the latter is bounded),
optimization with AdamW or SGD with momentum m ∈ {0.0, 0.5, 0.9, 0.95} and hidden widths
of {512, 1024, 2048, 4096} for FashionMNIST and {128, 256, 512, 1024} for Two Moons and Two
Cricles. We replicate all experiments on 3 seeds for FashionMNIST and 10 seeds for the other
datasets.

Results. Fig. 6(left) in the main paper shows the average energy across the last batch at the end of
training for the best performing model on the grid. Fig. 6(center-left) compares SGD with momentum
0.9 and AdamW. It is obtained for activation function “HardTanh” and a width of 1024. We replicate
this figure for the other combinations of activation functions and widths below in Fig 13. We observe
that across all conditions, small to medium state learning rates are generally preferred by SGD, while
AdamW has a stronger preference to smaller state learning rates. Given the uneven distribution of
energies across layers, AdamW, in particular, may not scale to deeper architectures. We further,
observe a larger variance in performance for AdamW, especially for wider layers, which we discuss
in paragraph “Training Instability“ in Sec. 5 and below. Fig. 6(right) is based on all models trained
with AdamW. Many models with high state learning rates diverge, we only plot models achieving
accuracy > 0.5.

Below we present the results of experiments on the Two Moons and Two Circles datasets. Fig. 14b,
14a, and 14c replicateFig. 6 for Two Moons, and Fig. 15b, 15a, and 15c for Two Circles. Results are
very similar to FashionMNIST: The energy is concentrated in the last layer, even after T inference
steps. However, in the example for Two Circles, we actually observe a training effect for earlier layers:
While the energy increases first due to error propagation (still orders of magnitude below later layers),
the energy is reduced afterwards. Energy ratios are consistenly indicating poor energy propagation
for state learning rates γ, that perform well. As predicted the variance in results is significantly larger
for Two Circles, especially for small state learning rates.
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Figure 14: Energy propagation on the Two Moons dataset. 14a shows the imbalance between layers
across T steps. 14b shows the model performance across state learning rates and 14c the energy
distribution across state learning rates.
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Figure 15: Energy propagation on the Two Circles dataset. 15a shows the imbalance between layers
across T steps. 15b shows the model performance across state learning rates and 15c the energy
distribution across state learning rates.
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Figure 16: The instability of optimization with
Adam given architectural choices can be ob-
served for Two Moons.
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Figure 17: The instability of optimization as
a result of an optimizer-architecture-interaction
can be (at least partially) be attributed to the
absolute size of layers.

D.2 TRAINING STABILITY

We test a grid of PCNs to analyze the interaction between model width, state learning rates and
weight optimizers.

Experimental Setup. We train models on FashionMNIST (as reported above) and Two Moons. We
train feedforward PCNs (2 hidden layers) with “LeakyReLU” activations over a grid of parameters.
All models are trained over 8 epochs. The widths of the hidden layers are {32, 64, . . . , 4096}. State
variables are trained for T = 8 steps with SGD and learning rates γ ∈ {1×10−5, 3×10−5, . . . , 0.3}.
The weights are updated through SGDor the Adam optimizer with a learning rate of 0.01 for
FashionMNIST and 0.03 for Two Moons. Both optimizers uses 0.9 momentum for weights. We
further train baseline BP models with the same hyperparameters. For FashionMNIST we replicate
each run over 3 random initializations, for Two Moons over 10.

Results. We replicate Fig. 7 (FashionMNIST) here for the Two Moons dataset, see Fig. 16. We
observe effects for Two Moons that are analog to FashionMNIST as presented above: The stability
of optimization strongly depends on the width of the hidden layers for Adam. This effect is not
observed for SGD on either dataset. This further supports the our conclusion in Sec. 5: While Adam
is the better optimizer, this interaction effect (width × γ) can hinder the scaling of PCNs with Adam.
Optimization methods for PCNs require further attention from the research community.

Ablation. We further provide an ablation on FashionMNIST. In the experiments above, the hidden
layer width is altered, introducing changes in the absolute size of the hidden layers (i.e. number
of neurons), but also changing the relative size of the hidden layers in the network, as input and
output layers remain the same size across all experiments. Hence, we provide another experiment on
FashionMNIST, where we increase the image size and augment the label vector with 0s, such that
the width of all layers is equal. All other experimental variables remain as described above. The
results are shown in Fig. 17 and follow the trend observed in Fig. 7 and 16: We find that there exists
an interaction between the optimization and the width of the network as described above. Hence,
accounting for relative changes in layer width does not sufficiently explain the problem and we
conclude that the absolute size of the layers plays a role in the stability of optimization with AdamW.

ResNets Here we discuss the findings on the energy propagation in light of the ResNets18 experi-
ments. In this section, we have shown that lower learning rate for the nodes harm energy propagation,
and that the AdamW optimizer displays poor performance for larger hidden dimensions. To this
end, we have trained ResNets18 using SGD and large learning rates for the nodes, and compared
the performance against those in the main body of the paper. The performance are, however, not
comparable to the ones reported in Table.1, as ResNets trained with SGD on the CIFAR10 dataset
reach accuracies of 39.9% and 43.2% when using PC and iPC, respectively. To better understand
the incidence of different hyperparameters on the final test accuracy of the models, in Fig. 18 we
show their importance plots. Such quantities are computed by fitting a random forest regressor with
hyperparameters as datapoints, accuracies as labels, and extracting the feature importance.
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Figure 18: Importance plots that show the importance of each hyperparameter in the final test accuracy
of the model, computed by fitting a random forest regressor with hyperparameters as datapoints,
accuracies as labels, and extracting the feature importance.

E SKIP CONNECTIONS INTO VGG19

Skip connections. We investigate the integration of skip connections into the VGG19 architecture
to enhance its performance on the CIFAR10 image classification task, showing a significant increase
in test accuracy from 25.32% to 73.95%. The vanishing gradient problem, a notable challenge in
deep Predictive Coding (PC) models, becomes pronounced with increased network depth, hindering
error transmission to earlier layers and impacting learning efficacy. To address this, we introduce
skip connections that allow gradients to bypass multiple layers, enhancing gradient flow and overall
learning performance.
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Table 11: Hyperparameter configuration and best accuracy for VGG19 with and without skip
connections on CIFAR10

Parameter Range Best Value
With Skip Connections

Epochs 30 30
Batch size 128 128

Activation functions {GELU, Leaky ReLU} Leaky ReLU
Optimizer for network parameters - Learning rate {5e-2, 1e-1, 5e-1} 0.5
Optimizer for network parameters - Momentum {0.0, 0.5, 0.9, 0.99} 0.5
Optimizer for weight parameters - Learning rate 1e-4 1e-4
Optimizer for weight parameters - Weight decay {5e-4, 1e-4, 5e-5} 5e-4

Number of inference steps (T) {24, 36} 24

Best Accuracy 73.95%
Without Skip Connections

Epochs 30 30
Batch size 128 128

Activation functions {GELU, Leaky ReLU} GELU (default)
Optimizer for network parameters - Learning rate {5e-2, 1e-1, 5e-1} 0.1
Optimizer for network parameters - Momentum {0.0, 0.5, 0.9, 0.99} 0.99
Optimizer for weight parameters - Learning rate 1e-4 1e-4
Optimizer for weight parameters - Weight decay {5e-4, 1e-4, 5e-5} 1e-4

Number of inference steps (T) {24, 36} 24

Best Accuracy 25.32%
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Figure 19: Performance comparison of VGG19 with and without skip connections on the CIFAR-10
dataset over 30 epochs. The plot shows the mean test accuracy along with the shaded area representing
the variability across three different seeds.

Results Our modified VGG19 model includes a skip connection from an early layer within the
feature extraction stage, with the output flattened and adjusted using a linear layer before being
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Figure 20: (a) Energy and NLL of ID/OOD data before and after state optimization. (b) Nonlinearity between
energy and softmax post-convergence. (c) ROC curve of OOD detection at the 100th and 25th percentiles of
scores. In all plots, “ID” refers to MNIST and “OOD” to FashionMNIST.

reintegrated during the classification stage. The model underwent rigorous training and evaluation
on the CIFAR10 dataset, employing standard preprocessing techniques like normalization and data
augmentation (horizontal flips and rotations). Detailed hyperparameter tuning revealed optimal
configurations for both models, with and without skip connections, exploring various optimizers,
learning rates, momentum values, and weight decay settings, significantly enhancing the model
performance with skip connections as summarized in Table 11.Figure 19 shows the test accuracy
progression over 30 epochs for the VGG19 model with and without skip connections on the CIFAR10
dataset, using three different seed values and identical hyperparameters for both simulations.

F PROPERTIES OF PREDICTIVE CODING NETWORKS

This section describes the experimental setup of Section F.1 and displays the utility of using the free
energy of a PCN classifier to differentiate between in-distribution (ID) and out-of-distribution (OOD)
data (Liu et al., 2020). We show how one can compute the negative log-likelihood of various datasets
(Grathwohl et al., 2020) under the PCN. We further provide analyses on the relationship between
maximum softmax values and energy values before convergence and after convergence at the state
optimum. We compare results across multiple datasets to corroborate our results as well as to show
how PCNs can be used for OOD detection out of the box based on a single trained PCN classifier for
which we study the receiver operating characteristic (ROC) curve based on different percentiles of
the softmax and energy scores.

F.1 FREE ENERGY AND OUT-OF-DISTRIBUTION DATA.

With PCX, it is straightforward to inspect and analyze several properties of PCNs. Here, we use F to
differentiate between in-distribution (ID) and out-of-distribution (OOD) due to a semantic distribution
shift (Liu et al., 2020), as well as to compute the likelihood of a datasets (Grathwohl et al., 2020).
This can occur when samples are drawn from different, unseen classes, such as FashionMNIST
samples under an MNIST setup (Hendrycks & Gimpel, 2017).

Experimental Setup. We train a PCN classifier on MNIST using a feedforward PCNs with 3
hidden layers each of size H = 512 with “GELU” activation and cross entropy loss in the output
layer. We train the model until test error convergence using early stopping at epoch 75. During
training the state variables are optimized for T = 10 steps with SGD and state learning rate γ = 0.01
without momentum. The weights are optimized using the SGD optimizer with a momentum of
mθ = 0.9 and the weight learning rate is chosen as lrθ = 0.01. During test-time inference, we
optimize the state variables until convergence for T = 100. To understand the confidence of a PCN’s
predictions, we compare the distribution of energy for ID and OOD samples against the distribution
of the softmax scores that the classifier generates. We compute negative log-likelihoods for ID and
OOD samples under the PCN classifier via:

F = − ln p(x, y; θ) =⇒ p(x, y; θ) = e−F , (7)
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We conduct the experiments on MNIST as the in-distribution (ID) dataset and we compare it against
various out-of-distribution datasets such as notMNIST, KMNIST, EMNIST (letters) as well as
FashionMNIST.

Briefly, the results in Fig. 20a demonstrate that a trained PCN classifier can effectively (1) assess
OOD samples out-of-the-box, without requiring specific training for that purpose (Yang et al., 2021),
and (2) produce energy scores for ID and OOD samples that initially correlate with softmax values
prior to the optimization of the states variables, h. However, after optimizing the states for T inference
steps, the scores for ID and OOD samples become decorrelated, especially for samples with lower
softmax values as shown in Fig. 20b. To corroborate this observation, we also present ROC curves
for the most challenging samples, including only the lowest 25% of the scores. As shown in Fig.20c,
the probability (i.e., energy-based) scores provide a more reliable assessment of whether samples are
OOD. Experiment details and results on other datasets are provided in in Appendix F. Additional,
and more detailed results for the EMNIST (letters) and KMNIST datasets are provided below.

Results. In the following we briefly interpret the additional results on the basis of experiments
supported by various figures
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Figure 21: Energy distributions before and after state optimization.
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In Fig. 21 we see how the energy is distributed at test-time before and after state optimization. We can
see, that all OOD datasets have significantly larger initial energies as well as final energies compared
to the ID dataset (MNIST).
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Figure 22: Energy histograms against ID data before and after state optimization.

In Fig. 22 we then show how each energy distribution for the OOD dataset compares against the
energy of the in-distribution dataset by overlaying the histograms of the energies before and after
state optimization. We can see that by plotting the histograms, a pattern emerges, namely, that a
majority of the OOD data samples do not overlap with ID data samples, which supports the idea that
energy can be used for OOD detection.

Next in Fig. 23 we show how this pattern might look like when comparing the softmax scores of ID
against OOD datasets. One can see, that the softmax scores are less informative for determining if
samples are OOD as can be seen by the bigger overlap in the range of softmax values that ID and
OOD samples have in common.

In Fig. 24 we further study the relationship between softmax scores and energy values before and after
state convergence. The plot shows that while the energy and softmax scores are strongly correlated
before inference, a non-linear relationship is evident after convergence, especially for smaller values
where the model is more uncertain. This indicates, that softmax scores and energy values do not fully
agree on which samples we should have less confidence in.
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Figure 23: Softmax histograms overlapped with ID dataset.

In Fig. 25 we show how the energy distributions for all datasets look like before and after inference.
Each box plot represents a different scenario and a different dataset. In addition, we compute the NLL
of each dataset and display it as part of the box plot labels. We observe that across all OOD datasets,
the initial and final energy values are significantly higher than the MNIST (ID) dataset. Furthermore,
we can see that the variance of the energy scores is smaller for the in-distribution data as can be seen
by the fact, that there are no outlier samples for MNIST beyond the whiskers of the box plot. Finally,
the NLL values for each scenario confirm this observation, with the likelihood of the MNIST data
being significantly higher than that of the OOD distributions.

Finally, in Fig. 26 we show how the PCN can be used to classify samples as belonging to the ID or
some OOD data. We use the PCN classifier’s energy to perform OOD detection and we show that the
ROC curves for energy-based detection are superior to ROC curves created via softmax scores. This
observation becomes even clearer, when looking at the most challenging samples by picking the 25%
percentile of the scores and energies, in effect the samples, that the PCN model is least confident
about as reflected by small energy or softmax values.
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Figure 24: Non-linear relationship between energy and softmax scores.
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Figure 25: Energy and NLL for various OOD datasets before and after inference.

G COMPUTATIONAL RESOURCES

Fig. 8 was obtained by taking a small feedforward PCN made by 2 layers of 64 neurons each and
training it on batches of 32 elements (generated as random noise so to avoid any overhead due to
loading training data to the GPU) for T = 8 steps. Then, each parameter was scaled independently
to measure its effect on the total training time. Each model obtained this way was trained for 5
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Figure 26: Performing OOD detection with PCN energy and classifier softmax scores.

epochs and the mean time was reported. In all our timing measurements, we skip the first epoch to
avoid including the JIT compilation time. Results were obtained on a GTX TITAN X, showing that
parallelization is potentially achievable also on consumer GPUs.
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