Under review as a conference paper at ICLR 2024

CURVATURE-INFORMED SGD VIA GENERAL PURPOSE
LIE-GROUP PRECONDITIONERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel approach to accelerate stochastic gradient descent (SGD) by
utilizing curvature information obtained from Hessian-vector products or finite
differences of parameters and gradients, similar to the BFGS algorithm. Our ap-
proach involves two preconditioners: a matrix-free preconditioner and a low-rank
approximation preconditioner. We update both preconditioners online using a cri-
terion that is robust to stochastic gradient noise and does not require line search
or damping. To preserve the corresponding symmetry or invariance, our precon-
ditioners are constrained to certain connected Lie groups. The Lie group’s equiv-
ariance property simplifies the preconditioner fitting process, while its invariance
property eliminates the need for damping, which is commonly required in second-
order optimizers. As a result, the learning rate for parameter updating and the step
size for preconditioner fitting are naturally normalized, and their default values
work well in most scenarios. Our proposed approach offers a promising direc-
tion for improving the convergence of SGD with low computational overhead.
We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA on Vision,
NLP, and RL tasks across multiple modern deep-learning architectures.

1 INTRODUCTION

Optimizing machine learning models with millions of free parameters presents a significant chal-
lenge. While conventional convex optimization algorithms such as Broyden-Fletcher-Goldfarb-
Shanno (BFGS), its limited-memory version, L-BFGS, conjugate gradient (CG), and nonlinear ver-
sions like Hessian-free (HF) optimization (Martens and Sutskever, |2012)) have succeeded in small-
scale, convex mathematical optimization problems, they are rarely used for large-scale, stochastic
optimization problems that arise in machine learning (ML). One of the main reasons is their reliance
on the line search step. In many ML models, such as variational and reinforcement learning models,
cost functions are defined as expectations and can only be evaluated through Monte Carlo (MC)
sampling averages. This can result in large variances, making optimizers that rely on line search to
ensure convergence problematic. Several recent extensions of these methods to deep learning, such
as K-BFGS and KFAC, have foregone the line search step in favor of damping (Goldfarb et al.,|2020;
Martens and Grosse, [2015). However, this adds complexity by introducing extra hyperparameters.

Empirical results indicate that plain SGD is a highly efficient optimizer for most ML problems.
However, for problems with a large eigenvalue spread, SGD may converge slowly once the solu-
tion is located in a basin of attraction. Adaptive optimizers such as RMSProp and Adam (Kingma
and Bal 2015)) converge faster but have been shown to generalize worse on many problems (Wilson
et al.| 2017} Zhou et al.;|2020a). Reducing the generalization gap between SGD and Adam remains
an active topic of research (Zhuang et al.,|2020). This work focuses on providing SGD with a good
preconditioner to accelerate its convergence around the basin of attraction without undermining its
generalization capacity. The curvature information for preconditioner fitting can be sampled from
Hessian-vector products or finite differences of parameters and gradients, similar to the BFGS al-
gorithm. However, constructing a preconditioner in a deterministic way, as in BFGS (Boyd and
Vandenberghe, 2004} |Goldfarb et al.| |2020), may not be possible due to potential issues with line
search and damping. Therefore, we adopt the more general and gradient-noise-robust preconditioner
fitting criterion proposed in |[Li| (2015)) and fit the preconditioner online with another “gradient de-
scent” algorithm. The key is to avoid making the preconditioner fitting problem more difficult and
computationally expensive than the original parameter-learning problem.

Under review as a conference paper at ICLR 2024

In this paper, we propose using Lie groups as a tool for preconditioner fitting. The “gradient descent”
on a Lie group is similar to common gradient descent in Euclidean space. It involves applying a se-
ries of small transforms via multiplication with I 4+ uG, where p is a small scalar and G is the group
generator (see[D.I). The Lie group is a rich and convenient space to work in since moving a precon-
ditioner around any point on the group behaves similarly to moving it around the identity element
of the group, i.e., the identity matrix I. This is known as the Lie group equivariance property.

Recent curvature-aware optimization methods such as HessianFree, KFAC, AdaHessian (Yao et al.,
2021), K-BFGS, Shampoo (Gupta et al.| [2018)) and GGT (Agarwal et al., 2018) have shown good
empirical results in Deep Learning (Osawa et al., 2022). Yet, they require damping, line search, or
regret and are thus susceptible to pitfalls that do not affect PSGD where gradient noises regularize
both parameter and preconditioner updates.

In an empirical setting, PSGD simultaneously surpasses the corresponding SoTA optimizers across
vision, natural language processing (NLP), and reinforcement learning (RL) tasks, and estabishes
new SoTA for many networks and settings, e.g. ResNet, LSTMs (Hochreiter and Schmidhuber,
1997) and GPT-2 (Radford et al.;[2019). We consider optimization problems involving MNIST (Le-
Cun and Cortes, [2010), CIFAR-10 (Krizhevsky} 2009), Penn Treebank (Marcus et al., [1993)), the
complete works of Shakespeare, the Open Web Text (OWT) dataset (Gokaslan and Cohenl |2019),
HalfCheetah and RoboWalker (Brockman et al.,[2016)). PSGD outperforms SoTA methods with neg-
ligible overhead compared to SGD across a wide range of optimization problems. PSGD provides
practitioners with a powerful, stable, and efficient optimization tool that can significantly enhance
the performance of deep learning models in various domains.

2 BACKGROUND

2.1 NOTATIONS

The objective is to minimize a loss function defined as an expectation, £(6) = E,[¢(8, z)], where
0 € R™ is the parameter vector to be optimized and z is a random vector that can be sampled to
evaluate the loss £(6, z). We assume that the considered problem is second-order differentiable. To

simplify the notation, we use £(6) to denote a sampled noisy evaluation of £(0). A step of SGD
with learning rate ¢ and an optional positive definite preconditioner P is given by:
Oiv1 = 0; — P OL(9)/00 |4_,, (1)

where ¢ is the iteration index, p > 0 is the learning rate, and P typically is a variable or adaptive
preconditioner. Once the solution enters a basin of attraction centered at a local minimum 6*, we
can approximate the iteration step in equation [I]as:

011 — 0" ~ (I — uPH)(6; — 6%) 2)

where H = % lg—g~ is the sampled Hessian at the local minimum. Conceivably, the eigenvalue
spread of PH largely determines the speed of convergence of the quasi-linear system in equation
Nearly quadratic convergence is possible if we can find a good approximation for H~'. However,
Hisa noisy Hessian and is not necessarily positive definite, even if the exact one at 6%, i.e., H, is.

2.2 THE PRECONDITIONER FITTING CRITERION

We adopt the preconditioner fitting criterion proposed in [Li| (2015). Let dg be the perturbation of
gradient associated with parameter perturbation §6. Then, the fitting criterion is:

c(P) = Esp[6g" Pog + 6607 P7156] (3)

With auto differentiation tools, we can replace the pair (36, 8g) with (v, Hv), where v is a random
vector, and Hv is the noisy Hessian-vector product, which can be evaluated as cheaply as gradients.
Criterion equationonly has one positive definite solution, P = (H?+E, [62])'% , even for indefinite

H, where ¢ = H — H is a stochastic noise term. This preconditioner automatically dampens gradient
noise. It is worth noting that criterion equation 3| gives the same preconditioner used in equilibrated
SGD (ESGD) (Dauphin et al.l [2015) and AdaHessian (Yao et al., 2021) when P is diagonal, i.e.,

E[vov]@ E[(Hv)® (Hv)], where ® and @ denote element-wise product and division, respectively.

Under review as a conference paper at ICLR 2024

2.3 PRECONDITIONERS ON LIE GROUPS

It is natural to fit the preconditioner on a Lie group for several reasons. First, by rewriting equation
equationas P20, = P20; — ndL(0)/9(P26) lg—s, » it is clear that a preconditioned SGD
is equivalent to SGD in a new set of coordinates defined by ¥ = P26. This coordinate change
consists of rotations and scalings, i.e., operations on the orthogonal group O(n) and the group of
nonsingular diagonal matrices. We can represent this coordinate transform with matrix Q™' and,
accordingly, P = Q7'Q. Thus, we pursue a variable () on the Lie group to fit it.

Second, PSGD can also be viewed as SGD with transformed features when the parameters to be
learned are a list of affine transform matrices (Li, [2019). Specifically, the most commonly used
feature transformations (e.g., whitening, normalization, and scaling) can be represented as matrices
on the affine groups. For example, the popular batch normalization (Ioffe and Szegedyl [2015), layer
normalization (Ba et al.| 2016)), and group normalization (Wu and Hel |2018)) can be represented as a
sparse affine Lie group matrix where only the diagonal and last column can have nonzero values (Li,
2019) (See . The decorrelated batch normalization (Huang et al.l 2018) is related to the whitening
affine preconditioner in|L1 (2019). Thus, the Lie group arises as a natural object to work with.

Lie groups have two properties that are particularly suitable for our task. Like any group, a specific
Lie group preserves certain symmetries or invariances. For example, with Q@ € GLT(n,R), the
general linear group with positive determinant, 9 and 6 will always have the same orientation. This
eliminates the need for damping, or similar remedies, to avoid degenerate solutions, since P =
QT Q is guaranteed to be invertible. The equivariance property of Lie groups further facilitates the
preconditioner fitting. The same group generator, i.e., the one at the identity matrix, can be used to
move a preconditioner on any point of the Lie group.

In fact, the preconditioner P estimated by PSGD converges to the inverse of “absolute” Hessian
regardless of the definiteness of Hessian. From this, one can show that the parameters converge
following the established results in open literature. For more details and proof see[A]

Proposition 2.1. Assume that H is invertible, and d@QQ = —pu gé or £ = —uQT o< 50" Then, Q

converges to | H|~%° with the learning rule equation@and a small enough positive step size [i.

Corollary 2.1.1. Assume that L(0) is second order differentiable with absolute eigenvalues of the
Hessian well bounded, i.e., 0 < | < |A(H)| < u < co. Then with PSGD, the loss drops at least with
a linear rate, and the parameters converge at least linearly to the optimal solution 0* if it exists.

Corollary 2.1.2. Assume that L(0) is a-strongly convex and B-smooth function. Then with learning

rate . = o/ 3, PSGD recovers Newton’s method with update rule of Eq. equation I 1| and conver-
AL(0:) |12
=56, 11°-

gences quadratically to the optimal solution 0* as L(041) — L(0:) < —5%% 89,

2/32
It is worth mentioning that no convergence rate beyond linear and quadratic are observed for non-
convex and convex for first or second order stochastic optimization respectively. Proposition [2.1]

and Corollary & (proved in & [A3) are not aimed to push the theoretical
convergence limits. Instead, together, they investigate how PSGD recovers Newton’s method.

The preconditioners proposed in [Lil (2019) can only be applied to a list of affine transform matrix
parameters. Although many machine learning models exclusively consist of affine transforms and
activation functions, this is not always the case. Additionally, it can be impractical to reparameterize
many existing modules, such as a convolutional layer, into their equivalent affine transformation
form. Hence, in this paper, we propose two types of novel general purpose preconditioners.

3 GENERAL PURPOSE LIE GROUP PRECONDITIONERS

3.1 SPARSE MATRIX-FREE PRECONDITIONERS

Let us consider bijective mappings that take vectors in R™ and map them to other vectors in the same
space, i.e., 7' : R" — R"™. The following theorem gives one systematic way to construct such sparse
matrix-free Lie group preconditioners.

Under review as a conference paper at ICLR 2024

Claim 3.1. Let K = {o01,...,0,} be a subgroup of the permutation group S,. Then, linear
transform T : R™ — R", T(z|a1,...,am) = Y iy a; © o;(x), forms a subgroup of GL(n,R)
parameterized with {ay, ..., am} if T (a1, ..., an) is bijective, where both a; and x are in R™.

See proof of Claim [3.1]in Appendix[B]

Example I: the group of invertible diagonal matrices. We must have K = {e} if | K| = 1, where e
is the identity element of S,,, i.e., e(x) = x. Then, T simply has a diagonal matrix representation,
i.e., T(x|a;) = diag(ay)a. Criterion equation 3| gives the preconditioner in ESGD (Dauphin et al.|
2015) and AdaHessian (Yao et al., 2021) as a special case when P is on this group.

Example 2: The group of “X-shape matrices.” Let K = {e, o}, where o denotes the flipping
permutation. Then, we can show that

T(-la,0)T(-lu,v) =T(-la@u+bOos(v),a @v+bOop(u))
“(fa,b) =T(los(a) @c,~boo)

where ¢ = a ® of(a) — b ® o4(b). Clearly, such transforms form a Lie group if they are invertible,
i.e., no element of c is zero. The matrix representation of this 7" only has nonzero diagonal and
anti-diagonal elements, thus the name X-shape matrix (XMat). This becomes our minimal overhead
general purpose preconditioner for PSGD.

Example 3: The butterfly matrix. For an even n, subgroup K = {e, sz } induces a Lie group whose
representations are invertible butterfly matrices, where sz denotes circular shifting by 3 positions.
This group of matrices are the building blocks of the Kaleldoscope matrices (Dao et al.|[2020).

Additionally, the group GL(n,R) can be recovered by letting K = {e, s1,...,8,—1}, where s;
denotes circular shifting by i positions. But, GL(n,R) is too expensive for large scale problems.
The group of diagonal matrices, i.e., the Jacobi preconditioner, is sparse but empirically shown to be
less effective without the help of momentum for certain machine learning problems (Dauphin et al.,
2015). We are mostly interested in the cases with 2 < | K| < 4. These Lie groups are sparse enough,
yet simple enough to derive their inverse manually, and at the same time can significantly accelerate
the convergence of SGD by shortcutting gradients separated far away in positions.

3.2 LoOW-RANK APPROXIMATION PRECONDITIONER

Low-rank approximation (LRA) is a standard technique for processing large-scale matrices. Com-
monly adopted forms of positive definite low-rank approximation, such as P = pI + UU7, cannot
always be factorized as P = QT () for certain Lie groups, where p > 0 is a small positive number.
Additionally, this form of approximation is not effective for reducing eigenvalue spread. In many
real-world problems, the Hessian has a few very large and very small eigenvalues, i.e., tails on both
ends of the spectra (Sagun et al., 2016} 2017). However, all the eigenvalues of P in this form are
lower bounded by p, meaning that it can only fit one tail of the spectra when rank(U) < n.

For this reason, we propose a new low-rank approximation with form Q = p(I + UVT), where p
is not necessarily small nor positive, and U and V' have r columns with < n. To justify this form
of approximation, we need to establish two facts. First, it forms a Lie group. Second, P = QT Q
with this form can fit both tails of the spectra of Hessian, providing an accurate characterization of
the curvature of a function, improving optimization algorithms, and assessing their robustness.

Claim 3.2. Preconditioner P = QT Q with Q = p(I + UVT) can have positive eigenvalues
arbitrarily larger than p? and arbitrarily smaller than p? with proper U and V.

Claim3.3. Ifp # 0and (I + VTU) Y or (I + UTV) L exists, Av(p,U) = p(I + UVT) defines
a subgroup of GL(n,R) parameterized with p and U. Similarly, Ay (p,V) = p(I + UVT) defines
another subgroup of GL(n,R) parameterized with p and V.

See proofs of Claim [3.2) &3.3in Appendix [C.1] & [C.T]

The form of () in Claim 3.2 is rather constrained as p is a scalar. In practice, we replace p with
another Lie group matrix and define Q as Q = B(I + UVT). In our implementations, we choose
B to be the group of diagonal matrix with positive diagonals and update B along with U and V' on
two separate Lie groups. Note that now B(I + UV) generally no longer forms a single Lie group.

Under review as a conference paper at ICLR 2024

4 PRACTICAL CONSIDERATIONS

Above-proposed preconditioners can be fit online by minimizing criterion equation [3|using gradient
descent on Lie groups. Unlike traditional gradient descent, moving an object on a Lie group is
achieved by multiplying it with I + uG, where G is the group generator and y is small enough such
that ||uG|| < 1. This series of small movements trace a curve on the Lie group manifold, and G is
always in the tangent space of the group as the Lie algebra is closed. See [D|for details.

Note that optimizer damping is neither necessary nor generally feasible on a Lie group, although it is
widely used in other second-order optimizers to avoid degenerate solutions. On one hand, by fitting
Q on a connected Lie group, P = Q7' Q cannot be singular. On the other hand, damping could be
incompatible with certain forms of Lie groups, as we may not always be able to find another @’ on
the same group such that Q"7 Q' = Q7' Q + \I, where X > 0. This eliminates the need for setting up
a proper damping schedule. However, gradient clipping can be helpful in promoting stability. The
quadratic approximation leading to the quasi-linear system equation |2]is only valid within a certain
region around 6. Thus, ||60|| = p|| POL(6)/06|| should be small enough such that 6+ 46 still locates

in this trust region. We can adjust z or clip || POL(6)/06|| to ensure that ||66| is small enough.

Theoretically, one Hessian-vector product evaluation doubles the complexity of one gradient eval-
vation. In practice, we could update the curvature estimation with probability 0.1. The cost of
updating P is negligible for » < 100 compared with SGD. Then the per iteration complexity of
PSGD becomes 1 + 2 x 0.1 = 1.2 times of that of SGD, as shown empirically in[TT|and[7}

Lastly, the learning rate for parameter updating and step size for preconditioner fitting are naturally
normalized to be in the range (0, 1). We have found a step size of 0.01 to be an effective initial rate,
and our method is robust to a wide range of learning rates and weight decays. (see Appendix [F:4)

For the LRA preconditioner, the gradients on the Lie groups are given by 0.5V 5 = diag[(Ph)hT —
v(P~')T], 0.5Vy = [(QR)(QR)T — (Q=Tv)(Q~Tv)T]V and 0.5Vy = [(Qh)(Qh)T —
(Q Tv)(Q~Tv)T|U, respectively. Interested readers can refer to the appendices for details. To
put these together, we summarize the proposed PSGD methods into Algorithms 1 ~ 3 as below. For
more on Algs see[E]

Algorithm 1: PSGD Optimizer

Algorithm 2: UVd Q Update Step Algorithm 3: XMat Q Update Step

Initialize 6, t<0, Qy o< I

‘While 6; not converged

tt+1

9=V fi(0:-1)

If u < p with u ~ U(0,1)
hi+Vo(v] g;), st. vy ~ N(0,T)
Update Q; via (v, ht)

Q Update Step

Ph=Q"(Qh)
Ply= Q’l(Q’TU) via Woodbury identity 2x
Vi=(Ph)®h—v© (P)
d < d— ppd © Va/ max(|V|)
If u < 0.5 with u ~ (0, 1)
Vi = (QR)(QR)TV — (Q) (Q ")V
U U=l VoV |I7'Vu(+VTU)
Else

Q Tv = (aGv—beV)@(a®a—boOb))
Va=(Qh) ®© (Qh)-(Q ") © (Q"v)
Vi = (Qh)0(Qh) —(Q)0 (@ Tv)
If b has odd length

Set central element of V;, to zero

__ M2
p= m&x[mméwa%,maxuvn)]

Else Vv = (@W)(QR)TU — (@Tu)(Q-T)"U a+a—uV,0a+V,00)
V= -) _
Q@ t” Qe Ve Vo VBT + VUV beb-uVa0b+Vi00)
8- Q; Qege Return Q = (I + UV7)diag(d) Return Q; < diag(a) + adiag(b)
Opt=0i—1 — pn1g:

5 EMPIRICAL RESULTS

In this work, we evaluate the performance of the PSGD algorithm on a diverse set of tasks. First we
consider two toy problems, Rosenbrock objective minimization to show quadratic convergence of
PSGD, as well as using a LeNet5 (Lecun et al.,|[1998) (see Figure[LB] & Table@]) for MNIST (LeCun
and Cortes}, 2010) digit recognition for studying the generalization property of PSGD.

Next, we benchmark more large-scale vision, natural language processing (NLP), and reinforce-
ment learning (RL) tasks. For each task we benchmark PSGD vs the leading SoTA optimizers.
In the domain of computer vision, we evaluate algorithm performance on the MNIST dataset via
convex large-scale logistic regression (see Appendix [F.3). Additionally we consider the CIFAR10
(CF10) (Krizhevskyl [2009) and CF10 derived datasets, namely noisy labels, blur-deficit, adversar-
ial attacks, and class imbalances, (see Figure [2a] & Table [IT)) with ResNet18 (RN18) to explore
generalization performance. For NLP tasks, we study the use of LSTMs (Hochreiter and Schmid-

Under review as a conference paper at ICLR 2024

(Adam - PSGD) pairs

— GGT
— RAdam
— Adan 0.0100 ¢,
Adam b~
©
e 0.0090 5
—— Shampoo 0.0085 &
. PAdam 0.0080
AdaBelief i)
= | (YOO 0.0075
AdaBound 0.0070
—— PSGD
| -80000
~100000
| ~120000
~140000 G\
20 160000 X
40 6o o —180000@&2'
~200000
" . o y ; y y ; Cross 100 150 _220000)
0 100 200 300 400 3500 3600 3700 3800 3900 4000 eng, 140
Steps ro,Oy
(a) Rosenbrock objective minimization (b) LeNet5 minima pair Adam—PSGD

Figure 1: (a) Rosenbrock objective minimization comparison among PSGD and its competitors. Only PSGD
shows a clear quadratic convergence curve. (b) MNIST hand written digit recognition with LeNet5. Hessians at
the minima of Adam are estimated with a dummy LRA PSGD optimizer that only updates the preconditioner.

huber, [1997) and GPT-2 style transformers (Radford et al.,2019), on various text corpora, including
the Penn Treebank (Marcus et al, [1993)), the complete works of Shakespeare, and the Open Web
Text (OWT) dataset (Gokaslan and Cohen| (2019)) (see Table @] & E]) In the RL setting, we con-
sider a Proximal Policy Optimization (PPO) (Schulman et al., [2017)) applied to the HalfCheetah and
RoboWalker environments using OpenAlI’s gym environments (Brockman et al., 2016) (see Fig. [3).

To provide insight into the fundamental differences between SGD and PSGD, we perform uncer-
tainty and forgettability analysis (Toneva et al.,[2018)). Finally, we examine the pathological delayed
XOR problem, first introduced in[Hochreiter and Schmidhuber|(1997), in order to further our under-
standing of the strengths and limitations of different optimization methods.

5.1 PERFORMANCE STUDY WITH TOY EXAMPLES

The first toy example is the minimization of the Rosenbrock function demonstrating the recov-
ery of curvature information by PSGD. As shown by Proposition preconditioner P follows
(HTH)~1/2. This property helps PSGD to escape saddle points as P — oo when H — 0, and ac-
celerate convergence around the basin of attraction. This quadratic convergence behavior of PSGD
is clearly shown by the convergence curve solving the Rosenbrock benchmark problem in Fig. [Ta

The second toy example demonstrates that PSGD preserves the generalization property of its kin,
SGD, as the gradient noises regularize both parameter and preconditioner updates. The task is
the MNIST digit recognition with the LeNet5. Adam is selected as the counter-example as it is
known to be more easily trapped in sharp minima than SGD (Zhou et al., 2020b). Fig. [T_B] shows
ten pairs of minima, each starting from the same random initial initialization. We see that PSGD
converges to minima with flatter or smaller Hessian, i.e., larger preconditioner. From the view of
information theory, the total cross entropy and 0.5 log det(H) =~ —0.5 log det(P) are good proxies
of the description lengths of the train image-label pairs and model parameters, respectively. Fig. [ID]
shows that minima with smaller description lengths tend to perform better on the test sets as well,
as suggested by an arrow pointing to the down-left-front corner of the cube.

5.2 CIFAR-10 AND FRIENDS ON RESNETI18

We train an RN18 on the CF10 image classification task using PSGD, SGD, Adam, and Apollo
(Adaptive Quasi Newton Diagonal). We adopt the cosine learning rate scheduler (Loshchilov and
Hutter| 2016) and train for 200 epochs (see [E7). We find that as other first and second-order opti-
mizers performance reduces and increases in variance as task complexity increases, PSGD is able to
sustain the classification accuracy of the RN18, outperforming other optimizers by as much as much

as 64%, see Figure[2a| Table |1 1| for details.

These tasks provide a rigorous test for the generalization ability of optimizers. We maintain the tuned
hyperparameters from the standard RN18 CF10 classification task for a fair comparison between the
optimizers. For robustness & sensitivity analysis on PSGD’s hyper-parameters as well as more
experimental details see [F.4] We update the preconditioner of PSGD every ten iterations, resulting
in a 20% overhead over SGD, see Table|l I|and for empirical and theoretical timing analysis.

Under review as a conference paper at ICLR 2024

Noisy Label CIFAR-10 Noisy Label CIFAR-10

N E e g T

Accuracy
@
g

75

df
R i HAL
z ‘ﬁ -‘ m

2

e

&

(a) CF10 RN18 Experiments (b) Train Acc: Noisy Label CF10 (c) Test Acc: Noisy Label CF10
Figure 2: CIFAR-10 ResNet-18: (a) Robustness of PSGD: We clearly see as classification task increases in
complexity(—), PSGD is able to consistently outperform other first and second order optimizers. (b) Assym
Label Noise Train Acc: Accuracy plots based on incorrect noisy labels. PSGD effectively mitigates label noise,
learning the true underlying solution with low variance, while other optimizers tend to overfit/memorize the
miss-leading trainset. (c) Assym Label Noise Test Acc: Under ground truth test labels, we see that PSGD
reaches a significantly better test accuracy with a very low variance compared to Apollo, Adam, and SGD.

4 \4 e qad ok ey

3 3 [0 € e est A

o v\es\‘ﬁ“a\ g O¢ ss\m“a\anxd“as w0 2 oy ©
o

] B @ &% £ 00 [o

o 00
Epochs. Epochs

CIFAR10 with Asymmetric Noisy Labels

We asymmetrically perturb 60% of the CF10 training labels randomly, resulting in one of the classes
having approximately 55% incorrect labels and the other 9 classes having 5% incorrect labels, yield-
ing asymmetric label noise. We use (P)SGD, Adam & Apollo to train an RN18 on this task for 100
epochs with 8 different seeds and compare train and test classification accuracy Fig. fa] & b}

Looking at Figure[da] & [b] we see that PSGD achieves the lowest average train accuracy (assuming
incorrect noisy labels) with the highest ground truth test accuracy. SGD gets an average training
accuracy between Adam and Apollo. SGD has seven runs reaching 55% memorizing the train set,
yielding 10% accuracy on the test set. And one run (due to lucky initialization) reaching 34% on the
train set, learning an underfit yet generalizing solution, yielding 77% on the test set.

For SGD, this is not a standard case of over-fitting nor a case of catastrophic forgetting, since the
training accuracy does not change. Instead, our experiments show there exists a tipping point in the
test accuracy at around epoch 35, where within a single epoch the test accuracy drops from 71% to
10% while the training accuracy shows no intelligible indication of this change. Furthermore, the test
accuracy does not increase for the rest of the 65 epochs. At the 35 epoch mark Adam and Apollo both
go through a period of high variance over-fitting that eventually converges. Note that the average
margins or predicted probabilities in Table [T2] indicate that PSGD finds a generalizable solution
whereas other first and second-order optimizers fall into a regime of overfitting/memorization further
discussed in[5.5} In conclusion, we show PSGD finds a generalizable solution that can mitigate both
over and underfitting. Other optimizers easily over/under-fit or memorize incorrect image label
pairs, have large optimization instabilities during training, and reach degenerate solutions where the
NN have reasonable train accuracy but random test accuracy.

For more details and experiments on learning under asymmetric and symmetric label noise see [FI]

and[E1]

5.3 LANGUAGE MODELING

Transformers have become the de facto language modeling architecture, largely replacing RNN-
based models. Transformers employ sparse self-attention mechanisms that allow for efficient com-
putation of gradients. Thus, they are typically trained using first-order methods. In this section, we
study the effect of curvature information in training transformer models. Additionally, we provide
results for LSTM-based experiments for predicting the Penn TreeBank Dataset using |[Zhuang et al.
(2020)’s framework in Table[T4]

nanoGPT In a recent study, [Karpathy| (2022)) proposed a framework for reproducing GPT-2 results
using the OpenWebText dataset. Here, we expand upon this by investigating the training of GPT-2
models of different sizes on both the OpenWebText and Shakespeare character datasets. Our primary
objective is to benchmark the performance of PSGD against other SoTA optimization algorithms.

As shown in Table [I] our results indicate that PSGD consistently outperforms other optimization
algorithms across various model sizes. Notably, a moderate gap in perplexity is observed for the

Under review as a conference paper at ICLR 2024

Table 1: Comparing different test loss of optimizers over GPT-2 style transformers on the Shakespeare-char
(SC) and OpenWebText (OWT) datasets. PSGD outperforms other optimizers including the SoTA optimizer
AdamW over various model sizes. Trainined on a single NVIDIA 3080 GPU.

nanoGPT \PSGD SGD AdamW AdanW AdaBelief AdanBelief

SC: 0.82M | 4.52 4.68 4.68 5.52 5.94 6.66
SC: 1.61IM | 4.47 475 5.03 5.054 5.06 6.47
SC:6.37M | 4.53 531 19.53 4.92 21.04 5.34
OWT: 50M | 250.7 591.8

smaller GPT-2 model trained for 5k iterations on the Shakespeare-char dataset, with a significantly
larger gap observed on the S0M parameter GPT-2 LLM trained on the OpenWebText dataset, for
600k iterations using AdamW and 100k iterations using PSGD. We found that decreasing the pre-
cond Ir to 0.001 greatly improved the performance of transformer models. Lowering the precond
Ir smoothens the curvature in the sparse embedding layer of GPT-2 over time and enables the op-
timizer to consider a larger window of curvature information. This “curvature memory” improved
performance and prevented divergence resulting from the otherwise sparse embedding space.

5.4 REINFORCEMENT LEARNING

Here we consider two standard Proximal Policy Optimization (PPO) problems in Reinforcement
Learning (RL): Walker2d and HalfCheetah. We compare the performance of the two SOTA opti-
mizers AdaBelief and Adan to PSGD. We optimize the actor and critic independently. We find that
PSGD can find a higher reward for both Walker2d & HalfCheetah as shown in Figure

Walker2d-v2 HalfCheetah
1600 | — PSGD UVA — psGD XMat
— ndaBeleif — daBelief
— adan — adan

1400
1200
1000

b

T e
600
a0

B 0

0

Timesteps 16 Timesteps 16

(a) Walker2d (b) HalfCheetah

Figure 3: PSGD outperforms SOTA optimizers on PPO RL on Walker2d & HalfCheetah.
5.5 TOWARDS UNDERSTANDING SECOND ORDER OPTIMIZERS

With the performance distinctions between PSGD and the SoTA optimiziers now apparent, we aim
to conduct a series of simple experiments to better understand the nature of solutions PSGD finds.

Uncertainty Analysis We train a standard RN18 on CF10 with PSGD, SGD, Adam, and Apollo, and
after 200 epochs we check the entropy over the softmax-logits and miss-classification margin|Toneva
et al.| (2018) of both NNs. We see in Table [I2] that PSGD has higher entropy and a lower margin
of classification compared to other optimizers. This very low minimum entropy of other optimizers
may be interpreted as a form of overfitting or memorization. Intuitively, some data points that are
low entropy have information that is easily memorized by NN, giving up network capacity learning
points that do not improve generalization. Conversely, we observe that PSGD never becomes overly
certain about any data point, with the minimum entropy being six orders of magnitude larger than
other optimizers. Similar trends can be observed in the mean and maximum entropy values. From
these statistics, we believe standard first and second-order optimizers can push NNs into a dangerous
regime of overconfidence which given clean labels can reduce their generalization capacity with
the potential of catastrophic forgetting. In the scenario where a network is given noisy labels (or
imaginably poisoned points), training other SOTA methods may lead to memorization of the training
set with little to no generalization capacity as seen in the noisy labeled experiments [2a]

PSGD’s higher entropy and lower margins are indications of a larger exploration of the parameter
space, more diverse solutions, and a lack of memorization. Suggesting that PSGD is able to better
balance the trade-off between overfitting and underfitting, without memorizing points.

For more on the nature of low and high entropy points in a dataset see[F.6| &

Forgettability Statistics and Learning We revisit|Toneva et al.|(2018))’s forgettability experiments,
which found that one can prune 30% of the CIFAR-10 train samples without loss of generaliza-
tion. The study found that a point’s utility for generalization increases as it is learned and then

Under review as a conference paper at ICLR 2024

Table 2: Uncertainty Statistics: PSGD’s higher
uncertainty leads to better generalization and less
over-fitting.

Table 3: Forgetting statistics for CIFAR10 on
ResNetl8. PSGD finds better forgettability
statistics outperforming SGD.

NTK Entropy Margin

Min Mean Max Min Mean Max Forgettlng 50k 25k 15k Sk
PSGD 0.139 0260 1.545 0.144 0956 0.994
SGD 7x10~7 0.0l 0.8975 03925 0999 1 PSGD 96.65 95.83 9495 56.46
Adam 1.5x1077 0.009 0.8645 0.3625 0999 1 SGD 96.21 95.56 93.7 42.48

Apollo 1x1076 0.05 0.8851 0.4326 0.999 1

subsequently forgotten during training, regardless of the optimizer or architecture used. Essentially,
forgettability ordering shows which data points an NN uses to define high-dimensional boundaries
akin to support vectors. We investigate whether the performance difference between PSGD and
SGD’s generalization performance can be attributed to this forgettability ordering.

We train the RN18 four times, keeping the top N important points based on each optimizer’s ex-
pected forgettability score. Table [I3]shows that PSGD focuses on points that are central to gener-
alization. We see this since, when we limit the dataset to only the 5k most forgettable data points
deemed by each optimizer, we see PSGD is able to outperform SGD by nearly 14%.

For more insight on forgettability statistics and its connection to entropy see[F.6} [F.6] and [F77]

PSGD Preserves Neuro-Plasticity Recently, |Achille et al|(2017) studied the phenomenon of neu-
roplasticity in NNs. They found that NN exhibit a critical learning period, during which if a learning
deficit is not removed, the NN becomes unable to learn effectively. To simulate this deficit, CIFAR10
images are blurred for the first half of training, after which the deficit is removed. Following|Achille
et al.| (2017), we used an exponential learning rate decay. To investigate the impact of optimiza-
tion on neuro-plasticity we compare SGD and PSGD. We find that PSGD retains neuro-plasticity
outperforming SGD by 6% and 3% on test and train sets seen in Fig[2a] [T4b]and Table[IT]

For more on critical learning periods and the importance of curvature information early in training
for improving distributional shift for transfer learning, see and [F.7)and [F7]

Understanding long term dependence and memorization via the Delayed XOR Problem The
task is to predict the XOR relation of a and b randomly scattered far away in a long sequence. This
problem is challenging for many architectures and optimizers because it cannot be “partially solved”
as memorizing either a or b alone does not help to predict XOR(a, b). We consider solving it with the
vanilla RNNs and LSTMs optimized using SGD, AdaBelief, Adan, AdaHessian, Apollo, Hessian
Free, Shampoo, KFAC, and PSGD at different sequence lengths. Apollo was not able to solve the
XOR problem in any scenario. The success rates for each optimizer are shown in Table] Clearly,
PSGD LRA is the only method that can solve the XOR problem passing sequence length 32 with an
RNN. Furthermore, LSTMs show no benefit to RNNs without using curvature information. Also,
RNN optimized with PSGD outperforms LSTM optimized by any other methods. These results
hint at two points. First, the choice of optimizer could be equally important as model architecture.
Second, similar to the CIFAR10 tasks, PSGD relies less on the memorization of train samples in
problem-solving. See [F.7|for rank analysis.

Table 4: Success rate on the delayed XOR problem with variant sequence lengths, optimizers and networks.

XOR PSGD LRA AdaHessian KFAC HessianFree Shamyp SGD AdaBelief Adan
Length | RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM
32 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
55 1 1 0 1 0.6 0 0.8 0 0 0 0 0 0
64 1 1 0 0.8 0 0.6 0 0 0 0 0 0
112 1 1 0 0 0 0 0 0 0 0 0 0

6 CONCLUSION

S OO~

0 0
0 0 0
0 0 0

In conclusion, this work has presented a comprehensive study of the proposed general-purpose Lie
group preconditioners for the optimization of deep learning problems. We have provided theoreti-
cal guarantees for the convergence of Lie group preconditioned optimization methods, and empiri-
cal results demonstrating PSGD outperforming SoTA optimizers in generalization, robustness, and
stability across various tasks in Vision, NLP, and RL. Furthermore, our analysis of forgettability
and entropy shows that PSGD effectively focuses on forgettable points, leading to improved gen-
eralization. These findings provide valuable insights for further developing efficient and effective
optimization techniques for deep learning models.

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY

We ran all our code with reproducibility in mind. We have kept seeds as well as hyper-parameters
for each experiment and will release them to public once published. We have included a codebase as
a zip for now to retain anonymity. Note all results have been averaged over 8-10 experiments with
variances provided. Also for PSGD we have hyper-parameter sweeps to show that we are robust to
changes in these values (see Table [F4)).For all Propositions, Corollarys and Claims in the main we
provide proofs with all assumptions states in the appendix (see Appendix[A] [B] and[C). Additionally,
since Lie Groups are not a ubiquitous framework for machine learning, we provide both crucial as
well as extra math for those interested[D.T|G| Furthermore, we provide many practical considerations
and limitations that come-about in implementation [G.2]

10

Under review as a conference paper at ICLR 2024

REFERENCES

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural
networks. CoRR, abs/1711.08856,2017. URL http://arxiv.org/abs/1711.08856.

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. arXiv preprint arXiv:1806.02958, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for learning over-
parameterized deep relu networks, 2019. URL https://arxiv.org/abs/1902.01384.

Tri Dao, Nimit S. Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski, Atri
Rudra, and Christopher Ré. Kaleidoscope: an efficient, learnable representation for all structured
linear maps. In International Conference on Learning Representations (ICLR) 2020. OpenRe-
view.net, 2020.

Y. N. Dauphin, H. Vries, and Y. Bengio. Equilibrated adaptive learning rates for non-convex opti-
mization. In NIPS, pages 1504—1512. MIT Press, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.119209.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. CoRR, abs/2006.08877, 2020. URL https://arxiv.org/abs/2006.
08877.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pages 1842—1850. PMLR, 2018.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780,
1997.

Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. CoRR,
abs/1804.08450, 2018. URL http://arxiv.org/abs/1804.08450.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Andrej Karpathy. Nanogpt: Small gpt implementations. https://github.com/karpathy/
nanoGPT, 2022. Accessed on 22 February 2023.

D. P. Kingma and J. L. Ba. Adam: a method for stochastic optimization. In /CLR. Ithaca, NY:
arXiv.org, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32-33, 2009. URL
https://www.cs.toronto.edu/~kriz/learning—-features—-2009-TR.pdfl

11

http://arxiv.org/abs/1711.08856
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1902.01384
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2006.08877
https://arxiv.org/abs/2006.08877
http://arxiv.org/abs/1804.08450
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Under review as a conference paper at ICLR 2024

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pages 5905-5914. PMLR, 2021.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

X. L. Li. Preconditioner on matrix lie group for SGD. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Xi-Lin Li. Preconditioned stochastic gradient descent, 2015. URL https://arxiv.org/abs/
1512.04202.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313-330, 1993. URL
https://aclanthology.orqg/J93-2004.

J. Martens and R. B. Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In ICML, pages 2408-2417, 2015.

J. Martens and I. Sutskever. Training deep and recurrent neural networks with hessian-free opti-
mization. In G. Montavon, G. B. Orr, and K. R. Muller, editors, Neural Networks: Tricks of the
Trade. Springer, Berlin Heidelberg, 2012.

James Martens. Second-order Optimization for Neural Networks. PhD thesis, University of Toronto,
Canada, 2016. URL http://hdl.handle.net/1807/71732.

Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten Hoefler. Asdl: A uni-
fied interface for gradient preconditioning in pytorch. In Order Up! The Benefits of Higher-
Order Optimization in Machine Learning, NeurIPS 2022 Workshop, 2022. URL https:
//order—up-ml.github.io/papers/19.pdf.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160,
1994.

Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order core-
sets for data-efficient machine learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 17848—-17869. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/
v162/pooladzandi22a.html.

Omead Pooladzandi, Pasha Khosravi, Erik Nijkamp, and Baharan Mirzasoleiman. Generating high
fidelity synthetic data via coreset selection and entropic regularization, 2023. URL https:
//arxiv.org/abs/2302.00138.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Levent Sagun, Léon Bottou, and Yann LeCun. Singularity of the hessian in deep learning. CoRR,
abs/1611.07476, 2016. URL http://arxiv.org/abs/1611.07476.

Levent Sagun, Utku Evci, V. Ugur Giiney, Yann N. Dauphin, and Léon Bottou. Empirical analysis
of the hessian of over-parametrized neural networks. CoRR, abs/1706.04454,2017. URL http:
//arxiv.org/abs/1706.04454.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1512.04202
https://arxiv.org/abs/1512.04202
https://aclanthology.org/J93-2004
http://hdl.handle.net/1807/71732
https://order-up-ml.github.io/papers/19.pdf
https://order-up-ml.github.io/papers/19.pdf
https://proceedings.mlr.press/v162/pooladzandi22a.html
https://proceedings.mlr.press/v162/pooladzandi22a.html
https://arxiv.org/abs/2302.00138
https://arxiv.org/abs/2302.00138
http://arxiv.org/abs/1611.07476
http://arxiv.org/abs/1706.04454
http://arxiv.org/abs/1706.04454

Under review as a conference paper at ICLR 2024

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

Andreas Veit, Michael Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks, 2016. URL |https://arxiv.org/abs/1605.06431.

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning, 2017. URL https://
arxiv.orqg/abs/1705.08292.

Yuxin Wu and Kaiming He. Group normalization. CoRR, abs/1803.08494, 2018. URL http:
//arxiv.org/abs/1803.08494.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael W. Mahoney.
Adahessian: an adaptive second order optimizer for machine learning. In AAAI, 2021.

Chia-Hung Yuan and Shan-Hung Wu. Neural tangent generalization attacks. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 12230-12240. PMLR, 18-24
Jul 2021. URL https://proceedings.mlr.press/v139/yuan2lb.html.

Guodong Zhang, Aleksandar Botev, and James Martens. Deep learning without shortcuts: Shaping
the kernel with tailored rectifiers. arXiv preprint arXiv:2203.08120, 2022.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and Weinan E. Towards theoretically
understanding why sgd generalizes better than adam in deep learning, 2020a. URL https:
//arxiv.org/abs/2010.05627.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285-21296, 2020b.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James S. Duncan. Adabelief optimizer: adapting stepsizes by the belief in ob-
served gradients. In NeurIPS 2020, 2020.

13

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1605.06431
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/1705.08292
http://arxiv.org/abs/1803.08494
http://arxiv.org/abs/1803.08494
https://proceedings.mlr.press/v139/yuan21b.html
https://arxiv.org/abs/2010.05627
https://arxiv.org/abs/2010.05627

Under review as a conference paper at ICLR 2024

A ON THE CONVERGENCE OF PSGD

In this section, we first show that the preconditioner P estimated by PSGD converges to the inverse
of Hessian under mild conditions. We then show the quadratic convergence of PSGD under the
convex setting.

A.1 PSGD’S PRECONDITIONER P RECOVERS H !

To begin, let us formulate the problem clearly. Let (v,h) be a pair of vector and the associated
noisy Hessian-vector product. We assume that v is drawn from distribution N (0, I). The noisy
Hessian-vector product / is modeled by

h=Hyv+¢

where H| is the true Hessian, and ¢ is a noise term independent of v due to use of sample averaged
loss instead of the true loss. Note, the full Hessian expansion is circumvented, and instead only
requires us to calculate the much cheaper Hessian vector product Hyv. Then, we can write the
criterion for the preconditioner estimation in PSGD as

¢(P) =E[hT Ph +vT P~ 1]
=tr(PE[hAT] + P 1 E[wvT])
=tr(PH* + P71) 4)
where
H? = H3 + Flee”]
Clearly, H? is positive semi-definite regardless of the definiteness of H.

Note, we do not assume any definiteness or sparsity properties for Hy. Hence, in general, we assume
that @ is fitted on a connected branch of the general linear group with learning rule

Q™ = QM 4 dQ = Q"+ Q¢ 5)
where () relates to P as
P=Q"q,
and both d@ and £ are sufficiently small matrices related by d@QQ = Q. One technical difficulty in

proving the convergence of () with the learning rule equation[3]is that it cannot exclude any rotation
ambiguity of () as suggested by

UQTUQ)=Q"UTQR=Q"Q
where U can be any matrix on the orthogonal group. To ameliorate this technical issue, we constrain
dQ to take on certain structure. In our proof, we assume that both Q°'4 and d(Q are symmetric such

that Q™" is always symmetric as well. To achieve such a constraint, we should update Q°'¢ on the
Lie group as

Q' =Q"+ Q€
Qnew :[(Q/)TQ/]O.5 (6)
In this way, dQ = Q" — Q°'4 is guaranteed to be symmetric as long as the starting guess Q°'9 is
symmetric as well. Still, in practice we have used the learning rule equation [5] and equation [6|only

serves for the purpose of proof.

Proposition 2.1. Assume that H is invertible, and dQ) = —ug—é or & = —MQT%. Then, @

converges to | H| =5 with the learning rule equation@and a small enough positive step size [i.

Proof. Given a small perturbation d@ of @), the change of P is given by

dP =(Q +dQ)"(Q +dQ) — Q" Q
=Q7dQ + dQTQ + dQ*TdQ

14

Under review as a conference paper at ICLR 2024

The change of P~! is a little more complicated. We omit any terms smaller than O[(dQ)?], and can
expand dP~! as below

dP™' =(P+dpP)™' — P!
= pldpP~' + P~ 'dPPldPP!
_ (_Q—ldQP—l _ P—ldQTQ—T . P—ldQTdQP—l)
+(Q7'dQQ QP + Q71 dQP ' dQT QT
+ P_ldQTdQP_l 4 P—ldQTQ—TdQTQ—T)
=—Q QP - P7dQTQT + Q7 1dQQtdQP !
+ Q—ldQP—ldQTQ—T + P—ldQTQ—TdQTQ—T
Now, the change of the PSGD criterion is given by
dc =tr(dPH? + dP™1)
=tr(H2QTdQ + H?dQTQ + H?dQ"dQ)
+tr(=Q QP — PTHQTQ™T + Q71dQQ QP!
+ QfldefldQTQfT + PfldQTQdeQTQfT)
=2tr(H?*Q"dQ — P7'Q7'dQ) (7
+tr(dQTdQH? +2dQQ1dQP Q™ +dQP1dQTQ"TQ™)

From equation[7] the first order derivatives of ¢ with respect to () is given by
dc
— =QH*-Q Tp!
5o =@ - Q

A stationary point is obtained by letting (% = 0, which leads to H? = P~2. Hence, such a P

always exists as long as H? is invertible. Via relationship dQ = Q&, the gradient on the Lie group
is

_oroc
Ve=Q 90

Thus, fitting () on the Lie group yields the same stationary point since () is invertible. Note that the
stationary points only tell us that Q7 Q = H ! without excluding the rotation ambiguity.

Without the constraint dQ = dQ7, the second order derivative of ¢ with respect to () can be shown
to be

a(vfzéw =20 @ +2J7Q7 & (QP) "] +2[Q7" © (QP) 1T +2(QQ") " w P!

where J is the permutation matrix satisfying
vec(dQT) = Jvec(dQ)
Via relationship d@Q = Q€&, the second order derivative on the Lie group is
0%c
d(vec(Q))?

2
We see that neither a(viw nor V% is guaranteed to be positive definite. Hence, the learning rule
equation [5]does not convergence to a point as expected due to the rotation ambiguity.

Ve=(Q"®I) QeI (8)

On the other hand, both @ and d@ are symmetric with the learning rule equation[6} Thus, the second
order derivative of ¢ with respect to @) simplifies to

d?%c _ 2 -1 _T _r -1 TN—1 1
W_Ql@gﬂ +2Q7' @ (QP) " +207" @ (QP)' +2(QQ") e P

15

Under review as a conference paper at ICLR 2024

At a stationary point, we have Q = +P%® = +|H|~%5, Thus, this second order derivative reduces
to

&c 2 0.5 1.5
By equation 8] the second order derivative on the Lie group is
Y |l gzt m|-05 = 2H '@ H?> +4H " @ HY + 2@ H (10)

Now, both 8(#2(22))2 and V% are positive definite for an invertible H at the stationary point. Thus,

Q converges to either stationary point, i.e., |H| =% or —|H|~°-5. O

From Proposition we see that P converges to |H0|’1 when ¢ = 0, i.e., inverse of the “absolute”
Hessian. With stochastic gradient noises, ¢ # 0 and we always have P < |Hy|~!. This is not a
bug but rather a feature of PSGD that damps the gradient noises perfect such that PE[5gdg” | P =
E[5056T] [Li (2015), a relationship generalizing the Newton method to non-convex and stochastic
optimizations. Unlike the damping strategies in other second order methods, this built-in gradient
noise damping mechanics of PSGD does not requires any tuning effort.

A.2 LINEAR CONVERGENCE OF PSGD UNDER GENERAL SETTING

Corollary 2.1.1. Assume that L(0) is second order differentiable with absolute eigenvalues of the
Hessian well bounded, i.e., 0 <1 < |A(H)| < u < co. Then with PSGD, the loss drops at least with
a linear rate, and the parameters converge at least linearly to the optimal solution 0* if it exists.

Proof. For a general nonconvex problems, we assume that the eigenvalues of Hessian is well
bounded as
O0<I<IMH)| <u<oo
Then by Proposition 2.1, P converges to | H|~!. Thus
0<1l/u<AP)<1/l< oo

The learning rule for parameters with positive step p and preconditioner P follows as

dL(0) _(da)Tag(;)
<5 (5|
_nfj oL@
|| o0

Thus the loss decreases at least with a linear rate. Convergence to a local minimum, if exists, with
at least a linear rate immediately follows from the convergence of loss as the Hessian is assumed to
be nonsingular everywhere. O

A.3 QUADRATIC CONVERGENCE OF PSGD UNDER CONVEX SETTING

In the previous subsection we proved that the estimate of the preconditioner P recovers the true
inverse Hessian. As such, under the assumptions detailed in[2.1.2]bellow, PSGD recovers Newton’s
method.

Corollary 2.1.2. Assume that L(0) is a-strongly convex and 3-smooth function. Then with learning
rate 1 = a/ 3, PSGD recovers Newton’s method with update rule of Eq. equation|l| and conver-
OL(0:) 2
00, :

gences quadratically to the optimal solution 6™ as L(0y11) — L(6:) < — 35z ||

16

Under review as a conference paper at ICLR 2024

Proof. We prove Corollary 2.1.2] (similarly to the proof of Newton’s method in[Boyd and Vanden-
berghe| (2004)) for the following general update rule: Note from Proposition we have that P
converges to |Ho| ™! when € = 0, i.e., inverse of the “absolute” Hessian. With stochastic gradient
noises, € # 0 and we always have P < |Ho| L.

Ab; =H; 'g (11)
Ory1 = 0p — pAG; (12)

Define \(6;) = (g7 H, 'g;)'/2. Since L(w) is S-smooth, we have

L(6r41) < L(6) — pgl A6, + w (13)
< £(0) - 10 + 2?20, (149
where in the last equality, we used
A6;) = AGH AT 15)
Therefore, using step size ji = we have 0,11 = 0; — LA0;
L(Bi1) < £(0) — 3AN0)? (16)
Since ol < H; =< BI, we have
A@)—&Ht&fﬂgw, (17
and therefore £ decreases as follows,
£l611) — £60) < ~ gzl = — 5% el (1)
O

B CONSTRUCTION OF MATRIX-FREE PRECONDITIONER

The following statement gives a systematic way to construct a family of black-box matrix-free pre-
conditioners.

Claim 3.1. Ler K = {o1,...,0m,m} be a subgroup of the permutation group S,. Then, linear
transform T : R™ — R", T(z|a1,...,am) = Y vy a; @ o;(x), forms a subgroup of GL(n,R)
parameterized with {a1, ..., an} if T(:|ay, ..., an) is bijective, where both a; and x are in R™.

Proof. The proof follows by showing that such matrices have the following four properties required
to form a Lie group.

First, we show that I is the identity element. Note that K has element e since it is a subgroup of .S,,.
Then without the loss of generality, we can set 01 = e and a; to be a vector of ones, and all the other
a;, i > 1, to be vectors of zeros. This leads to T'(z|a1, ..., am) = z, and thus T'(*|ay, ..., am) =1
when represented as a matrix.

Second, we show that such transforms are closed with binary operation T(Y) 0 T(?) defined as [T Do
TO)(z) = TO[T?)(z)]. Specifically, we have

m

o™ @ gV Z) 6 6Pz
1 j=1

>l o0 @)oo () (@)

15=1

T 0 T)(2) =

Ms

.
I

t”qs

3

17

Under review as a conference paper at ICLR 2024

Since K is a subgroup of S,,, agl)(a?(-)) still belongs to K. Hence, T™) o T®) will have the same
form as T'(+|ay, .. ., an,) after merging like terms.

By representing T'(-|ay, . .., a,,) as a matrix, it is clear that the associativity property, i.e., (T o
T®) o TG = TM o (T? o T®), holds since matrix multiplication is associative. Lastly, the
inverse of T'(-|ay,...,a,) exists since we assume that T'(-|ay,...,a.,) is bijective, and thus its
representation is an invertible matrix. [

We want to point out that not all simple matrix-free preconditions can be constructed by Theorem

Let us take the widely used feature normalization transform, e.g., batch normalization |{loffe and
Szegedy|(2015)), layer normalization Ba et al.|(2016)) and group normalization Wu and He| (2018)) as
an example. We have

T(z|p,0) = (x = p)/o

where 1 and o are either scalar or vector mean and standard deviation of z, respectively. This
T(-|p, o) forms a sparse affine group for o # 0|Li| (2019). However, we cannot use such precondi-
tioners as black-box ones.

C CONSTRUCTION OF LOW-RANK APPROXIMATION PRECONDITIONERS

The following property states that the proposed low-rank approximation preconditioners can fit both
ends of the spectra of Hessian. It is not difficult to prove this statement. But, it reveals an important
advantage over traditional low-rank approximation preconditions with form P = pI +UU7T, whose
eigenvalues are lower bounded by p.

C.1 NOTATIONS

Let Q = (I + UVT)B, where U and V are two tall thin matrices, and B is a matrix on certain
group, e.g., the group of diagonal matrix, or simply a scalar. It is an important preconditioner as
after reparameterization, we can have Q = diag(d) + UV for diagonal matrix B, which relates
to the LM-BFGS, HF, and conjugate gradient (CG) methods. This preconditioner is efficient if
low-rank modication can significantly further reduce the condition number []_-] after preconditioning
the Hessian with a diagonal matrix, i.e., a Jacobi preconditioner. One also can think () as a low-
rank approximation of the inverse square root of a positive definite Hessian. Note that this form of
preconditioner can fit both tails of the spectra of Hessian.

Claim 3.2. Preconditioner P = QTQ with Q = p(I + UVT) can have positive eigenvalues
arbitrarily larger than p? and arbitrarily smaller than p? with proper U and V.

Proof. Let us check the simplest case, i.e., p = 1, U = w and V = v. Then, P is shown to be
P =(I 4+ vu)(1 +uv?)
=TI+ vu” +uv? + (uTuw)vo”
This P has two eigenvalues determined by u and v, say A1 and \s. They satisfy
A =(1+ uTv)2
A+ Ao =24 2uT v + |Jul]?lv||?

By choosing u and v properly, these two eigenvalues can be arbitrarily smaller or larger than 1.
For example, by letting u”v = 0 and |ju]| = ||v|]| — oo, we have A\ = 1 and \; + Ay — oc.
Hence, we must have one eigenvalue arbitrarily large, and the other one arbitrarily small. In general,
the order of rank can be larger than 1, and thus more degree of freedoms for fitting the spectra of
Hessian. O

'Since PH is not symmetric, smaller eigenvalue spread does not always suggest smaller condition number,
e.g., [1,a;0,1] has arbitrarily large conditioner number for |a| — oo. In PSGD, P does not amplify the
gradient noise (ref|Li (2015)), page 5-6, section IV.B), and thus avoids such degraded solution.

18

Under review as a conference paper at ICLR 2024

Claim3.3. Ifp # Oand (I +VTU) ™ or (I +UTV) ™ exists, Ay (p,U) = p(I + UVT) defines
a subgroup of GL(n,R) parameterized with p and U. Similarly, Ay (p, V) = p(I + UVT) defines
another subgroup of GL(n,R) parameterized with p and V.

Proof. Without the loss of generality, we assume p = 1, and simplify rewrite Ay (1,U) as Ay (U) =
I +UVT. We can show that Ay (U) forms a Lie group by revealing the following facts

Ay (0) =1
Ay (U) Ay (Up) =Ay (Uy + Uy + U VTU,)
AN (U) =Av[-UI +VTU) Y
i.e., the existence of identity element, closed with respect to matrix multiplication, and the existence
of inverse, respectively. The last equation is simply the rewriting of the Woodbury matrix identity,
i.e.,
IT+uovht=r-va+vrtu)~'v?

The condition that (I + VTU)~?! exists is necessary as otherwise Ay (U) is singular. Lastly, the

associativity property clearly holds for matrix multiplications. Hence, all such matrices form a Lie
group. Similarly, we can show that Ay (V) = I + UVT defines another Lie group. O

C.1.1 THE ROTATION AMBIGUITY AND SCHUR DECOMPOSITION

Note that UVT = UQ(V Q)T for any orthogonal matrix (). Thus, we can remove this rotation
ambiguity by selecting a @ such that QT (VTU)Q is an upper triangular block matrix with block
size 1 or 2, i.e., the Schur decomposition. Ay (U) and Ay (V) still form groups by constraining
VTU to be quasi-triangular.

D LOW-RANK APPROXIMATION PRECONDITIONER FITTING

In practice, we seldom use Q = p(I + UVT) as a preconditioner directly. Its limitation is clear,
i.e., most of its eigenvalues are p? with < n. In our method, we start from a rough preconditioner
guess, say B, and modify it with I + UV to have the refined preconditioner as

Q=I+UvhHB

If matrix B is from another Lie group, we still can update @ efficiently. For example, B can be a
diagonal matrix with nonzero diagonals. Then this composited preconditioner reduce to a diagonal
one when r» = 0.

Computation Note that neither of or methods require direct formation of a curvature matrix. In-
stead we use Hessian vector products. One can utilize auto-differentiation packages to calculate the
exact Hessian vector product or approximate them with finite differences both detailed by (Pearl-
mutter, |1994). Given a neural network with N parameters, the Hessian vector calculation can be
done in O(N) time and space, and does not make any approximation. Additionally, we often only
calculate the preconditioner with probability p = 0.1, making the PSGD as practical as SGD.

D.1 FUNDAMENTAL OPERATIONS ON LIE GROUP
D.1.1 THE CONCEPT OF GROUP GENERATOR

Unlike the additive update to move a point in a Euclidean space, we use multiplicative update to
move a point on the Lie group. For example, we can move Ay (U) to any its neighbor, say Ay (U +
£), as
Ay (ET+VTU) MY Av(U) = Ay (U +€)

Since Ay (pU) = I + pUVT = etUV" for u — 0, UVT is a group generator for any U # 0.
Indeed, the Lie algebra is closed as shown by

< VT U VT >=0VTU,vT —uuvTo vt = (0 vTo, — U, vTo)v?
where < -, - > is the Lie bracket.

19

Under review as a conference paper at ICLR 2024

D.1.2 THE GRADIENTS FOR PRECONDITIONER UPDATING

Here, the gradient always refers to the one on the Lie group. Thus dA, say on group Ay (U), is
either Ay (£)Ay (U) or Ay (U) Ay (€), where £ — 0. Since we will update both groups, we simple
putitas dA = & AordA = AE;. Let’s drop the E in the PSGD preconditioner fitting criterion and
derive the stochastic gradient as below,

d(hT Ph + v P~1v)
=hTdPh — v P 'daPP v
=2hTdQTQh — 20T P71dQT QP v
Since we are to fit A and B on the Lie groups, thus let
dQ =dAB + AdB
=5, AB + AB&,
=£10Q + Q&
Then, we have
d(h* Ph + v P~ 1v)
=2hTdQTQh — 20T P71dQT QP 1w
=2hTQTETQh + 2hT X QT QR — 20T PTIQTET QP v — 20T PT1ET QT QP10
=2nTQTETQh 4 2nTET Ph — 20T Q1T QTw — 20T P ETw
=2tr {&] [(QR)(QR)" — (@ Tv)(Q "v)"]} + 2tr {&F [(PR)RT —v(P~'0)T]} (19)
(20)

D.1.2.1 Gradient with respect to B

For diagonal matrix, we simply have
0.5V = diag[(Ph)h"T — v(P~'v)T]
from (19), and thus update B as
B+ B(I —uVp)
where the step size p is small enough such that p||Vg|| < 1, and ||V || is just the max absolute
diagonal element for a diagonal matrix. Here, || - || denotes spectral norm.

For a diagonal matrix, we also can update its diagonals with element-wise step sizes as the Lie
group reduces to the direct sum of a series smaller ones with dimension one. This could lead to
faster convergence when the true Hessian is diagonal. Otherwise, we do not observe any significant
difference between these two step size selection strategies in our numerical results.

D.1.2.2 Gradient with respect to U on group Ay (U)

Since
dA= T+ VI +UVT) —(IT+UVT)=6VTA
we replace the &; in with EVT to obtain gradient
0.5Vy = [(Q)(Qh)" — (@)@)"V
Then, we update A as
A—A—puVyVvTAa
which suggests its parameter can be updated as
U+ U-—pVy(I+VTU)

since we are operating on the group Ay (U), where the step size is small enough such that
pl[Vo VT < 1. Note that ViV has at most rank two. Hence, its Frobenius norm can be used to
bound its spectral norm tightly, as shown by

VoV lr/vV2 < VoV < VoV ||r

20

Under review as a conference paper at ICLR 2024

D.1.2.3 Gradient with respect to V on group Ay (V')
As
dA= (I +UENT+UVT) —(I+UVT)=UET A
we replace the & in with UET to give gradient
0.5Vy = [(Qh)(QR)" —(Q™Tv)(Q Tw)"|U
Thus, we update A as
A+ A—puUviA
which implies that its parameter V' should be updated as
Ve V—pul+VUNVy

where the step size is small enough such that u|UVY| < 1. Again, UV has at most rank two,
and its Frobenius norm gives a tight enough estimation of its spectral norm.

E ALGORITHM

Algorithm 1: PSGD

1: Initialize parameter 6 and its learning rate 0 < pq < 1
2: Initialize preconditioner as () o< I, and its update rate and frequency as 0 < po < 1,
0 < p < 1, respectively for iteration = 1,2, ... do

3:

end

Sample a stochastic loss £(0, z)
4: Compute stochastic gradient g = % if u <pwithu ~U(0,1) then
5:

end
Sample vector v ~ N(0, 1)

T
: Compute Hessian-vector product h = 8(1}76.(])

6

B
7: Update preconditioner Q with pair (v, h) and rate o
8.

9: Compute preconditioned gradient g = Q7 Qg
10: Update parameter as 6 < 0 — p1 g
11: Adjust (u1, pe2, p) if needed; stop iteration if met certain criteria

A few notes for Algorithm 1. Both learning rates, 11; and po, are normalized by design. We should
not set either of them larger than 1. When the second order derivative is not supported by a certain
automatic differentiation tool, we approximate the Hessian-vector product via finite difference as

00 +v,2) 0L(0,z)
T 90

where ¢ is a small positive number, e.g., the machine precision. We should avoid forming the
preconditioner P explicitly as P = Q7 Q. Instead, the preconditioned gradient is always calculated
as g = QT(Qg). Algorithm 1 is for PSGD with any preconditioner design. Here, we elaborate its
preconditioner update algorithms on the two specific Lie groups proposed in this paper. We are not
going to detail the algorithm on the calculation of g = Q7 (Qg) as its math is pretty straightforward.

v~ N(0,el), h

21

Under review as a conference paper at ICLR 2024

Algorithm 2: XMat Preconditioner Update

Prepare inputs) = diag(a) + adiag(b) and pair (v, h)
Calculate Qh = a © h + b © flip(h)

Calculate Q~Tv = (flip(a) ® v — flip(b) ® flip(v)) @ (a @ flip(a) — b © flip(h))

Calculate gradient V, = (Qh) ® (Qh) — (Q~Tv) ® (Q~Tv)

Calculate gradient V;, = (Qh) ® flip(Qh) — (Q~Tv) ® flip(Q~Tv) if b has odd length then

Tk wn =

end
Set central element of V, to zero

. : o
: Calculate step size 1 = e[V) max (T3]
: Update a as a <— a — (V, © a + V, © flip(h))

: Update bas b < b — u(V, © b+ V, @ flip(a))

: Return updated preconditioner as Q = diag(a) + adiag(b)

—_
— S0 %=

Here are a few notes for Algorithm 2. Notation adiag(b) denotes the anti-diagonal matrix with
elements in vector b as its entries. Notation flip(a) denotes the operation of flipping the order of
elements in vector a. For (Q with an odd size, we assume that the central element of b is zero to
obtain a unique form of representation of the Lie group.

Algorithm 3: Low Rank Approximation Preconditioner Update

Prepare inputs Q = (I + UV 7T)diag(d) and pair (v, h)

Calculate Qh

Calculate Ph = QT (Qh)

Calculate Q~7v using the Woodbury matrix identity

Calculate P~'v = Q=1 (Q~Tv) using the Woodbury matrix identity
Calculate gradient V, = (Ph) Oh—vo (P 1)

Update das d < d — d®Vgif u<0.5withu ~U(0,1) then

max \Vd\)

PR AR

end
Calculate gradient VU = (Qh)(QR)TV — (Q~Tv)(Q Tv)TV
9: Update U as U « U — 1% Vo (1 + VTU) else

10:

end

Calculate gradient VV = (Qh)(QR)TU — (QTv)(Q~Tv)TU
11: Update VasV < V — HUVTH (I+VUT)Vy

12:
13: Return the updated preconditioner as Q = (I + UV T)diag(d)

Here are a few notes on Algorithm 3. With the Woodbury matrix identity, linear system QQz = b can
be solved as

r=Q 'b=diaglod)[b—UI+VTU)" (VD)
which can be separate into the following two steps

solve (I +VIU)y =V7Th
z =diag(1 @ d)(b—Uy)

where I + VTU is a square matrix with size r, i.e., the rank or order of low rank approximation.
Solving for such a linear system should not be considered as a burden for a moderate r, say up to
thousands, on today’s hardware. Note that V; is a matrix with rank 2 at most. Thus, we have no
need to form V explicitly in the actual implementation by writing it as a difference of two outer
products,

Vo = (@Qn[(Q1)TV] — (QT)(Q™Tv)"V]
This saves considerable memory and computes for a large . The spectral norm of Vi V7 is ap-
proximated with its Frobenius norm. Again, since the rank of V V7 is at most 2, relative error of

22

Under review as a conference paper at ICLR 2024

this approximation is bounded by 3 dB. The same processing techniques apply to the update of V'
as well. Note that we cannot update both U and V in a single step due to the special way we have
constructed these two “twin” Lie groups for low rank approximation. In our implementation, we
choose to update either one with equal probability.

In the style of the main here are the algorithms with explicit notation.

Notations we use the following notations:

» f(0) € R,0 € R f is the loss function to minimize, € is the parameter in R?
* g;: the gradient at step ¢

* p: preconditioner update probability default is 0.1

* hg, vy hy the Hessian vector product; v, drawn from ~ A/(0, I)

P, Q: P is the gradient preconditioner (never explicitly formed) defined as P = Q7'Q
— UVd: For UVd, Q takes form of Q = (I + UV T)diag(d)
— XMat: For XMat, Q takes form of Q = diag(a) + adiag(b)

% adiag(b): the anti-diagonal matrix with elements in vector b as its entries.
a: the operation of flipping the order of elements in vector a.

e u1, pi2: puy is the optimizer step size; juz is the preconditioner step size, both default to 102

Algorithm 4: PSGD Optimizer
Initialize 0, t0, Qg o< T

Algorithm 5: UVd Q Update Step

While 0; not converged Ph=QT(Qh)
tt+1 P ly= Qil(QiTU) via Woodbury identity 2x
9tV fi(0r—1) Vi=(Ph)®h—v6 (P ')
If u < pwithu ~U(0,1) d <+ d— pad ® Va/ max(|Vql|)
hVo (vl ge), s.t. vy ~ N(0, T If u < 0.5 with u ~ 1/(0, 1)
Volu: 90 s, ve ~ N0,) Vo = (@)(QR)V - (@ Tv)(@)"V
Update Q; via (v, hy) S T
Q Update Step U+ U= pl| VoV |7 Vol +V7U)
El Else T _r T
s¢ Vv = (Qh)(Qh) U —(Q™ v)(Q™"v) U
ng — Qi1 VeV —um|UVE|TT +VUT)Vy
8:Q; Quge Return Q = (I + UV 7)diag(d)
0:0:—1 — p119¢

Algorithm 6: XMat Q Update Step

Q Tv=@ov-boD)0(a®a—bob))
Vo= (Qh)® (QM-(Q™Tv) ©(Q~"v)
Vi, = (Qh) © (Qh) — (Q7"v) © (@~ ")
If b has odd length

Set central element of V;, to zero

— 2
H= max[max(|Val),max(|Vy|)]
a+a— Ve ®a+V, b))
b«b—puVya0b+V,y0a)
Return Q; + diag(a) + adiag(b)

23

Under review as a conference paper at ICLR 2024

F MORE EXPERIMENTAL RESULTS

F.1 Noisy LABEL CIFAR10
SYMMETRIC NOISY LABEL

In this section, we consider training a ResNet18 under 60% symmetric label noise. We randomly
select 60% of the CIFAR1O0 training labels, resulting in each class having approximately 46% cor-
rect labels and the 54% consisting of 6% drawn from the other nine classes. Recently, Kwon et al.
(2021) proposed a novel flat basin-seeking algorithm named Adaptive Sharpness-Aware Minimiza-
tion (ASAM) that set a new SoTA for symmetric noisy label for CIFAR10.

Symmetric Noisy Label Cross Entropy Smoothened Cross Entropy (0.1)

PSGD (Ours) 77.0 77.0
ASAM (SoTA) 70.55 70.19

We benchmark PSGD against ASAM and see that PSGD outperforms ASAM by 7%.

ASYMMETRIC NOISY LABEL

Next, we consider asymmetric label noise. We asymmetrically perturb 60% of the CIFAR10 train-
ing labels randomly, resulting in one of the classes having approximately 55% incorrect labels and
the other 9 classes having 5% incorrect labels. We use SGD, PSGD, Adam, and Apollo to train a
ResNet18 on this task for 100 epochs with 10 different seeds and compare train and test classifica-
tion accuracyd] Additionally, we consider the recently proposed flat basin-seeking algorithm named
Adaptive Sharpness-Aware Minimization (ASAM) |Kwon et al.[(2021) that set a new SoTA for sym-
metric noisy label for CIFAR10 under the asymmetric label noise setting. We compare ASAM to
SGD and PSGD (see Table[5)) separately from the other experiments since ASAM is orthogonal yet
complementary to SGD and PSGD. To the best of our knowledge, no optimizer has been designed
specifically for asymmetric label noise.

Standard Optimization Techniques

First looking at Figure[d we see that PSGD achieved the lowest average training accuracy of around
40%, with Apollo reaching the highest average train accuracy of 57%. While SGD gets an average
training accuracy between Adam and Apollo (with 7/8 runs getting 55%, and 1/8 getting 34%), and
well above PSGD. During testing, SGD exhibits clear instabilities, falling into a regime of pure
memorization of the training set. This can be seen as among the 8 runs of SGD, only one lucky
initialization achieved a test accuracy of 77% (learning regime), while the other initializations had a
test accuracy of 10% (memorization regime) with an average predicted probability of 0.999. This is
not a standard case of over-fitting nor a case of catastrophic forgetting, since the training accuracy
does not change. Instead, our experiments show there exists a tipping point in the test accuracy at
around epoch 35, where within a single epoch the test accuracy drops from 71% to 10% while the
training accuracy shows no intelligible indication of this change. Furthermore, the test accuracy
does not increase for the rest of the 65 epochs. At the 35 epoch mark, Adam and Apollo both go
through a period of high variance but eventually converge (due to the cosine learning rate decay).
PSGD achieved an average accuracy of 82.63% =+ 0.11 after 100 epochs, outperforming SGD by
63.93% and exhibiting no optimization instabilities (See Figure |4)).

Sharpness Aware Optimizers

In this section we compare Adaptive Sharpness-Aware Minimization (ASAM) Kwon et al.|(2021)
that set a new SoTA for symmetric noisy label for CIFAR10 under the asymmetric label noise setting
to PSGD and SGD. Note to the best of our knowledge there has not been an optimizer specifically
designed for asymmetric label noise and no specific optimizer has been deemed SoTA.

We see in Table [5]that while ASAM is able to achieve the best training accuracy we see that greatly
overfits the dataset resulting 6% test accuracy at the end of 100 epochs, 12.38% below SGD and
76.31% below PSGD. While ASAM may have been the SoTA for Symmetric label noise, clearly
another solution is needed under the Asymmetric setting.

24

Under review as a conference paper at ICLR 2024

Noisy Label CIFAR-10 Noisy Label CIFAR-10

—3%— Apollo —4— Apollo _
—4— Adam % Adam
801 1
60{ —#— SGD —4— SGD
—$— PSGD XMat —%— PSGD XMat > T T

Test Accuracy
5
&

Train Accuracy
&

201

l
\

o 20 40 60 80 100 o 20 40 60 80 100
Epochs Epochs

(a) Train Accuracy: Noisy Label CIFAR-10 (b) Test Accuracy: Noisy Label CIFAR-10
Figure 4: CIFAR-10 Noisy Label ResNet-18: (a) Train Acc: We clearly see that Apollo (Quazi-Newton di-
agonal) over-fits the training set which includes 60% noisy labels, whereas PSGD finds a solution that results
in a significantly worse train accuracy. Furthermore, we see that the variance for Apollo, Adam, and SGD
is very high during training starting around epoch 40. Note SGD had 7 runs with train accuracy near 55%,
and one with train accuracy around 34%. (b) Test Acc: We see that PSGD reaches a significantly better test
accuracy with a very low training variance compared to Apollo, Adam, and SGD. In this run, SGD had 7 NNs
that got 10% test accuracy and one network that got 72% test accuracy. For more on SGD’s performance see
main paper CIFAR with Noisy Lables. The combination of these two plots shows other optimizers can easily
over-fit/memorize incorrect image label pairs, can often have large optimization instabilities during training,
and even reach degenerate solutions where the NNs have reasonable train accuracy but random test accuracy.

Table 5: Comparing (P)SGD to Sharpness Aware Optimizers. Here we see that PSGD can outperform SGD
and ASAM by 12.38% and 76.31% respectively.

Asymmetric Noisy Label Final Best
CIFAR10

Train Test Train Test
PSGD (Ours) 40.44% £0.12 82.63% +0.11 41.03% +0.11 82.63% £ 0.11
SGD 52.5% +19.87 18.7% +33.75 56.3% £0.1 73.98% +5.65
ASAM 64.03% £ 1.12 6.32% +2.6 64.03% +£0.1 40.48% + 0.8

As such we see that PSGD, which is a general-purpose optimizer, is able to outperform general first
and second-order optimizers as well as flat minima-seeking optimizers under the noisy label regime.

F.2 MNIST HANDWRITING DIGIT RECOGNITION

To have a fair comparison between the diagonal and low-rank approximation (LRA) preconditioners,
we slightly upgrade @ in the LRA preconditioner to form

Q = diag(d)(I + UVT)

where d is a vector. This form of @ cannot form a Lie group. Still, its two factors, diag(d) and
I +UVT, can be fitted on their own Lie groups. Now, the diagonal preconditioner is a special case
of this LRA one with order r = 0.

We have tested orders » = 0, 1,2, 5, and 10. The batch size is 64. Totally ten epochs of training are
performed. The learning rate for parameter updating is annealed exponentially from 0.1 for the first
epoch to 0.001 for the tenth epoch. The step size for preconditioner fitting is annealed exponentially
from 0.1 for the first epoch to 0.01 for the tenth epoch. The preconditioned gradient norm is clipped
to 10 if too large. No momentum is used. Figure 1 summarizes the test classification error rates
for preconditioners with different orders of approximations over 50 runs. From Fig. 1, we see that
the simple diagonal preconditioner performs well. Still, LRA brings marginal gains up to order
r = 5. This cost function is fairly ‘flat’ since the only nonlinearities in LeNet5 are two piece-wise
linear functions, i.e., the activation function ReLU and max pooling one. Only the cross entropy
loss introduces the ‘curvature’.

25

Under review as a conference paper at ICLR 2024

%1073
_ T
L ! ! - |
95 \
| i ‘ |
\
e | T | \
9r | \ \ | \ 1
‘ \ \
| ‘ \ | \
85 ‘ ‘ ‘ ‘ ’
g \ : \
5
s 8f 1
? |
Qo
7.5F \ ‘ ‘ ,
\
| |
7r | \ | \ iy
\ 1 | 1
L 1 | |
6.5 N n
0 1 2 5 10

Figure 5: MNIST test classification error rates over 50 runs using preconditioners with different orders of LRA.
The one with order O reduces to the diagonal preconditioner. Table 1 reports results of classification accuracy
for r = 5. Higher is better.

F.3 Toy EXAMPLE: INVESTIGATING THE FLATNESS OF SAM BASED SOLUTION

0.0110
0.0105 U
0.0100 ©
0.0095 §
0.0090 g
:)
0.0085 4
0.0080 &
0080,
0.0075
0.0070
—80000
~100000

~120000

~1400005\

0 oo —160000\,8

a00 ~180000 &%
800 ~200000,
Crog 1000 -220000 7
Seng, 1200, 100 240000

Figure 6: (Adam,ASAM)— PSGD: MNIST hand written digit recognition with LeNet5. Hessians at the min-
ima of Adam are estimated with a dummy LRA PSGD optimizer that only updates the preconditioner.

Very recently sharpness-aware minimization (SAM) based optimizers have become a popular area of
research. We were interested to see if PSGD compares to SAM in a toy MNIST LeNet5 classification
task. We discussed in[5.1} how the smaller the —logdet(P) of a NN is, the flatter the solution found
by the optimizers. Since SAM has been specifically designed to find flat optima we would like to

26

Under review as a conference paper at ICLR 2024

—— SGD

§ 2.01 AdaHessian
15 —— PSGD

(@]

C

s 1.0

=

© 0.5 1

0'0 1 T T T T T T T
0 20 40 60 80 100 120

0.05
o —— SGD
‘@' 0.04 1 AdaHessian
E 0.03 - — PSGD
]
% 0.02 1
@
2 0.01

0-00 T T T T T T T

0 20 40 60 80 100 120

Walltime (s)

Figure 7: Wall-Time: LeNet5 Comparing SGD, PSGD, and AdaHessian. We see that PSGD UVd (rank 10
Hessian estimate) takes 1.2x the time of SGD but finds a better solution. AdaHessian (Hessian diagonal esti-
mate) takes 2x to complete the run and reaches an error rate compared to both SGD and PSGD.

compare. Fig.[6]shows ten pairs of minima, each starting from the same random initial initialization.
We see that PSGD converges to minima with flatter or smaller Hessian, i.e., larger preconditioners.
From the view of information theory, the total cross entropy and 0.5 log det(H) ~ —0.5log det(P)
are good proxies of the description lengths of the train image-label pairs and model parameters,
respectively. Fig. [] shows that minima with smaller description lengths tend to perform better on
the test sets as well, suggested by an arrow pointing to the down-left-front corner of the cube.

This shows that we can actually find flatter minima compared to SAM-based optimizers without
explicitly optimizing for them.

WALL-CLOCK TIMINGS

Theoretically, one Hessian-vector evaluation doubles the complexity of one gradient evaluation,
since we do this with a probability of 0.1, the per iteration complexity of PSGD becomes (1+0.1%2)
= 1.2 times that of SGD. Empirical timings for LeNet5 added in the general response (Figure [7)
align with the theoretical calculation. We see that PSGD LRA (Low-Rank Hessian Approximation)
with a rank of 10’s overhead is minimal compared to SGD and is 2x faster than AdaHessian which
uses a diagonal Hessian estimate.

DYNAMICS OF PRECONDITIONER

The dynamics of the preconditioner depend on the specific network structure and task to study. Sup-
pose we start from a moderate initial guess for the preconditioner (by default it is set to 1). For
many tasks, we have observed that the max eigenvalue of the preconditioner keeps increasing until
saturation to a point during the whole learning process. As the maximum eigenvalue P of corre-
sponds to the inverse of the minimum eigenvalue of H, this is expected for over-parameterized NNs
as their minimum eigenvalue approaches 0. The minimum eigenvalue of P first increases during
the early stages of learning, and then eventually drops and settles down on a small value, suggesting
parameters are locked along those eigenvector directions associated with small eigenvalues. These
empirical results coincide with independent findings from many authors showing that network learn-
ing has two stages: the early growing one and the latter refining one. We showed the dynamics of the
preconditioner on the LeNet5 (see Figure [§). For this specific task, the min eigenvalue occasionally
drops but keeps increasing during the last stage of learning due to the vanishing Hessian phenom-

27

Under review as a conference paper at ICLR 2024

Evolving of preconditioner

61 — mindiag
max diag

Preconditioner

0 10 20 30 40 50 60
Walltime (s)

Figure 8: Dynamics of Preconditioner for LeNet5: The max eigenvalue of preconditioner keeps increasing until
saturation to a point during the whole learning process. For this specific task, the min eigenvalue also keeps
increasing during the last stage of learning due to the vanishing Hessian phenomena when the train cross-
entropy loss approaches zero.

ena when the train cross-entropy loss approaches zero (meaning the absolute logistic outputs can be
scaled to be arbitrarily large, thus gradient and Hessian all approaching O on the train set).

F.4 CIFAR10 IMAGE CLASSIFICATION WITH RESNET18

We follow the implementations of Adabelieiﬂ algorithm [Zhuang et al.|(2020) to test preconditioned
SGD (PSGD) on the CIFAR10 image classification task with the ResNet18 model. One main dif-
ference from the implementations in [Zhuang et al.| (2020) is that we reduce the learning rate by
tenfold twice for all the optimizers, while the original stage learning rate scheduler only anneals the
step size once. We also consider the cosine learning rate scheduler, which helps SGD to achieve
the state-of-the-art (SOTA) test accuracy about 95.5%. Training and testing accuracy convergence
curves over 16 runs are plotted in Fig.[??] We only show the results of PSGD and SGD here as SGD
is known to achieve the SOTA results for this problem.

For PSGD, we use step size 0.02 for parameter updating and 0.01 for preconditioner fitting. The
preconditioner is only updated once per ten iterations, and thus its overhead over SGD is marginal.
The same momentum factor, 0.9, is used for both SGD and PSGD. Since the step size in PSGD is
normalized, we update the momentum as m < 0.9m + 0.1g, instead of m < 0.9m + g as in the
SGD. No gradient clipping is used. Weight decay is realized by adding the L2 regularization term
0.5X070 to the cross entropy loss. We have found that X between 0.01 and 0.02 performs the best.

From Fig. [??] we observe that SGD performs very well with the cosine learning rate scheduler.
This is expected as these residual networks are highly evolved to be first-order optimizer-friendly.
The extensive use of piece-wise linear functions, residual connections, and batch normalizations
make these models fairly ‘flat’ and resemble shallow models, instead of deep ones Veit et al.[(2016).
Still, PSGD slightly outperforms SGD when we remove the shortcut connections or use a less-tuned
learning rate scheduler, e.g., stage one here.

PSGD 1S ROBUST TO HYPER-PARAMETERS

To showcase the robustness of PSGD to hyper-parameters we show in table [f] the test classification
accuracy of a ResNet18 trained on CIFAR10 using different learning rates and weight decay.

We clearly see the test accuracy of PSGD in a wide range of learning rates and weight decay con-
verges within the expected range of 95.49 + 0.08%.

“https://github.com/juntang-zhuang/Adabelief-Optimizer

28

Under review as a conference paper at ICLR 2024

PSGD Learning Rate Weight Decay Test Accuracy

XMat 2e-2 2e-2 95.32
LRA 2e-2 2e-2 95.69
LRA Se-2 2e-2 95.48
LRA Se-2 2e-2 95.46
LRA 4e-2 2e-2 95.55
LRA 3e-2 2e-2 95.57
LRA 2e-2 le-2 95.45
LRA 2e-2 3e-2 95.51

Table 6: We see that PSGD is robust to hyper-parameter selection making tuning significantly easier compared
to other optimization methods.

stage Ir stage Ir

100

£~ «
f

S
95 =

goo

388

3
%0 86

3

= 84

E

85

Train accuracy (%)

0 50 100 150 200
Epoch

cosIr

100 %
9
292
95 =
goo
g 88
S
90 86
3
=84
82
85

0 50 100 150 200 0 50 100 150 200
Epoch Epoch

Train accuracy (%)

Ir, no sh Ir, no shor
100 cos Ir, no shortcut % cos Ir, no shortcut

Train accuracy (%)

85T

o

50 100 150 200
Epoch

Figure 9: CIFAR10 image classification with ResNet18. The order of low-rank Hessian approximation is 10.
Mean and variance are estimated over 16 runs. Higher is better.

F.5 A LARGE-SCALE LOGISTIC REGRESSION PROBLEM

We consider a simple logistic regression model to solve the MNIST classification problem, with and
without Bernoulli noise. We considered AdaHessian, AdaBelief, SGD, LBFGS, PSGD LRA/XMat,
KFAC, and HessianFree optimizers. Let 2 be the vector of the image with length 282. Instead of
regression on vector x, we do the regression on the outer product vector of z, which has length 28*.
This significantly increases the test classification accuracy but leads to a large regression matrix with
over six million coefficients. The KFAC preconditioner did not fit on our GPU and the HessianFree
optimizer would diverge far from all other optimizers in more than 50% of our runs. Both are
omitted from further discussion in this section.

No momentum is considered since this is the case for LM-BFGS. The train batch size is 500. It is
tricky to select the initial learning rate for LM-BFGS even though we exponentially anneal it. We
have found that LM-BFGS diverges on roughly one-third of the trials with an initial learning rate of
0.1, but 0.05 is too small and may lead to worse performance than SGD. For PSGD, we consider the
LRA preconditioner with order 10 and set the learning rates for parameters and preconditioner to
0.05 and 0.1, respectively. Since LM-BFGS might diverge with a learning rate of 0.1, we only show

29

Under review as a conference paper at ICLR 2024

Train cross entropy

Figure 10: Standard MNIST dataset: Typical convergence curves on the logistic regression problem. Lower is
better. When comparing the convergence speed, one should be aware that one step of LM-BFGS may take up
to ten iterations, while SGD and PSGD always have one iteration per step.

a few typical convergence curves of SGD, LM-BFGS, and PSGD in Fig. [I0] LM-BFGS converges
to regression losses a few times smaller than SGD. PSGD could converge to losses about one order
of magnitude lower than that of SGD and LM-BFGS. Regarding test classification error rate, we
have 2.37% =+ 0.08, 2.09% =+ 0.18, 1.98% =+ 0.08 for SGD, LM-BFGS, and PSGD, respectively,
averaged over ten runs. Again, LM-BFGS outperforms SGD, and PSGD performs the best on the
test classification error rate as well.

Next, we simply randomly add Bernoulli noise to the MNIST dataset to add diversity to the dataset.
Even though LM-BFGS is the standard optimizer for large-scale logistic regression we wanted to
consider some other SOTA optimizers for deep learning. PSGD UVd/XMat performed the best
in this scenario but we found that AdaBelief did surprisingly well given its lack of second-order
information. Losses and Accuracies plotted in Fig[TT]

Note: LBFGS may take up to 10 iterations per step Note: LBFGS may take up to 10 iterations per step

AdaBelief
— SGD
—— LBFGS
—— PSGD UVd
—— PSGD XMat
—— AdaHessian

Test Accuracy

AdaBelief
— 5GD
—— LBFGS
— PSGD uvd
—— PSGD XMat
—— AdaHessian

Train cross entropy

0.95 4

0.‘0 2:5 5.‘0 7.‘5 ld.O 12‘.5 15‘.0 17‘.5 20.0 O.‘O 2.‘5 5.'0 7.‘5 10'.0 12‘.5 15‘.0 17‘.5 20.0
Epoch Epoch
(a) Train Loss (b) Test Accuracy
Figure 11: We consider logistic regression on the MNIST dataset with Bernoulli noise. We see PSGD finds
the lowest loss on the train set, with the Belief mechanism also working well. PSGD and AdaBelief generalize
well to the Accuracy of the Test Dataset.

We see that PSGD significantly outperforms the SOTA optimizers in the convex logistic regression
setting under noise-free or noisy domains while being memory efficient.

F.6 FORGETTABILITY & UNCERTAINTY: RANK ANALYSIS

Very recently, [Toneva et al.| (2018)) shows that Forgettable points are crucial for generalization in
the supervised setting. In the unsupervised, semi-supervised, self-supervised, and generative setting
Pooladzandi et al.|(2023)) shows that one can use the low entropy samples generated by the generative
model to significantly boost the classification performance of the Latent Energy Based Model which
acts as generative-classifier. Here we acknowledge the previous findings and focus on the supervised

30

Under review as a conference paper at ICLR 2024

setting. We train a ResNet18 on CIFAR-10 and record entropy and forgettability statistics. We plot
the strong correlation between low forgettability score and low entropy found in our statistics in Fig.
[I2]and provide correlation coefficients in Table[7]

CIFAR-10 SGD
Train Sample Entropy vs. Forgetability

Forgetability
B

T . k) ", e .
el Snl® b ak o we o
000 025 Q50 o 100 125 150 175
Entropy

Figure 12: There is a strong correlation between the forgettability ordering and the entropy ordering. i.e.
unforgettable points have a very low entropy.

Entropy v Forgettability Score Correlation Coefficient p-value
SGD PSGD SGD PSGD
Spearman 0.72 0.73 0 0
Pearson 0.57 0.65 0 0
Kedal Tau 0.54 0.56 0 0
Weighted Tau 0.60 0.75 0 0

Table 7: Comparison of correlation metrics comparing Entropy Score vs Forgettability score between SGD
and PSGD. We see that PSGD’s average correlation between entropy and forgettability is stronger than that of
SGD.

GENERALIZATION GAP BETWEEN HIGH AND LOW ENTROPY SUBSETS

We train an Oracle LeNet5 on the full MNIST dataset for 20 epochs, we categorize the train set
into two subsets; a high entropy subset and a low entropy subset, each consisting of 10k points.
The entropy is defined over the softmax of the logits. We then train two different LeNet5s on each
dataset. We find that the low entropy dataset does not generalize to the test set well achieving a
test accuracy of 74%, whereas the high entropy dataset achieves a 99.3% which is on par with
Oracle LeNet5 (see[8). This clearly shows for supervised learning the high entropy points are most
important for generalization.

Furthermore, we find that training on low entropy points results in low entropy and a lower mean
entropy network. This supports the hypothesis that there are certain points that the net can lower
the entropy over which do not lead to generalization. We see in Table [§] that training over the full
dataset resulted in a higher mean low entropy compared to that of the full dataset. This supports the
idea that high entropy points are important for supervised learning.

In terms of distance from initialization, we see that the network is pushed farther from initialization
when using the full dataset than while using the high entropy points and the least when using the low
entropy points. This supports that training with low-entropy or unforgettable points unnecessarily
pushes a network’s parameters far from initialization reducing generalization capacity. Furthermore,
we see that when training on low entropy points, PSGD does not push the neural network far from

initialization preserving generalization capacity [Cao and Gu| (2019).

Finally, we see that an NN trained on low entropy points has a mean low entropy 2 orders of magni-
tude smaller than training on the full dataset, and 8 orders of magnitude smaller than training on the
high entropy subset. This shows that low entropy points cause a level of confidence in a NN which
is not needed and in some cases can be hurtful to generalization[5.2}

31

Under review as a conference paper at ICLR 2024

Distance from Distance from

MNIST Accuracy Expected Expected Initilization Initialization
Statistics Low Entropy High Entropy SGD PSGD
Full Dataset 99.3% 6e-3 23.1 26
High Entropy Subset 99.3% 2e-2 21.7 21.2
Low Entropy Subset 74.2% 4e-4 9.2 8.7

Table 8: Comparing generalization accuracy of a LeNet5 trained on either 10k high or 10k low entropy data-
points. We see high entropy datasets can match generalization of the full dataset whith a higher test entropy
compared to the other datasets. We see that the distance from initialization is less for the low entropy points.

F.7 EFFECT OF RANK ON XOR

The full rank version of PSGD [Li| (2019) can solve the XOR problem with an RNN past delay of
128. Since we can arbitrarily increase the rank of Hessian approximation in our LRA version of
PSGD, we consider the effect of rank on convergence on the XOR problem using an RNN. We find
rank approximations of » = 0, 1,2, 5, and 10 converge with probability p = 0.1,0.4,0.8,1 and 1
respectively.

=

success rate
o o o o ° o o
@ IS o > < ® ©
T T
\

o
N

°

o
~
@
IS
ol
>
-
®
©
5

Figure 13: Success rate over ten runs in solving the XOR problem with a simple RNN and LRA preconditioners
of orders 0, 1, 2, 5, and 10. Higher is better.

This example shows a typical problem where the diagonal preconditioner struggles, while a low-
order Hessian approximation works perfectly for preconditioning.

For all experiments, both step sizes for parameter and preconditioner updating are fixed at 0.01. The
gradient clipping threshold is set to 1. No momentum is used. We run 10 runs per optimizer for
100, 000 iterations or until convergence. The success rates over ten runs for each r are plotted in
Fig. This example shows a typical problem where the diagonal preconditioner struggles, while
a low-order Hessian approximation works perfectly for preconditioning.

SETTING A BASELINE USING KFAC, PSGD s PSGDpra/xMat» SGD AND ADAM

In this section, we compare general-purpose black box versions of PSGD, namely PSGDy 4 and
PSGD x ppar to the Affine or Kronecker Factorized version of PSGD 4, to KFAC, SGD, and Adam.
While PSGD 4 is able to outperform the other optimizers, the Affine version of PSGD requires
careful adjustment of neural network architecture to be used. This becomes infeasible for large and
intricate modern NN architectures. We see in Table 9] that the black box variants nearly match the
test accuracy of PSGD 4 outperforming the memory-hungry KFAC (second order) optimizer, as
well as first order SGD and Adam.

Removing Skip Connections To increase curvature in the relatively flat modern ResNet architec-
ture, we remove the residual skip connections that gave ResNets their namesake. A recent study
Zhang et al.| (2022) demonstrated the use of Tailored Activation Transformation (TAT) in conjunc-

32

Under review as a conference paper at ICLR 2024

Table 10: Stage & cosine learning rate and
Table 9: Test accuracy of LeNet5 on MNIST over residual-free ResNet18-RF on CIFAR10.
10 runs.

ResNet18 ResNet18-RF
SGD Adam KFAC PSGDA PSGDXM&I PSGDLRA Ir cos stage cos stage

99.04 99.12 99.16 99.26 99.22 99.22 SGD 9551 95.07 9497 9435
PSGD 9554 9543 9536 95.17

Table 11: Test Accuracy of RN18 on diverse CIFAR10 derived tasks with (P)SGD, Adam & Apollo (2nd order).
The current SoTA optimizer is ifalicized, and the best accuracies are bolded.

CIFAR10 Standard No Shortcut Class Imb Noisy Final ~Noisy Best Adversarial =~ Blur Deficit
PSGD (Ours) 95.49¢ 0g (5.5hrs) 95.27; o9 87.160.35 82.63(.11 82.630.11 85.170.04 89.51) 12
SGD 95.479.14 (4.5hrs) 94.66¢ 16 86.32p.84 18.733.75 73.975565 83.820.18 83.51p.15
Adam 93.150_02 (4.5hl'S) 92.700,02 831812 72.472‘17 74-47106 82.260_49 82.62()‘015
ApOllO 90.590252 (5h1‘S) 92.000‘20 78.231,3 67.711‘49 72‘580,92 73~90A57 79.25()‘45

tion with K-FAC |Martens and Grosse| (2015) (another second-order optimizer) to close the gap
between residual networks with and without residual skip connections. However, in our experiment,
we do not utilize TAT and instead compare the performance of SOTA optimizers on both residual-
free and standard ResNet18 models. The results, summarized in Table indicate that PSGD
outperforms SGD by 0.61% and 0.20% on residual-free and standard ResNet18, respectively. Our
findings are consistent with the results from [Zhang et al.|(2022), where a difference of 0.6% was
observed between the optimization of residual-free using TAT and standard ResNet18.

Class Imbalanced CIFAR10 We evaluate the optimization performance on a class-imbalanced ver-
sion of the CIFAR10 dataset, where 50% of the classes are randomly reduced by an order of magni-
tude. We compare SGD and PSGD on optimizing ResNet18 and report the results in Table[TT] Our
results show that PSGD outperforms the SOTA by 1.03% on this dataset.

Adversarial Attacked CIFAR10 Finally, we trained a ResNet18 on 10k unmodified CIFAR10 im-
ages and evaluated it on a test set consisting of 40k samples perturbed using Neural Tangent Gener-
alization Attacks|Yuan and Wu|(2021). As shown in Table PSGD outperformed SGD by 1.35%.

Forgettability Statistics and Learning We revisit(Toneva et al.[(2018))’s forgettability experiments,
which found that one can prune 30% of the CIFAR-10 train samples without loss of generaliza-
tion. The study found that a point’s utility for generalization increases as it is learned and then
subsequently forgotten during training, regardless of the optimizer or architecture used. Essentially,
forgettability ordering shows which data points an NN uses to define high-dimensional boundaries
akin to support vectors. We investigate whether the performance difference between PSGD and
SGD’s generalization performance can be attributed to this forgettability ordering.

We train the RN18 four times, keeping the top N important points based on each optimizer’s ex-
pected forgettability score. Table [13|shows that PSGD focuses on points that are central to gener-
alization. We see this since, when we limit the dataset to only the Sk most forgettable data points
deemed by each optimizer, we see PSGD is able to outperform SGD by nearly 14%.

SGD and PSGD exhibit fundamentally different importance orderings, which is evident from the
significant generalization gap observed when training on pruned datasets using these orderings at
various degrees. We find that PSGD and SGD have a statistically significant correlation between
their forgettability orderings, but the strength of the correlation is weak (Spearman coefficient of
0.02 and a p-value of p = 1x10~!2). This indicates that the nature of training observed through
forgettability is different for PSGD compared to first-order optimizers.

Table 12: Uncertainty Statistics: PSGD’s higher

uncertainty leads to better generalization and less Table 13: Forgetting statistics for CIFAR,IO
over-fitting. on ResNetl18. PSGD finds better forgettability
statistics outperforming SGD.
NTK Entropy Margin
Min Mean Max Min Mean Max Forgettlng 50k 25k 15k Sk
PSGD 0.139 0.260 1.545 0.144 0956 0.994
Adam 1.5x10~7 0.009 0.8645 03625 0999 1 SGD 96.21 9556 937 4248

Apollo 1x1076 0.05 0.8851 04326 0.999 1

33

Under review as a conference paper at ICLR 2024

Furthermore, we see a strong correlation coefficient of 0.75 and 0.60 between a low forgetability
score and low entropy score with a p-value of p = 0 for PSGD and SGD respectively (see Fig
[I2). Hence, PSGD does a better job of shaping the NN to focus on the highly forgettable points
that are important for generalization while not becoming overconfident on the easy unforgettable
points giving up too much capacity, unnecessarily pushing the parameters away from initialization
reducing generalization ability |(Cao and Gu| (2019) (see E[) Note while [Toneva et al.| (2018)) shows
that forgettable points are more important for generalization for supervised learning, very recently
Pooladzandi et al.[(2023)) showed low entropy points are the more important points for learning in the
unsupervised, semi-supervised, and generative model setting. See Table [§ showing generalization
gap training low and high entropy points and how it affects the distance from initialization.

—— PSGD XMat Train
5GD Train

—— PSGD XMat Test

—— SGD Test

0 25 50 75 100 125 150 175 200

(a) Noisy Label CIFAR-10 (b) Nero-Plasticity
Figure 14: a) Solutions found by SGD are harder to optimize compared to PSGD. Note for SGD we used a
lucky initialization (see[5.2). The blue and yellow dotted line are the average accuracy of PSGD and SGD after
100 epochs respectivly. b) Removing the blur-deficit at epoch 100, PSGD is be more neuro-plastic compared
to SGD, achieving better train and test performance.

34

Under review as a conference paper at ICLR 2024

Stubborn Solutions of First Order Optimizers From the previous examples, we learned that first-
order optimizers tend to heavily overfit certain data points, reducing entropy. In the case of noisy
labels, this often results in pure memorization where the network achieves the training accuracy
of PSGD on the train set, but only 10% accuracy on the test dataset with an average confidence of
99.9%. To better understand the stubbornness of SGD solutions, we consider the lucky initialization,
which resulted in a test accuracy of 77% under noisy label conditions. Here, we examine a transfer
learning problem, where a ResNet18 was trained on noisy data for 100 epochs and then on clean
labels for another 100 epochs. This simulates a real-world distributional shift where noisy labels
may be refined throughout training, leading to a distributional shift. We compare neural networks
trained with each optimizer, as well as those that changed optimizers after 100 epochs of training.

As seen in Fig PSGD finds a flexible solution when given noisy labels. This is seen since
when we correct the labels both PSGD and SGD can reach an accuracy of 92.42%. In contrast, the
solution found by SGD seems to be stubborn since when we correct the noisy labels, PSGD then
SGD reaches an accuracy of 91.7% and SGD then PSGD has an accuracy of 88%. This shows the
importance of curvature information in the early periods of training.

Intuitively, first-order methods cause NNs to dedicate parameters to memorizing some data points,
unnecessarily reducing entropy. When memorization occurs given incorrect labels, it may be diffi-
cult to reshape the NN when the labels are corrected, leading to the loss in generalization accuracy
seen in Fig[T4al In contrast, as PSGD finds a less certain or suborn solution in the first stage of
training, either optimizer can then reshape the NN to their liking in the second stage.

We believe the noisy-label and neuro-plasticity results have strong applicability to transfer learning
and coreset selection|Pooladzandi et al.[(2022), particularly in scenarios where the training distribu-
tion changes during training. Recently, (Osawa et al.| (2022)) demonstrated that the affine Lie group
variant of PSGD outperforms other optimizers when fine-tuning a ResNet18 and ViT [Dosovitskiy
et al. (2020) on CIFAR10 that were pre-trained on ImageNet|Deng et al.| (2009).

35

Under review as a conference paper at ICLR 2024

ResNet

o e EE S -

94% P = SGD Accuracy

> P - PSGD + exp Ir decay
Qo 92% - PSGD + cos Ir decay
E SGD + exp Ir decay
S 90% J
(&}
S 88%
» 8609 /
& 86% f

84% 'l

82% 1

0 20 40 60 80100120140160180
Deficit removal (epoch)

Figure 15: Defecit plot: We see that PSGD is able to close the gap

More Experiments on Neuro Plasticity

Neuroplasticity experiments done by |Achille et al.| (2017} provided an interesting insight into the
critical learning periods of NNs. Here we consider whether PSGD can extend the critical learning
period of an NN. The summary of [Achille et al.| (2017) , is that if there is a deficit in learning that is
not removed by the first 80 epochs, the final test accuracy will be significantly hindered.

In Figure[T3] we see that if we remove the blur at epoch 100, well after the end of the critical learning
period of an NN trained with SGD/Adam, PSGD is able to retain classification accuracy as if we
removed the deficit around epoch 50. If we switch to a cosine learning rate schedule, PSGD is able
to recover the accuracy as if one removed the deficit at 20 epochs.

We believe that this nature of PSGD is due to us finding a flat generalizable solution that is not
memorizing points. Since we are not memorizing, and keeping our entropy relatively high compared
to other first and second-order optimization methods, we are able to recover accuracy and reshape
our NN when the deficit is removed.

36

Under review as a conference paper at ICLR 2024

Table 14: Test perplexity (lower is better) on Penn Treebank for one-, two- and three-layered LSTMs.
LSTM | PSGD Adan AdaBelief SGD AdaBound Adam AdamW Padam RAdam Yogi

1 layer 83.5 83.6 84.2 85.0 84.3 85.9 84.7 84.2 86.5 86.5
2 layers 64.9 65.2 66.3 67.4 67.5 67.3 72.8 67.2 72.3 71.3
3 layers 59.7 59.8 61.2 63.7 63.6 64.3 69.9 63.2 70.0 67.5

LSTM based models We conduct a performance comparison between second-order optimization
methods and first-order methods for training recurrent neural networks (RNNs) and transformer
models. RNNs have a recurrent structure that exhibits strong curvature properties, making them par-
ticularly suitable for second-order optimization methods. Such methods can efficiently leverage this
structure to converge quickly to good solutions. Consequently, RNNs usually perform better when
trained with second-order optimization methods [Martens| (2016), particularly when the objective
function has extreme local curvature properties.

We benchmark PSGD by predicting the Penn TreeBank Dataset using LSTMs using [Zhuang et al.
(2020)’s framework. Our results (see Table[T4]) indicate that PSGD consistently outperforms (lower
is better) other first-order optimization algorithms, including the SOTA AdamW, on 1, 2, and 3 layer
LSTMs.

F.8 POTENTIAL SOCIAL IMPACTS AND LIMITATIONS

Regarding social impact, our optimization method can outperform other optimization methods in
generalization accuracy as well as minimizing loss with negligible computational overhead and less
tuning efforts due to normalized learning rates. This will enable better training of machine learning
systems. Furthermore, since PSGD is better at generalization based on imbalanced datasets, it has
the potential to reduce bias and provide better representation for under-represented classes and sub-
classes.

The main potential limitation for PSGD we see, is that its certain forms. e.g., low-rank approxima-
tion one, require more memory to store the curvature information. Yet, it is still negligible compared
to other popular second-order methods like KFAC that require per-sample derivatives.

F.9 HARDWARE & SOFTWARE

All experiments were run on a single NVIDIA 3080 10GB GPU with an 11th gen Intel i7 processor.
We utilized PyTorch [Paszke et al.|(2017) version 1.13.

For now we have zipped the codebase to re-create our results, and will later host on github.

37

Under review as a conference paper at ICLR 2024

G MORE ON: LIE GROUPS, PRECONDITIONERS AND PRACTICAL
CONSIDERATIONS

As Lie Groups are not a ubiquitous framework for optimization and even less for machine learning,
we provide an overview of why we need a general-purpose preconditioner, and practical consider-
ations/timings under different frameworks. Furthermore, we consider different Hessian structures
not included in the main paper. We consider fine and coarse grids for future ways to update precon-
ditioners, theoretical connections to PCA, FFT, and DCT preconditioners, and more.

Note we have fundamentals on Lie Groups for low-rank approximations and XMat preconditioners
in Appx [B|& D]

G.1 THE NEED FOR A GENERAL PURPOSE PRECONDITIONER

Among the Lie groups listed in Table[T3] the Kronecker-product one has been proven successful for
many tasks Martens and Grosse| (2015); [Li (2019); |Goldfarb et al.|(2020). However, it is inconve-
nient to use as we need to sort out the parameters to be optimized as a list of tensors in a certain
way such that those preconditioners are doing meaningful operations. Here, we are looking for some
general-purpose black box preconditioners to avoid the need to rearrange the tensors to be optimized
in certain specific ways.

Table 15: Useful Lie groups (one form may have several disconnected groups)

example forms parameters notes

non-zero diagonals diagonal matrices, scaling

[
]

non-zero diagonals Triangular matrices (lower or upper), feature whitening

non-zero diagonals feature normalization as in batch normalization

non-zero diagonals incomplete triangular matrices

invertible butterfly matrices, building blocks of Kaleidoscope/FFT/DCT matrices
invertible similar to the butterfly matrices, but defined for both odd and even dims
{ . } invertible plain dense invertible matrices, i.e., the general linear (GL) group

C C'is invertible and circulant cyclic or anti-cyclic group, fast matrix-vector product via FFT
U U is orthogonal/unitary the groups of rotations (reflections are not continuous)
A |det(A)] =1 traceless, trlog(A4) =0
CctAC Ais on a Lie group, and C'is invertible useful for blending when C~! is cheap to calculate
UTAU Ais on a Lie group, and U is orthogonal useful when U is DFT/DCT/Hadamard like transformations
A®B®... A and B are on the same or diff groups direct sum as in block diagonal matrices
ARB®... A and B are on the same or diff groups good for matrix/tensor gradient preconditioning
I1+uv? invertible, either fixed U or V' useful for preconditioning via low-rank approximation
A B
C D

invertible and all blocks on the same group

large sparse preconditioner construction; special case: butterfly matrix

38

Under review as a conference paper at ICLR 2024

G.2 PRACTICAL CONSIDERATIONS

Clearly, we cannot initialize either U or V' or any diagonal element of B to zero. We can only update
U and V sequentially. In my implementations, I update either U or V in a single step, determined in
a random way, to save computations. I call it the UVd preconditioner. Another form, dUV has the
same capacity as shown by

(I +UVT)diag(d) = diag(d) + Uldiag(d)V]" = diag(d) {I + [diag(d~")U][diag(d)V]" }

The Woodbury matrix identity turns (Q~7v into solving for a system of r linear equations, where
r is the rank of U and V. Table |16|summarizes the wall time comparison results on a few typical
solvers. We see that their efficiency varies a lot. The fastest one is about two orders of magnitude
faster than the slowest one for » = 10. A poor combination of hardware and solver could slow down
the updating of this preconditioner. Note that theoretically, we could use the Woodbury matrix

Table 16: Mean wall time (ms) over 3000 runs on solving the system of r linear equations, Az = b. Hardware:
Xeon (R) W-2135 CPU, and GeForce RTX 2080 GPU.

r=10 | r =100 | r = 1000

Matlab (CPU, double, x=A\b) 0.0078 0.10 14.2
Numpy (CPU, double, x=np.linalg.solve(A,b) 0.17 6.7 57.2
Scipy (CPU, double, x=scipy.linalg.solve(A,b) 0.016 0.14 20.5

Pytorch (GPU, single, x=torch.linalg.solve(A,b) 0.17 0.53 6.2
Tensorflow (GPU, single, x=tf.linalg.solve(A,b) 0.67 0.92 6.6

identity to update the inverse of I + VT'U recursively as well. However, similar to a Kalman filter,
this process could be numerically unstable. Directly solving the system of linear equations should
be cheap enough for a typical r, say 1 < r < 20. Again, the low efficiency of certain linear solvers
for a small r is another issue, but solvable.

H HESSIANS WITH CERTAIN STRUCTURES

One import family is the preconditioners for a list of affine transform matrices studied in |[Li| (2019).
Here we discuss some other ideas.

H.1 BAND HESSIAN

The most common assumption is that the Hessian is roughly a band matrix if parameters far away
are not strongly coupled. Still, band matrices generally do not form groups, and their inverses are
not necessarily band-limited. To obtain a tractable solution, we can approximate () with

Q= (C"*AC)B

where both A and B are block-diagonal matrices with block size K x K, and C is a left or right
circular shifting matrix that shifts /2 positions. The following equation shows this clearly when
K = 2 and the first block of A is diagonal.

ctac: s x | B: R =

For preconditioner estimation, we do not need to constrain the two 0.5K x 0.5K anti-diagonal
blocks of A’s first K x K block to be zeros (the resultant @) is ‘circular’ band). Note that the
circular shifting matrix is unitary, i.e., C~* = CT. Thus, P = QTQ = (ACB)T(ACB). Hence,
we can simply redefine () as

Q= ACB

39

Under review as a conference paper at ICLR 2024

H.1.1 GRADIENTS

Let us have
dQ =dACB + ACdB
= ACB + ACB&,
=610 + Q&
Now, it is clear that Eq. equation[I9]still can be used to calculate the gradients w.r.t. A and B.

Let dB = BE. Then from Eq. equation [I9] the gradient w.r.t. B is
0.5V 5 = blkdiag[(Ph)hT — v(P~'v)T]
and thus we update B as

BFB—,UBVB

Similarly, let dA = £ A, we can show the gradient w.r.t. A to be

0.59 4 = blkdiag{[(Qh)(@h)T — (Q~Tv)(QTv)"]}

Then, we update A by
A+ A—pVaA

As usual, the step size should be small enough such that ¢||Vg| < 1 and p||Val| < 1. It is also
possible to use block-wise step sizes.

H.1.2 ON THE ESTIMATION OF ||V || AND ||V 4]|

First, the norm of a block diagonal matrix is the maximum norm of its blocks. Second, note that each
block has form ab” — uv™, which has at most rank 2. Thus, [ab” — uv” ||p/v/2 < ||ab” — uvT|| <
lab” — uv™|| . Hence, the maximum Frobenius norm of blocks gives a tight enough spectral norm
estimation for the two block diagonal matrices ||V || and ||V 4]|.

H.2 THE TWO-GRID PRECONDITIONER

Inspired by the algebraic multigrid method (AMG), we may precondition on two half-overlapped
coarse grids, i.e.,
Q=C1ACB&I)

where A and B are two small matrices, and C' is a circular-shifting matrix. The ‘coarseness’ is
determined by the size of I. Clearly, it reduces to a dense preconditioner for I = 1. When the size
of I is large, we only precondition the ‘low-frequency components’ of the Hessian.

The popular Kronecker product preconditioner also can be viewed as preconditioning on a coarse
grid. Unlike AMG, we do not have a prolongation/interpolation step to refine the coarse error since
the target is the unknown Hessian.

H.3 PRECONDITIONING AS PCA OR KARHUNEN-LOEVE TRANSFORM

H.3.1 THE CONNECTION TO PCA

If v is drawn from A/ (0, T), then we can simplify Eq. equationas below
E[hT Ph +vTP~'] = E[hT Ph] + E{trace[P~ vvT|} = E[hT Ph] 4 trace(P~)

Then, the optimal P simply whitens h as shown by E[(Ph)(Ph)T] = I. Thus, the optimal precon-
ditioner is performing PCA (principal component analysis). We can even reformulate the precondi-
tioner estimation problem as an online PCA one with a cost

E[|QTQh|[*] — 4log | det Q| @21)

However, fitting () in this way converges slowly as this criterion does not exploit all the information
encoded in pair (v,h). Still, this connection suggests that we could use certain PCA tools for
preconditioning.

40

Under review as a conference paper at ICLR 2024

H.3.2 KALEIDOSCOPE, FFT AND DCT MATRICES

If the Hessian has certain sparsities, a Kaleidoscope matrix like () could do a good job, e.g.

for a 7 x 7 Hessian. Theoretically, such a preconditioner has complexity O(N log, N) foran N x N
Hessian. But, practically, this will take a lot of effort to achieve such efficiency. For now, I rely on
the FFT libs to approximate the KLT.

H.3.3 DCT PRECONDITIONER

Practically, DCT is asymptotically equivalent to KLT for a first-order Markov process with strong
adjacent sample correlation. If this is the case, a diagonal or very narrow band preconditioner is
sufficient. If the Hessian, I, has certain sparsity or regularity like nature signals, e.g., images, then
UHUT will be a highly sparse matrix with most energies concentrated on the upper left corner,
where U is the DCT matrix. Hence, we could try a preconditioner like
Q=AUB

where A is a proper sparse matrix, and B is a diagonal matrix for preconditioning the Hessian-vector
products. We call it a DCT preconditioner as U HU T performs a 2D discrete cosine transform of H.
Since we are to fit A and B on Lie groups, thus let

dQ =dAUB + AUdB
=£1AUB + AUBé&,
=&61Q + Q&
Now, it is clear that we can use the same equation in equation [I9]for gradient derivation.

H.4 PRACTICAL CONSIDERATIONS AND LIMITATIONS

To facilitate the implementations, we may require N to have special values, e.g., mod(N, K) = 0
with block size K, or N = 223°5°7% for most FFT libs. If N is not such a number, we could
augment the cost as

L(0) +0.5079
and optimize vector [, 1], which has a conformable length. This trick works well in practice.

All the preconditioners here have certain limitations. Without knowing the block structure, a band
preconditioner scales poorly. The DCT preconditioner indeed can de-correlate the input features
very well, and thus is good for layer-wise preconditioning, but not necessarily good for precondi-
tioning the whole flattened gradient. Similar to the AMG method, it is very difficult to define a
reasonable coarse grid for preconditioning without knowing the connection of weights in the net-
work.

I PRECONDITIONER ON A SINGLE LIE GROUP

1.1 DIAGONAL/JACOBI PRECONDITIONER

Possibly the simplest preconditioner with closed-form solution p = \/E[v ® v]/E[h ® h], where
P = diag(p). A Jacobi preconditioner is not very competitive. Still, it is simple enough for perfor-
mance study. We have compared three ways for the estimation of P: closed-form solution where
expectations are replaced with sample averages; updating with a single-step size as
pep-puh®op-—v*0p)op

where y is small enough such that g max [h? ® p — v? @ p| < 1; and updating with element-wise
step size as (reduce to sign SGD)

pp—pOsign(h’©p—v?0p)Op
where 0 < p < 1. The closed-form solution performs the best, and the single-step size updating
may perform slightly better than the element-wise one.

41

Under review as a conference paper at ICLR 2024

T

closed-form solution
element-wise step size |-
one single step size

preconditioner fitting loss

102 10° 10
number of iterations

Figure 16: Comparison of three diagonal preconditioner fitting methods on a random dense 100 x 100 Hessian
with eigenvalues drawn from the standard uniform distribution.

1.2 X-MATRIX PRECONDITIONER

This simple preconditioner brings a short-cut connection among gradients far away in positions and
performs better than the diagonal one. The X-shape can be nested to knit a fishnet-like precon-
ditioner. The butterfly matrices also work well. These simple preconditioners are very light and
can be readily adopted to boost the performance of SGD with marginal overhead. Note that these
preconditioners can be reduced to the direct sum of smaller groups, i.e., they are reducible.

Diagonal/Jacobi : |: .]
X shape matrix : |: . :| , |: :|

Fishnet like matrix :

1.3 TRIANGULAR MATRIX PRECONDITIONER

Previously proposed in|Li (2015)) called a dense preconditioner. This calculated the full rank precon-
ditioner and is only applicable to small-scaled problems due to memory and complexity constraints.

J THE GROUP OF X-MATRIX

All invertible matrices with form
A = diag(a) + adiag(b)

form a Lie group, where adiag means skew- or anti-diagonal. Clearly, A can be reduced to the
direct sum of [N/2] smaller groups. We assume that the central element of b is zero for A with odd
dimensions.

Short-hands:

ab denotes the element-wise product of two vectors a and b.

‘@ denotes the flipped version of a.

Projy (A) denotes projecting a dense matrix A onto an X-matrix.

Then, we have properties:

42

Under review as a conference paper at ICLR 2024

[diag(a) + adiag(b)]z =az + b'T
diag(a) diag(b) =diag(ad)
diag(a) adiag(b) =adiag(abd)
adiag(a) diag(b) :ad1ag(a<3)
adiag(a) adiag(b) =diag(a)
]

[diag(a) + adiag(b)] [diag(u) + adiag(v)] =diag(au + b%0) + adiag(av 4 b%)

%
- a b
[diag(a) + adiag(h)] " =diag (—;) — adiag <ﬁ)
a'a —bb a'a —bb
[diag(a) + adiag(b)]” =diag(a) + adiag(?)
[diag(a) + adiag(b)[| <||diag(a)|| + [|adiag(b)[| = max [a| + max [b|
|diag(a) + adiag(b)|| > max(max |a|, max |b|) (for even dim)
Projy (ab”) =diag(ab) + adiag(a?) (for even dim)

where for odd dimensionalities, the central element of adiag(-) must be set to zero so that the last
two equations hold as well.

43

	Introduction
	Background
	Notations
	The Preconditioner Fitting Criterion
	Preconditioners on Lie Groups

	General Purpose Lie Group Preconditioners
	Sparse Matrix-Free Preconditioners
	Low-Rank Approximation Preconditioner

	Practical Considerations
	Empirical Results
	Performance Study with Toy Examples
	CIFAR-10 and Friends on ResNet18
	Language Modeling
	Reinforcement Learning
	Towards Understanding Second Order Optimizers

	Conclusion
	Reproducibility
	On the Convergence of PSGD
	PSGD's preconditioner P recovers H-1
	Linear Convergence of PSGD under General Setting
	Quadratic Convergence of PSGD under Convex Setting

	Construction of matrix-free preconditioner
	Construction of low-rank approximation preconditioners
	Notations
	The rotation ambiguity and Schur decomposition

	Low-rank approximation preconditioner fitting
	Fundamental operations on Lie Group
	The concept of group generator
	The gradients for preconditioner updating
	Gradient with respect to B
	Gradient with respect to U on group AV(U)
	Gradient with respect to V on group AU(V)

	Algorithm
	More Experimental Results
	Noisy Label CIFAR10
	MNIST Handwriting Digit Recognition
	Toy Example: Investigating the Flatness of SAM based solution
	CIFAR10 Image Classification with ResNet18
	A Large-Scale Logistic Regression Problem
	Forgettability & Uncertainty: Rank Analysis
	Effect of Rank on XOR
	Potential Social Impacts and Limitations
	Hardware & Software

	More on: Lie Groups, Preconditioners and Practical Considerations
	The Need for a General Purpose Preconditioner
	Practical considerations

	Hessians with certain structures
	Band Hessian
	Gradients
	On the estimation of B and A

	The two-grid preconditioner
	Preconditioning as PCA or Karhunen–Loeve transform
	The connection to PCA
	Kaleidoscope, FFT and DCT matrices
	DCT preconditioner

	Practical considerations and limitations

	Preconditioner on a single Lie group
	Diagonal/Jacobi preconditioner
	X-matrix preconditioner
	Triangular matrix preconditioner

	The group of X-matrix

