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4
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Fact: (DirectX, developer, Microsoft) 

Petroni et al., 2019. Language Models as Knowledge Bases?
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Prompts Matter!

9

[MASK] released the DirectX Microsoft

DirectX was developed by [MASK] Intel ❌

✅

Jiang et al., 2020. How Can We Know What Language Models Know?
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[X] is [MASK] citizen

LPAQA (Jiang et al., 2020): 
mined & paraphrased

[X] is a citizen of [MASK]

AutoPrompt (Shin et al., 2020): 
discrete-token search 

[X] m3 badminton pieces internationally representing [MASK]

Why do prompts have to be a sequence of tokens?
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[X] is [MASK] citizen

LPAQA (Jiang et al., 2020): 
mined & paraphrased

[X] is a citizen of [MASK]

AutoPrompt (Shin et al., 2020): 
discrete-token search 

[X] m3 badminton pieces internationally representing [MASK]

OptiPrompt (ours): 
dense-vector optimization

[X]                                                           [MASK]
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[X] ... [MASK]
Prompt definition

10 dense vectors
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[X] ... [MASK]
Prompt definition

[X] [MASK]

[X] [MASK]is citizen



OptiPrompt
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[X] ... [MASK]
Prompt definition

Training

1,000 (s, o) pairs for each relation r
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Results on the LAMA Benchmark

Can we guarantee the prompts that are optimized on a 
training set recover information only from LMs?

optimized on a training set

Results are based on BERT-base
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Training Testing

Hewitt and Liang, 2019; Pimentel et al., 2020; Voita and Titov, 2020; Zhu and Rudzicz, 2020

Disentangle the information encoded in the representations from 
the information learned by the probe.
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Testing

John Milton ?

place_of_birth
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1. Unseen facts can be predicted from training data

2. Prompts can exploit training data
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Facts can be predicted from training data

Majority model

● always predicts the majority class

● 17.3% accuracy in LAMA

Imbalanced distributions

● native_language: 60% French

● continent: 72% Antarctica
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Naive Bayes model

● simple bag-of-words classifier

● 24.6% accuracy in LAMA

Correlations between subject tokens and object tokens

● Chevrolet manufactures the Chevrolet Impala

● Ghana Football Association is a member of FIFA
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Prompts can exploit training data



Random controls

● Random Model: optimize prompts on a random initialized 

model

● Random Embeddings: optimize prompts on a model with 

random embeddings
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Prompts can exploit training data



Results of random controls

39



Results of random controls
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Prompts can achieve non-trivial 
accuracies even on random models
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Over-predicting the majority class
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We cannot interpret the LAMA probing results of optimized 

prompts as a lower bound of the amount of knowledge in BERT.
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1. How to generate good prompts for factual probing?

2. Can we trust the probing results of optimized prompts?

3. How can we better interpret the probing results?
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Partition LAMA examples

1. LAMA-Easy

○ Facts that can be predicted by the Naive 

Bayes model or by fine-tuning a random 

BERT on the training set

2. LAMA-Hard

○ The remain facts
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Learning from 
training set



Results on LAMA-Easy and LAMA-Hard
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Learning from 
training set

Learning to recall facts



Conclusions

1. OptiPrompt: a simple & effective approach to generate prompts

2. Optimized prompts can exploit training data to make correct 

predictions

○ Probing results cannot be directly interpreted as a lower bound of 

amount of knowledge stored in the LM

3. Random controls can help us better interpret the probing results
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Thank You!

Paper: https://arxiv.org/pdf/2104.05240.pdf

Code: https://github.com/princeton-nlp/OptiPrompt 
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https://arxiv.org/pdf/2104.05240.pdf
https://github.com/princeton-nlp/OptiPrompt

