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A APPENDIX/SUPPLEMENTAL MATERIAL

A.1 USED SYMBOLS

Table 4: Explanation of the symbols used in the paper.
Used Symbols Descriptions
Go = {Wo, EO} Clean graph
Ve:t=1---T One-hot encoded node-7 features
FEy:t=1---T | One-hot encoded edge features

q(G, | Gt,l) Noise-driven forward diffusion process
j 2 (Gt—l | Gt) Reverse diffusion or denoising
n Number of states
Ci:i=1---B | i-th block containing nodes
G iU -UCk.

A.2 VARIATIONAL OBJECTIVE FOR STRUCTURED GRAPH DIFFUSION

To train the reverse denoising model py(G¢—1 | G¢) to approximate the true posterior of the forward
process ¢y (G¢—1 | G¢,Go), we derive a variational lower bound (VLB) on the marginal likelihood
log po(Gy). Starting from the evidence lower bound:

' po(Go,G1.1) po(Go, G1.7)
log s (G :10/ Gir | Go) - LEZ0T) 4 S By oy |log Lo OLT)
gpo(Go) g | 4o(Gr.7 | Go) 1o(Cr | Go) LT 46(G1.7]Go) gq¢(G1:T|GO)
3)
We decompose the joint distributions as:
T
po(Go, Grr) = po(Gr) [ [ po(Gio1 | Gy),
=2
T
45(Grr | Go) = [ 46(Gi | Gi-1,Go) “

Substituting into the ELBO:

T T
l%m%pﬁ%hwmm+ZMwwH<m—2mwwA@¢%ﬂ )

t=2 t=1

This can be rearranged as:
logpe(Go) > E%[logpg(GT) ~ loggs(G1 | Go) + ZIOg (GG ﬁéf‘f&)] ©6)

‘We reorganize the objective into reconstruction and KL terms:

T
log pe(Go) > Ey, [log pe(Go | G1)] — Z]E% [DkL (q¢(Gi—1 | Gt, Go) || pe(Gi—1 | Gt))]
t=2
—const. (7)
We define the total training objective as:
T
L(0) = Leee(0) + > £:(6) ®)
t=2
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where:

Erec(0> = *E% [logpﬁ(GO ‘ Gl)] (9)
Li(0) = By, [Dxr (g4(Gi—1 | G, Go) || pa(Gi—1 | Gt))] (10

This variational bound enables efficient training via a hybrid loss that balances data likelihood with
forward-reverse consistency across diffusion steps.

A.3 PARAMETERIZING FORWARD AND REVERSE TRANSITIONS IN DISCRETE GRAPH
DIFFUSION

We define the forward and reverse diffusion processes over graphs using a simplified discrete-time
formulation, following Zhao et al. Zhao et al. (2024). Our framework focuses on three key distribu-
tions: (i) the forward marginal ¢(G; | Gy), (ii) the backward posterior ¢(G;—1 | Gy, Go), and (iii)
the learned reverse process ps(Gy—1 | G¢). This design prioritizes memory efficiency and avoids
the complexity introduced by approximations such as those in D3PM Austin et al. (2021).

Since the forward process applies noise independently to all nodes and edges (as shown in Eq. (1)),
we can model these three distributions by factorizing over individual elements. Let x € V, U &, be a
discrete random variable with one-hot encoding and categorical distribution: « ~ Cat(x; p), where
p €]0,1]" and 1T p = 1. Then the probability of observing a one-hot state = under distribution p
is ¢ ' p. The corruption step g(x; | x;—1) can be expressed using a transition matrix Q; € [0, 1]**"
as:

q(ze | 2e-1) = Cat(zy; Q) we—1) (11

Let the composed transition matrix be Q, = Q1Q> - - - Q;. Then, the forward marginal becomes:

q(x | xo) = Cat(xt;a;rxo) (12)

The backward posterior is:

Qixy @@:1950) (13)

q(zi—1 | 24, 20) = Cat (%1; —
] Q, xo

This applies to both node states z = v! € V; and edge types © = eﬁ’j € &;, with the same

formulation. We optionally use shared transition matrices QY and Q¢ for all nodes and edges,
respectively. See the next section for derivation. To define a uniform and information-less terminal
distribution ¢(Gr | Gp), we choose:

Qi =l +(1—a)lm’ (14)

where a; € [0,1] is a time-dependent noise schedule, and m € [0, 1]™ is the uniform categorical
distribution over n states, such that m; = % For reverse modeling, we use:

Po(ri—1| Gy) = ZQ(%A | z¢,0) - pg (0 | Gi) (15)

Zo

This formulation enables us to parameterize py(z¢ | G¢) with a neural network and compute
pe(xi—1 | G) via marginalization over the clean state space using Eq. (3).

A.4  DERIVATION OF ¢(z¢—1 | T+, Z0)

We begin by defining the composite transition matrix over steps s through ¢ as @ﬂs =
QsQs+1 -+ Q. For brevity, we denote @, = (Qy and ;_; = Q;_y)p. Our goal is to compute
the posterior distribution g(x:—1 | 2+, xo), assuming the forward process has the Markov structure
given by:

q(xs | 1) = Cat(wy; Qf x4-1) (16)

14
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From the chain rule of probability:

q(ze | 2e1)q(ze—1 | 70)

e L) = T ) 0
We expand each term using the forward marginals:
q(zi-1 | @o) = Cat(zs—1: Qo) (18)
gz, | 20) = Cat(x; G, o) (19)
Thus, the numerator becomes:
4 | 2i-1)g(@is | 20) = (@] Q w11) - (2, Q;_y0)
‘We now marginalize over all possible x;_; to normalize:
—T
q(ri—1 | T, 0) = M
x{ Q; o
Hence, the posterior is a categorical distribution over z;_;:
—T
q(zi—1 | T4, T0) = Cat (%—1; W) (20)
x; Q; To

A.5 PROOF OF PERMUTATION INVARIANCE IN BLOCKWISE GRAPH GENERATION

To establish that py(G) is an exchangeable probability distribution over graphs, we aim to prove that
for any permutation matrix P, the model satisfies

po(P* G) = po(G), 21
where P * GG denotes the graph obtained by permuting both node indices and corresponding edge
entries in G.

Our generative model factorizes the likelihood of a graph G based on block-wise decomposition
induced by a structural ranking function . Let By, ..., Bk, be the node subsets (blocks) ranked
by . The generation is performed sequentially over these blocks:

Hpe Bi] | G[Bui1], G[Bri 1]\ G[By]) - (22)

Permutation Equivariance of the Indexing. Each block B; is determined from G using ¢ (G),
which is permutation-consistent (Theorem 1). Thus, for any permutation matrix P, we have

Bi(PxG) =Px*B;(G). (23)
Furthermore, indexing operations on graphs are equivariant:
P xG[B;] = G[P * B,]. (24)

Exchangeability of Block Generation. Consider:
Kp
po(P*G) =[] po (P*GI[B/]| P+ G[Brs 1),
t=1
* (G[Bra—1] \ G[B])) (25)
Since our model is constructed to be equivariant with respect to permutations, each conditional
satisfies:
po (Px X | PxY)=py(X|Y), (26)
for arbitrary subgraphs X, Y. Applying this recursively yields:

o(PxG) Hpg Bi] | G[Bri_1], G[Bri_1] \ G[Bi]) = pa(G). 27)

15
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Marginalization of Conditioning Sets. For further rigor, define the conditional term
po (G[Bi] | G[Br.i—1] \ G[Bi], G[B1.i-1]) - (28)
Let Hp,., , denote all other nodes outside B;.;. Then,
pe (G[Bi] | G[Br.i-1], G[Br:i-1] \ G[Bi])
— [ 50 (GIB) | GlBris) M) - (s M 29)

Using the fact that the generative model’s forward noise and reverse denoising chains are designed
to be permutation equivariant, we have:

T
po(G) = / (Hr|G) [ [ p(Hi-1|Hy) dHy.r. (30)
t=1

Then for any P:

T
po(PG) = [ plHrlPG) [ pltHo|H:) dHr, G

t=1

T
:/p(P*HT|G)Hp(P*Ht,l‘P*Ht) dleT, (32)

t=1

T

/ (121) [ [ oHoca ) atrir = (), (33)

This confirms that pg(G) is invariant under any node permutation P, establishing exchangeability.

A.6 UNIFIED TRAINING AND GENERATION FOR BLOCK-WISE STRUCTURED GRAPH
DIFFUSION

Algorithm 5 Unified Training and Generation Procedure for Block-wise Structured Graph Diffusion

Require: Graph G, max diffusion steps 7', max hop K}, , block size predictor gg, denoising model £,
1: Obtain node ordering v from ordering network ¢ (Algorithm 1)
2: Partition G into ranked blocks [Civenn, CKB] using ¢
3: fori = 1to Kp do
© G+ g0(Geioa)

4
5: M <+ mask(G[C1::] \ G[C1:i—1])

6 Samplet ~U(1,T)

7o G[Ci] = MO a(G[Ci]) + (1 — M) O G[C]
8 X< fp(Cle])

9: Compute Z?L and ZiCh using Eq. (2), Eq. (3)

10: end for x

11: Minimize total loss: >_;-5 ¢;

12: G+ 0,i+ 1

13: Sample n ~ go(Q)

14: while n > 0 do

15: Add block C; with n nodes to G

16: M+ mask(G[C;] \ G[C1:5—1])

17: G + Noise(M)

18:  forj=1t0Tdo

19: p < fo(G)

20: Sample S from p B
21: G—MOS+(1-M)OG
22:  endfor_

23: G+ G

24 Sample n ~ go (G)
25: i+ i+1

26: end while

27: return G

16



Under review as a conference paper at ICLR 2026

A.7 PROOF OF THEOREM 1

Consider a sequence of transition matrices {%, e ﬂT}, each representing a categorical diffusion
step. The matrices should be constructed such that, at long time horizons (t — T), the resulting dis-

tribution converges to a known steady-state distribution . € D, where DX is the K-dimensional
probability simplex. We define this limiting behavior as:

. o T
lim 7 =1p (34)

This ensures that every row of the composed matrix approaches p, making the distribution station-
ary. To enforce this convergence in a controllable way, we propose defining each transition matrix
7, as a convex blend between the identity matrix and the rank-1 matrix 1y ':

Fi=m-T+ (1 —y)-1u", v €[0,1] (35)

The accumulated transition from time step s to ¢, denoted as «2\5, can be recursively written as
follows:

Z\s = Vt|s * I+ (1 - ’Yt\a) : ]-HTa (36)
where the effective decay factor |, is the product of all decay terms from step s + 1 to ¢:

t

vis = [] w (37)
r=s+1
This implies:
V¢ = V|0 = Ve|s * Vs (38)

With this formulation, we ensure that as ¢ — T, the accumulated matrix ‘%IO becomes fully rank-1,
and the variable distribution becomes indistinguishable from the stationary prior p. This gives the
reparameterized posterior for timestep ¢ — 1, used in computing the variational loss. We present
the argument for node representations; the same reasoning holds for structurally symmetric edges.
Suppose that two nodes u and v in a graph G are structurally indistinguishable. Then, there exists a
graph automorphism 7 € Aut(G) such that:

m(u) =v (39)

Let P,, denote the set of all node permutation matrices of size n X n. Assume we have a neural
function ¢ : G+ R™*< that is permutation-equivariant, i.e., for any permutation matrix 7 € C,,,
we have:

w(W*G):W*tb(G) (40)

Now, apply 7 as the permutation on nodes. Because 7 is an automorphism of G, it preserves the
graph structure, so m * G = G. Thus:

V(G) =9¢(r*G) =7 x(G) (41)
This implies:
v(@), =¥(6), (42)

In other words, nodes u and v, being symmetric under graph automorphism 7, are mapped to iden-
tical representations by the function .

A.8 PROOF OF THEOREM 2

Let o € Auto(G). By definition, cxG = G(the attributed graph is unchanged by o). By permutation
equivariance of @,

B(G) = B(o+G) = o x D(G). (43)

17
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Unpacking the rightmost equality component-wise over nodes gives, for every w € V,
G = (0 %0(G)), = 0(G), 1(,) (44)

Equivalently, for every w, ®(G) = ®(G),. Now fix any two nodes u,v € V in the same

o(w)
Aut(G)-orbit. By definition, there exists o € Aut(G) with o(u) = v. Applying the relation above

with w = u yields
(I)(G)v = ¢(G>U(u) = (I)(G)uy 45)

establishing ®(G), = ®(G),. The argument for edge embeddings is identical: let ®(¢) map G
to edge-wise outputs indexed by ordered (or unordered) pairs. Equivariance acts on pairs via 7
(i,5) = (m(i),7(j)). For any automorphism o, ®(9)(G) = o x ®(©)(G), hence () (G)(; ;) =
) (G) (5(4),0(;))- If (u,v) and (', v") are in the same orbit, choose o with o'(u) = v/, o(v) = v/
to conclude equality of their edge embeddings. Since the derivation uses only (1) o x G = G for
o € Aut(G) and (2) equivariance of ®, the result is independent of depth/width/expressivity.

Implication. (/) On features. The statement assumes automorphisms preserve all attributes used by
®. If node/edge features break symmetry (e.g., unique IDs), then Aut(G) shrinks accordingly; the
conclusion applies with respect to that reduced group. (2) Symmetry cannot be broken internally.
The proof formalizes the impossibility of distinguishing nodes within an automorphism orbit by
any permutation-equivariant architecture alone. To separate orbit-mates, one must inject symmetry-
breaking signals (positional encodings, random IDs, anchors, or global tie-breakers); and (3) Group-
theoretic view. The equality ®(G) = o x ¢(G) ¥V 0 € Aut(G) means ®(G) lies in the fixed-point
subspace of the representation of Aut(G). Constancy on orbits is exactly the characterization of
such fixed points by Burnside’s lemma/orbit—stabilizer intuition.

A.9 PROOF OF THEOREM 3
To demonstrate that the learned probability distribution Py (G) over graphs is exchangeable, we

must verify that for any node permutation matrix = € C,,, the group of node permutations, it holds
that:

]P¢ (7‘( * G) = Pq', (G) (46)
Here, m x G denotes the permuted graph, where nodes and their relations (or, edges) are permuted

accordingly: mx G = (77 Vim - E- 7TT). Assume that the generation model produces a graph via a
sequential composition of subgraphs defined by structural neighborhoods or partitions, such that:

K
Py (G) = [[Pg(G<i\ Giz1 | G<izn) (47)

i=1

Here, G<; denotes the union of the first ¢ block C; - - - C; (e.g., neighborhoods) induced by a binary
mask over nodes. This indexing operation is permutation-equivariant:

T (G<i) = (W*G)Si (48)

Additionally, suppose that each subset (7T*G) -, is selected via a deterministic function of the graph

structure (e.g., via neighborhood expansion or hop-based grouping), which is also equivariant under
permutation. Then:

(W*G)<i = W*Ggi (49)

18
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Now evaluate the generative model on the permuted graph:

K

Pd,(’lT*G) :HP'i’((’/T*G)Si \ (W*G)Si,1 | (’/T*G)Sifl)
1;1
=[IPs(m* (G<i\ Geimn) | T % G<in) (50)

i=1
K

:Hqu(ﬂ'*Ai | 7r-Q<i),
=1

where A; = G<i \ G<i—1, and G; = C1J---|JCi—1. If the conditional probabilities Py, are
defined through permutation-invariant functions (e.g., based on multi-set or degree statistics), then
we have:

Py (m* A; | 7% G<i) =Py (A | G<y) (51)

Thus,
Py (m* G) =Py (G), (52)
which confirms the probability distribution modeled by Pg is invariant under node permutations,

i.e., it is exchangeable.

A.10 DERIVING A BLOCK-CAUSAL MATRIX PRODUCT

Let X € R"*% and Y € R?*™ be two matrices. Define the standard matrix multiplication entry as:
[Xy]ij = (%i,¥3), (53)

where x; denotes the i-th row of X, and y; is the j-th column of Y. Now, in a block-wise AR
setting, we introduce a function b : {1---n} — N assigning a block index to each row/column.
The matrix entry (i, J ) should depend only on features from block indices < max (b(?) , b(])) To

ensure this, define a binary mask matrix M € {0, 1}"*4, where:

My = {1 if b(2) 2 b(k) (54)
0 otherwise

For a safe computation of the entry Z;; under this constraint, we define:

Zij = (% © (i V 1), ¥;5) (55)

Here, p; and p; are binary indicator vectors selecting valid components, and ® denotes the
Hadamard (element-wise) product, while V is the element-wise logical OR. We can expand this
expression as:

Zij = (% O pa,yj) + (X6, 55 © py) — (X © pa, y; © pj) (56)
In matrix form, letting Z be the final output:
Z=XoMY+X(YoM') - XoM)(YoMm') (57)

This formulation ensures that information flows only within valid block boundaries, enabling paral-
lelizable yet causally consistent matrix computation.

A.11 STRUCTURED GRID GRAPHS

This section presents a few more structured artificial grid generated using the proposed PARDIFF
algorithm:

19
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Figure 2: Non-curated structured grid graphs generated by our method, trained with 50 diffusion
steps per block. The samples display mostly regular grid-like topology with occasional geometric
perturbations, demonstrating the model’s ability to capture both structure and variation without any
filtering.

A.11.1 AUTOREGRESSION IN DIFFUSION MODELS: ESSENTIAL OR EXCESS?

Although denoising diffusion models are naturally permutation-invariant, we examine whether in-
corporating an AR structure offers tangible benefits. Specifically, we investigate whether decom-
posing the graph generation process into block-wise conditional distributions—based on a structural
partial order—can lead to improved quality, efficiency, and stability. To this end, we perform an
ablation study by varying the hop radius K},, which defines the granularity of autoregressive blocks.
When K, = 0, the graph is treated as a single undivided structure—this corresponds to pure dif-
fusion without any AR decomposition. Larger values of K}, yield finer block-wise partitions, in-
troducing more AR steps. We also evaluate a variant where diffusion is performed without AR but
with a larger number of denoising steps, to control for potential improvements from increased sam-
pling. Across all settings, we report molecule validity, uniqueness, atomic and molecular stability,
and the FCD. The results, summarized in Table 5, indicate that autoregressive diffusion significantly
enhances generation quality. Notably, PARDIff with K} = 3 achieves the best performance with
fewer total diffusion steps compared to non-AR setups. This confirms that AR decomposition pro-
vides stronger inductive bias, improved stability, and more efficient training—even in permutation-
invariant settings.

Table 5: Ablation on QM9 under different autoregressive granularities Kj. More blocks (higher
K}) improve performance.

Ky, Steps Blks Size Val. Uni. Mol-Stab Atm-Stab FCD
0 140 1 23.4 93.1 95.7 76.2 97.5 2.15
0 280 1 234 94.0 96.2 78.1 97.8 1.84
0 490 1 234 94.8 96.6 78.3 98.0 1.69
1 140 4.1 5.7 97.3 96.7 86.8 98.4 1.21
2 140 6.2 3.8 97.5 96.5 87.0 98.6 1.13
3 140 8.0 3.1 97.8 96.9 88.2 98.9 0.96
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Figure 3: Unfiltered grid-like graphs generated by the eigenvector-enhanced model trained with 50
steps per block.

Diffusion Step 1 Diffusion Step 2 Diffusion Step 3 Diffusion Step 4

Figure 4: Comparison of autoregressive and diffusion-based graph generation. The top row illus-
trates autoregressive generation, where nodes and edges are sequentially added in each step. The
bottom row shows diffusion-based generation, where the graph is iteratively refined from a noisy
initialization toward the target structure.

A.12 ABLATION STUDY

Table 5 investigates the effect of varying autoregressive granularity, controlled by the number of
hierarchical blocks K}, on generation quality in the QM9 dataset. When K} = 0, the model gen-
erates the entire graph in a single step, yielding lower performance across all metrics. Increasing
the number of diffusion steps improves results incrementally (e.g., FCD drops from 2.15 to 1.69
as steps increase from 140 to 490), but this comes at the cost of significantly higher computational
burden, with no structural decomposition. In contrast, introducing even a moderate level of autore-
gressive structure (K, = 1) immediately boosts performance across all axes—rvalidity, stability, and
FCD—indicating that decomposing the graph into substructures introduces useful inductive bias that
guides generation more effectively.
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Figure 5: Sample complex molecular structures are generated using PARDIFF.
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Figure 6: Sample complex molecular structures are generated using PARDIFF.

As Kj, increases further, the model progressively refines its granularity of generation, leading to
more stable and chemically plausible molecules. At K; = 3, where the graph is generated in 8
blocks, the model achieves its best overall results: highest molecular validity (97.8%), atom stabil-
ity (98.9%), and the lowest Fréchet ChemNet Distance (0.96). This trend demonstrates that finer-
grained autoregressive modeling enables the diffusion process to better condition on intermediate
structural context, capturing both local and global dependencies. Figures 8 through 13 show repre-
sentative samples produced by our model, covering a wide range of organic molecules, including
acids, amines, aromatics, and biologically relevant compounds. By progressively adding blocks
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Figure 7: Sample complex molecular structures are generated using PARDIFF.
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Figure 8: Sample complex molecular structures are generated using PARDIFF.

of symmetrically ranked nodes and leveraging a permutation-invariant diffusion process, PARDIFF
preserves both structural diversity and chemical consistency during generation, capturing intricate
bonding patterns with high fidelity.

Corollary 1. Expressivity Bound via WL Test: Since permutation-equivariant neural networks can-
not distinguish nodes within the same automorphism orbit of G, their discriminative power is upper-
bounded by the coarsest refinement of these orbits achievable through neighborhood aggregation.
In particular, the expressive capacity of message-passing GNNs aligns with the 1-dimensional We-
isfeiler—Lehman (1-WL) test: u ~wL v = ®(u) = ®(v).
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Figure 9: Sample complex molecular structures are generated using PARDIFF.

PARDIff Performance Over Diffusion Steps

25 50 75 100 15 50 5 200
Diffusion Steps per Block

Figure 10: Non-curated structured grid graphs generated by PARDIFF, trained with 50 diffusion
steps per block. The samples display mostly regular grid-like topology with occasional geometric
perturbations, demonstrating the model’s ability to capture both structure and variation without any
filtering.

Proof. We prove the 1-WL implication by induction over layers and then conclude the orbit claim.
Let w € V is the raw input features of one specific node of the graph G = (V, E). x,, € R% is
the input feature vector of node w. For example, in a molecular graph, x,, might encode atom type,
charge, etc. Let the MPNN have L layers with following updates:

h© = ¢ (x,); W) = UMD, AP t € N(w))), (58)
where A is a permutation-invariant multiset aggregator and U a shared update; ®(w) = hq(,)L). Let
c£f ) denote the 1-WL color of node w after k rounds:

0 = Hash(x,,); k1) — Hash(cgf), cgk): t e N(w)). (59)

Induction hypothesis. Suppose for some k < L; cq(f) = cs,k) — hSﬁ) = hgﬂ).
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Figure 11: Illustration of permutation-consistency (equivariance, in Theorem 2) in node ranking
using a 4 node graph. Left: The original graph G, where each node is annotated with its ranking
value ¢ (u). Right: The permuted graph 7 x GG, obtained by swapping nodes 2 and 3. The ranking
values move consistently with the node labels, showing that 1 (W*G) = mx)(G). The structure and
relative ordering are preserved under relabeling, demonstrating the permutation-invariance property
of Algorithm 1.

4

1. Base (k = 0). If CSP) = Q(,O), then x,, and x, are in the same attribute class; since 1) is
shared, hg)) = (xy) = P(xy) = hgo).

2. Step (k — k +1). Assume D = ), By 1-WL’s update, we must have both
B =B et e M)} = {eV: t e N(v)} (60)
By the induction hypothesis, c( ) = c( ) implies h&k) = hg,k). Moreover, the multiset equality of

neighbor colors implies (again by the hypothesis applied elementwise) that the multisets of neighbor
embeddings coincide:

(Mt e Nw)) = () t e N(v)}. 61)

Applying the permutation-invariant aggregator A to equal multisets yields equal aggregated mes-
sages, and then the shared update U gives:

WY = U (b, A" 1 € N(w))
—UMmP, AMP 1 e M) = h{HD.

Thus the claim holds for £ 4+ 1. By induction, for any L, u ~w, v — h&L)
O(u) = P(v).

Automorphism orbits. 1-WL is permutation-invariant; in particular, it assigns equal colors to nodes
in the same automorphism orbit (an automorphism maps neighborhoods bijectively at every radius).
Hence the 1-WL partition is a coarsening of the orbit partition, and the argument above shows
MPNNSs cannot refine beyond the WL partition. Therefore permutation-equivariant MPNNs cannot
distinguish nodes within the same orbit, nor any pair that 1-WL fails to separate. This proves the
corollary. O

Corollary 1 makes explicit that the theoretical ceiling for most GNN architectures is the WL color
refinement procedure. (1) Automorphism orbits define the hard limit: nodes indistinguishable under
symmetry will always collapse to identical embeddings. (2) The WL hierarchy shows the algorith-
mic limit: even when automorphisms are broken, message-passing can at best refine equivalence
classes to the 1-WL partition; and (8) Consequently, higher-order GNNs (e.g., -WL-GNNs) or
symmetry-breaking techniques (e.g., random features, positional encodings, anchor nodes) are re-
quired to exceed the expressivity of 1-WL. This bridges group theory (automorphisms), graph the-
ory (orbit partitions), and deep learning (GNN expressivity), offering a unified lens on why standard
GNNess fail on hard isomorphism cases such as strongly regular graphs or CAI-FURER-IMMERMAN
(CFI) graphs Wang et al. (2023) (see Fig. 12) .
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Figure 12: Illustration of orbit equivalence under graph automorphisms. Shown is a 6-cycle graph
CsHg (Benzene ring), where nodes sharing the same color belong to the same orbit under the au-
tomorphism group Aut(G). Any permutation-equivariant GNN assigns identical embeddings to
nodes within the same orbit, regardless of its depth or capacity. This highlights the fundamental
expressivity limitation: GNNs cannot distinguish structurally symmetric nodes without additional
symmetry-breaking features or higher-order mechanisms (e.g., /{-WL refinements).
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