
Supplementary materials for
Quantizable Transformers: Removing Outliers by

Helping Attention Heads Do Nothing

Anonymous Author(s)
Affiliation
Address
email

A Additional graphs from outlier analysis1

In this section, we present additional graphs from our outlier investigation in Section 3 for BERT and2

vision transformer.3

(a) (b) (c)

Figure 1: A summary of several outlier statistics recorded from ImageNet validation set on ViT.
(a) Average infinity norm of the output of each attention layer. (b) A histogram of outlier counts
in attention layer #10 vs. hidden dimensions. We use zero-based indexing for dimensions. (c) A
heatmap of outlier counts in attention layer #10 vs. patch positions.

BERT Recall from Figure 1 that all the outliers are only present in hidden dimensions #123, #180,4

#225, #308, #381, #526, #720 (with the majority of them in #180, #720). These hidden dimensions5

correspond to attention heads #2, #3, #4, #5, #6, #9, and #12. In Figures 9 and 10 we show more6

examples of the discovered self-attention patterns for attention heads #3 and #12 (↔ hidden dim #1807

and #720, respectively). We also show self-attention patterns in attention heads and layers which are8

not associated with the outliers in Figures 11 and 12, respectively.9

ViT Figure 8 further shows that there are a lot of similarities in the outlier behavior in the vision10

transformer, compared to BERT. The strongest magnitude outliers generally happen in the later layers,11

peaking at layers #10 and #11. The majority of outliers (> 99%) are only ever happening in only 1012

hidden dimensions, notably in dimensions #48 and #43, which corresponds to the attention head #1.13

Finally, averaged across the entire ImageNet validation set, the outliers seem to be concentrated at14

the boundaries of the image, which suggest a strong correlation with the background (and a negative15

correlation with the object, which is usually in the center of the image in the ImageNet dataset).16

In Figures 13 and 14, we show more examples of outlier and self-attention patterns in the attention17

head #1 (↔ hidden dimensions #48, #43) for a random subset of images from the ImageNet validation18

set (in layers #10 and #11, respecively).19

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

B Detailed results20

In this section, we provide extended results for each model, including the used hyperparameters and21

other design choices. We also present some additional ablation studies.22

B.1 Gating architectures23

Configuration G
Memory overhead (per attention layer)

extra parameters # extra tokens

Linear nheads × Linear(dhead → 1) nheads(dhead + 1) ∼ 1
MLP nheads ×MLP(dhead → nhid → 1) nheads(nhid(dhead + 2) + 1) ∼ nhid

All-heads-linear Linear(dmodel → nheads) nheads(dmodel + 1) ∼ nheads

Table 1: An overview of the gating function parameterizations and their memory overhead explored
in this paper.

We investigate the choice of several gating functions, summarized in Table 3. The configuration24

“MLP” parameterizes each Gi with a feed-forward net with one hidden layer of size nhid and a25

ReLU non-linearity [44]. We also explore what happens if we allow the mixing of the representation26

from different attention heads in the “All-heads-linear” setting, where we use a single linear layer to27

produce the gating probabilities for all attention heads at once. All three options are tested below.28

Unless explicitly stated otherwise, we initialize the bias of the gating function to zero (i.e., binit = 0,29

πinit = 0.5).30

B.2 BERT31

Method FP16 ppl.↓ Max inf norm Avg. Kurtosis W8A8 ppl.↓
Vanilla 4.49±0.01 735.0±54.9 3076±262 1294±1046

CS (γ = −0.005) 4.44±0.02 406.6±35.2 1963±753 75.27±39.57

CS (γ = −0.01) 4.35±0.01 198.3±78.7 1581±839 7.06±2.37

CS (γ = −0.015) 4.37±0.01 38.9±7.9 165±34 4.54±0.01

CS (γ = −0.02) 4.39±0.02 31.7±6.3 90±20 4.56±0.02

CS (γ = −0.025) 4.39±0.00 21.5±1.5 80±6 4.52±0.01

CS (γ = −0.03) 4.41±0.01 20.4±0.2 79±6 4.55±0.01

CS (γ = −0.04) 4.51±0.05 19.8±9.0 85±7 4.65±0.06

GA, Linear (πinit = 0.25) 4.49±0.00 139.8±62.3 739±412 5.05±0.27

GA, Linear (πinit = 0.5) 4.48±0.00 177.3±33.2 652±81 5.13±0.15

GA, Linear (πinit = 0.75) 4.49±0.00 71.4±49.9 262±147 4.88±0.22

GA, Linear (πinit = 0.9) 4.49±0.00 171.5±8.8 559±141 5.15±0.03

GA, MLP (nhid = 4) 4.45±0.03 39.2±26.0 201±181 4.65±0.04

GA, MLP (nhid = 64) 4.49±0.01 117.0±48.3 507±167 4.77±0.01

GA, All-heads-linear 4.49±0.01 58.3±41.2 334±321 4.67±0.03

Table 2: Main results for our proposed Clipped softmax (CS) and Gated attention (GA) applied
to BERT-base. We report the masked language modeling perplexity (ppl for short) on the English
Wikipedia validation set (floating-point baseline and W8A8 quantized model). We also report the
maximum ∥x∥∞ averaged across the validation set, and kurtosis of x averaged across all layers,
where x is the output of an attention layer.

Detailed results for BERT-base are summarized in Table 4. As we can see, across most of the settings,32

both of our methods significantly dampen the outliers’ magnitude, reduce the kurtosis, drastically33

improve the quantized performance, while maintaining and sometimes improving the FP16 perplexity.34

B.3 OPT35

Detailed results for OPT-125m are summarized in Table 5.36

2

Method LN γ wd FP16 ppl.↓ Max inf norm Avg. Kurtosis W8A8 ppl.↓
Vanilla ✕ 15.84±0.05 339.6±47.2 1777±444. 21.18±1.89

GA, Linear (πinit = 0.1) ✕ 15.61±0.05 35.6±4.5 42.4±22.9 16.41±0.18

GA, Linear (πinit = 0.25) ✕ 15.50±0.04 35.8±0.5 59.0±48.3 16.25±0.08

GA, Linear (πinit = 0.5) ✕ 15.54±0.01 46.5±5.0 40.6±8.9 16.30±0.01

GA, All-heads-linear ✕ 15.43±0.01 32.8±1.7 24.2±3 16.30±0.12

Vanilla ✓ 15.96±0.03 87.7±31.9 2080±1460 39.46±16.59

CS (γ = −1/512) ✓ 15.99±0.02 106.4±7.0 5764±2150 185.23±220.00

CS (γ = −2/512) ✓ 15.90±0.02 102.0±27.0 11290±4372 60.90±52.70

CS (γ = −4/512) ✓ 15.86±0.01 83.1±20.6 17174±7791 84.64±10.55

CS (γ = −8/512) ✓ 16.13±0.09 61.5±9.9 19204±4284 42.62±3.64

CS (γ = −12/512) ✓ 16.29±0.07 63.2±8.8 19727±7479 37.22±2.39

GA, Linear (πinit = 0.1) ✓ 15.69±0.05 7.3±0.4 25.4±10 16.23±0.08

GA, Linear (πinit = 0.25) ✓ 15.55±0.05 8.7±0.6 18.9±1 16.02±0.07

GA, Linear (πinit = 0.5) ✓ 15.63±0.00 10.8±0.7 42.0±19 16.20±0.01

GA, All-heads-linear ✓ 15.53±0.01 7.9±0.3 13.8±1 16.09±0.08

Table 3: Main results for our proposed Clipped softmax (CS) and Gated attention (GA) applied
to OPT-125m. We report the causal language modeling perplexity (ppl for short) on the English
Wikipedia validation set (floating-point baseline and W8A8 quantized model). We also report the
maximum ∥x∥∞ averaged across the validation set, and kurtosis of x averaged across all layers,
where x is the output of an attention layer.

In our early experiments on a smaller OPT model, we found that applying the weight decay on37

LayerNorm weights γ (which isn’t the case, by default) has a strong effect on reducing the outliers’38

magnitude while yielding the comparable FP16 performance. Therefore, we present the results of39

applying our gated attention approach in both cases, with and without applying weight decay on LN γ.40

As we can see in Table 5, in both cases gated attention (further) dampens the outliers’ magnitude to a41

great extent, reduces the kurtosis, and yields models with significantly higher quantized performance,42

which is close to the original FP16 performance.43

B.4 ViT44

Detailed results for ViT-S/16 are summarized in Table 6.45

After our preliminary experiments on ViT, we noticed that distinct outliers already originate after46

the patch embeddings. Therefore, we experimented with adding the LayerNorm after the patch47

embeddings (which was absent in the model definition, by default). As we can see in Table 5, together48

with this change, both of our proposed methods greatly dampens the outliers’ magnitude, reduces the49

kurtosis, and yields models with significantly higher quantized performance, which is within 1% of50

the original FP32 accuracy.51

B.5 The impact of clipped softmax hyperparameters (γ and ζ) on ViT52

We investigate the effect of different values of the clipped softmax stretch parameters applied to the53

vision transformer and present the results in Table 7. To speed up training, for this experiment we54

trained ViT for 150 epochs instead of the usual 300 epochs. For this experiment, we did not apply55

LayerNorm after the patch embeddings.56

We found similar observations compared to BERT. Specifically, most of the improvement happens57

when we use γ < 0 (clipping at zero) whereas using ζ > 1 (clipping at one) yields similar results58

to the vanilla softmax and combining both γ < 0 and ζ > 1 yields similar results compared to just59

clipping at zero.60

3

Method Patch. Embd. LN FP32 acc. Max inf norm Avg. Kurtosis W8A8 acc.

Vanilla ✕ 80.75±0.10 358.5±81.2 1018.29±471.46 69.24±6.93

CS (γ = −0.003) ✕ 80.24±0.05 69.3±20.7 25.56±8.55 78.71±0.33

CS (γ = −0.004) ✕ 80.38±0.01 74.9±10.6 30.55±4.88 78.66±0.49

GA, Linear (πinit = 0.25) ✕ 80.62±0.01 86.0±8.0 23.44±2.69 79.16±0.05

GA, Linear (πinit = 0.5) ✕ 80.32±0.02 88.4±17.9 27.89±14.02 78.90±0.25

GA, MLP (nhid = 4) ✕ 80.62±0.05 118.2±40.5 47.84±29.79 78.79±0.29

Vanilla ✓ 80.98±0.08 81.1±2.5 24.53±1.79 79.62±0.06

CS (γ = −0.0001) ✓ 80.89±0.13 73.7±14.9 22.92±1.57 79.77±0.25

CS (γ = −0.0003) ✓ 80.92±0.07 78.9±5.5 23.83±0.49 79.63±0.05

CS (γ = −0.0005) ✓ 80.95±0.08 72.9±11.8 24.46±0.70 79.73±0.08

CS (γ = −0.001) ✓ 80.95±0.16 80.8±2.1 24.07±0.65 79.69±0.03

CS (γ = −0.002) ✓ 80.80±0.07 78.0±0.5 25.77±0.68 79.32±0.07

CS (γ = −0.003) ✓ 80.79±0.02 75.6±7.9 28.09±4.05 79.00±0.10

GA, Linear (πinit = 0.5) ✓ 81.01±0.06 79.8±0.5 19.88±0.28 79.82±0.11

GA, Linear (πinit = 0.75) ✓ 81.01±0.05 77.8±0.3 21.80±1.92 79.80±0.08

GA, Linear (πinit = 0.9) ✓ 80.92±0.11 70.6±8.0 23.19±3.74 79.64±0.09

Table 4: Main results for our proposed Clipped softmax (CS) and Gated attention (GA) applied to
ViT-S/16. We report the top-1 accuracy on ImageNet-1K validation set for floating-point baseline
and W8A8 quantized model. We also report the maximum ∥x∥∞ averaged across the validation set,
and kurtosis of x averaged across all layers, where x is the output of an attention layer.

γ ζ FP32 acc. Max inf norm W8A8 acc.

0 1 78.80±0.42 426±69 71.27±0.88
(= Vanilla)

0 1.001 78.78±0.29 411±88 71.24±0.59

0 1.002 78.90±0.17 420±47 70.74±0.34

0 1.004 78.80±0.45 377±67 72.31±0.06

0 1.01 78.81±0.30 419±77 71.35±0.26

−0.00001 1 78.81±0.21 432±76 69.02±0.19

−0.0001 1 78.81±0.36 380±64 64.04±10.8

−0.001 1 78.42±0.63 282±105 68.43±6.50

−0.003 1 78.26±0.06 99±36 76.49±0.48

−0.01 1 78.10±0.14 391±21 75.83±1.12

−0.03 1 70.26±1.46 197±2 65.80±1.41

−0.001 1.001 78.45±0.53 283±82 65.03±8.54

−0.003 1.003 78.25±0.14 119±17 76.37±0.45

Table 5: The impact of clipped softmax hyperparameters on ViT-S/16 (trained for 150 epochs).

C Experimental details61

C.1 BERT62

Fine-tuning on MNLI dataset We use pre-trained checkpoint BERT-base-uncased (109M param-63

eters) from HuggingFace repository. We follow standard fine-tuning practices from [14] and [62]64

Each data sequence is tokenized and truncated to the maximum sequence length of 128. Shorter65

sequences are padded to the same length of 128 using a special [PAD] token. We fine-tune for 366

epochs using Adam [28] with no weight decay. The learning rate is initially set to its maximum value67

and is linearly decayed to zero by the end of fine-tuning. We use a batch size of 16 and a maximum68

learning rate of 2 · 10−5.69

Pre-training from scratch We follow closely the pre-training procedure from [14]. We concate-70

nate, tokenize, and split the training set into sequences of length 128 (to speed up training and71

4

experimentation, we do not fine-tune on longer sequences of 512). We use the masked language72

modeling objective with the probability of masking p = 0.15. We train with a batch size of 25673

sequences for 106 steps, using AdamW optimizer [37] with the maximum learning rate of 10−4,74

learning rate warm up over the first 104 steps, following by a linear decay to zero by the end of75

training. We use L2 weight decay of 0.01, L2 gradient norm clipping of 1.0, and dropout probability76

of 0.1 on all layers. We also use FP16 mixed-precision from HuggingFace Accelerate library [19].77

C.2 OPT pre-training78

To speed up experimentation, we train OPT-125m sized model on the concatenation of Wikipedia79

and BookCorpus (same as BERT pre-training). We train with a batch size of 48 and 4 gradient80

accumulation steps (i.e., the effective batch size of 192), so that we can perform pre-training on a81

single A100 80GB GPU. We concatenate, tokenize, and split the training set into sequences of length82

512 and train for 125000 steps (500000 forward passes).83

We use the rest of the hyper-parameters and follow pre-training practices from [70] and [62]. We84

initialize weights using a normal distribution with zero mean and a standard deviation of 0.006. All85

bias terms are initialized to zero. We use AdamW optimizer with (β1, β2) = (0.9, 0.95). We use the86

linear learning rate schedule, warming up from 0 to the maximum value of1 4 · 10−4 over the first87

2000 steps, following by a linear decay to zero by the end of training. We use L2 weight decay of88

0.1, L2 gradient norm clipping of 1.0, and dropout probability of 0.1 on all layers. We also use FP1689

mixed-precision from HuggingFace Accelerate library [19].90

C.3 ViT pre-training91

We use the model definition for ViT-S/16 and the training pipeline from PyTorch Image models92

library [61].93

All training is done on resolution 224 × 224 and 16 × 16 patches. For data augmentation, we use94

RandAugment [10], Mixup [69], CutMix yun2019cutmix, random image cropping [53], horizontal95

flip, label smoothing ε = 0.1, color jitter 0.4, and random (between bilinear and bicubic) interpolation96

during training.97

We train with a batch size of 512 for 300 epochs steps, using AdamW optimizer and the L2 weight98

decay of 0.03. We use the cosine learning rate schedule, warming up from 10−6 to the maximum99

value of 10−3 over the first 20 epochs, followed by a LR decay by a factor of 10 every 30 epochs,100

until it reaches the minimum value of 10−5.101

C.4 Quantization settings102

Weights In all cases, we use symmetric uniform quantization of weights. We use min-max weight103

quantization for all models except the OPT model, for which we found the MSE estimator to perform104

better in all cases.105

Activations We adopt static range estimation approach, which determines quantization parameters106

for the network by passing a few batches of calibration data through the model before inference.107

Specifically, we use a running min-max estimator [31], which uses an exponential moving average of108

the min and max over multiple batches. In all cases, we use running min-max with 0.9 momentum109

over 16 batches randomly sampled from respective training sets.110

For OPT model, we also experiment with using 99.99% and 99.999% percentiles instead of actual111

min and max. We select the best configuration for each experiment (including baseline), based on the112

model performance. In almost all cases, we found that setting activation quantization ranges using113

99.999% percentiles gives the lowest W8A8 perplexity.114

D Compute cost115

We compare the runtime of our proposed methods in Table 8. As we can see, the clipped softmax is116

only marginally more expensive compared to using the vanilla softmax attention. The gated attention117

1We found this value to perform better compared to the value of 6 · 10−4, listed in the paper.

5

Model Vanilla Clipped softmax Gated attention (Linear / MLP)

BERT 92.8±1.2 93.6±0.8 97.7 / 119.1
OPT 53.6±0.4 54.4±0.4 55.7 / 64.7
ViT 101.8±0.3 104.0±0.7 110.8 / 122.9

Table 6: An overview of the runtime of the proposed methods, compared to the vanilla pre-training,
measured in hours on Nvidia-A100 GPUs.

using the linear G adds the compute overhead between 3% and 8%, depending on the model. We118

found that adding weight decay on LayerNorm γ for OPT and adding the LayerNorm after the patch119

embeddings for ViT had a negligible effect on the runtime.120

We estimated that the compute cost of producing the main results in the paper is about 320 GPU days121

(on A100) and the total cost of the project (including preliminary experiments and ablation studies)122

to be about 1400 GPU days.123

6

(a) Attention layer #10, data sequence #16

(b) Attention layer #11, data sequence #16

(c) Attention layer #10, data sequence #21

(d) Attention layer #11, data sequence #21

(e) Attention layer #10, data sequence #61

(f) Attention layer #11, data sequence #61

(g) Attention layer #10, data sequence #88

(h) Attention layer #11, data sequence #88

Figure 2: Visualization of the self-attention patterns (attention probabilities, values, and their product
in left, middle and right columns, respectively) in attention head #3 (↔ channel dim #180) for
BERT-base, computed on several random data sequences from MNLI-m validation set.

7

(a) Attention layer #10, data sequence #16

(b) Attention layer #11, data sequence #16

(c) Attention layer #10, data sequence #21

(d) Attention layer #11, data sequence #21

(e) Attention layer #10, data sequence #61

(f) Attention layer #11, data sequence #61

(g) Attention layer #10, data sequence #88

(h) Attention layer #11, data sequence #88

Figure 3: Visualization of the self-attention patterns (attention probabilities, values, and their product
in left, middle and right columns, respectively) in attention head #12 (↔ channel dim #720) for
BERT-base, computed on several random data sequences from MNLI-m validation set.

8

(a) Attention layer #10, attention head #1

(b) Attention layer #11, attention head #1

(c) Attention layer #10, attention head #7

(d) Attention layer #11, attention head #7

(e) Attention layer #10, attention head #8

(f) Attention layer #11, attention head #8

(g) Attention layer #10, attention head #10

(h) Attention layer #11, attention head #10

Figure 4: Visualization of the self-attention patterns (attention probabilities, values, and their product
in left, middle and right columns, respectively) in attention heads that are not associated with the
strong outliers for BERT-base, computed on data sequences #16 from MNLI-m validation set.

9

(a) Attention layer #1

(b) Attention layer #2

(c) Attention layer #3

(d) Attention layer #4

(e) Attention layer #5

(f) Attention layer #6

(g) Attention layer #7

(h) Attention layer #8

Figure 5: Visualization of the self-attention patterns (attention probabilities, values, and their product
in left, middle and right columns, respectively) in attention head #3 (↔ channel dim #180) and the
first eight layers of BERT-base, computed on data sequences #16 from MNLI-m validation set.

10

(a) (b) (c) (d) (e)

Figure 6: A summary of our outlier analysis for ViT demonstrated on a random subset from ImageNet
validation set. (a) An input image. (b) Outliers in the output of layer #10. (c) Cumulative attention
weight spent on every patch (attention probabilities matrix summed over rows) in the attention head
#1, in the next layer #11. (d) A corresponding matrix of attention probabilities. (e) An average
magnitude of values (V) for outlier and non-outlier patches.

11

(a) (b) (c) (d) (e)

Figure 7: A summary of our outlier analysis for ViT demonstrated on a random subset from ImageNet
validation set. (a) An input image. (b) Outliers in the output of layer #11. (c) Cumulative attention
weight spent on every patch (attention probabilities matrix summed over rows) in the attention head
#1, in the next layer #12. (d) A corresponding matrix of attention probabilities. (e) An average
magnitude of values (V) for outlier and non-outlier patches.

12

