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A LOSS FUNCTION BASED ON DDIM SAMPLING
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ᾱt−1x

′
0 + (1−

√
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which finishes the proof.

Since we consider DDIM sampling, we can set σt = 0 to simplify the derivation. On the other hand,
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ᾱt
√
1− ᾱt−1√
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Equation 18 indicates that now we need to train the network to predict ϵ +√
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B DISCUSSION ON THE IMPORTANCE AND MOTIVATION OF BACKDOORING
DIFFUSION MODELS WITH INVISIBLE TRIGGERS

As also discussed in previous work (Chou et al., 2023a;b; Chen et al., 2023b), backdooring diffusion
models is an important topic for safe utilization of diffusion models. Since the powerful models like
Stable Diffusion (Rombach et al., 2022) is open-sourced, anyone could download the model and
conduct malicious fine-tuning to insert a secret backdoor that can exhibit a designated action (e.g.
generating a inappropriate or incorrect images). Explicitly, the generated output will be directly
controlled by activating backdoor for conducting some bad actions like disseminating propaganda,
generating fake contents etc. Meanwhile, implicitly, as also discussed in (Chou et al., 2023a), the
diffusion model has been widely used in a lot of different downstream tasks and applications such
as reinforcement learning, object detection, and semantic segmentation (Baranchuk et al., 2021;
Chen et al., 2022; 2023a). Hence if the diffusion model is backdoored, this Trojan effect can bring
immeasurable cartographic damage to all downstream tasks and applications.

Given the importance of backdooring diffusion models, exploring invisibility of image triggers
could further help the community understand the potential security threat better. As both men-
tioned in (Doan et al., 2021b;a), it is important to improve the fidelity of poisoned examples that
are used to inject the backdoor and hence reduce the perceptual detectability by human observers.
In the unconditional case, it is thus important to make the sampled noise to be similar with random
noise used in the practice or it could be easily filtered by human inspection. As shown in Figure 1
and Figure 2, the triggers used by previous works (also in the unconditional case) could be easily
detected through human inspection without any effort. In contrast, our proposed invisible trigger is
nearly visually indistinguishable from the original input, which greatly increase attack’s stealth so
that human inspection would no longer effective. In addition to unconditional generation, invisible
triggers are particularly practical in conditional diffusion models, which hasn’t been explored and
discussed by the previous works.

C DISCUSSION ON LEARNABLE INVISIBLE TRIGGERS THROUGH BI-LEVEL
OPTIMIZATION IN CLASSIFICATION MODELS

As mentioned in Section 1, learning invisible triggers by bi-level optimization in diffusion models is
different and much harder compared to finding one in classification models. The method developed
for backdooring classification models cannot be directly or easily extended to backdoor diffusion
models. Specifically, the threat model is totally different. Diffusion models consist of diffusion
and reverse processes that fundamentally differs from classification models. Backdooring diffusion
model needs to have careful control of the training procedure while only poisoning data needs to
be added in the classification model. At the same time, it is nontrivial and challenging to design
the backdoor objective in the conditional and unconditional diffusion model while it is relatively a
simple task in the classification. To learn invisible backdoors for both unconditional and conditional
diffusion models, the entire pipeline, training paradigm, and training loss have to be redesigned to
differ significantly when applying bi-level optimization to backdoor diffusion models. In this setting,
the training loss, training paradigm, and pipeline are specifically designed based on the properties
of diffusion models differing substantially from backdooring classification models through bi-level
optimization.

D MULTIPLE UNIVERSAL TRIGGER-TARGET PAIRS

To further show the capability of the proposed framework, we show it is possible to learn multiple
universal trigger-target pairs simultaneously. The results with two trigger-target pairs on CIFAR10
are shown in Table 5, which indicate that the framework can be directly extended to learn multiple
universal trigger-target pairs.

E EXPERIMENTS ON DIFFERENT SAMPLERS

We also conducted experiments on different samplers, DPMSolver (Lu et al., 2022) to show that
the proposed loss in unconditional generation can be directly applied to different commonly used
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FID MSE for first target MSE for second target
Clean model 12.80 - -

Backdoored model 13.77 4.40e-3 2.33e-6

Table 5: Quantitative results on two universal trigger-target pairs.

samplers. Previous work (Chou et al., 2023a) only consider DDPM sampling and the trained back-
doored diffusion models cannot be used for other samplers. Figure 8 shows the sampling results with
previous work’s backdoor models where the left one is triggered inputs and the right one is sampling
results, indicating the backdoor is ineffective when other samplers are used. In our proposed frame-
work, however, different commonly used samplers can be used. We use second-order DPMSolver
to test the backdoor performance. As shown in Figure 9 and Table 6, the injected backdoor is still
very effective.

FID MSE
Clean model 12.80 -

Backdoored model 9.50 3.10e-3

Table 6: Quantitative results for DPMSolver sampler.

Figure 8: Illustration of previous back-
door (Chou et al., 2023a) for DDIM sampler
on CIFAR10. The left figure is the initial
noise with the visible triggered and the right
figure is the generated output from sampling.

Figure 9: Visualization results for DPM-
Solver sampler on CIFAR10.

F MULTIPLE INPUT-AWARE TRIGGER-TARGET PAIRS

Recall that for the conditional case, the inputs to the trigger generator are masked image, mask, and
target image. Hence if we use different target images, can we insert multiple targets simultaneously?
Here we show it is possible to insert multiple targets during training. Specifically, we use two target
images (‘Hat’ and ‘Shoe’) to train the trigger generator to learn input-aware invisible triggers based
on masked image and target image. The results are shown in Table 7.

G DEFENSE AGAINST BACKDOORED DIFFUSION MODELS

In this section, we show that both ANP (Wu & Wang, 2021) and inference-time clipping become
totally ineffective in our proposed framework. We first present defense results on ANP against a
backdoored diffusion model trained on CIFAR10 with norm bound 0.2 and poison rate 0.1. Fol-
lowing the settings in (Chou et al., 2023a), we use the largest perturbation budget (budget=4, larger
budge means better Trojan detection) in (Chou et al., 2023a) and train the perturbated model with
the whole clean dataset for 5 epochs. With different learning rates(1e − 4, 2e − 4), we found ANP
performs even worse on our proposed attack, compared to the performance on the attack in (Chou
et al., 2023a). The perturbated model immediately collapses to a meaningless image or a black im-
age. The visualization results with different learning rates during the training are shown in Figure 10
and Figure 11. This can also observed from the MSE results between the reversed target image by
ANP and the true target image (‘Hat’ in our experiments), as shown in Table 8 and Table 9. We
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FID LPIPS MSE for first target MSE for second target
Clean model 1.00 0.064 - -

Backdoored model 1.02 0.063 1.44e-3 2.07e-3

Table 7: Quantitative results on two target images.

sample 2048 images to compute the MSE, same as (Chou et al., 2023a). As shown in the tables, the
computed MSE values are large, indicating that ANP cannot reconstruct the target image at all.

Secondly, we demonstrate the defense results of inference-time clipping. With the clip operation
in Chou et al. (2023a), we sample images with DDIM (Song et al., 2020) sampling with different
poison rates. As shown in Figure 12 and Table 10, with clipping, backdoored models can still
achieve high-utility and high-specificity, which indicates the defense method is not a good choice
for these cases.

Figure 10: Reversed target images by ANP
with learning rate 1e− 4.

Figure 11: Reversed target images by ANP
with learning rate 2e− 4.

Epoch 1 2 3 4 5
MSE 0.28 0.28 0.22 0.19 0.24

Table 8: MSE between reversed target im-
ages and the true target image. Learning rate:
1e− 4.

Epoch 1 2 3 4 5
MSE 0.24 0.26 0.24 0.24 0.24

Table 9: MSE between reversed target im-
ages and the true target image. Learning rate:
2e− 4.

H ABLATION STUDY

Recall from our optimization framework that we projected generated triggers into an ℓ∞ norm ball
for trigger invisibility. Here, we investigate how different norm values may influence our model.
Figure 13 shows the visualization results of influence of different values of norm. With larger norm
bound, perturbations also become larger, which is what we can expect.

Quantitative results on two different targets (‘Hat’ and ‘Cat’) are shown in Table 11. The FID
corresponding to clean model is 12.80, as shown in Table 1.

We have found that with our optimization framework, even with low norm value of 0.1 (invisibil-
ity), we can still successfully implant backdoor (specificity) while achieving the comparable FID
score(utility) when compared to the clean model. This result provides insights when applying the
proposed framework to conditional settings where trigger invisibility is crucial for the stealthy nature
of our implanted backdoor.

We also performed experiments to demonstrate the impact of different poison rates, as illustrated
in Figure 14 and 15. As the poison rate increases, we observe that the FID score increases while
the MSE (Mean Squared Error) decreases. This aligns with our expectations since a larger poison
rate implies a more substantial impact on clean performance. When employing a high poison rate
(e.g., poison rate of 0.5), we find that the FID remains comparable to that of the clean model.
This observation suggests that the proposed framework maintains its effectiveness across a range of
settings and is resilient even under substantial poisoning conditions.

I RESULTS ON FINETUNING PRETRAINED MODELS

Here, we showcase the effectiveness of our proposed framework by fine-tuning pre-trained models
for varying numbers of epochs. The results are presented in Table 12. It is worth noting that we can
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Figure 13: Visualization results for different norm bounds.

Figure 14: FID results for different poison
rates on CIFAR10.

Figure 15: MSE results for different poison
rates on CIFAR10.
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w/o clip w/ clip
Poison rate FID MSE FID MSE

0.05 11.76 3.07e-3 11.76 3.49e-3
0.3 14.98 6.36e-5 14.98 8.59e-5
0.4 15.88 2.29e-6 15.88 2.29e-6
0.5 18.31 2.29e-6 18.33 2.29e-6

Table 10: Quantitative results w/ and w/o clip op-
eration on CIFAR10.

Figure 12: Visualization results w/ clip
operation for backdoor sampling.

Target ‘Hat’ Target ‘Cat’
Norm FID MSE FID MSE

0.1 13.01 2.28e-3 12.92 2.75e-3
0.2 12.44 8.13e-5 12.56 1.01e-5
0.3 12.38 1.06e-3 12.69 6.00e-4
0.4 12.35 1.92e-4 12.93 2.77e-6

Table 11: Results on different norm bounds on CIFAR10.

successfully introduce a backdoor into the model by fine-tuning it for as few as 30 epochs, yet still
achieve a lower FID compared to the clean model. This means the proposed framework can easily
be applied in practice.

Poison rate=0.1 Poison rate=0.5
Finetuning epochs FID MSE FID MSE

30 8.22 3e-5 8.55 3.14e-6
100 6.40 6.12e-6 6.20 2.34e-6

Table 12: Results on finetuning pre-trained models with different poison rates.
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