
Supplementary Material for Unleashing the Full
Potential of Product Quantization for Large-Scale

Image Retrieval

Yu Liang1,4∗ Shiliang Zhang2 Kenli Li1† Xiaoyu Wang3†

1College of Computer Science and Electronic Engineering, Hunan University
2National Key Laboratory for Multimedia Information Processing,

School of Computer Science, Peking University
3The Hong Kong University of Science and Technology(Guangzhou)

4Intellifusion Inc.
{leungyu, lkl}@hnu.edu.cn, slzhang.jdl@pku.edu.cn, fanghuaxue@gmail.com

1 Summary

This supplementary material provides further elaboration and discussion on our work, including
additional details that support our findings.

2 More Detail on Trends of PQ Search

We provide the detailed of the PQ retrieval performance trends of Glint360K trained using the
CosFace loss in Tab. 1. The result demonstrate that PQ performance rapidly degrades for short
encoding lengths across various backbones.

Table 1: Comparison of the asymmetric retrieval performance trends of PQ with different backbone.
’L2’ represents using the original features for L2 retrieval, while ‘PQ256’ represents dividing each
feature into 256 segments for PQ retrieval, and 8 bits per segment.

Glint360K
Backbone Metric L2 PQ256 PQ128 PQ64 PQ32 PQ16 PQ8 PQ4

Top1 0.9608 0.9604 0.9573 0.9500 0.9189 0.8005 0.4588 0.0973
Top5 0.9719 0.9717 0.9705 0.9657 0.9463 0.8659 0.5958 0.1940iResnet18
Top20 0.9762 0.9762 0.9754 0.9723 0.9592 0.9025 0.6903 0.3031
Top1 0.9779 0.9778 0.9769 0.9754 0.9657 0.9184 0.6665 0.1724
Top5 0.9812 0.9812 0.9807 0.9800 0.9758 0.9492 0.7749 0.2999iResnet50
Top20 0.9824 0.9824 0.9820 0.9814 0.9786 0.9610 0.8404 0.4254
Top1 0.9796 0.9795 0.9793 0.9783 0.9732 0.9465 0.7380 0.2074
Top5 0.9823 0.9823 0.9822 0.9815 0.9795 0.9658 0.8378 0.3569iResnet100
Top20 0.9832 0.9832 9.9831 0.9824 0.9810 0.9720 0.8878 0.4941

*Work done as an intern at Intellifusion.
†Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



3 More Comparisons with Different Backbone Settings

To further reinforce the results of Table 2 in the main text, we present supplementary results for two
highly competitive methods, OrthoHash[1] and GreedyHash[2], which have exhibited commendable
performance on iResnet50. Specifically, we evaluated their performance on iResnet18 and iResnet100.
The performance comparison is shown in the following Tab. 2. As can be observed, all methods
achieve performance improvements as the network capabilities increase. And in comparison to these
two excellent methods, our approach also achieves significant performance improvements.

Table 2: Under network structure iResnet18 and iResnet100 with various bits settings, our method
achieved consistent and significant improvements.

Glint360K iResnet18

Method 32 bits 64 bits 128 bits
Top-1 Top-5 Top-20 Top-1 Top-5 Top-20 Top-1 Top-5 Top-20

PQ 0.0973 0.1940 0.3031 0.4588 0.5958 0.6903 0.8005 0.8659 0.9025
OrthoHash[1] 0.0384 0.0528 0.0650 0.0960 0.1206 0.1421 0.2024 0.2426 0.2749

GreedyHash[2] 0.0991 0.1921 0.3014 0.4003 0.5507 0.6620 0.7344 0.8290 0.8824
FPPQ(Ours) 0.6945 0.7576 0.8006 0.7019 0.7890 0.8414 0.8231 0.8824 0.9133

Glint360K iResnet100
PQ 0.2074 0.3569 0.4941 0.7380 0.8378 0.8878 0.9465 0.9658 0.9720

OrthoHash[1] 0.4904 0.5511 0.5953 0.7133 0.7564 0.7865 0.7804 0.8185 0.8444
GreedyHash[2] 0.5902 0.7271 0.8035 0.4003 0.5507 0.6620 0.7344 0.8290 0.8824

FPPQ(Ours) 0.9305 0.9700 0.9734 0.9578 0.9728 0.9753 0.9679 0.9746 0.9772

4 Impact of Feature Preprocessing

We conducted a numerical evaluation of the performance of FPPQ on the Glint360K dataset, using
different feature preprocessing methods. These methods include the direct use of original features,
feature normalization, and feature segment normalization. The results presented in Table 3, indicate
that our approach has a minimal effect on the impact of data preprocessing operations.

Table 3: Comparison of the performance of different data preprocessing operations at retrieval phase,
where ’F ’ denotes direct use of the original features, ’Fnor’ represents feature normalization, and
’SegFnor’ represents feature segment normalization.

Glint360k iResnet50
Preprocessing Metric PQ16 PQ8 PQ4

Top-1 0.9568 0.9467 0.9343
Top-5 0.9690 0.9571 0.9601F

Top-20 0.9731 0.9628 0.9652
Top-1 0.9571 0.9467 0.9343
Top-5 0.9690 0.9571 0.9601Fnor

Top-20 0.9731 0.9628 0.9652
Top-1 0.9563 0.9469 0.9332
Top-5 0.9687 0.9571 0.9604SegFnor

Top-20 0.9730 0.9628 0.9655

5 Two-Stage Retrieval and Re-ranking

In certain scenarios, secondary retrieval may be required to further improve retrieval performance on
the results of a previous search. For example, one can use PQ4 retrieval to obtain N returned samples
and then perform L2 retrieval on these results to fine-tune the search. In this case, the L2 retrieval

2



performance becomes crucial. By incorporating a classification loss for the full features, our method
considers this scenario. We evaluated the performance of our method on L2 retrieval and present the
results in Table 4.

Table 4: The performance changes for PQ and L2 retrieval after applying our method.

Glint360k iResnet50
Method Top-1 Top-5 Top-20

L2 0.9779 0.9812 0.9824
PQ4 0.1724 0.2999 0.4254

PQ4 0.9342(+0.7618) 0.9601(+0.6602) 0.9652(+0.5398)
FPPQ(Ours)

L2 0.9735(-0.0044) 0.9787(-0.0025) 0.9805(-0.0019)
PQ8 0.6665 0.7749 0.8404

PQ8 0.9467(+0.3801) 0.9571(+0.1822) 0.9628(+0.1224)
FPPQ(Ours)

L2 0.9735(-0.0044) 0.9789(-0.0023) 0.9806(-0.0018)
PQ16 0.9184 0.9492 0.9610

PQ16 0.9568(+0.0385) 0.9690(+0.0198) 0.9731(+0.0121)
FPPQ(Ours)

L2 0.9747(-0.0032) 0.9788(-0.0024) 0.9809(-0.0015)

We can see that compared with the huge improvement in PQ retrieval, the impact of our method on
L2 retrieval is slight. These results imply that our approach can have widespread applicability in
real-world scenarios.

6 An Implementation

To provide a clear depiction of our framework, we present a concise description of the algorithm flow
as depicted in Alg. 1.

Algorithm 1 The concise implementation of our method

1: procedure TRAINING
2: Generate average features of the classes {Favg}
3: Generate class-specific PQ label PQ({Favg})
4: repeat
5: Sample x from I with class label y and PQ label PQ(y) = [k1, · · · , km, · · · , kM ];
6: Forward propagation
7: Back-propagation updates the parameters
8: until Total epoch exceeds;
9: end procedure

10: procedure RETRIEVAL
11: Define the PQ retrieval system;
12: Substitute place the codebook C of the PQ retrieval system with the weights W of the FC

layer in the PQ branch, C ∈ RM×K×(D/M), where Cmk = wmk;
13: Standard PQ retrieval operation;
14: end procedure

References
[1] Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and Tao Xiang. One loss for

all: Deep hashing with a single cosine similarity based learning objective. Advances in Neural Information
Processing Systems, 34:24286–24298, 2021. 2

[2] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. Greedy hash: Towards fast optimization for
accurate hash coding in cnn. Advances in neural information processing systems, 31, 2018. 2

3


