
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BUNDLE NEURAL NETWORKS
FOR MESSAGE DIFFUSION ON GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

The dominant paradigm for learning on graphs is message passing. Despite being
a strong inductive bias, the local message passing mechanism faces challenges
such as over-smoothing, over-squashing, and limited expressivity. To address
these issues, we introduce Bundle Neural Networks (BuNNs), a novel graph neu-
ral network architecture that operates via message diffusion on flat vector bundles
— geometrically inspired structures that assign to each node a vector space and
an orthogonal map. A BuNN layer evolves node features through a diffusion-
type partial differential equation, where its discrete form acts as a special case of
the recently introduced Sheaf Neural Network (SNN), effectively alleviating over-
smoothing. The continuous nature of message diffusion enables BuNNs to operate
at larger scales, reducing over-squashing. We establish the universality of BuNNs
in approximating feature transformations on infinite families of graphs with injec-
tive positional encodings, marking the first positive uniform expressivity result of
its kind. We support our claims with formal analysis and synthetic experiments.
Empirically, BuNNs perform strongly on heterophilic and long-range tasks, which
demonstrates their robustness on a diverse range of challenging real-world tasks.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Sperduti, 1993; Scarselli et al., 2009; Defferrard et al., 2016) are
widely adopted machine learning models designed to operate over graph structures, with successes
in diverse applications such as drug discovery (Stokes et al., 2020), traffic forecasting (Derrow-
Pinion et al., 2021), and recommender systems (Fan et al., 2019). Most GNNs are Message Passing
Neural Networks (MPNNs) (Gilmer et al., 2017), where nodes exchange messages with immediate
neighbours. While effective, MPNNs face critical challenges such as over-smoothing (Li et al.,
2018; Oono & Suzuki, 2020; Cai & Wang, 2020), over-squashing (Alon & Yahav, 2021; Topping
et al., 2022; Di Giovanni et al., 2023), and limited expressivity (Xu et al., 2019b; Morris et al., 2019).

Message Passing Message Diffusion

Figure 1: Local message passing on graphs
versus global message diffusion on bundles.

Over-smoothing occurs when node features become
indistinguishable as the depth of the MPNN in-
creases, a problem linked to the stable states of the
heat equation on graphs (Cai & Wang, 2020). While
Sheaf Neural Networks (Bodnar et al., 2022) address
this by enriching the graph with a sheaf structure that
assigns linear maps to edges and results in richer sta-
ble states of the corresponding heat equation, they
remain MPNNs and inherit other limitations such as
over-squashing, which restricts the amount of infor-
mation that can be transmitted between distant nodes.

We propose Bundle Neural Networks (BuNNs), a new type of global GNN that operates over flat
vector bundles – structures analogous to connections on flat Riemannian manifolds that augment
the graph by assigning to each node a vector space and an orthogonal map. BuNNs do not perform
‘explicit’ message passing through multiple steps of information exchange between neighboring
nodes, but instead operate via message diffusion. Each layer involves a node update step, and a
diffusion step evolving the features according to a vector diffusion PDE as in Singer & Wu (2012).
The resulting architecture enjoys the desirable properties of Sheaf Neural Networks, in that they

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

can avoid over-smoothing, but are global models that can operate at larger scales of the graph to
tackle over-squashing, and it achieves better performance on a range of benchmark datasets. Addi-
tionally, we prove that equipped with injective positional encodings, BuNNs are compact uniform
approximators, a new type of universality result for feature transformation approximation.

In summary, our contributions are the following:

• We derive BuNNs from heat equations over flat vector bundles, and show that flat vector
bundles are more amenable to computation than general vector bundles (Section 3).

• We prove that the diffusion process can mitigate over-smoothing and over-squashing (Sec-
tion 4), and support these claims with novel synthetic experiments (Section 6.1).

• We prove that, with injective positional encodings, BuNNs are compact uniform universal
approximators. To the best of our knowledge, this is the first of such results (Section 5).

• We show that BuNNs perform well on heterophilic and long-range tasks, for instance,
achieving a new state-of-the-art result on the Peptides-func dataset (Section 6.2).

2 BACKGROUND

Graphs. Let G = (V,E) be an undirected graph on n = |V| nodes with edges E. We represent
the edges via an adjacency matrix A ∈ Rn×n where the entry Auv for u, v ∈ V is 1 if the edge
(u, v) ∈ E and 0 otherwise. Let D be the diagonal degree matrix with entry Dvv = dv equal to
the degree of v. The graph Laplacian is defined as L := D −A and the random walk normalized
graph Laplacian is defined as L := I−D−1A. We assume that at each node v ∈ V we are given a
c-dimensional signal (or node feature) xv ∈ Rc and group such signals into a matrix X ∈ Rn×c.

GNNs and feature transformations. A feature transformation on a graph G is a permutation-
equivariant map fG : Rn×c1 → Rn×c2 that transforms the node signals. A GNNΘ is a (continuous)
map parameterized by Θ that takes as input a graph alongside node signals G = (V,E,X) and
outputs a transformed signal (V,E,X′). A GNN on a graph G is therefore a feature transformation
GNNΘ : Rn×c1 → Rn×c2 . Given a collection of graphs G, a feature transformation F on G is an
assignment of every graph G ∈ G to a feature transformation FG : RnG×c1 → RnG×c2 . The set of
continuous feature transformations over a collection of graphs in G is denoted C (G,Rc1 ,Rc2).

Cellular sheaves. A cellular sheaf (Curry, 2014) (F ,G) over an undirected graph G = (V,E)
augments G by attaching to each node v and edge e a vector space space called stalks and denoted
by F(v) and F(e), usually the stalks are copies of Rd for some d. Additionally, every incident
node-edge pair v ⊴ e gets assigned a linear map between stalks called restriction maps and denoted
Fv⊴e : F(v) → F(e). Given two nodes v and u connected by an edge (v, u), we can transport
a vector xv ∈ F(v) from v to u by first mapping it to the stalk at e = (v, u) using Fv⊴e, and
mapping it to F(u) using the transpose FT

u⊴e. As a generalization of the graph adjacency matrix,
the sheaf adjacency matrix AF ∈ Rnd×nd is defined as a block matrix in which each d × d block
(AF)uv is FT

u⊴eFv⊴e if there is an edge between u and v and 0d×d otherwise. Similary, we define
the block diagonal degree matrix DF ∈ Rnd×nd as (DF)vv := dvId×d, and the sheaf Laplacian is
LF := DF −AF . These matrices act as bundle generalizations of their well-known standard graph
counterparts and we recover such matrices when F(v) ∼= R and Fv⊴ev = 1 for all v ∈ V and e ∈ E.

Vector bundles. When restriction maps are orthogonal, we call the sheaf a vector bundle, a struc-
ture analogous to connections on Riemannian manifolds. For this reason, the sheaf Laplacian also
takes the name connection Laplacian (Singer & Wu, 2012). The product FT

u⊴eFv⊴e is then also or-
thogonal and is denoted Ouv referring to the transformation a vector undergoes when moved across
a manifold via parallel transport. In this case we denote the node-stalk at v by B(v), the bundle-
adjacency by AB and the bundle Laplacian LB, and its normalized versionLB := Idn×dn−D−1

B AB.

Consider a d-dimensional vector field over the graph, i.e. a d-dimensional feature vector at each node
denoted X ∈ Rnd in which the signals are stacked column-wise. Similarly to the graph case, the
operation D−1

B ABX is an averaging over the vector field, and LB a measure of smoothness, since:(
D−1

B ABX
)
u
=

1

du

∑
u:(v,u)∈E

Ouvxv ∈ Rd, and (LBX)u =
1

du

∑
u:(v,u)∈E

(xu −Ouvxv) ∈ Rd.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Graph General bundle Flat bundle

Figure 2: Comparison of different Laplacian and their actions on signals.

3 BUNDLE NEURAL NETWORKS

In this section, we derive BuNN from heat diffusion equations over flat vector bundles. We then
discuss its relationship to GCN (Kipf & Welling, 2017) and NSD (Bodnar et al., 2022). We provide
algorithmic implementations and additional practical details in the Appendix (Section E).

Heat diffusion over bundles. The bundle Dirichlet energy EB(X) of a vector field X ∈ Rnd is:

EB(X) := XTLBX =
1

2

∑
(v,u)∈E

1

du
∥xu −Ouvxv∥22 .

The gradient of the Dirichlet energy ∇XEB(X) is the random-walk Laplacian LB. We can write
down a heat diffusion equation over a vector bundle as a gradient flow, whose evolution equation
with initial condition X(0) = X satisfies ∂tX(t) = −LBX(t). The solution to this equation can be
written using matrix exponentiation as X(t) = exp(−tLB)X(0) (e.g. Hansen & Gebhart (2020)).
We call the operatorHB(t) := exp(−tLB) ∈ Rnd×nd the bundle heat kernel, which is defined as:

HB(t) = lim
K→∞

K∑
k=0

(−tLB)
k

k!
.

Computing the heat kernel is necessary to solve the heat equation. An exact solution can be com-
puted using spectral methods. For small t, one can instead consider the truncated Taylor expansion
centered at 0, which amounts to fixing a K in the above equation. Bodnar et al. (2022) instead
approximates the solution using the Euler discretization of the heat equation with unit time step.

However, all these methods pose a challenge when the bundle structure is learned as in Bodnar et al.
(2022), since the heat kernel has to be recomputed after every gradient update of the bundle structure.
This high computational overhead limits the usability of Sheaf Neural Networks in applications.

Flat vector bundles. To address the scalability issues of general sheaves and vector bundles, we con-
sider the special case of flat vector bundles in which every node u gets assigned an orthogonal map
Ou, and every connection factorizes as Ovu = OT

v Ou. Consequently, the bundle Laplacian factors:

LB = OT (L ⊗ Id)O,

where O ∈ Rnd×nd is block diagonal with v-th block being Ov . We call the matrices O and OT syn-
chronization and desynchronization, respectively. We compare different Laplacians in Figure 2. This
factorization avoids the O

(
d3|E|

)
cost of computing the restriction map over each edge. Addition-

ally, Lemma 3.1 shows that it allows to cast the bundle heat equation into a standard graph heat equa-
tion. This reduces the computation of the bundle heat kernel to that of the cheaper graph heat kernel,
an operator that does not change depending on the bundle and can, therefore, also be pre-computed.

Lemma 3.1. For every node v, the solution at time t of the heat equation on a connected bundle
G = (V, E, O) with input node features X satisfies:

(HB(t)X)v =
∑
u∈V

H(t, v, u)OT
v Ouxu,

whereH(t) is the standard graph heat kernel, andH(t, v, u) ∈ R its the entry at (v, u).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Example of the message diffusion framework on a graph with 4 nodes and 4 edges. From
left to right: The input is a simple graph embedding with each color representing the feature vector
at that node. (1) An orthogonal map is computed for each node in the graph by embedding the nodes
in a continuous manifold with local reference frames (represented as a torus for visual aid), the
features represented as colored vectors do not change. (2) The features are updated using learnable
parameters W. (3) The features are diffused for some time t according to the heat equation on the
manifold: a larger value of t leads to a higher synchronization between all nodes as illustrated by
the alignment of node features with respect to their local coordinates. (4) The output embedding is
obtained by discarding the local coordinates and applying a non-linearity.

The model. The BuNN layer occurs in four steps, as illustrated in Figure 3. First, the bundle maps
Ov are computed using a neural network ϕ, the graph G, positional encodings P ∈ Rn×f and the use
of Householder reflections (Householder, 1958) or direct parameterization of the orthogonal group
when d = 2. Second, an encoder step updates the node signals via a learnable matrix W ∈ Rd×d,
and bias b ∈ Rd. Next, the features are diffused over the learned vector bundle using the heat
kernel. Finally, a non-linearity σ is applied. We summarize the steps in the following equations:

O(ℓ)
v := ϕ(ℓ)(G,P,X(ℓ), v) ∀v ∈ V (1)

h(ℓ)
v := O(ℓ)

v

T
W(ℓ)O(ℓ)

v x(ℓ)
v + b(ℓ) ∀v ∈ V (2)

Z(ℓ+1) := HB(t)H
(ℓ) (3)

X(ℓ+1) := σ
(
Z(ℓ+1)

)
(4)

The diffusion time t in Equation 3 is a hyperparameter determining the scale at which messages are
diffused. For the case of small t, we approximate the heat kernel via its truncated Taylor series of
degree K, and for large t, we use spectral methods. For simplicity of exposition, the steps above
describe an update given a single bundle (i.e., c = d), meaning that xv ∈ Rd. In general, we
allow multiple bundles and vector field channels (Appendix E). Note that Equations 1, 2, and 3 are
linear (or affine), and the non-linearities lie in 4. Equation 2 may be interpreted as a bundle-aware
encoder, while Equation 3 is the message diffusion step guided by the heat kernel.

Without the bundle structure, Equation 3 would converge exponentially fast to constant node repre-
sentations over the graph (e.g. Theorem 1 in Li et al. (2018)), potentially leading to over-smoothing.
This is a limitation of existing diffusion-based GNNs (Xu et al., 2019a; Zhao et al., 2021). Accord-
ingly, the bundle is crucial in this formulation to prevent node features from collapsing.

Link to Graph Convolutional Networks. It is possible to derive Graph Convolutional Networks
(GCNs) (Kipf & Welling, 2017) as an approximation of BuNNs operating over a trivial bundle.
Setting t = 1 Equation 3 becomes Z(l+1) = exp(−LG)H

(l). The approximation exp(−LG) ≈
I− LG gives the update Z(l+1) = (1− LG)H

(l) = AGH
(l) recovering the GCN update.

Comparison with Sheaf Neural Networks. Flat vector bundles are a special case of cellular
sheaves (Curry, 2014; Bodnar et al., 2022), meaning that our model has close connections to Sheaf
Neural Networks (SNNs) (Hansen & Gebhart, 2020; Bodnar et al., 2022; Barbero et al., 2022b;a;
Battiloro et al., 2023). While most SNNs operate on fixed sheaves (Hansen & Gebhart, 2020;
Barbero et al., 2022a; Battiloro et al., 2023), we focus on learning sheaves as in Neural Sheaf
Diffusion (NSD) from Bodnar et al. (2022). BuNNs distinguish themselves from NSD in several
ways. First, NSD approximates the heat equation using a time-discretized solution to the heat
equation, which results in a standard message passing algorithm. In contrast, the direct use of the
heat kernel allows BuNNs to break away from the explicit message-passing paradigm. Secondly,
the use of flat bundles increases scalability since the bundle maps are computed at the node level.
Additionally, flat bundles guarantees path independence, a requirement for the theory on the long
time limit of NSD in Bodnar et al. (2022) to hold, often not satisfied for general sheaf constructions

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

such as ones used in NSD. Thirdly, we allow ϕ to be any GNN while NSD restricts ϕ to be an
MLP. We found that incorporating the graph structure in ϕ improved the experimental results. The
update in Equation 2 is also different to NSD in how the W and b are applied, and is necessary to
prove our main theoretical result, Theorem 5.3. Additionally, Bodnar et al. (2022) experiments with
general restriction maps as opposed to restricting them to orthogonal maps, and find that for 7 out
of 9 tested benchmarks the orthogonal restrictions perform better, hence we consider orthogonal
restriction maps. We provide experimental comparisons to NSDs in the experimental section and
show that BuNNs significantly outperform their sheaf counterparts. We provide a summarized
comparison between GCNs, SNNs, and BuNNs in Table 1.

Comparison with other methods. Another paradigm for learning on graphs is using graph
transformers (GT), where every nodes communicate to each other through the use of self-attention.
When the graph transformer is fully connected, all nodes communicate and therefore GT should
not suffer from under-reaching or over-squashing, but might suffer from over-smoothing (Dovonon
et al., 2024). When they are not fully connected, they might suffer from over-squashing (Barbero
et al., 2024). Other paradigms such as Implicit Graph Neural Networks Fu et al. (2023) are also
designed to tackle under-reaching and long-range dependencies while empirically not suffering
from over-smoothing.

4 PROPERTIES OF BUNDLE NEURAL NETWORKS

Table 1: Comparison between models in terms of message
type and capability of mitigating issues related to GNNs.

GCN SNN BuNN
Propagation AGX LFX HB(t)X

Message type Standard
(Local)

Standard
(Local)

Diffusive
(Global)

No
under-reaching ✗ ✗ ✓

Alleviates
over-squashing ✗ ✗ ✓

No
over-smoothing ✗ ✓ ✓

We now give a formal analysis of
the BuNN model. In Section 4.1,
we derive the fixed points of the
bundle heat diffusion, which the
subspace of signals towards which
solutions converges, and show that
even in the limiting case BuNNs can
retain information at the node level
and therefore avoid over-smoothing.
Section 4.2 discusses how our model
can capture long-range interactions
and mitigate over-squashing.

4.1 FIXED
POINTS AND OVER-SMOOTHING.

A major limitation of MPNNs
is over-smoothing, where node features become indistinguishable as MPNN depth increases.
This phenomenon is a major challenge for training deep GNNs. It arises because the diffu-
sion in MPNNs resembles heat diffusion on graphs (Di Giovanni et al.), which converges to
uninformative fixed points1, leading to a loss of information at the node level. Bodnar et al.
(2022) show that the richer bundle structure, however, gives rise to richer limiting behavior.
Indeed, by Lemma 3.1, since limt→∞H(t, v, u) = du

2|E| , the limit over time of a solution is
1

2|E|
∑

u∈V duO
T
v Ouxu. To understand the space of fixed points, notice that any Y ∈ Rn×d ex-

pressible as yv = 1
2|E|

∑
u∈V duO

T
v Ouxu for some X is a fixed point, and for any two nodes u, v:

Ovyv =
1

2|E|
∑
w∈V

dwOwxw = Ouyu. (5)

Consequently, the fixed points of vector diffusion have a global geometric dependency where
all nodes relate to each other by some orthogonal transformation, e.g. the output in Figure 3.
Equation 5 provides insight into the smoothing properties of BuNNs. When the bundle is trivial,
the equation reduces to yv = yu, with no information at the node level, i.e. over-smoothing. When
it is non-trivial, the output signal can vary across the graph (e.g., yv ̸= yu for two nodes u and
v). We summarize this in Proposition 4.1 and prove an implication in terms of over-smoothing in
Proposition 4.2. Similar results showing that the signal can survive in deep layers as opposed to
resulting in the constant signal have previously been done empirically and theoretically for other
architectures, e.g. Chamberlain et al. (2021); Fu et al. (2023).

1Up to degree scaling if using the symmetric-normalized Laplacian, see Li et al. (2018).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 4.1. Let Y be the output of a BuNN layer with t =∞, where G is a connected graph,
and the bundle maps are not all equal. Then, there exists u, v ∈ V connected such that yv ̸= yu.
Proposition 4.2. Let X be 2-dimensional features on a connected G, and assume that there are two
nodes u, v with pu ̸= pv . Then there is an δ > 0 such that for every K, there exist a K-layer
deep BuNN with 2 dimensional stalks, t = ∞, ReLU activation, ϕ(ℓ) is a node-level MLP, and
∥W(ℓ)∥ ≤ 1, with output Y such that ∥yv − yu∥ > δ.

4.2 OVER-SQUASHING AND LONG RANGE INTERACTIONS.

While message-passing in MPNNs constitutes a strong inductive bias, it is problematic when the
task requires the MPNN to capture interactions between distant nodes. These issues have been
attributed mainly to the over-squashing problem. Topping et al. (2022) and Di Giovanni et al. (2023)
formalize over-squashing through a sensitivity analysis, giving upper bounds on the sensitivity of
the output at a node with respect to the input at an other. In particular, they show that under weak
assumptions on the message function, the Jacobian of an MPNN satisfies the following inequality

|∂ (MPNNΘ(X))u /∂xv| ≤ cℓ
(
Aℓ

)
uv

, (6)

for any nodes u, v, where ℓ is the depth of the network and c is a constant. Given two nodes u, v
at a distance r, message-passing will require at least r layers for the two nodes to communicate
and overcome under-reaching. If ℓ is large, distant nodes can communicate, but Di Giovanni et al.
(2023) show that over-squashing becomes dominated by vanishing gradients. Building on top of
such sensitivity analysis, we compute the Jacobian for a BuNN layer in Lemma 4.3.
Lemma 4.3. Let BuNN be a linear layer defined by Equations 1, 2 & 3 with hyperparameter t.
Then, for any connected graph and nodes u, v, we have

∂ (BuNN (X))u
∂xv

= H(t, u, v)OT
uWOv.

The form of the Jacobian in Lemma 4.3 differs significantly from the usual form in Equation 6. First,
all nodes communicate in a single BuNN layer since H(t, u, v) > 0 for all u, v, and t, allowing for
direct pair-wise communication between nodes, making a BuNN layer operate globally similarly to
Transformer model, and therefore overcome under-reaching. Secondly, taking t to be large allows
BuNNs to operate on a larger scale, allowing stronger communication between distant nodes and
overcoming over-squashing without the vanishing gradient problem.

Further, Lemma 4.3 gives a finer picture of the capabilities of BuNNs. For example, to mitigate over-
squashing a node may decide to ignore information received from certain nodes while keeping in-
formation received from others. This allows the model to reduce the receptive field of certain nodes:
Corollary 4.4. Consider n nodes u, v, and wi, for i = 1, . . . n − 2, of a connected graph with
2 dimensional bundle such that pv ̸= pwi

and pu ̸= pwi
∀i. Then in a BuNN layer with MLP

ϕ, at a given channel, the node v can learn to ignore the information from all wis while keeping
information from u.

5 EXPRESSIVITY OF THE MODEL

We now characterize the expressive power of BuNNs from a feature transformation perspective. This
analysis extends that of Bodnar et al. (2022), who show that heat diffusion on sheaves can be expres-
sive enough to linearly separate nodes in the infinite time limit. Instead, our results concern the more
challenging problem of parameterizing arbitrary feature transformations and hold for finite time.

Most work on GNN expressivity characterize the ability of GNNs to distinguish isomorphism classes
of graphs or nodes (Xu et al., 2019b; Morris et al., 2019; Azizian & Lelarge, 2021; Geerts & Reutter,
2022) or equivalently to approximate functions on them (Chen et al., 2019). These results typically
rely on two major assumptions: 1) node features are fixed for each graph or are ignored completely;
and 2) apply to a single graph or finitely many graphs of bounded size. Instead, our setting 1)
includes features ranging in an infinite uncountable domain, and 2) includes infinite families of
graphs. To this end, we define the notion of compact uniform approximation as a modification to that
of uniform approximation from Rosenbluth et al. (2023) and we discuss our choice in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Definition 5.1. Let F ⊆ C(G,Rc,Rc′) be a set of feature transformations over a family of graphs
G, and let H ∈ C(G,Rc,Rc′) a feature transformation over G. We say that F compactly uniformly
approximates H , if for all finite subsets K ⊆ G, for all compact K ⊂ Rc, and for all ϵ > 0, there
exists an F ∈ F such that for all G ∈ K and X ∈ KnG , we have that ||FG(X)−HG(X)||∞ ≤ ϵ.

Injective Positional Encodings (PEs). In the case of a finite collection of graphs G and a fixed
finite feature space K, the above definition reduces to the setting of Theorem 2 in Morris et al.
(2019), since the node features are fixed to the finitely many values in K. However, when K
is not finite, the arguments in Morris et al. (2019) no longer work, as detailed in Appendix D.
Consequently, Definition 5.1 subsumes graph-isomorphism testing, and it is, therefore, too strong
for a polynomial-time GNN to satisfy. Hence, we will assume that the GNN has access to injective
positional encodings, which we formally define in Definition D.1. This allows us to bypass the
graph-isomorphism problem, while not trivializing the problem as we show next.

Negative results with injective PE. Characterizing the expressive power of GNNs in the uniform
setting is an active area of research, with mostly negative results. Rosenbluth et al. (2024) prove neg-
ative results in the non-compact setting for both MPNNs with virtual-node and graph transformers,
even with injective positional encodings. While extending their result to the compact setting is out-
side the scope of our work, we prove in Proposition 5.2 a negative result for bounded-depth MPNNs
with injective PEs. Indeed, fixing the depth of the MPNNs to ℓ, we can take a single compactly fea-
tured graph G ∈ G with a diameter larger than ℓ. As there is a node whose receptive field does not
include all nodes in such a G, the architecture cannot uniformly approximate every function on G.2

Proposition 5.2. There exists a family G consisting of connected graphs such that bounded-depth
MPNNs are not compact uniform approximators, even if enriched with unique positional encoding.

Universality of BuNN. In contrast to the negative results above, we now show that when equipped
with injective PEs, BuNNs are universal with respect to compact uniform approximation. To the
best of our knowledge, Theorem 5.3 is the first positive uniform feature approximation result for a
GNN architecture, which demonstrates the remarkable modelling capabilities of BuNNs.

Theorem 5.3. Let G be a possibly infinite set of connected graphs equipped with injective positional
encodings. Then 2-layer deep BuNNs with encoder/decoder at each layer and ϕ(1), ϕ(2) being 2-
layer deep MLP have compact uniform approximation over G.

In particular, let ϵ > 0 and H be a feature transformation on a finite subset K ⊆ G and K ⊆
Rd a compact set, then there is a 2-layer deep BuNN with width of order O

(∑
G∈K |VG|

)
that

approximates H over
⊔

G∈K KnG ⊆
⊔

G∈G RnGd. In other words, the required hidden dimension of
BuNN is only linearly dependent on the number of nodes in the family of graphs.

6 EXPERIMENTS

In this section, we evaluate BuNNs through a range of synthetic and real-world experiments. We
first validate the theory from Section 4 with two synthetic tasks. We then evaluate BuNNs on pop-
ular real-world benchmarks. We use truncated Taylor approximations for small values of t, while
for larger t, we use the truncated spectral solution. We provide supplementary information on the
implementation and precise experimental details in the Appendix (Sections E and F respectively).3

6.1 SYNTHETIC EXPERIMENTS: OVER-SQUASHING AND OVER-SMOOTHING

Tasks. In this experiment, we propose two new node-regression tasks in which nodes must average
the input features of a subset of nodes. The input graph contains two types of nodes, whose features
are sampled from disjoint distributions. The target for nodes is to output the average input feature
over nodes of the other type and vice-versa, as illustrated in Figure 4. First, we test the capacity
to mitigate over-squashing. We consider the case where the underlying graph is a barbell graph
consisting of two fully connected graphs - each being a type and bridged by a single edge. This
bottleneck makes it hard to transfer information from one cluster to another. Second, we test the
capacity to mitigate over-smoothing. We consider the fully connected graph, in which all nodes
are connected. The fully connected graph is a worst-case scenario for over-smoothing since after

2This phenomenon in MPNNs is often called ‘under-reaching’.
3All code can be found at https://anonymous.4open.science/r/bunn/README.md

7

https://anonymous.4open.science/r/bunn/README.md

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

one step of message passing, the features are already fully averaged over the graph and hence over-
smoothed.

Setup. As a first baseline, we consider a constant predictor always predicting 0, the expected mean
over the whole graph. As a second baseline, the cluster-specific constant predictor predicting the
expected mean over the opposite cluster, that is, ±

√
3

2 depending on the cluster.

Figure 4: Synthetic over-squashing (left) and over-
smoothing (right). In both cases, blue nodes output the
average over the red nodes and vice-versa.

Additionally, we consider GNN base-
lines to be a node-level MLP, GCN
(Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018), NSD (Bodnar
et al., 2022), and a fully connected
GraphGPS (Rampášek et al. (2022)).
The depth of MPNNs is fixed to the
minimal depth to avoid under-reaching,
namely 3 for the barbell and 1 for the
fully connected graph, and ensure the
width is large (> 128) considering the
task. The depth of the transformer is set
to 3 with 4 heads. We compare these
to a BuNN with an MLP learning the
bundle maps of a comparable number
of parameters and the same depth. We use Adam optimizer with 10−3 learning rate, batch size 1,
and train for 500 epochs. We use 100 samples for training and 100 samples for testing.

Results. The results for N = 10 are reported in Table 2. All MPNNs perform poorly on the
over-squashing task. All MPNNs perform comparably to baseline 2, showing their incapability
to transfer information between clusters. This is explained by the fact that nodes from different
clusters have high commute time and effective resistance, which tightly connects to over-squashing
Di Giovanni et al. (2023); Black et al. (2023); Dong et al. (2024). On the other hand, BuNN
achieves almost perfect accuracy ondong2024differentiable this task, which supports the claim
that BuNN mitigates over-squashing. We note, however, that to solve the task perfectly, we need
t ≥ 10, allowing BuNN to operate on a larger scale more adapted to the task. To solve this
task, BuNN can assign the orthogonal maps to separate the two types of nodes, making each
node listen only to the nodes of the other type, a behavior proved to be possible in Corollary 4.4.

Table 2: BuNN mitigates over-smoothing and
over-squashing. Mean squared error (MSE) of
different models on the two synthetic tasks.

Barbell
(over-squashing)

Clique
(over-smoothing)

Base. 1 30.97± 0.42 30.94± 0.42
Base. 2 1.00± 0.07 0.99± 0.08
MLP 1.08± 0.07 1.10± 0.08
GCN 1.05± 0.08 29.65± 0.34
SAGE 0.90± 0.29 0.86± 0.10
GAT 1.07± 0.09 20.97± 0.40
GPS 1.06± 0.13 1.06± 0.13
NSD 1.09± 0.15 0.08± 0.02
BuNN 0.01± 0.07 0.03± 0.01

Similarly, the over-smoothing task on the
clique graph is also challenging. Indeed, GCN
and GAT perform exceptionally poorly, com-
parably to Baseline 1 which only has access
to global information. Indeed, to the best of
our knowledge, these are the only models with
formal proofs of over-smoothing (Cai & Wang,
2020; Wu et al., 2023). GraphSAGE performs
slightly better because it processes neighbors
differently than it processes nodes themselves.
Moreover, NSD and BuNN solve the task due
to their capability to mitigate over-smoothing.
Indeed, BuNN can learn to ignore nodes from
a given cluster as proved in Corollary 4.4.

6.2 REAL-WORLD TASKS

We evaluate BuNNs on the Long Range Graph Benchmark (Dwivedi et al., 2022) and the het-
erophilic tasks from Platonov et al. (2023). We provide the implementation details in Appendix E.

Heterophilic datasets. As we have shown in Section 4, BuNNs are provably capable of avoiding
over-smoothing. It is, therefore, natural to test how BuNN performs on heterophilic graphs where
over-smoothing is recognized as an important limitation (e.g. Yan et al. (2022)). We follow their
methodology to evaluate BuNN on the 5 heterophilic tasks proposed in Platonov et al. (2023). We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

run the models with 10 different seeds and report the mean and standard deviation of the test ac-
curacy for roman-empire and amazon-ratings, and mean and standard deviation test ROC
AUC for minesweeper, tolokers, and questions. We use the classical baselines from
Platonov et al. (2023) and NSD, and provide the hyper-parameters in the Appendix (Section F.2).

Results. We report the results in Table 3. BuNN achieves the best score on all tasks, with an average
relative improvement of 4.4%. Its score on minesweeper is particularly impressive, which is sig-
nificantly ahead of the rest and for which BuNN solves the task perfectly. We found that the optimal
value of t over our grid search varies across datasets, being 1 for amazon-ratings and 100 for
roman-empire. BuNN consistently outperforms the sheaf-based model NSD by a large margin,
which we believe is due to the fact that NSD learns a map for every node-edge pairs making NSD
more prone to overfitting, while BuNNs can act as a stronger regularizer. Such strong performance
confirms our theory on over-smoothing from Section 4.1 and showcase the strong modeling capacity
of BuNN in heterophilic settings.

Long Range Graph Benchmark. In Section 4.2, we showed that BuNNs have desirable properties
when it comes to over-squashing and modeling long-range interactions. To verify such claims em-
pirically, we evaluate BuNN on tasks from the Long Range Graph Benchmark (LRGB) (Dwivedi
et al., 2022). We consider the Peptides dataset consisting of 15 535 graphs which come with two
associated graph-level tasks, Peptides-func and Peptides-struct, and the node classifi-
cation on the PascalVOC-SP dataset with 11 355 graphs and 5.4 million nodes where each graph
corresponds to an image in Pascal VOC 2011 and each node to a superpixel in that image.

The graph classification task in Peptides-func is to predict the function of the peptide from
10 classes, while the regression task in Peptides-struct is inferring the 3D properties of the
peptides. In both cases, we follow the standard experimental setup detailed by Dwivedi et al. (2022)
alongside the updated suggestions from Tönshoff et al. (2023). The performance metric is Average
Precision (AP) for Peptides-func and Mean Absolute Error (MAE) for Peptides-struct.
The node classification task in PascalVOC-SP consists of predicting a semantic segmentation
label for each node out of 21 classes, with performance metric being the macro F1 score. We
run each experiment on 4 distinct seeds and report mean and standard deviation over these runs.
Baseline models are taken from Tönshoff et al. (2023) and include MPNNs, transformer models,
and the current SOTA models (Gutteridge et al., 2023; He et al., 2023; Rampášek et al., 2022).

Results. We report the results in Table 4. BuNNs achieve, to the best of our knowledge, a new
state-of-the-art result on Peptides-func. BuNNs also perform strongly on both other tasks,
being second overall on PascalVOC-SP and clearly outperforming all MPNN models, and is third
within one standard deviation of the second model on Peptides-struct. The overall strong
performance on the LRGB benchmarks confirms our theory on oversquashing from Section 4.2 and
provides further evidence of the long-range capabilities of BuNNs.

7 CONCLUSION

In this work, we proposed Bundle Neural Networks – a new type of GNN that operates via message
diffusion on graphs. We gave a formal analysis of BuNNs showing that message diffusion can
mitigate issues such as over-smoothing - since the heat equation over vector bundles admits a richer

Table 3: Results for the heterophilic tasks. Accuracy is reported for roman-empire
and amazon-ratings, and ROC AUC is reported for minesweeper, tolokers, and
questions. Best results are denoted by bold. Asterisk∗ denotes that some runs ran out of memory
on an NVIDIA A10 GPU (24 GB).

roman-empire amazon-ratings minesweeper tolokers questions
GCN 73.69± 0.74 48.70± 0.63 89.75± 0.52 83.64± 0.67 76.09± 1.27
SAGE 85.74± 0.67 53.63± 0.39 93.51± 0.57 82.43± 0.44 76.44± 0.62
GAT 80.87± 0.30 49.09± 0.63 92.01± 0.68 83.70± 0.47 77.43± 1.20
GAT-sep 88.75± 0.41 52.70± 0.62 93.91± 0.35 83.78± 0.43 76.79± 0.71
GT 86.51± 0.73 51.17± 0.66 91.85± 0.76 83.23± 0.64 77.95± 0.68
GT-sep 87.32± 0.39 52.18± 0.80 92.29± 0.47 82.52± 0.92 78.05± 0.93
NSD 80.41± 0.72 42.76± 0.54 92.15± 0.84 78.83± 0.76∗ 69.69± 1.46∗

BuNN 91.75± 0.39 53.74± 0.51 98.99± 0.16 84.78± 0.80 78.75± 1.09

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results for the Peptides-struct, Peptides-func, and PascalVOC-SP tasks
from the Long Range Graph Benchmark (results are ×100 for clarity). The best result is bold.

Peptides-func Peptides-struct PascalVOC-SP
Model Test AP ↑ Test MAE ↓ Test F1↑
GCN 68.60± 0.50 24.60± 0.07 20.78± 0.31
GINE 66.21± 0.67 24.73± 0.17 27.18± 0.54
GatedGCN 67.65± 0.47 24.77± 0.09 38.80± 0.40
DReW 71.50± 0.44 25.36± 0.15 33.14± 0.24

SAN 64.39± 0.75 25.45± 0.12 32.30± 0.39
GPS 65.34± 0.91 25.09± 0.14 44.40± 0.65
GAPH ViT 69.42± 0.75 24.49± 0.16 -
Exphormer 65.27± 0.43 24.81± 0.07 39.75± 0.37

BuNN 72.76± 0.65 24.63± 0.12 40.49± 0.46

set of fixed points - and over-squashing - since BuNNs can operate at a larger scale than standard
MPNNs. We also prove compact uniform approximation of BuNNs, a first expressivity result of its
kind, characterizing their expressive power and establishing their superiority over MPNNs. We then
confirmed our theory with carefully designed synthetic experiments. Finally, we showed that BuNNs
perform well on heterophilic and long range tasks which are known to be challenging for MPNNs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural net-
works. In International Conference on Learning Representations, 2021.

Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar
Veličković, and Pietro Liò. Sheaf Neural Networks with Connection Laplacians. In Proceed-
ings of Topological, Algebraic, and Geometric Learning Workshops 2022, pp. 28–36. PMLR,
November 2022a.

Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, and Pietro Lio’. Sheaf Attention
Networks. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations,
2022b.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João GM Araújo, Alex
Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! information over-
squashing in language tasks. arXiv preprint arXiv:2406.04267, 2024.

C. Battiloro, Z. Wang, H. Riess, P. Di Lorenzo, and A. Ribeiro. Tangent bundle filters and neural net-
works: From manifolds to cellular sheaves and back. In ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding Oversquashing in
GNNs through the Lens of Effective Resistance, June 2023. arXiv:2302.06835 [cs].

Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Lio, and Michael M.
Bronstein. Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing
in GNNs. In Advances in Neural Information Processing Systems, 2022.

Chen Cai and Yusu Wang. A Note on Over-Smoothing for Graph Neural Networks. In ICML Graph
Representation Learning workshop. arXiv, 2020.

Benjamin Paul Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen
Dong, and Michael M. Bronstein. Beltrami Flow and Neural Diffusion on Graphs, October 2021.
arXiv:2110.09443 [cs, stat].

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with GNNs. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Justin Michael Curry. Sheaves, cosheaves and applications. University of Pennsylvania, 2014.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, December 1989.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with graph neural
networks in google maps. In Proceedings of the 30th ACM international conference on informa-
tion & knowledge management, pp. 3767–3776, 2021.

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas Markovich, and
Michael M Bronstein. Understanding convolution on graphs via energies. Transactions on Ma-
chine Learning Research.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yanfei Dong, Mohammed Haroon Dupty, Lambert Deng, Zhuanghua Liu, Yong Liang Goh, and
Wee Sun Lee. Differentiable cluster graph neural network. arXiv preprint arXiv:2405.16185,
2024.

Gbetondji JS Dovonon, Michael M Bronstein, and Matt J Kusner. Setting the record straight on
transformer oversmoothing. arXiv preprint arXiv:2401.04301, 2024.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Guoji Fu, Mohammed Haroon Dupty, Yanfei Dong, and Lee Wee Sun. Implicit graph neural dif-
fusion based on constrained dirichlet energy minimization. arXiv preprint arXiv:2308.03306,
2023.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference
on Machine Learning, pp. 1263–1272. PMLR, July 2017.

Benjamin Gutteridge, Xiaowen Dong, Michael Bronstein, and Francesco Di Giovanni. Drew: dy-
namically rewired message passing with delay. In Proceedings of the 40th International Confer-
ence on Machine Learning, ICML’23. JMLR.org, 2023.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc.

Jakob Hansen and Thomas Gebhart. Sheaf Neural Networks. In NeurIPS Workshop TDA and
Beyond, 2020.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

Alston Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the ACM
(JACM), 1958.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In International Conference on Learning Representations, 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights into Graph Convolutional Networks
for Semi-Supervised Learning. In Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence (AAAI-18), pp. 3538–3545. Association for the Advancement of Artificial
Intelligence, February 2018. ISBN 978-1-57735-800-8.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Net-
works. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4602–4609, July
2019.

Anton Obukhov. Efficient Householder transformation in PyTorch, 2021. URL https://
github.com/toshas/torch-householder.

12

https://github.com/toshas/torch-householder
https://github.com/toshas/torch-householder

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power for
Node Classification. In International Conference on Learning Representations, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress? In
The Eleventh International Conference on Learning Representations, 2023.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Eran Rosenbluth, Jan Tönshoff, and Martin Grohe. Some Might Say All You Need Is Sum. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, pp.
4172–4179, Macau, SAR China, August 2023. International Joint Conferences on Artificial In-
telligence Organization.

Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished in
uniform: Self-attention vs. virtual nodes. In The Twelfth International Conference on Learning
Representations, 2024.

Franco Scarselli, Marco Gori, Ah Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The Graph
Neural Network Model. IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 20:61–80, January 2009.

A. Singer and H.-T. Wu. Vector diffusion maps and the connection Laplacian. Communications on
Pure and Applied Mathematics, 65(8):1067–1144, 2012.

Alessandro Sperduti. Encoding Labeled Graphs by Labeling RAAM. In Advances in Neural Infor-
mation Processing Systems, volume 6. Morgan-Kaufmann, 1993.

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann, Vic-
toria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory,
George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins.
A Deep Learning Approach to Antibiotic Discovery. Cell, 180(4):688–702.e13, February 2020.
ISSN 0092-8674. doi: 10.1016/j.cell.2020.01.021.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
ing the long-range graph benchmark. In The Second Learning on Graphs Conference, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Interna-
tional Conference on Learning Representations, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying Oversmoothing in Attention-
Based Graph Neural Networks. Advances in Neural Information Processing Systems, 36:35084–
35106, December 2023.

Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. Graph Convolutional Networks
using Heat Kernel for Semi-supervised Learning. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, pp. 1928–1934, Macao, China, August 2019a.
International Joint Conferences on Artificial Intelligence Organization.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, 2019b.

Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra. Two sides of the same coin: Het-
erophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE International
Conference on Data Mining (ICDM), pp. 1287–1292, Los Alamitos, CA, USA, dec 2022. IEEE
Computer Society.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. Adaptive Diffusion in
Graph Neural Networks. In Advances in Neural Information Processing Systems, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A LIMITATION AND FUTURE WORK

A limitation of our framework is that while message diffusion allows to operate on different scales
of the graph, the computation of the heat kernel for large t requires spectral methods and is therefore
computationally expensive. An exciting research direction consists of using existing computational
methods to approximate the heat kernel efficiently for large values of t. A limitation of our exper-
iments is that we consider inductive graph regression/classification and transductive node regres-
sion/classification tasks but no link prediction task. A limitation in our theory is that Theorem 5.3
assumes injective positional encodings at the node level, which might only sometimes be available;
future work could characterize the expressiveness when these are unavailable.

B PROOFS

In this section, we provide proof of the theoretical results from the main text. Namely Lemma 3.1,
Proposition 4.1, Lemma 4.3, Corollary 4.4, Proposition 5.2, and finally Theorem 5.3.

Lemma 3.1. For every node v, the solution at time t of heat diffusion on a connected bundle G =
(V, E, O) with input node features X satisfies:

(HB(t)X)v =
∑
u∈V

H(t, v, u)OT
v Ouxu, (7)

whereH(t) is the standard graph heat kernel, andH(t, v, u) ∈ R its the entry at (v, u).

Proof. Since LB = OT
BLOB we get HB(t, u, v) = OT

BH(t, u, v)OB by the definition of the heat
kernel.

B.1 OVER-SMOOTHING: PROOFS OF SECTION 4.1.

In this section, we prove the results on the stable states and on over-smoothing. The first result
follows straightforwardly from Lemma 3.1.

Proposition 4.1. Let Y be the output of a BuNN layer with t =∞, where G is a connected graph,
and the bundle maps are not all equal. Then, u, v ∈ V is connected such that yv ̸= yu almost
always.

Proof. Consider a stable signal Y ∈ kerLB and pick u, v ∈ V such that Ou ̸= Ov . As Y is stable,
it must have 0 bundle Dirichlet energy, so we must have that Ouyu = Ovyv , but as Ou ̸= Ov

we have that yu ̸= yv , which holds except in degenerate cases such as when the matrices Ou are
reducible, or when the original signal is the zero vector.

The idea of the second result is that due to the injectivity of the positional encodings on the two
nodes, we can set their restriction maps so that the first layer zeroes out the first channel of one
node and the second channel of the second. The next K − 1 layers simply keep this signal fixed by
realizing them as a fixed point of the bundle heat equation.

Proposition 4.2. Let X be 2-dimensional features on a connected G, and assume that there are two
nodes u, v with pu ̸= pv . Then there is an δ > 0 such that for every K, there exist a K-layer deep
BuNN with 2 dimensional stalks, ϕ(ℓ) is a node-level MLP, ReLU activation, and ∥W(ℓ)∥ ≤ 1, with
output Y such that ∥yv − yu∥ > δ.

Proof. We will show the result for the limit t → ∞. Let Ow = Id for w ̸= u and Ov =

(
0 1
1 0

)
.

These restriction maps can be learned by assumption since pu ̸= pv and MLPs are universal. Define

h =
∑
w ̸=u

dw
2|E|

Owxw +
du
2|E|

(
0 1
1 0

)
xu ∈ R2

and denote h0 the entry in the first dimension and h1 its second entry.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Case 1: (h0)
2 > 0 or (h1)

2 > 0. We start with the case (h0)
2 > 0. Set δ = (h0)

2. If h0 > 0,

set the first weight matrix to be W(1) =

(
1 0
0 0

)
, otherwise let W(1) =

(
−1 0
0 0

)
. Set the first

bias to 0. The output before the activation will then be h(1) = (|h0|, 0)T for all w ̸= u and
h(1) = (0, |h0|)T by Equation 5. Since σ is ReLU, it does not change the output. For the next
layers, picking the same restriction maps Ows and W(ℓ) = Id also do not change the output. Hence
at layer K, the output at v is yv = (|h0|, 0)T and at u it is yu = (0 , |h0|)T . We conclude since
∥yu − yu∥22 = 2|h0|2 ≥ δ. If (h0)

2 = 0 and (h1)
2 = 0 the argument is the same.

Case 2: (h0)
2 = 0 and (h1)

2 = 0. Set δ = 1
2 and W(1) = 0 and b(1) = (1, 0)T . Before

the message diffusion step, the signal is constant on the nodes and equal to b. By Equation 5, the
pre-activation output of the first layer is b = (1, 0) at all nodes w ̸= u and OT

ub = (0, 1)T at u.
Since all entries are positive, the ReLU activation leaves them fixed. The subsequent layer can be set
as in the previous case to keep the node embedding fixed. Consequently, ∥yu − yv∥ = 1 > 1

2 .

B.2 OVER-SQUASHING: PROOFS OF SECTION 4.2.

In this section we prove our results on over-squashing and long-range interactions. The Jacobian re-
sult follows straightforwardly from Lemma 3.1 and the definition of a BuNN layer, and the Corollary
follows from the Jacobian result.
Lemma 4.3. Let BuNN be a linear layer defined by Equations 1, 2 & 3 with hyperparameter t.
Then, for any connected graph and nodes u, v, we have

∂ (BuNN (X))u
∂xv

= H(t, u, v)OT
uWOv,

and therefore

lim
t→∞

∂ (BuNN (X))u
∂xv

=
dv
2|E|

OT
uWOv.

Proof. The result follows from the closed-form solution of the heat kernel from Lemma 3.1. We
start by applying the bundle encoder from Equation 2 that updates each node representation as
hv = OT

v WOvxv + b. Since the Ou do not depend on the signal X, we get

∂ (BuNN (X))u
∂xv

=
∂

∂xv

[∑
v∈V

H(t, u, v)OT
uOv

(
OT

v WOvxv + b
)]

(8)

= H(t, u, v)OT
uWOv. (9)

The second statement follows from the fact thatH(t, u, v)→ du

2|E|

To illustrate the flexibility of such a result, we examine a setting in which we want nodes to select
which nodes they receive information from, therefore ‘reducing’ their receptive field.
Corollary 4.4. Consider n nodes u, v, and wi, for i = 1, . . . n − 2, of a connected graph with
2 dimensional bundle such that pv ̸= pwi and pu ̸= pwi ∀i. Then in a BuNN layer with MLP
ϕ, at a given channel, the node v can learn to ignore the information from all wis while keeping
information from u.

Proof. We denote y the output of the layer, and index the two dimensions by super-scripts, i.e.

y =

(
y(1)

y(2)

)
. Our goal is to have ∂y(1)

v

∂yu
̸= (0 0), while ∂y(1)

v

∂ywi
= (0 0) for all i. This would make

the first channel of the output at v insensitive to the input at all wis while being sensitive to the input
at node u.

Fix Ov = Ou =

(
0 1
1 0

)
and Owi

=

(
1 0
0 1

)
. Such maps can always be learned by an MLP,

by the assumptions on pv , pu, and pwi and by the universality of MLPs. Let the weight matrix be

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

W =

(
w11 w12

w21 w22

)
. By Lemma 4.3 we get ∂yv

∂xu
= H(t, v, u)OT

v WOu = H(t, v, u)
(
w22 w12

w21 w11

)
and ∂yv

∂xwi
= H(t, v, wi)O

T
v WOwi = H(t, v, wi)

(
w21 w22

w11 w12

)
. Setting w21 and w22 to 0 gives

∂y(1)
v

∂xwi
= (0 0) and ∂y(1)

v

∂xu
= H(t, v, u) (0 w12) ̸= 0, as desired.

B.3 EXPRESSIVITY OF BUNNS: PROOFS OF SECTION 5.

We now turn to BuNN’s expressivity. Before proving that BuNNs have compact uniform approxi-
mation, we prove that MPNNs fail to have this property. This proves BuNNs’ superiority and shows
that uniform expressivity is a good theoretical framework for comparing GNN architectures.
Proposition 5.2. There exists a family G consisting of connected graphs such that bounded-depth
MPNNs are not compact uniform approximators, even if enriched with unique positional encoding.

Proof. Let G be any family of connected graphs with an unbounded diameter (for example, the n×n
grids with n → ∞). Let the depth of the MPNN be L. Let G ∈ G be a graph with diameter > L,
and let u and v be two nodes in VG at distance > L. Note that the output at v will be insensitive
to the input at u, and therefore, the MPNN cannot capture feature transformations where the output
at v depends on the input at u. This argument holds even when nodes are given unique positional
encodings.

We now turn to our main theoretical contribution. The proof of Theorem 5.3 is split into two parts.
The first proves that 1-layer BuNNs have compact uniform approximation over linear feature trans-
formations. The second part is extending to continuous feature transformation, which is an applica-
tion of classical results.

We start by recalling the definition of a linear feature transformation over a family of graphs G:

Definition B.1. A linear feature transformation L ∈ C(G,Rc,Rc′) over a family of graphs G is an
assignment of each graph G ∈ G to a linear map LG : RnGc → RnGc

′
. Here, linearity means that

for any two node-signals X1 ∈ Rnc and X2 ∈ Rnc′ , and any real number α ∈ R, it holds that
LG (αX1) = αLG (X1), and LG (X1 +X2) = LG (X1) + LG (X2).

We will need the following Theorem, which adapts classical results on the universality of MLPs.
Theorem B.2. If a class of neural networks has compact uniform approximation over G with re-
spect to linear functions and contains non-polynomial activations, then it has compact universal
approximation over G with respect to continuous functions.

Proof. Classical theorems such as Theorem 1 in (Cybenko, 1989) allow us to approximate any
continuous function over a compact set in a finite dimensional vector space by composing a linear
map C, an activation σ, and an affine map A · +b. Given a finite family of graph G, the space of
node features on all graphs is a finite dimensional vector space. By assumption, we can implement
the linear map, the activation, and the affine map. Hence, by composing them, we can approximate
any continuous function over the compact set.

We are now ready to prove the paper’s main result: that, given injective positional encodings, BuNNs
are compact universal approximators of feature transformations.
Theorem 5.3. Let G be a set of connected graphs with injective positional encodings. Then 2-layer
deep BuNNs with encoder/decoder at each layer and ϕ being a 2-layer MLP have compact uniform
approximation over G.

In particular, let ϵ > 0 and h be a feature transformation supported on
⊔

G∈K KnG ⊆
⊔

G∈G RnGd

with K ⊆ G finite and K ⊆ Rd a compact set, then there is a 2-layer deep BuNN with width
O
(∑

G∈K |VG|
)

that approximates h with uniform error < ϵ.

Proof. Reducing to linear approximation. It suffices to show that a BuNN layer can approximate
any linear feature transformation L because we can apply classical results such as Theorem B.2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

to get universal approximation of 2-layer deep networks with activation. Following Definition 5.1,
we aim to show that we can approximate a linear feature transformation L on any compact subset.
For this, we fix ϵ > 0, the finite subset K ⊆ G, and compact feature space K ⊆ Rc. In fact, we
assume that K = Rc since approximating a linear map on any compact feature space is equivalent to
approximating it on the whole space because a linear map defined on a neighborhood of the 0 vector
can be extended uniquely to the whole vector space. Our goal is therefore to find a parameterization
of a single BuNN layer such that for any graph G ∈ K and for any input feature X ∈ RnGc, we
have ∥LG (X) − BuNNG (X) ∥∞ < ϵ. We will show that L can be parameterized exactly. Since
L is linear, it suffices to find a linear BuNN layer that satisfies for any G ∈ K and any X ∈ RnGc,
∂(L(X))u

∂xv
=

∂(BuNNX)u
∂xv

. By Lemma 4.3, we have ∂ BuNN(X)u
∂xv

= H(t, u, v)OuWOT
v . Hence,

since MLPs are universal and the positional encodings are injective, it suffices to find bundle maps
O :

⊔
G∈K VG → O (k) and W such that 1

nGdu

∑
v∈V OT

uWOv =
∂(LX)u
∂Xv

for every u, v ∈ G and
every G ∈ K.

Defining the encoder and decoder: In order to find such a BuNN, we first need a linear encoder
lift : Rc → R2ck which will be applied at every node before applying a 2ck dimensional BuNN
layer. The lifting transformation maps each node vector Xu to the concatenation of k vectors Xu

interleaved with k vectors 0 ∈ Rc. This is equivalent to the linear transformation given by left
multiplication by (Ic×c,0, . . . , Ic×c,0)

T ∈ R2ck×c. After the 2ck dimensional BuNN network,
we will also need a linear decoder pool : R2ck → Rc applied to every node individually, which
is the sum of the k different c-dimensional vectors that are at even indices. This is equivalent to
left multiplication by the matrix (Ic×c,0c×c, . . . , Ic×c,0c×c) ∈ Rc×2ck. These two can be seen
as a linear encoder and linear decoder, often used in practical GNN implementations. We prove
the result by adding the lifting and pooling layers and using the higher dimensional B̂uNN layer,
i.e. we prove that BuNN = pool ◦B̂uNN ◦ lift can approximate any linear maps which satisfy the
encoder and decoder assumption of the Theorem statement.

Defining the ‘universal bundle’: We fix k =
∑

G∈K |VG|, so we can interpret our embedding
space as a lookup table where each index corresponds to a node v ∈

⊔
G∈K VG. In turn, we can

think of the parameter matrix W ∈ R(
∑

G∈K|VG|)×(
∑

G∈K|VG|) as a lookup table where each entry
corresponds to a pair of nodes in our dataset K. Still thinking of the indices of the 2ck dimensions
as 2c-dimensional vectors indexed by the k nodes in our dataset, we define Ou ∈ O (2ck) as a block
diagonal matrix with k different 2c-dimensional blocks, where the kith block is denoted Oki

u . These
are all set to the identity except for the block at the index corresponding to node u, which is defined

as
(
0c×c Ic×c

Ic×c 0c×c

)
which is a 2c× 2c matrix that acts by permuting the first c dimensions with the

second c dimensions.

Computing the partial derivatives. Since our model BuNN is a composition of linear maps, and
since the maps pool and lift are applied node-wise, we get

∂ (BuNN (X))u
∂xv

= pool
∂
(
B̂uNN (lift (X))

)
u

∂ lift (Xv)
lift

= (Ic×c,0c×c, . . . , Ic×c,0c×c)H(t, u, v)OT
uWOv (Ic×c,0c×c, . . . , Ic×c,0c×c)

T

= H(t, u, v)
∑

1≤k1, k2≤k

(Ic×c,0c×c)O
k1
u

T
Wk1k2Ok2

v (Ic×c,0c×c)
T

We proceed by partitioning the indexing by (k1, k2) into four cases. The first case is C1 =
{(k1, k2) such that (k1 ̸= u, v and k2 ̸= u, v)} for which both Ok1

u and Ok2
v act like the identity.

The second case is C2 = {(k1, k2) such that k1 = u and k2 ̸= v} where Ok1
u flips the first c rows

with the second c rows and Ok2
v acts like the identity. C3 = {(k1, k2) such that k2 = v and k1 ̸= u}

where Ok2
v flips the first c columns with the second c columns, and Ok1

u acts like the identity on the
rows. Finally, the last case is when k1 = u and k2 = v in which Ok1

u flips the rows, and Ok1
v flips

the columns.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

. . . = H(t, u, v)
∑

1≤k1, k2≤k

(Ic×c,0c×c)O
k1
u

TWk1k2Ok2
v (Ic×c,0c×c)

T

= H(t, u, v) (Ic×c,0c×c)

 ∑
(k1,k2)∈C1

(
Wk1k2

00 Wk1k2
01

Wk1k2
10 Wk1k2

11

)
+

∑
(k1,k2)∈C2

(
Wk1k2

10 Wk1k2
11

Wk1k2
00 Wk1k2

01

)

+
∑

(k1,k2)∈C3

(
Wk1k2

01 Wk1k2
00

Wk1k2
11 Wk1k2

10

)
+

(
Wuv

11 Wuv
10

Wuv
01 Wuv

00

) (Ic×c,0c×c)
T

= H(t, u, v)

 ∑
(k1,k2)∈C1

Wk1k2
00 +

∑
(k1,k2)∈C2

Wk1k2
10 +

∑
(k1,k2)∈C3

Wk1k2
01 +Wuv

11

Where the last line is obtained by applying (Ic×c,0c×c) on the left and (Ic×c,0c×c)
T on the right,

an operation that selects the upper left c× c block. We observe that setting all Wk1k2
00 = Wk1k2

01 =

Wk1k2
10 to 0c×c and setting Wuv

11 := 1
H(t,u,v)

∂(LX)u
∂xv

if the nodes corresponding to u and v lie
in the same graph and 0c×c otherwise. This allows us to conclude that any linear layer can be
parameterized, completing the proof of the theorem.

C DISCUSSION ON COMPACT UNIFORM APPROXIMATION VERSUS UNIFORM
APPROXIMATION

A strong definition of expressivity that deals with infinite collections of graphs was proposed in
Rosenbluth et al. (2023). This definition subsumes graph-isomorphism testing (where the input
feature on graphs is constant). Furthermore, it also deals with infinite families of graphs, as opposed
to most mainstream theorems of GNN expressivity, which are proved for graphs of bounded size
(e.g. Azizian & Lelarge (2021); Geerts & Reutter (2022)). See Section 2 for the notation and
definition of features transformations.

Definition C.1 (From Rosenbluth et al. (2023)). Let c, c′ ∈ N and take R as feature space. Consider
a collection of graphs G. Let Ω ⊆ C

(
G,Rc,Rc′

)
be a set of feature transformations over G,

and let H ∈ C
(
G,Rc,Rc′

)
a feature transformation over G. We say that Ω uniformly additively

approximates H , notated Ω ≈ H if ∀ϵ > 0 ∀ compact Kn ⊂ Rnc ∃F ∈ Ω such that:, ∀G ∈
G ∀X ∈ KnGc ∥FG (X)−HG (X)∥∞ ≤ ϵ where the sup norm ∥ · ∥∞ is taken over all nodes and
dimensions of nGc

′ dimensional output.

Note that this definition differs from our Definition 5.1 in that it requires uniform approximation over
all graphs in G simultaneously, while we allow the width to vary with the finite subsetK ⊆ G, similar
to how classical results allow the width to vary with the compact set over which to approximate the
function. Such a definition has proven useful in Rosenbluth et al. (2023) to distinguish different
aggregation functions and in Rosenbluth et al. (2024) to distinguish MPNNs with virtual nodes from
Transformers. However, we argue that the definition above is too strong for a finite parameter
GNN. This is because it requires uniform approximation over a non-compact set, which contrasts
with traditional work on expressivity and is generally unfeasible and impractical. Indeed, finite-
parameters MLPs are not universal over the whole domain R under the ℓ∞-norm. On an infinite
collection of featured graphs, the topology is the disjoint union topology on

⊔
G∈G RnGd, a compact

subset consists of a finite set of graphs, and for each graph G only non-zero on a compact subset
of Rnd. For these reasons, we introduce Definition 5.1, which is still rich enough to distinguish
between BuNNs and MPNNs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D WHY CLASSICAL ARGUMENTS DO NOT APPLY TO COMPACT UNIFORM
APPROXIMATION

A seminal result in GNN expressivity is Theorem 2 in Morris et al. (2019). In this section, we
discuss why the arguments do not hold for compact uniform approximation, even when enriched
with injective positional encodings. We start by formally defining injective positional encodings, as
done in Kreuzer et al. (2021) and Rosenbluth et al. (2024).
Definition D.1. A positional encoding π on a graph G is a map π(G) : V → Rk which assigns a
k-dimensional feature to every node . A positional encoding π on a family of graphs G is a positional
encoding on all graphs G ∈ G. A positional encoding π is injective on G if for any two graphs H,G in
G and any two nodes u ∈ VG and v ∈ VH, if π(G)(u) = π(H)(v) then there exists an isomorphism
ϕ : G→ H mapping v to u.

The setting in Morris et al. (2019) Theorem 2 considers a single graph with fixed node features (or
colors/labels). In contrast, our Theorem is for a family of graphs, and more importantly, for each
graph G, the node features are not fixed but can vary in any compact subspace of feature space. This
means that for a single graph of size n, our statement holds, for example, on the unit cube [0, 1]n,
while the result in Morris et al. (2019) only holds for a specific point in Rn.

Fixing the node features is precisely what makes the construction in Morris et al. (2019) possible. In-
deed the proof starts by assuming that the initial coloring is “linearly independent modulo equality”,
denoted by F

(0)
l,0 in their proof. This property on node features is indeed central to the construction.

It is used several times, for example “Observe that colors are represented by linearly independent
row vectors” and ”F(t+1)

l,0 is linearly independent modulo equality”. Such an assumption is possible
when dealing with fixed node features: since there are at most n colors, it suffices to take a one-hot
encoding of those colors, which fits in a feature space of dimension at most n. This assumption is
also crucial for the injectivity of the sum aggregation.

In our setting, the node features can take any value in a continuum of features, each belonging to a
compact subspace K of Rc. Encoding such a continuum as a one-hot encoding cannot be done in
a finite-dimensional vector space (since there are {0, 1}K possibilities, which can be uncountable,
and each need to be linearly independent). Hence, their construction fails in the setting where the
node features are not fixed but can vary on any compact subspace of Rc.

E ALGORITHMIC AND IMPLEMENTATION DETAILS

In this section, we provide more details on the implementation of BuNNs. We start by discussing
how to use several vector-field channels when the input dimension is greater than the bundle dimen-
sion. We then discuss how to use several bundles at once when a single bundle is insufficient. We
then combine both views, namely having several vector-field channels on several bundles at once.
Finally, we describe how we compute our bundle maps in the experiments.

Extending to several vector-field channels. When the signal dimension exceeds the bundle dimen-
sion, i.e. c > d, we cannot directly apply BuNNs to the input signal. In that case, we first transform
the signal into a hidden dimension, a multiple of the bundle dimension, i.e.c = dp. We reshape
the input signal into p channels of d-dimensional vector fields, where we apply the diffusion step
(Equation 3) on each p channels simultaneously, and we apply the weight matrix W ∈ Rdp×dp by
first flattening the node signals into dp dimensions, then multiplying by W, and then reshaping it
into p channels of d dimensional vector fields.

Extending to several bundles. Learning a high dimensional orthogonal matrix O(d) becomes ex-
pensive since the manifold of orthogonal matrices is d(d−1)

2 dimensional. However, we can compute
many low-dimensional bundles in parallel. In practice, we found that using several 2-dimensional
bundles was enough. Computing b different 2-dimensional bundles requires only b-parameters since
the manifold O(2) is 1-dimensional. We, therefore, also use different ‘bundle channels’ given by an
additional hyper-parameter – the number of bundles, which we denote b. Given an input signal of
dimension c = db, we can decompose the signal into b bundle channels of dimension d. We can
compute the diffusion step (Equation 3) for each bundle in parallel. For the update step (Equation 2),
we apply the weight matrix W ∈ Rbd×bd by first flattening the node signals into bd dimensions, then

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

multiplying by W, and then reshaping it into b bundle channels of d dimensional vector fields over
b different bundle structures.

Remark E.1. We note that using b different d dimensional bundles is equivalent to parameterizing a
subset of one bd-dimensional structure, consisting of the orthogonal map O ∈ O(bd) ⊂ Rbd×bd that
are block diagonal matrices O =

⊕
i=1...b Oi, with each Oi ∈ O(d).

Extending to several bundles and vector-field channels. We can combine the above two obser-
vations. Given an input signal of dimension c = bdp, we can subdivide this into b different bundle
structures of dimension d and p channels for each bundle. We diffuse on the appropriate bundle
structure and flatten the vector fields into a c× c vector before applying the learnable parameters.

Computing the bundle maps. In our experiments, we noticed that having several bundles of di-
mension 2 was more efficient than one bundle of large dimensions, while there was no clear per-
formance gain when using higher dimensional bundles. To compute the b bundle maps Ov we
therefore only need b rotation angles θv , one per bundle. In our experiments, we use Housholder
reflections using the python package Obukhov (2021) or direct parameterization. For direct param-
eterization, we do the following: since the matrix group O(2) is disconnected, we always take b

to be even and parameterize half the bundles as rotation matrices r(θ) =

(
cos (θ) sin (θ)
− sin (θ) cos (θ)

)
and the other half to correspond to matrices with determinant −1, which can be parameterized by

r∗(θ) =

(
cos (θ) sin (θ)
sin (θ) − cos (θ)

)
. We compute the angles θ as in Equation 1 where the network ϕ(ℓ)

is either an MLP or a GNN. The network ϕ is either shared across layers or differing at every layer.

Taylor approximation algorithm. We now provide pseudo-code on how we implement Equa-
tions 2, and 3. We then proceed with a complexity analysis. The key idea of the algorithm is that
the bundle heat kernel can be approximated efficiently using the standard graph heat kernel.

Algorithm 1 Taylor expansion implementation of a BuNN layer

Input: Normalized graph Laplacian L, Orthogonal maps O(ℓ)
v ∀v ∈ G, Node features X(ℓ) ∈

Rn×d, Time t, Maximum degree K, Channel mixing matrix W(ℓ), bias b(ℓ)

Output: Updated node features X(ℓ)

1: h
(ℓ)
v ← O

(ℓ)
v x

(ℓ)
v ∀v ∈ V ▷ Sync.: Go to global representation

2: H(ℓ) ← HW(ℓ) + b(ℓ) ▷ Update features with parameters
3: X(ℓ+1) ← H(ℓ) ▷ approximation of degree 0
4: for k = 1, . . .K do
5: H(ℓ) ← − t

kLH
(ℓ) ▷ Term of degree k

6: X(ℓ+1) ← X(ℓ+1) +H(ℓ) ▷ Approximation of degree k
7: end for
8: x

(ℓ+1)
v ← O

(ℓ)
v

T
x
(ℓ+1)
v ∀v ∈ V ▷ Deync.: Return to local representation

9: return X(ℓ+1)

The complexity of the algorithms is as follows. There are 3 matrix-vector multiplications done at
each node in lines 1, 2, and 8, which are done inO

(
3d2|V|

)
. The for loops consist of matrix-matrix

multiplications, which are done in O (d|E|) with sparse matrix-vector multiplication. The memory
complexity is O

(
(d+ d2)|V|

)
since we need to store d dimensional vectors and the orthogonal

maps for each node. The exact implementation is described in Algorithm 1

Spectral method. We now describe how to implement a BuNN layer using the eigenvectors and
eigenvalues of the Laplacian.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 2 Spectral implementation of a BuNN layer

Input: Eigenvectors and eigenvalues graph Laplacian (ϕi, λi)i, Orthogonal maps O(ℓ)
v ∀v ∈ G,

Node features X(ℓ) ∈ Rn×d, Time t, Maximum degree K, Channel mixing matrix W(ℓ), bias
b(ℓ)

Output: Updated node features X(ℓ)

1: h
(ℓ)
v ← O

(ℓ)
v x

(ℓ)
v ∀v ∈ V ▷ Sync.: Go to global representation

2: H(ℓ) ← HW(ℓ) + b(ℓ) ▷ Update features with parameters
3: X(ℓ+1) ←

∑
i e

−tλiϕiϕ
T
i H

(ℓ) ▷ Spectral solution to heat equation

4: x
(ℓ+1)
v ← O

(ℓ)
v

T
x
(ℓ+1)
v ∀v ∈ V ▷ Desync.: Return to local representation

5: return X(ℓ+1)

E.1 HOUSEHOLDER REFLECTIONS.

Many different parameterizations of the group O(n) exist. While direct parameterizations are pos-
sible for n = 2, 3 it becomes increasingly complex to do so for larger n, and a general method
working for all n is a desirata. While there are several methods to do so, we use Householder re-
flection since it is used in related methods (Bodnar et al., 2022). We use the Pytorch package from
(?). Given given k vectors vi ∈ Rd, define the Householder matrices as Hi = I − 2

viv
T
i

∥vi∥2
2

, and

define U =
∏k

i=1 Hi. All orthogonal matrices may be obtained using the product of d such matri-
ces. Hence the map Rd×d → O(d) mapping V = (vi) to U is a parameterization of the orthogonal
group. We use pytorch implementations allowing autograd provided in (?).

F EXPERIMENT DETAILS

In this section we provide additional information about the experiments on the heterophilic graph
benchmarks, the LRGB benchmarks, and the synthetic experiments. All experiments were ran on a
cluster using NVIDIA A10 (24 GB) GPUs, each experiment using at most 1 GPU. Each machine
in the cluster has 64 cores of Intel(R) Xeon(R) Gold 6326 CPU at 2.90GHz, and ∼500GB of RAM
available. The synthetic experiments from Section 6.1 were run on CPU and each run took roughly
20 minutes. The heterophilic experiments from Section 6 were run GPU and varied between 5
minutes to 1.5 hours. The LRGB experiments were run on GPU and varied between 0.5 hours and
4 hours.

F.1 LRGB: TRAINING AND TUNING.

For peptides-func and peptides-struct we use a fixed parameter budget of∼ 500k as in
Dwivedi et al. (2022). We fix hyper-parameters to be the best GCN hyper-parameters from Tönshoff
et al. (2023), and tune only BuNN-specific parameters as well as the use of BatchNorm. In Table 5,
we report the grid of hyper-parameters that we searched, and denote in bold the best combinations
of hyper-parameters. The parameters fixed from Tönshoff et al. (2023) are the following:

• Dropout 0.1

• Learning rate 0.001

• Head depth 3

• Positional Encoding: LapPE for struct and RWSE for func

• Optimizer: AdamW with a cosine annealing learning rate schedule and linear warmup.

• Batch size 200

• We use skip connection as implemented in Dwivedi et al. (2022) and not in Tönshoff et al.
(2023). That is, the skip connection does not skip the non-linearity.

For the BuNN specific parameters, we use 2 dimensional bundles, whose angles θ we compute
with the help of a small SumGNN architecture using a sum aggregation as defined by θ

(ℓ)
v =

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

σ
(
Wsx

(ℓ)
v +Wn

∑
u∈N (v) x

(ℓ)
u

)
where the input dimension is the hidden dimension, the hidden

dimension is twice the number of bundles and the output is the number of bundles. The number
of SumGNN layers is a hyper-parameter we tune. When it is 0 we use a 2 layer MLP with hidden
dimension also twice number of bundles. For each hyper-parameter configuration, we set the hidden
dimension in order to respect to the parameter budget.

Parameters All Values Best Values
func struct PascalVOC-SP

Num bundles b 4, 8, 16 16 16 16
Number of BuNN layers 1 − 20 6 4 20

Number of SumGNN layer 0 − 3 1 0 0
Weight decay 0, 0.1, 0.2, 0.3 0.2 0.2 0.2

Time t 0.1, 1, 10, 100 1 1 1

Table 5: Grid of hyper-parameters for peptides-func, peptides-struct, and
PascalVOC-SP.

F.2 HETEROPHILIC GRAPHS: TRAINING AND TUNING.

For the heterophilic graphs we use the source code from Platonov et al. (2023) in which we add
our layer definition. We report all training parameters that we have tuned. Namely, we use GELU
activation functions, the Adam optimizer with learning rate 3× 10−5, and train all models for 2000
epochs and select the best epoch based on the validation set. To compute the bundle maps, we
compute the parameters θ with a GraphSAGE architecture shared across layers (ϕ method = shared)
or different at each layer (ϕ method = not shared), with hidden dimension dimension the number
of bundles. The number of layers of this GNN is a hyper-parameter we tuned, which when set to
0 we use a 2 layer MLP. For each task we manually tuned parameters, which are subsets of the
combinations of parameters in the grid from Table 6. The implementation of the heat kernel used
is either truncated Taylor series with degree 8, or the spectral implementation. We report the best
performing combination of parameters in Table 7. For the NSD baseline we use code from Bodnar
et al. (2022) and tune equivalent parameters. We report the grid of hyperparameters in Table 8 and
best values in Table 9

Parameters All Values
Hidden dim 256, 512

Num bundles b 8, 16, 32, 64, 128, 256
Bundle dimension d 2

Number of BuNN layers 1 − 8
Number of GNN layer ϕ 0 − 8

Time t 0.1, 1, 10, 100
ϕ method shared, not shared
Dropout 0.0, 0.2

Learning rate 3× 10−4, 3× 10−5

Table 6: Parameters searched when tuning on the heterophilic graph benchmark datasets.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Parameters Best Values
roman-empire amazon-ratings minesweeper tolokers questions

Hidden dim 512 512 512 512 256
Num bundles b 64 64 256 256 128

Bundle dim 2 2 2 2 2
Number of BuNN layers 6 2 8 6 6
Number of GNN layer 8 0 8 7 6

Time t 100 1 1 1 1
ϕ method not shared not shared not shared not shared shared
Dropout 0.2 0.2 0.2 0.2 0.2

Learning rate 3× 10−4 3× 10−4 3× 10−5 3× 10−5 3× 10−5

Table 7: Best parameter for each dataset in the heterophilic graph benchmarks.

Parameters All Values
Hidden dim 64, 128, 256∗, 512∗

Sheaf dimension d 2, 4, 8
Number of layers 1, 2, 3, 4∗, 5∗, 6∗, 7∗, 8∗

Dropout 0.0, 0.2
Learning rate 3× 10−4, 3× 10−5

Table 8: Parameters searched when tuning NSD on the heterophilic graph benchmark datasets.
Parameters marked by ∗ ran out of memory on some datasets.

Parameters Best Values
roman-empire amazon-ratings minesweeper tolokers questions

Hidden dim 256 256 512 64 64
Sheaf dim 2 4 2 2 2

Number of layers 8 3 8 5 5
Dropout 0.2 0.2 0.2 0.2 0.2

Learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Table 9: Best parameter for NSD on each dataset in the heterophilic graph benchmarks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

G EMPIRICAL RUNTIME

Table 10: Average time per epoch, over 5 epochs, for different architectures with 6 layers and 500k
parameters on the LRGB datasets. All experiments were performed on an NVIDIA A10 (24GB)
GPU.

avg. time / epoch Peptides-func Peptides-struct PascalVOC-SP

graphs 15,535 15,535 11,355
nodes 2,344,859 2,344,859 15,955,687
edges 4,773,974 4,773,974 32,341,644

GCN 5.6s 5.3s 15.2s
GatedGCN 8.5s 8.3s 22.5s
GPS 17.2s 17.2s 38.2s

BuNN 12.7s 12.5s 28.7s

Table 11: Average training time, over 3 runs, for different architectures of with 5 layers and hidden
dimension of 512 on the Heterophilic datasets (averaged over 3 runs). All experiments were per-
formed on an NVIDIA A10 (24GB) GPU.

avg. training time roman-empire amazon-ratings minesweeper tolokers questions

num nodes 22,662 24,492 10,000 11,758 48,921
num edges 32,927 93,050 39,402 519,000 153,540

SAGE 1:45 1:43 0:48 1:15 3:01
GAT 2:33 2:42 1:11 3:24 5:22
GT 3:31 4:12 1:52 4:20 7:57

NSD 7:58 9:16 7:13 OOM OOM
BuNN 4:21 5:18 2:48 3:51 9:32

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 12: Positional encoding ablation on peptides-func and peptides-struct
RWSE LPE No PE

Peptides-func Test AP ↑ 72.76± 0.65 72.25± 0.51 71.76± 0.68
Peptides-struct Test MAE ↓ 25.02± 0.15 24.63± 0.12 25.32± 0.19

Table 13: W and b importance ablation on peptides-func and peptides-struct
with without

Peptides-func Test AP ↑ 72.76± 0.65 70.75± 0.36
Peptides-struct Test MAE ↓ 24.63± 0.12 25.28± 0.32

H ABLATION: POSITIONAL ENCODING ABLATION

We perform an ablation on the use of PE on the peptides-func and peptides-struct
datasets. We retrain a model using the best hyperparameter where we change the used PEs. We
compare the two main PE used in graph machin learning, namely Laplacian Positional encoding
(LPE) and Random Walk Structural Encodings (RWSE), and we consider using no PE as a baseline.
Results can be found in Table 12. We observe that using PE is always beneficial to not using PE,
however each task seem to admit a preferred PE, since LPE is better for Peptides-struct and
RWSE for Peptides-func.

I ABLATION: IMPORTANCE OF W AND b

We run an ablation on the importance of the W and b parameters in Equation 2. We retrain a model
removing them and compare it to a model trained using them. We report results in Table 13. The
results suggest that these parameters help. However, the result suggest that they are not essential to
achieve good results, as even without them, the model performs well and beats all but one of the
baselines on peptides-func.

J TREE-NEIGHBORSMATCH TASK

As an additional synthetic task, we evaluate BuNNs on the Tree-NeighborsMatch task, pro-
posed in Alon & Yahav (2021) to show that MPNNs suffer from over-squashing. We use their code
and setup to evaluate the capacity fo BuNNs to alleviate over-squashing. We use their reported re-
sults and add our own results, ran using their experimental setup, for a 2-layer deep BuNN with
t = ∞ and 32 bundles. We report the results in Figure 5. We observe that BuNN beat all MPNNs
by a large margin, with perfect until r = 6. As the task gets harder with a larger depth, the accuracy
for BuNNs drops slower than the accuracy of MPNNs. These results confirm that BuNNs alleviate
over-squashing.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8
r

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c 0.60

0.38
0.21

0.16

0.77

0.29

1.00

0.41

1.00 1.00

0.70

0.19
0.14

0.09 0.08

Accuracy vs. r
BuNN
GGNN
GIN
GAT
GCN

1.00 1.00

0.71

0.42

Figure 5: Results for Tree-NeighborsMatch task.

27

	Introduction
	Background
	Bundle Neural Networks
	Properties of Bundle Neural Networks
	Fixed points and over-smoothing.
	Over-squashing and long range interactions.

	Expressivity of the model
	Experiments
	Synthetic experiments: over-squashing and over-smoothing
	Real-world tasks

	Conclusion
	Limitation and Future work
	Proofs
	Over-smoothing: proofs of Section 4.1.
	Over-squashing: proofs of Section 4.2.
	Expressivity of BuNNs: proofs of Section 5.

	Discussion on compact uniform approximation versus uniform approximation
	Why classical arguments do not apply to compact uniform approximation
	Algorithmic and Implementation details
	Householder reflections.

	Experiment details
	LRGB: training and tuning.
	Heterophilic graphs: training and tuning.

	Empirical runtime
	Ablation: Positional Encoding ablation
	Ablation: Importance of W and b
	Tree-NeighborsMatch Task

