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Appendix1

A More about VAST Foundation Model2

A.1 Pretraining Settings3

Specific pretraining configurations of VAST including training corpora, training steps for each corpus4

(i.e., dataset mix ratio), and training objectives on each corpus are presented in Table 1. To enhance5

data quality, we use trained vision captioner to generate new captions for CC12M and LAION datasets6

and replace original captions with them. It is noted that VAST have been trained for relatively small7

steps (205K steps), but have already shown excellent performances on various types of downstream8

tasks, and we believe that training by more steps can further increase the model capabilities.9

Table 1: Model configurations and pretraining settings of VAST. It is noted that 400M Web data used
in CLIP [1] and LAION-400M [2] used in EVAClip [3] are also counted for training samples statics.
LAION-102M and LAION-110M are both random sampled subsets from LAION-400M. Regarding
training objectives, ‘ret’ represents for the combination of VCC and VCM, while ‘cap’ denotes VCG,
and differnet modality groups are separeted by ‘%’.

Model Param Sample Training Corpus Batch Size Steps Epoch Objectives

VAST 1.3B 442M

VAST-27M 1024 60000 2.3 ret%vast%vat%vst%vt%at +
cap%vast%vat%vst%vt%at

VALOR-1M 1024 25000 25 ret%vat%vt%at +
cap%vat%vt%at

WavCaps 1024 15000 38 ret%at + cap%at

CC4M 2048 30000 12 ret%vt + cap%vt

CC12M 2048 20000 4 ret%vt + cap%vt

LAION-110M 2048 55000 1 ret%vt + cap%vt

A.2 Downstream Datasets Descriptions10

We evaluate VAST on multiple popular domnstream datasets, including MSRVTT, VATEX,11

YouCook2, VALOR-32K, MSVD, LSMDC, DiDeMo, ActivityNet Caption, TGIF, MUSIC-AVQA,12

TVC, Clotho, AudioCaps, MSCOCO, Flickr30K and VQAv2. Specific train/val/test splits of those13

benchmarks can be found in Table 2 and specific descriptions of them are as follows.14

MSRVTT [4] contains 10K video clips and 200K captions. The videos cover a wide range of15

topics and scenes, including human activities, sports, natural landscapes, and more. We evaluate16

text-to-video retrieval, video captioning and video QA on this dataset. Following methods presented17

in Table 4, we use the ‘1K-A split’ for retrieval evaluation. For captioning and QA, we use the18

standard split.19
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Table 2: Downstream dataset splits.

Task Type Modal Type Benchmark #Videos/#Images #Captions/#QA-pairs

Train Val Test Train Val Test

Retrieval

V-T(SM) MSCOCO 113287 5000 5000 566747 25010 25010
Flickr30K 29000 1014 1000 145000 5070 5000

A-T
ClothoV1 2893 1045 - 14465 5225 -
ClothoV2 3839 1045 - 19195 5225 -
AudioCaps 49291 428 816 49291 2140 4080

V-T(MM)

MSRVTT 9000 - 1000 180000 - 1000
YouCook2 10337 3492 - 10337 3492 -
VALOR-32K 25000 3500 3500 25000 3500 3500
VATEX 25991 1500 1500 259910 1500 1500
DiDeMo 8394 1065 1003 8394 1065 1003
ANET 10009 - 4917 10009 - 4917
LSMDC 101046 7408 1000 101046 7408 1000

Caption

V-T(SM) MSCOCO 113287 5000 5000 566747 25010 25010
MSVD 1200 100 670 48774 4290 27763

A-T
ClothoV1 2893 1045 - 14465 5225 -
ClothoV2 3839 1045 - 19195 5225 -
AudioCaps 49838 495 975 49438 2475 4875

V-T(MM)

MSRVTT 6513 497 2990 130260 9940 59800
YouCook2 10337 3492 - 10337 3492 -
VALOR-32K 25000 3500 3500 25000 3500 3500
VATEX 25991 3000 6000 259910 30000 60000
TVC 86603 10841 - 174350 43580 -

QA

V-T(SM)
MSVD-QA 1200 250 520 30933 6,415 13157
TGIF-FrameQA 32345 - 7132 39389 - 13691
VQAv2 82783 40504 37K/81K 4437570 2143540 1.1M/4.5M

V-T(MM)
MSRVTT-QA 6513 497 2990 158581 12278 72821
MUSIC-AVQA 9277 3815 6399 32087 4595 9185
ANET-QA 3200 1800 800 32000 18000 8000

VATEX [5] contains 41,250 video clips sourced from Kinetics-600 dataset [6] and 825,000 sentence-20

level descriptions. We evaluate text-to-video retrieval and video captioning on this dataset. For21

captioning, we use the official split. For retrieval. we follow the HGR [7] split protocol.22

YouCook2 [8] consists of 14K video clips from 2K instructional cooking videos from YouTube. Each23

video includes multiple actions performed by the chef, along with corresponding textual descriptions24

and temporal annotations. We evaluate text-to-video retrieval and video captioning on this dataset25

with official splits.26

VALOR-32K [9] is an audiovisual video-language benchmark that contains 32K 10 seconds long27

audible video clips sourced from AudioSet [10]. Each video clip is annotated with an audiovisual28

caption which simultaneously describes both visual and audio contents in videos. We evaluate29

text-to-video retrieval and video captioning on this dataset with official splits.30

MSVD [11] contains 1,970 videos, each of which is paired with around 40 captions. We evaluate31

video QA on this dataset and use the split proposed by Xu et al. [12].32

LSMDC [13] consists of 118K clips form 202 movies, each of which is paird with one caption. We33

evaluate text-to-video retrieval on this dataset with official split.34

DiDeMo [14] contains 10K long-form videos from Flickr and for each video, four short sentences35

are annotated in temporal order. We follow methods in Table 4 to concatenate those short sentences36

and evaluate ‘paragraph-to-video’ retrieval on this benchmark. The official split is used.37

ActivityNet Caption [15] contains 20K long-form videos (180s as average length) from YouTube38

and 100K captions. We evaluate text-to-video retrieval and video QA on this dataset. For retrieval we39

use official split and for video QA, split proposed by Yu et al. [16] is used.40

TGIF [17] contains three video QA benchmarks including TGIF-Action, TGIF-transition and TGIF-41

Frame, and the first two are multiple-choice QA while the last is open-ended QA. We evaluate VAST42

on TGIF-frame benchmark with official split.43
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Table 3: Downstream task finetuning settings. Lr, Bs, Epo, Obj and Res denote learning rate, batch
size, epoch, training objectives and resolution, respectively. Vf(Tr), Vf(Te), Ac(Tr), Ac(Te) denotes
sampled video frames (Vf) or audio clips (Ac) in training (Tr) and testing (Te), respectively. The
marks in Obj are the same as those in Table 1. Most hyperparameters in the table are not precisely
tuned.

Task Modality Benchmark Lr Bs Epo Obj Vf(Tr) Vf(Te) Ac(Tr) Ac(Te) Res

RET

V-T(SM) MSCOCO 1e-5 256 5 ret%vt - - - - 384
Flickr 1e-5 256 5 ret%vt - - - - 384

A-T ClothoV1/V2 2e-5 64 10 ret%at - - 3 3 -
AudioCaps 2e-5 64 10 ret%at - - 1 1 -

V-T(MM)

MSRVTT 2e-5 64 3.6 ret%vast 8 16 1 1 224
YouCook2 3e-5 64 30 ret%vast 8 16 1 1 224
VALOR-32K 2e-5 64 10 ret%vat 8 8 1 1 224
VATEX 2e-5 64 2.5 ret%vast 8 16 1 1 224
DiDeMo 2e-5 64 40 ret%vat 8 32 2 2 224
ANET 2e-5 64 20 ret%vat 8 32 2 2 224
LSMDC 2e-5 64 5 ret%vat 8 32 1 1 224

CAP

V-T(SM) MSCOCO 1e-5 64 5 cap%vt - - - - 480
MSCOCO(SCST) 2.5e-6 64 2.5 cap%vt - - - - 480

A-T ClothoV1/V2 2e-5 64 10 cap%at - - 3 3 -
AudioCaps 2e-5 64 10 cap%at - - 1 1 -

V-T(MM)

MSRVTT 2e-5 128 10 cap%vast 8 8 1 1 224
YouCook2 3e-5 64 30 cap%vast 8 16 1 1 224
VALOR-32K 1e-5 64 10 cap%vat 8 12 1 1 224
VATEX 2e-5 64 10 cap%vast 8 20 1 1 224
VATEX(SCST) 7e-6 64 5 cap%vast 8 20 1 1 224
TVC 3e-5 64 40 cap%vst 8 8 - - 224

QA

V-T(SM)
MSVD-QA 1e-5 64 10 qa%vt 8 14 - - 224
TGIF-FrameQA 2e-5 64 10 qa%vt 4 4 - - 224
VQAv2 2e-5 128 20 qa%vt - - - - 384

V-T(MM)
MSRVTT-QA 2e-5 64 4.5 qa%vast 8 8 1 1 224
MUSIC-AVQA 2e-5 64 20 qa%vat 8 8 2 2 224
ANET-QA 2e-5 64 10 qa%vat 8 16 2 2 224

MUSIC-AVQA [18] is a audiovisual video QA benchmark containing more than 45K Q-A pairs44

covering 33 different question templates spanning over different modalities and question types. The45

offcial split is used.46

TVC [19] is a multi-channel video captioning dataset containing 108K video moments and 262K47

paired captions. Video subtitles can be used as additional input. We evaluate video captioning on this48

benchmark with official split.49

Clotho [20] contains 15-30 second audio clips and has two versions. The original (v1) has 498150

audios, while an expanded version (v2) includes 6974 audios, enlarging solely the training set. We51

evaluate text-to-audio retrieval and audio captioning on those benchmarks with official split.52

AudioCaps [21] contains 51K 10-second clips, with one caption in the training set and five in the53

validation and test sets. We evaluate text-to-audio retrieval and audio captioning on it. For captioning,54

we use the official split, and for retrieval we follow the Sophia et al. [22] split protocol.55

MSCOCO [23] contains 123K images each of which is paired with 5 annotated captions, We evaluate56

text-to-image retrieval and image captioning on this dataset with Karpathy split [24].57

Flickr30K [25] contains 31K images each of which is paired with 5 annotated captions, We evaluate58

text-to-image retrieval on this dataset with Karpathy split [24].59

VQAv2 [26] was used as the basis of the 2017 VQA Challenge2, it contains 1.1M questions with60

11.1M answers relating to MSCOCO images. The official split is used.61

A.3 Finetuning Settings62

Specific finetuning hyperparameters of VAST for different benchmarks are presented in Table 3.63
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Table 4: Performance comparison on Text-to-Video Retrieval benchmarks. For fair comparisons,
performances before employing post-processing such as dual-softmax [27] are reported and compared.
All benchmarks are multi-modal benchmarks (containing audio and subtitle tracks). Methods utilizing
audio or subtitle modalities besides vision for video representation are marked with gray background
color.

Method Sample MSRVTT DiDeMo ActivityNet
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Singularity [28] 17M 41.5 68.7 77.0 53.9 79.4 86.9 47.1 75.5 85.5
OmniVL [29] 17M 47.8 74.2 83.8 52.4 79.5 85.4 - - -
HiTeA [30] 17M 46.8 71.2 81.9 56.5 81.7 89.7 49.7 77.1 86.7
VINDLU-L [31] 25M 48.8 72.4 82.2 59.8 86.6 91.5 55.9 82.3 90.9
LAVENDER [32] 30M 40.7 66.9 77.6 53.4 78.6 85.3 - - -
All-in-one [33] 138M 37.9 68.1 77.1 32.7 61.4 73.5 - - -
CLIP4Clip [34] 400M 44.5 71.4 81.6 43.4 70.2 80.6 40.5 72.4 -
X-CLIP [35] 400M 49.3 75.8 84.8 47.8 79.3 - 46.2 75.5 -
mPLUG-2 [36] 417M 53.1 77.6 84.7 56.4 79.1 85.2 - - -
UMT-L [37] 425M 58.8 81.0 87.1 70.4 90.1 93.5 66.8 89.1 94.9
CLIP-VIP [38] 500M 54.2 77.2 84.8 50.5 78.4 87.1 53.4 81.4 90.0

MMT [39] 136M 26.6 57.1 69.6 - - - 28.7 61.4 -
AVLNet [40] 136M 22.5 50.5 64.1 - - - - - -
Gabeur et al. [41] 136M 28.7 59.5 70.3 - - - 29.0 61.7 -
ECLIPSE [42] 400M - - - 44.2 - - 45.3 75.7 86.2
VALOR-L [9] 433.5M 54.4 79.8 87.6 57.6 83.3 88.8 63.4 87.8 94.1
VAST 442M 63.9 84.3 89.6 72.0 89.0 91.4 70.5 90.9 95.5

Method VATEX
R@1 R@5 R@10

Support-set [43] 44.9 82.1 89.7
CLIP4Clip [34] 55.9 89.2 95.0
DCR [44] 65.7 92.6 96.7

VALOR-L 76.9 96.7 98.6
VAST 83.0 98.2 99.2

Method VALOR-32K
R@1 R@5 R@10

Frozen [45] 32.9 60.4 71.2
CLIP4Clip [34] 43.4 69.9 79.7

AVLNet [40] 21.6 47.2 59.8
VALOR-L [9] 73.2 91.6 95.4
VAST 80.0 93.7 96.6

Method YouCook2
R@1 R@5 R@10

UniVL [46] 28.9 57.6 70.0
MELTR [47] 33.7 63.1 74.8
VLM [48] 27.1 56.9 69.4

VALUE [49] 31.3 53.0 62.2
VAST 50.4 74.3 80.8

Table 5: Performance comparison on zero-shot Text-to-Video Retrieval benchmarks. Methods
utilizing audio or subtitle modalities besides vision for video representation are marked with gray
background color.

Method Sample MSRVTT DiDeMo
R@1 R@5 R@10 R@1 R@5

Frozen [45] 5M 18.7 39.5 51.6 21.1 46.0 56.2
ALPRO [50] 5M 24.1 44.7 55.4 23.8 47.3 57.9
Singularity [28] 5M 28.4 50.2 59.5 36.9 61.6 69.3
HiTeA [30] 17M 34.4 60.0 69.9 43.2 69.3 79.0
OmniVL [29] 18M 42.0 63.0 73.0 40.6 64.6 74.3
VIOLET [51] 183M 25.9 49.5 59.7 23.5 49.8 59.8
UMT-L [37] 425M 40.7 63.4 71.8 48.6 72.9 79.0
Florence [52] 900M 37.6 63.8 72.6 - - -

VAST 443M 49.3 68.3 73.9 55.5 74.3 79.6

A.4 Detailed Comparisons to State-of-the-Art Methods64

Text-to-Video Retrieval. We compare VAST to SOTA methods on six multi-modal text-to-video65

retrieval benchmarks. As shown in Table 4, VAST improves previous SOTA methods by 5.1, 1.6, 3.7,66

6.1 points on MSRVTT, DiDeMo, ActivityNet, VATEX benchmarks, respectively. Besides above67

mentioned vision-oriented benchmarks, VAST outperforms VALOR-L [9] by 6.8 points on the audio-68

oriented benchmark VALOR-32K, and surpass MELTR [47] by 16.7 points on the subtitle-oriented69

benchmark YouCook2, which demonstrate the strong generalization capabilities of VAST towards70

different types of downstream datasets. In addition, the zero-shot retrieval performance comparison is71
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Table 6: Performance comparison on Video QA benchmarks. MSVD-QA and TGIF-QA are vision-
only benchmarks while the others are multi-modal benchmarks. Methods utilizing audio or subtitle
modalities besides vision for video representation are marked with gray background color.

Method Sample MSRVTT-QA MSVD-QA TGIF-QA ActivityNet-QA MUSIC-AVQA

ClipBERT [53] 5.4M 37.4 - 60.3 -
ALPRO [50] 5M 42.1 45.9 - - -
VIOLETv2 [54] 5M 44.5 54.7 72.8 - -
Clover [55] 5M 43.9 51.9 71.4 - -
OmniVL [29] 17M 44.1 51.0 -
HiTeA [30] 17M 45.9 55.3 73.2 46.4 -
SINGULARITY [28] 17M 43.5 - - 43.1 -
VINDLU-B [31] 17M 43.8 - - 44.6 -
LAVENDER [32] 30M 45.0 56.6 73.5 - -
JustAsk [56] 69M 41.5 46.3 - 38.9 -
MERLOT [57] 180M 43.1 - 69.5 41.4 -
All-in-one [33] 228.5M 46.8 48.3 66.3 - -
FrozenBiLM [58] 410M 47.0 54.8 68.6 43.2 -
mPLUG-2 [36] 417M 48.0 58.1 75.4 - -
UMT-L [37] 425M 47.1 55.2 - - -
InternVideo [59] 646M 47.1 55.5 72.2 - -
GIT [60] 1.7B 43.2 56.8 72.8 - -
MaMMUT [61] 2B 49.5 60.2 - - -
Flamingo (80B) [62] 2.3B 47.4 - - - -
VideoCoCa (2.1B) [63] 4.8B 46.0 56.9 - - -
GIT2 (5.1B) [60] 12.9B 45.6 58.2 74.9 - -

VALOR-L [9] 433.5M 49.2 60.0 78.7 48.6 78.9
VAST(1.3B) 442M 50.1 60.2 79.1 50.4 80.7

Table 7: Performance comparison on Video Captioning benchmarks. All benchmarks are multi-modal
benchmarks. BLEU@4 and CIDEr (C) metrics are reported. On VATEX benchmark, we follow most
state-of-the-art methods [60; 9; 64] employing SCST finetuning [65] after cross-entropy training, and
corresponding results are marked with ‘*’. Methods utilizing audio or subtitle modalities besides
vision for video representation are marked with gray background color.

Method Sample MSRVTT VATEX YouCook2 TVC VALOR-32K
B@4 C B@4 C B@4 C B@4 C B@4 C

SwinBERT [66] - 41.9 53.8 38.7 73.0 9.0 109.0 14.5 55.4 5.4 27.3
VIOLETv2 [54] 5M - 58.0 - - - - - - - -
HiTeA [30] 5M - 62.5 - - - - - - - -
LAVENDER [32] 30M - 60.1 - - - - - - - -
MaMMUT [61] 2B - 73.6 - - - - - - - -
GIT [60] 1.7B 53.8 73.9 41.6* 91.5* 10.3 129.8 16.2 63.0
GIT2(5.1B) [60] 12.9B 54.8 75.9 42.7* 94.5* 9.4 131.2 16.9 66.1 - -

SMPFF [67] - 48.4 58.5 39.7 70.5 - - - - 7.5 37.1
VALUE [49] 136M - - - 58.1 12.4 130.3 11.6 50.5 - -
UniVL [46] 136M 41.8 50.0 - - 17.4 181.0 - - - -
MELTR [47] 136M 44.2 52.8 - - 17.9 190.0 - - - -
CLIP4Caption++ [64] 400M - - 40.6* 85.7* - - 15.0 66.0 - -
VALOR-L [9] 433.5M 54.4 74.0 45.6* 95.8* - - - - 9.6 61.5
VAST(1.3B) 442M 56.7 78.0 45.0* 99.5* 18.2 198.8 19.9 74.1 9.9 62.2
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Table 8: Performance comparison on Text-to-Audio Retrieval benchmarks.

Method Sample ClothoV1 ClothoV2 AudioCaps
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Oncescu et al. [22] - 9.6 - 40.1 - - - 25.1 - 73.2
Nagrani et al. [68] 1M 12.6 - 45.4 - - - 35.5 - 84.5
LAION [69] 0.63M - - - 16.1 38.3 51.1 36.1 71.8 83.9
CNN14-BERT [70] 0.4M - - - 21.5 47.9 61.9 35.1 70.0 82.1
HTSAT-BERT [70] 0.4M - - 19.7 45.7 59.4 42.2 76.5 87.1
VALOR-B [9] 1M 17.5 42.7 55.3 - - - 40.1 73.9 83.1
VAST 28.4M 25.1 51.5 64.0 26.9 53.2 66.1 52.0 76.8 82.9

Table 9: Performance comparison on Audio Captioning benchmarks.

Method Sample ClothoV1 ClothoV2 AudioCaps
B@4 M R C B@4 M R C B@4 M R C

Xu et al. [71] - 15.9 16.9 36.8 37.7 - - - - 23.1 22.9 46.7 66.0
CNN14-BART [70] 0.4M - - - - 18.0 18.5 40.0 48.8 27.2 24.7 49.9 75.6
HTSAT-BART [70] 0.4M - - - - 16.8 18.4 38.3 46.2 28.3 25.0 50.7 78.7
VALOR-B [9] 1M 16.2 17.4 38.2 42.3 - - - - 27.0 23.1 49.4 74.1
VAST 28.4M 18.5 18.9 39.9 50.7 19.0 19.3 40.8 51.9 29.5 24.7 50.9 78.1

shown in Table 5, VAST achieves 49.3 and 55.5 zero-shot R@1 performance that surpasses previous72

SOTA by 7.3 and 6.9 points, respectively.73

Video QA. We evaluate VAST on five open-ended video QA benchmarks. As shown in Table 6,74

VAST have achieved new SOTA performances on all benchmarks, and outperform recent proposed75

large-scale foundation models such as GIT [60], MaMMUT [61], Flamingo [62] and CoCa [63]. In76

addition, on the audiovisual video QA benchmark MUSIC-AVQA, VAST surpasses VALOR by 1.877

points, demonstrating its better capabilities to answer both visual and audio questions.78

Video Captioning. In Table 7, we compare VAST to state-of-the-art methods on five multi-modal79

video captioning benchmarks. According to the results, VAST have achieved new state-of-the-art80

CIDEr score on all five benchmarks with evident margins. Compared to previous vision-language81

modal SOTA method GIT [60] which takes a 5.1B DaViT [81] as vision encoder and conduct82

pretraining on 12.9B private image-text corpus, VAST surpass it with only 22.5% parameters and83

3.4% training data, demonstrating the high efficiency of our method. Compared to previous multi-84

modal video-language SOTA method VALOR [60], VAST can additionally process subtitle-oriented85

Table 10: Performance comparison on Image-Text downstream tasks. CIDEr (C) and SPICE (S)
metrics are reported for captioning. On MSCOCO caption benchmark, we follow SOTA methods [60;
9; 72] employing SCST finetuning [65], and corresponding results are marked with ‘*’.

MSCOCO-Ret Flickr30K-Ret MSCOCO-Cap VQAv2
Method Sample R@1 R@5 R@10 R@1 R@5 R@10 C S dev std

ALBEF [73] 14M 60.7 84.3 90.5 85.6 97.5 98.9 - - 75.84 76.04
OFA [72] 18M - - - - - - 154.9* 26.6* 82.0 82.0
BEiT-3 [74] 21M 67.2 87.7 92.8 90.3 98.7 99.5 147.6 25.4 84.19 84.03
BLIP [75] 129M 65.1 86.3 91.8 87.6 97.7 99.0 136.7 - 78.25 78.32
BLIP-2 [76] 129M 68.3 87.7 92.6 - - - 145.8 - 82.19 82.30
mPLUG-2 [36] 417M 65.7 87.1 92.6 88.1 97.6 99 .1 137.7 23.7 81.11 81.13
VALOR-L [9] 433.5M 61.4 84.4 90.9 - - - 152.5* 25.7* 78.46 78.62
Florence [52] 900M 63.2 85.7 - 87.9 98.1 - - - 80.16 80.36
PaLI [77] 1.6B - - - - - - 149.1 - 84.3 84.3
GIT [60] 1.7B - - - - - - 151.1* 26.3* 78.6 78.8
SimVLM [78] 1.8B - - - - - - 143.3 25.4 80.03 80.34
ALIGN [79] 1.8B 59.9 83.3 89.8 84.9 97.4 98.6 - - - -
Flamingo (80B) [62] 2.3B - - - - - - 138.1 - 82.0 82.1
CoCa(2.1B) [80] 4.8B - - - - - - 143.6 24.7 82.3 82.3
GIT2(5.1B) [60] 12.9B - - - - - - 152.7* 26.4* 81.7 81.9
VAST 442M 68.0 87.7 92.8 91.0 98.5 99.5 149.0* 27.0* 80.23 80.19
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benchmarks such as YouCook2 and TVC, and achieves better results due to that it jointly models the86

relations between text and omni-modalities in videos.87

Text-to-Audio Retrieval and Audio Captioning. As shown in Table 8, VAST have largely improved88

previous SOTA methods on three text-to-audio retrieval benchmarks, by 7.6, 5.4 and 9.8 R@189

points, respectively. and for audio captioning task, VAST achieves new SOTA performances on90

Clotho benchmark (both V1 and V2), and comparable performance on AudioCaps benchmark to91

WavCaps [70]. It is noted that WavCaps explored four model architectures with different audio92

encoder and text encoders targeting at different benchmarks, while VAST takes a unified architecture93

without targeted optimizations for specific downstream benchmarks.94

Image-Text Benchmarks. We evaluate VAST on text-to-image retrieval, image captioning and image95

QA benchmarks. The results are presented in Table 10, from which we can find that even though96

VAST is designed as a omni-modality video-language understanding and generation model, it also97

shows strong capabilities on image-text benchmarks, demonstrating its generalization capabilities98

towards tasks of various modality types. Specifically, VAST achieves new SOTA performance on R@199

score of Flicker30K and R@5, R@10 scores of MSCOCO dataset, which outperforms image-text100

pretrained foundation models such as BLIP-2 [76] and BEiT-3 [74]. On COCO caption benchmark,101

VAST achieves 27.0 SPICE score which outperforms all previous methods such as OFA [72] and102

GIT2 [60]. On image QA benchmark, VAST achieves better performance than GIT [60], which is103

also a generative methods and predicts answers in a fully open way without any constraints.104
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B More about VAST-27M Dataset105

B.1 Word cloud distribution106

Audio Caption

Omni-modality CaptionSubtitle

Vision Caption

Figure 1: Word cloud map (Top-200) for vision, audio, omni-modality captions and raw subtitles of
VAST-27M.

B.2 Prompts for Omni-Modality Caption Generation107

1. A person surfing in the ocean in front of the waves.
2. A man is surfing in the middle of the ocean and it
starts to wave in the ocean。
3. A surfer on a surfboard rides in a wave, then jumps up
and starts surfing.

"She's in second place on this left opens up with a
little snap, gets back into the lip to finish it off, rides
through the explosive closeout and look into better."

A surfer rides a wave, jumping up and surfing in the
ocean with waves and men speaking in the
background, as they compete for the top spot,
with a close-up of the surfer finishing the ride and
looking ahead.

1. The ocean waves and men speaking are heard.  
2. Someone is playing a surf - on.
3. Sea waves and people talking can be heard.

"Human: About one video, here are 3 vision captions: {}, 3
audio captions: {}, and one speech subtitle: {}. You need to
understand and encode them into 1 sentence. Vision and
audio captions maybe redundant, summarize them before
encode with speech subtitle. Do not simply concatenate them
together. The weights of video/audio/speech are equaled. 
Assistant: The sentence is "

A person surfing in the ocean in front of the waves with
the sound of the ocean waves and men speaking, a man is
surfing in the middle of the ocean with the sound of
someone playing a surfboard, and a surfer on a surfboard
rides in a wave, then jumps up and starts surfing with the
sound of sea waves and people talking ...

"Human: About one video, here are 3 vision captions: {}, 3
audio captions: {}, and one speech subtitle: {}. You need to
understand and encode them into 1 sentence. Vision and
audio captions maybe redundant, summarize them before
encode with speech subtitle. Do not simply concatenate them
together. The weights of video/audio/speech are equaled. 
Assistant: The sentence is "

A surfer rides a wave, performing a snap and finishing it
off, before navigating through an explosive closeout and
looking for a better spot.

"Human: About one video, here are 3 vision captions: {}, 3
audio captions: {}, and one speech subtitle: {}. You need to
understand and encode them into 1 sentence. Vision and
audio captions maybe redundant, summarize them before
encode with speech subtitle. Do not simply concatenate them
together. The weights of video/audio/speech are equaled. 
Assistant: The sentence is "

Omni-Modality Captioner
 (Vicuna-13b)

Omni-Modality Captioner
 (Vicuna-13b)

Omni-Modality Captioner
 (Vicuna-13b)

Single Modality Captions

Onmi-Modality Caption Generation with Different Instructional Prompts

Figure 2: Ablation study for instructional prompt used for omni-modality video caption generation in
VAST-27M.
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B.3 More Examples108

1. a young boy riding a skateboard at a skate park.
2. a man is skateboarding.
3. a person riding a skateboard on a skate park course.

This is to use your hands once you swing it above through
your legs. Just grab just grab your nose a little bit and help
get it in there.

A young boy rides
a skateboard at a
skate park, while
talking about
skateboarding
moves and
explaining how to
do a trick with
your hands and
grab your nose to
help get it in
there.

1. skateboarder is explaining skateboarding moves.
2. skateboarder talking about skateboard.
3. skateboarders are skating.

1. cartoon characters are getting ready to go with a suitcase.
2. a group of piggy characters are in their house with a
suitcase.
3. a group of cartoon characters have their suitcase open in a
bedroom.

Are you sure we need it all? Yes, its all very important.

A group of cartoon
characters,
including piggy
ones, are preparing
to go on a trip, with
one character
checking if they
need to bring
everything and
another character
confirming the
importance of all
the items.

1. a cartoon character is speaking.
2. an animated character is talking.
3. someone is making a conversation in a cartoon.

1. a car driver is driving down a high hill on the road.
2. a man in sunglasses is talking while driving a car on a road.
3. a man is driving down the road.

Milk is readily available in market nowadays. So you can
get that condensed Milk. so here I put the condensed
milk in a big bowl.

A man in
sunglasses is
talking while
driving a car with
a high speed
engine sound in
the background,
on a road, with
the desire to have
unlimited fuel and
just drive off into
the sunset
forever.

1. a man is speaking about driving a car with a high
speed engine sound in the background.
2. a person is speaking.
3. a car engine is heard.

1. a woman is pouring a liquid into a large glass bowl.
2. a person is putting yellow cheese in a bowl.
3. the person is pouring butter into a bowl.

Milk is readily available in market nowadays. So you can get
that condensed Milk. so here I put the condensed milk in a
big bowl.

A woman is
introducing and
showing her
ingredients,
including
condensed milk,
which is readily
available in the
market, and is
putting it in a big
bowl.

1. a woman is introducing and showing her ingredients.
2. a woman is introducing her favorite foods.
3. a person is cooking.

Figure 3: More samples in VAST-27M.
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