
A Appendix
A.1 Proofs

A.1.1 Proof of Proposition 1 (Section 3.2)

We start with the following lemmas:

Lemma 1. Let µ an equivalence class of order-(k + l) multi-indices. Then, the set of all i ∈ [n]k

such that (i, j) ∈ µ for some j ∈ [n]l is an equivalence class of order-k multi-indices. Likewise, the
set of all j such that (i, j) ∈ µ for some i is an equivalence class of order-l multi-indices.

Proof. We only prove for i, as proof for j is analogous. For some (i1, j1) ∈ µ, let us denote i1’s
equivalence class as µk. It is sufficient that we prove i ∈ µk ⇔ (i, j) ∈ µ for some j.

(⇒) For all i ∈ µk, as i1 ∼ i we have i = π(i1) for some π ∈ Sn. As π acts on multi-indices
entry-wise, we have π(i1, j1) = (i, π(j1)). As the equivalence pattern is invariant to node permutation
by definition, we have π(i1, j1) ∼ (i, π(j1)) ∼ (i1, j1), and thus (i, π(j1)) ∈ µ. Therefore, for all
i ∈ µk, we always have (i, j) ∈ µ when we set j = π(j1).

(⇐) For all (i, j) ∈ µ, as (i, j) ∼ (i1, j1) we have (i, j) = π(i1, j1) for some π ∈ Sn. We have
equivalently i = π(i1) and j = π(j1) for the π, which leads to i ∼ i1 and therefore i ∈ µk.

Lemma 2. Let µ an equivalence class of order-k multi-indices. Then, every i ∈ µ contains the same
number of unique elements, which is equal to |µ| i.e., the number of nonempty subsets in µ’s partition.

Proof. All i ∈ µ have the same equality pattern, specified by µ’s representative partition. Specifically,
for all i ∈ µ, ia = ib holds iff ia and ib belong to the same subset within µ’s partition. Therefore, each
nonempty subset within µ’s partition specifies exactly one value within i, and any ia, ib s.t. ia 6= ib
are contained in distinct subsets within µ’s partition. Thus, each subset in µ’s partition specifies one
unique element in i, and we have the number of unique elements in i equal to |µ| for all i ∈ µ.

Now, we prove Proposition 1.

Proof. From Lemma 1, let us denote the set of all i ∈ [n]k such that (i, j) ∈ µ as an order-k
equivalence class µk, and denote the set of all j such that (i, j) ∈ µ as an order-l equivalence class µq .

Then, in Eq. (12), to compute αµi,j ∀(i, j) ∈ µ it is sufficient that we have Kµ
i ∀i ∈ µk and Qµ

j ∀j ∈ µq .
Based on the fact, we now analyze and reduce Qµ = Lµk→l(A) (Kµ = Lµk→k(A) can be reduced
analogously by letting l = k). From Eq. (1) and Eq. (2), we can write the computation of Qµ as
follows, with α, λ equivalence classes of order-(k + l) and order-l multi-indices and k ∈ [n]k:

Qµ
j =

∑
α

∑
k

Bα
k,jAkwα +

∑
λ

Cλ
j bλ, (22)

where Bα
i,j =

{
1 (k, j) ∈ α
0 otherwise ; Cλ

j =

{
1 j ∈ λ
0 otherwise (23)

A key idea is that, when we want Qµ
j only for j ∈ µq, only a subset of equivalence classes among

α or λ does effective computation and we can discard the rest. Specifically, we can discard an
equivalence class α if it contains some (k, j) with j /∈ µq. This is because, for such α, (k, j) /∈ α
if j ∈ µq, leading to Bα

k,j = 0 if j ∈ µq. Therefore, such α does not contribute to Qµ
j ∀j ∈ µq and

can be discarded. On the other hand, an equivalence class α containing some (k, j) with j ∈ µq does
effective computation and should be kept.

From that, it turns out that the number of effective α is ≤ b(k + uq), where uq = u(j) = |µq| is
the number of unique entries within some j ∈ µq (see Lemma 2). Recall that for an effective α,
j ∈ µq holds for all (k, j) ∈ α. Within α’s representative partition, as each j ∈ µq has exactly uq
unique values, we always have {j1, ..., jl} contained in exactly uq distinct subsets. Thus, the possible
number of effective α is upper-bounded by the number of ways of partitioning a set with k + |µq|
elements, which is b(k + uq). As for the bias, we can repeat the analysis with k = 0 and the number
of effective λ is ≤ b(uq).

1

μ = {{i1, i2}, {j1}} μq = {{j1}}, μk = {{i1,i2}}

(i, j) = (i1, i2, j1) ∈ μ

i2

i1

j1

((i, j) ∈ μ)

Qμ = L2→1(A), Kμ = L2→2(A)

Qμ = L2→1(A), Kμ = L2→1(A)
αμ

i, j

~ ~
αμi1, i2, j1 = σ(Qμj1, Kμi1, i2) / Zj1

αμi1, i2, j1 = σ(Qμj’1, Kμi’1) / Zj’1
~ ~

i’1

j’1

i1

j1

i2 (i’1≠j’1)

Naive Compact

Naive:

Compact:

⇔(i1=i2≠j1)

(k=2, l=1)

index map: i’1=i1=i2, j’1=j1

index
map

Figure 4: Exemplar illustration of computing αµi,j ∀(i, j) ∈ µ with lower-order query and key, for
k = 2, l = 1, i = (i1, i2), j = (j1), and µ = {{i1, i2}, {j1}}.

We now show that a lower-order linear layer Lµk→uq
can compute Qµ

j ∀j ∈ µq in Eq. (22). Let us
denote A the set of all effective α and L the set of all effective λ. Then we can rewrite Eq. (22) as:

Qµ
j =

∑
α∈A

∑
k

Bα
k,jAkwα +

∑
λ∈L

Cλ
j bλ, (24)

where A has ≤ b(k + uq) elements and L has ≤ b(uq) elements. Assume we have some linear layer
Lµk→uq

. With j′ ∈ [n]uq , and β, θ equivalence classes of order-(k + uq) and order-uq multi-indices
respectively, we can write:

Q̃µ
j′ =

∑
β

∑
k

Bβ
k,j′Akwβ +

∑
θ

Cθ
j′bθ, (25)

where Bβ
k,j′ =

{
1 (k, j′) ∈ β
0 otherwise ; Cθ

j′ =

{
1 j′ ∈ θ
0 otherwise (26)

We now identify the condition that Q̃µ contains all Qµ
j ∀j ∈ µq. For that, we need to define a

mapping between index space of Q̃µ and Qµ. To this end, we define a surjection g : [k]→ [uq] that
satisfies ja = jb ⇔ g(a) = g(b). We can always define such g due to the property of equivalence
classes that, for all a, b ∈ [l], ja = jb holds iff ja, jb belong to a same subset within µq’s partition.
By indexing the subsets within µq’s partition, we define g(a) ∀a ∈ [l] as the index of the subset that
a belongs. Then, for every j ∈ µq, we can find an order-uq compact form j′ ∈ [n]uq containing
uq unique elements through g: for c ∈ [uq] that c = g(a) = g(b) = · · · , we construct j′ such that
j′c = ja = jb = · · · . We define fqµ : [n]q → [n]uq as a mapping that gives j′ = fqµ(j) ∀j ∈ µq .

We now reduce Eq. (24) into Eq. (25). First, for each α ∈ A, we assign a distinct order-(k + uq)
equivalence class β that satisfies: (k, j) ∈ α ⇔ (k, j′) ∈ β with j′ = fqµ(j). This can be done by
changing α’s partition into β’s, by merging each set of ja = jb = ... into corresponding j′c following
fqµ. We similarly assign a distinct θ to each λ ∈ L. Then, we set wα = wβ for all paired α and β, and
set wβ = 0 for every β not paired with any α. We similarly set bθ = bλ for all paired θ and λ, and
bθ = 0 for every θ not paired with any λ. From the definition of basis tensors, Bα

k,j = Bβ
k,j′ for all

paired α and β, and Cλ
j = Cθ

j′ for all paired λ and θ. Therefore, we have Q̃µ
j′ = Qµ

j for all j ∈ µq.
Conclusively, we can always construct Lµk→uq

and fµq : [n]l → [n]uq that gives Qµ
j ∀j ∈ µq .

As noted in the beginning of the proof, we can perform the same analysis with k = l to show
the analogous result for Kµ. We now have all entries Kµ

i ∀i ∈ µk and Qµ
j ∀j ∈ µq to compute

αµi,j ∀(i, j) ∈ µ (Eq. (12)) and therefore Proposition 1 holds.

In Figure 4 we provide an example of computing αµ with lower-order query and key.

2

(k=1, l=2)

j1 j2

i1

μ = {{i1, j1, j2}} μ = {{i1, j1}, {j2}}

j1 j2

i1

j1 j2

i1

μ = {{i1, j2}, {j1}}

Oμj1j2 = Aj1

Oμj1j2 = ∑i1Bμi1j1j2Ai1

Oμj1j2 = Aj1 Oμj1j2 = Aj2

i1=j1=j2 i1=j1≠j2 i1=j2≠j1

Figure 5: Exemplar illustration of all equivalence classes included in lightweight linear layer L̄1→2.

A.1.2 Proof of Property 1 (Section 4)

Proof. We begin by analyzing the complexity of an equivariant linear layer Lk→l (Eq. (1)). In the
inner summation

∑
i B

µ
i,jAi, with uk and uq the number of unique entries in i and j respectively, we

have n≤uk effective multiplication and summations for each output index j. Inequality is when jb = ia
for some a, b, which corresponds to indexing operation rather than summation. Thus, the number of
operations done by the summation is nuqn≤uk . With outer summation over µ, we have

∑
µ n

uqn≤uk

operations. As uq ≤ l and uk ≤ k by definition, we have inequality
∑
µ n

uqn≤uk ≤ b(k + l)nk+l.
Application of wµ gives us dd′

∑
µ n

uqnuk ≤ b(k + l)dd′nk+l number of operations. For the bias,
in the inner term Cλ

j , we need a single addition for each j and thus the number of operations for a λ
is nuq ≤ nl. Summation over λ and application of bias parameters gives us b(l)d′nuq ≤ b(l)d′nl

operations. Collectively, we have ≤ b(k + l)dd′nk+l + b(l)d′nl number of operations. As k, l, d, d′

are constants that does not depend on n, we obtain O(nk+l) complexity.

Computation of Enck→l(A) (Eq. (9)) involves computing Attnk→l(A), MLPl→l(Attnk→l(A)) and
adding them. Let us analyze Attnk→l(A) first. To compute αh,µ from input, we need to compute
Lµk→uq

(A) and Lµk→uk
(A), followed by pairwise similarity computation and re-indexing. Assuming

that each pairwise similarity computation and indexing has constant complexity, we have O(nk+uq +
nk+uk + nuq+uk).6 As uq ≤ l and uk ≤ k, we have O(nk+l + n2k). It is worth to note that O(n2k)
term comes from computation of keys from input. Having computed αh,µ, the inner summation∑

i α
h,µ
i,j Ai, similar to in Lk→l, has nuqn≤uk computations. With outer summation over µ, we have∑

µ n
uqn≤uk ≤ b(k + l)nk+l operations. Summation over heads and application of weight matrices

gives us ≤ b(k + l)Hd2Hdn
k+l operations, which is O(nk+l). For application of MLPl→l(·), we

sum the complexity of two linear layers Ll→l and element-wise ReLU, which gives us O(n2l).
Conclusively, the complexity of Enck→l is O(n2k + nk+l + n2l).

A.1.3 Proof of Proposition 2 (Section 4.1)

Proof. We assume k, l > 0. Among the equivalence classes µ of order-(k + l) multi-indices, let
us select a subsetM that all µ ∈ M satisfies the following: for all (i, j) ∈ µ, ia = jb holds for all
a ∈ [k] and some b ∈ [l]. In other words, every element in i is identical with at least one element
in j, and i becomes a single fixed multi-index when we fix j (we denote the fixed i = fix(j)). This
renders Bµ

i,j = 1 ⇔ i = fix(j) for such µ, and consequently the inner-summation
∑

i B
µ
i,jAiwµ

in Eq. (14) reduces to elementwise indexing Afix(j)wµ. As the size of M is upper-bounded by
a constant b(k + l), we have O(nl) complexity when computing Eq. (14). With the trivial case
µ = {{i1, ..., ik, j1, ..., jl}} ∈ M, we can always find nonemptyM.

To provide some intuition, we illustrate all µ ∈M for k = 1, l = 2 in Figure 5.

6Normalization over keys gives an additive complexity O(nuq+uk), which can be absorbed to the formula.

3

A.1.4 Validity of Proposition 1 when using lightweight linear layers (Section 4.1)

As stated in the main text, Enck→l (Eq. (9)) with linear layers for key, query, and MLP changed to L̄
still generalizes Lk→l. This can be shown simply by plugging L̄ into the proof of Proposition 1. We
can still assume αh,µi,j = 1 for all (i, j) ∈ µ by setting L̄ for key and query to output constants, and
can reduce MLPl→l composed of L̄ to an invariant bias as we subsample µ ∈M but keep all λ for
the bias. Thus, Eq. (9) can reduce to Eq. (1) and Proposition 1 holds.

A.1.5 Proof of Property 2 (Section 4.2)

Proof. We begin from sparse equivariant linear layer Lk→l (Eq. (15)). In the inner summation∑
i∈E Bµ

i,jAi, the number of multiplication and addition for each j is upper-bounded by m = |E|.
As the number of output multi-indices j is bounded by |E′| ≤ m

(
k
l

)
, the effective number of

operations are ≤ m2
(
k
l

)
. With outer summation over µ, we have ≤ b(k + l)

(
k
l

)
m2 operations,

leading to complexity O(m2). For the lightweight linear layers L̄ (Proposition 2) that precludes
summation over input, we trivially have O(m) complexity as we do not sum over i.

Now, we analyze the complexity of sparse self-attention computation (Eq. (16)). To compute αµ

from input, we need to compute lightweight linear layers L̄µk→uq
(A, E) and L̄µk→uk

(A, E), followed
by pairwise similarity computation of nonzero entries. As uq, uk ≤ k, we have complexity O(m) for
the linear layers and O(m2) for pairwise computation. Having computed αµ, the inner summation∑

i∈E αµi,jAi has ≤ m computations. Enumerating over j, we have O(m2).

Finally, we analyze the complexity of Enck→l composed of the sparse linear layers and self-
attention. This involves adding the outputs of Attnk→l(A, E) (which we already addressed) and
MLPl→l(Attnk→l(A, E), E). For application of MLPl→l, we sum the complexity of two lightweight
linear layers L̄l→l and element-wise ReLU, which gives us O(m). In summary, the complexity of
sparse Enck→l is O(m2).

A.1.6 Proof of Property 3 (Section 4.3)

Proof. Summation over i ∈ I decouples i from j and allows reuse of computation over j. As
the summation over i ∈ I involves O(nk) operations and we share it over all query indices j, self-
attention reduces to elementwise application and we obtainO(nk+nl) complexity. As computation of
Q̃µ, K̃µ and application of MLPl→l areO(nk+nl) with lightweight linear layers, we haveO(nk+nl)
collective complexity for Enck→l. When adopted into sparse Enck→l (Eq. (16)), summation over i
and enumeration over j all reduce to O(m) and we thereby have O(m) complexity.

A.1.7 Proof of Theorem 2 (Section 4.4)

Proof. With message function M : R2dv+de → Rdm and update function U : Rdv+dm → Rd, a
message passing step takes node features X ∈ Rn×dv and edge features E ∈ Rn×n×de as input and
outputs node features H ∈ Rn×d according to following. With i, j ∈ [n]:

Mj =
∑

i∈N (j)

M(Xj ,Xi,Eij) (27)

Hj = U(Xj ,Mj), (28)

where N (j) denotes incoming neighbors of j-th node, i.e., {i|(i, j) ∈ E}.
We now show how a composition of two Enc2→2 can approximate above computation.

1. As a first step, we encode X and E into a single A ∈ Rn×n×(2dv+de) [26]. In the first
dv channels, we replicate X on the rows. In the next dv channels, we replicate X on the
columns. In the last de channels, we put E. Additionally, to account for output positions
(node features), we augment E with self-loops and make E′ = E ∪ {(i, i) ∀i ∈ [n]}.

2. Then, we make the first Enc2→2 approximate the message function M(·), so that
Enc2→2(A)ij ≈M(Xj ,Xi,Eij). To do this, we first reduce Attn2→2(A)ij = Aij and ap-
ply MLPl→l on top of it. We reduce MLPl→l to entry-wise MLP. As Attn2→2(A)ij = Aij

4

is a concatenation of Xi, Xj , Eij , with universal approximation theorem [16], we can have
the output of the first Enc2→2(A)ij = M(Xj ,Xi,Eij)+ε1 ∀i, j where ε1 is approximation
error. This also holds when we leverage sparsity and restrict the index scope to (i, j) ∈ E′;
in this case, we make (i, j) ∈ E′ \ E contain zero vectors.

3. Before feeding the output to the second Enc2→2, we concatenate the original input A with
the output of the first layer in the channel dimension to make A′ ∈ Rn×n×(2dv+de+dm).
This gives Xi,Xj ,Eij encoded in the first 2dv + de channels and M(Xj ,Xi,Eij) + ε1
encoded in the last dm channels of A′. This operation can be trivially absorbed within the
MLP of the first layer, but we separate for simplicity.

4. Now, we make the second Enc2→2 jointly approximate summation of messages over neigh-
bors

∑
i∈N (j)(·) and update function U(·), so that Enc2→2(A′)jj ≈ Hj = U(Xj ,Mj).

First, we reduce Attn2→2(A′) to summation over neighbors. For this we only need two
equivalence classes µ1 = {{1}, {2, 3, 4}} and µ2 = {{1, 2, 3, 4}}. Omitting normalization,
we can write Eq. (21) as follows. For µ1 we set uq = 1, uk = 2, i = (i, j), j = (j, j),
i′ = (i, j), j′ = j, and for µ2 we set uq = 1, uk = 1, i = (j, j), j = (j, j), i′ = j, j′ = j.

Attn2→2(A′)jj = φ(Q̃µ1

j)>
∑

{i|(i,j)∈E′}

φ(K̃µ1

ij)A′ijwµ1
+ φ(Q̃µ2

j)>φ(K̃µ2

j)A′jjwµ2
.

(29)

Let entries in φ(K̃µ), φ(Q̃µ) be 1dK√
dK

so that their dot product is 1. Eq. (29) reduces to:

Attn2→2(A′)jj =
∑

{i|(i,j)∈E′}

A′ijwµ1
+ A′jjwµ2

(30)

We make wµ1 zero-out the first 2dv + de channels and wµ2 zero-out the last de + dm
channels. Then, we have Attn2→2(A′)jj contain Xj in the first dv channels and Mj + ε2 =∑
i|(i,j)∈E′(M(Xj ,Xi,Eij))+ε2 in the last dm channels where ε2 is approximation error7.

We then apply MLPl→l on top of it, which can approximate the update function by universal
approximation theorem [16] and we have Attn2→2(A′)jj = U(Xj ,Mj) + ε3 where ε3 is
approximation error.

Overall, the approximation error εi at each step depends on εi−1 (i > 1), the MLP that approximates
relevant function, and uniform bounds and uniform continuity of the approximated functions [16].

In the opposite, message passing cannot approximate some of the operations done by a single
Transformer layer Enc2→2. This can be seen from the fact that, given a graph with diameter d(E),
we need at least d(E) message passing operations to approximate output of Enc2→2. This is because
a single Enc2→2 can impose dependency between any pair of input and output indices i, j, while
message passing requires d(E) steps in the worst case. Consequently, the approximation becomes
impossible when the graph contains> 1 disconnected components, which leads to d(E)→ +∞.

A.2 Experimental details (Section 5)

In this section, we provide detailed information of the datasets and models used in our experiments in
Section 5. We provide the dataset statistics in Table 5, and model architectures in Table 6.

A.2.1 Implementation details of higher-order Transformers

In formulation of higher-order Transformers in the main text, for simplicity we omitted layer normal-
ization (LN) [1] and used ReLU non-linearity for MLPl→l. In actual implementation, we adopt Pre-
Layer Normalization (PreLN) [33], and place layer normalization before Attnk→l, before MLPl→l,
and before the output linear projection after the last Enck→l. We also use GeLU non-linearity [15] in
MLPl→l instead of ReLU. This setup worked robustly in all experiments. As additional details, we
set the internal dimension of MLPl→l same as the input and output dimension (dF = d), and applied
dropout [30] within Attnk→l and MLPl→l to prevent overfitting.

7Note that message summation over {i|(i, j) ∈ E′} is equivalent to summation over {i|(i, j) ∈ E} = N (j)
because we set message zero at (i, j) ∈ E′ \ E.

5

Table 5: Statistics of the datasets.

(a) Statistics of the synthetic chains dataset.

Dataset Chains
Size 60
classes 2
Average # node 20 (train) / 200 (test)

(b) Statistics of the PCQM4M-LSC dataset.

Dataset PCQM4M-LSC
Size 3.8M
Average # node 14.1
Average # edge 14.6

(c) Dataset statistics for set-to-graph prediction.

Dataset Jets Delaunay (50) Delaunay (20-80)
Size 0.9M 55k 55k
Average # node 7.11 50 50
Average # edge 35.9 273.6 273.9

(d) Dataset statistics for k-uniform hyperedge prediction. For each dataset,
each row under "# nodes" correspond to each row under "Node types".

Dataset GPS MovieLens Drug

Node types
user user user
location movie drug
activity tag reaction

nodes
146 2,113 12
70 5,908 1,076
5 9,079 6,398

edges 1,436 47,957 171,756

A.2.2 Efficient implementation of 1→ k layers

For k-uniform hyperedge prediction in Sec. 5, implementing the higher-order layers Enc1→k and
L1→k can be challenging due to the large number of equivalence classes, b(1 + k). However, we
found that it can be reduced to 1 + k without any approximation. Specifically, we show the following:
Property 4. For L1→k or Enc1→k, if we only consider k-uniform output hyperedges (output hyper-
edges without loops; j-th output where j1, ..., jk are unique), the layers can be implemented using
only 1 + k equivalence classes instead of b(1 + k).

Proof. As we only care about output hyperedges with unique index elements, only equivalence
classes that correspond to partitions of [k+ 1] with entries [k] contained in disjoint subsets contribute
to output. There are exactly 1 + k such partitions depending on which subset the last entry (k + 1)
belongs to, so it is sufficient that we have 1 + k equivalence classes.

From Property 4, we implement the layers Enc1→k and L1→k by only considering the 1 + k
equivalence classes that contribute to k-uniform output hyperedges.

A.2.3 Runtime and memory analysis

For runtime and memory analysis, we used Barabási-Albert random graphs that are made by iteratively
adding nodes, where each added node links to 5 random previous nodes. The experiment was done
using a single RTX 6000 GPU with 22GB. We repeated the experiment 10 times with different random
seeds for graph generation and reported the average; variance was generally low. The architectures of
the experimented second-order models are provided in Table 6a.

A.2.4 Synthetic chains

For synthetic chains experiment, we used a small dataset composed of 40 training chains each with
20 nodes, and 20 test chains each with 200 nodes as in Table 5a. Each chain is randomly assigned

6

Table 6: Architectures of the models used in our experiments. Enck→l(d, dH , H) denotes Enck→l
with hidden dimension d, head dimension dH , and number of heads H . Lk→l(d) denotes Lk→l with
output dimension d. MLP(n, d, dout) denotes an elementwise MLP with n hidden layers, hidden
dimension d, output dimension dout, and ReLU non-linearity.

(a) Architectures for runtime and memory analysis.

Method Architecture
MLPπ (D/S) [L2→2(32)− ReLU]×4-L2→0(32)
Ours (D/S, (φ)) Enc2→2,φ(32, 8, 4)×4-Enc2→0(32, 8, 4)-LN-Linear(32)

(b) Architectures for chain experiment. Output dimension of a layer is denoted in parenthesis.

Method Architecture
GCN GCNConv(16)-ReLU-GCNConv(16)-Linear(2)
GIN-0 GINConv(16)-ReLU-GINConv(16)-Linear(2)
GAT GATConv(16)-ReLU-GATConv(16)-Linear(2)
MLPπ (S) L2→2(16)-ReLU-L2→1(16)-Linear(2)
Ours (S) w/o global Enc2→2,ablated(16)-Enc2→1,ablated(16)-LN-Linear(2)
Ours (S, φ) w/o global Enc2→2,φ,ablated(16)-Enc2→1,φ,ablated(16)-LN-Linear(2)
Ours (S) Enc2→2(16)-Enc2→1(16)-LN-Linear(2)
Ours (S, φ) Enc2→2,φ(16)-Enc2→1,φ(16)-LN-Linear(2)

(c) Architectures for graph regression experiment.

Method Architecture
Transformer + Laplacian PE Enc1→1(256, 16, 16)×8-Enc1→0(256, 16, 16)-LN-Linear(1)
MLPπ (S) [L2→2(256)− ReLU]×8-L2→0(256)-Linear(1)
Ours (S, φ)−SMALL Enc2→2,φ(256, 8, 4)×8-Enc2→0(256, 16, 8)-LN-Linear(1)
Ours (S, φ) Enc2→2,φ(512, 16, 4)×8-Enc2→0(512, 16, 16)-LN-Linear(1)

(d) Architectures for set-to-graph experiment.

Method Dataset Architecture

S2G/S2G+ [29]
Jets [L1→1(256)− ReLU]×5-L1→2(256)-MLP(1, 256, 1)
Delaunay (50) [L1→1(500)− ReLU]×7-L1→2(500)-MLP(2, 1000, 1)
Delaunay (20-80) [L1→1(500)− ReLU]×7-L1→2(500)-MLP(2, 1000, 1)

Ours (D)
Jets Enc1→1(128, 32, 4)×4-Enc1→2(128, 32, 4)-MLP(1, 256, 1)
Delaunay (50) Enc1→1(256, 64, 4)×5-Enc1→2(256, 64, 4)-MLP(2, 256, 1)
Delaunay (20-80) Enc1→1(256, 64, 4)×5-Enc1→2(256, 64, 4)-MLP(2, 256, 1)

Ours (D, φ)
Jets Enc1→1,φ(128, 32, 4)×4-Enc1→2,φ(128, 32, 4)-MLP(1, 256, 1)
Delaunay (50) Enc1→1,φ(256, 64, 4)×5-Enc1→2,φ(256, 64, 4)-MLP(2, 256, 1)
Delaunay (20-80) Enc1→1,φ(256, 64, 4)×5-Enc1→2,φ(256, 64, 4)-MLP(2, 256, 1)

(e) Architectures for k-uniform hyperedge prediction experiment.

Method Dataset Architecture

S2G+ (S)
GPS [L1→1(64)− ReLU]×1-L1→3(64)-MLP(4, 64, 1)
MovieLens [L1→1(64)− ReLU]×3-L1→3(64)-MLP(2, 64, 1)
Drug [L1→1(64)− ReLU]×3-L1→3(64)-MLP(2, 64, 1)

Ours (S, φ)
GPS Enc1→1,φ(64, 16, 8)×1-Enc1→3,φ(64, 16, 8)-MLP(4, 64, 1)
MovieLens Enc1→1,φ(64, 16, 8)×3-Enc1→3,φ(64, 16, 8)-MLP(2, 64, 1)
Drug Enc1→1,φ(64, 16, 8)×3-Enc1→3,φ(64, 16, 8)-MLP(2, 64, 1)

7

with a binary label, which is encoded as one-hot vector at a terminal node. The goal is to classify
all nodes in the chain according to the label. As evaluation metrics, we used macro-/micro-F1 that
give combined node-wise F1 scores across all test chains. All models, including baselines, have
fixed hyperparameters with 2 layers and 16 hidden dimensions. Detailed architectures are provided
in Table 6b. For update function of GIN-0, we used an MLP with of 2 hidden layers followed by
batchnorm (Linear(16)-ReLU-Linear(16)-ReLU-BN). For GAT, we used 8 attention heads followed
by channelwise sum. For second-order Transformers, we used a simplified architecture with a single
attention head. We trained all models with binary cross-entropy loss and Adam optimizer [20] with
learning rate 1e-3 and batch size 16 for 100 epochs.

A.2.5 Large-scale graph regression

For large-scale graph regression, we used the PCQM4M-LSC quantum chemistry regression dataset
from OGB-LSC benchmark [17], one of the largest datasets up to date that contains 3.8M molecular
graphs. We provide the summary statistics of the dataset in Table 5b. As the test set is unavailable,
we report and compare the Mean Absolute Error (MAE) measured on the validation set.

Table 6c gives the architectures of the models used in our experiment. For second-order models
(MLPπ and Ours (S, φ)), we used both node and edge types as input information. For vanilla (first-
order) Transformer that operates on node features only, we used Laplacian graph embeddings [2, 8]
in addition to node types so that the model can consider edge structure information. The embeddings
are computed by factorizing the graph Laplacian matrix [8]:

∆ = I −D−1/2AD−1/2 = U>ΛU, (31)

whereA is the adjacency matrix,D is the degree matrix, and Λ, U are the eigenvalues and eigenvectors
respectively. Following prior work [8], we used the k smallest eigenvectors of a node.

We trained all models with L1 loss using AdamW optimizer [24] with batch size 1024 on 8 RTX
3090 GPUs. For all models, we used dropout rate of 0.1 to prevent overfitting. For the full schedule,
we trained our model for 1M steps, and applied linear learning rate warm-up [31] for 60k steps up to
2e-4 followed by linear decay to 0. For the short schedule (* in Table 2), we trained the models for
100k steps, and applied learning rate warm-up for 5k steps up to 1e-4 followed by decay to 0.

A.2.6 Set-to-graph prediction

For set-to-graph prediction experiment, we borrow the datasets, code, and baseline scores from
Serviansky et. al. (2020) [29]. We provide the summary statistics of the datasets in Table 5c.

As in main text, Jets is a dataset where the task is to infer partition of a set of observed particles.
By viewing each partition as a fully-connected graph, the task becomes graph prediction problem.
Each data instance contains 2-14 nodes, each having 10-dimensional features. The entire dataset
contains 0.9M instances, divided into 60/20/20% train/val/test sets. Evaluation is done with 3
metrics: F1 score, Rand Index (RI), and Adjusted Rand Index (ARI) which is computed as ARI =
(RI − E[RI])/(1 − E[RI]). To ensure that the model’s prediction gives a correct partitioning, a
postprocessing is applied to convert every connected components to cliques. The test set is further
separated into 3 types: bossom(B)/charm(C)/light(L), depending on underlying data generation
process. This makes typical # of partitions in each set different. Among the baselines, GNN is a
message-passing GNN [10] that operate on k-NN induced graph for k = 5, where edge prediction is
done with pairwise dot-product. AVR is an algorithmic baseline typically used in particle physics.

As in main text, Delaunay datasets involve 2D point sets where the task is performing Delaunay
triangulation. Evaluation metrics are typical Accuracy/Precision/Recall/F1 scores based on edge-
wise binary classification on held-out test set. The baselines are similar to Jets; GNN0/5/10 are
message-passing GNNs [10] that operate on k-NN induced graph for k ∈ {0, 5, 10}.
Table 6d provides the architecture of the models used in our experiment, along with relevant baselines
S2G/S2G+ from Serviansky et. al. (2020) [29]. S2G uses a subset of equivalence classes (µ) within
L1→2, and S2G+ uses full basis8. Our models, both (D) and (D, φ), are made by substituting Enc1→1

and Enc1→2 into S2G+. All models were trained with Adam optimizer to minimize the combination
of soft F1 score and binary cross-entropy of edge prediction. For all models, we used dropout rate

8Note that the implementation of linear layers in Serviansky et. al. (2020) [29] is slightly different from ours.

8

of 0.1 to prevent overfitting. For Jets, with 400 max epochs, the training is early-stopped based
on validation F1 score with 20-epoch tolerance. We used learning rate 1e-4 and batch size 512
for our models, while S2G/S2G+ used learning rate 1e-3 and batch size 2048 [29]. For Delaunay,
with 100 max epochs, we used learning rate 1e-4 for our models, and used batch size 32/16 for
Delaunay (50)/(20-80); S2G/S2G+ used learning rate 1e-3 and batch size 64 [29]. For Ours (D, φ) in
Delaunay (20-80), we applied 1-epoch warmup to prevent early training instability.

A.2.7 k-uniform hyperedge prediction

For k-uniform hyperedge prediction experiment, we borrow the datasets, code, and baseline scores
from Zhang et. al. (2020) [36]. As in the main text, we used three datasets for transductive 3-
edge prediction. The first dataset GPS contains (user-location-activity) hyperedges. The second
dataset MovieLens contains (user-movie-tag) hyperedges. The third dataset Drug contains (user-drug-
reaction) hyperedges. We provide the summary statistics in Table 5a.

The experiments were done in a transductive setup, where the hyperedge set is randomly split into the
training and test set with 4:1 ratio. We randomly sampled negative edges to be 5 times the amount
of the positive edges, so that hyperedge prediction becomes binary classification problem. Thus,
the evaluation is done with AUC and AUPR scores. Among the baselines, for Hyper-SAGNN, we
reproduced the scores using the open-sourced code [36] using the provided hyperparameters. For
additional baselines including node2vec, we take the scores reported in Zhang et. al. (2020) [36].

Table 6e gives the architecture of the models used in our experiment. As Hyper-SAGNN uses
autoencoder-based node features, for proper comparison we also adopted and trained them jointly
with the full model [36]. All models (including reproduced Hyper-SAGNN) were trained with Adam
optimizer to minimize the combination of binary cross-entropy loss and autoencoder reconstruction
loss for 300 epochs with learning rate 1e-3 and batch size 96. For S2G+ (S) and Ours (S, φ), we
applied dropout rate of 0.1 to the hidden layers of MLP after L1→3 or Enc1→3 to prevent overfitting.

A.3 Potential negative social impacts

Our framework can be potentially applied to a variety of tasks involving relational data, e.g., molecular
structures, social networks, 3D mesh, etc. Advancements in those directions might incur negative side-
effects such as low-cost biochemical weapon, deepening of filter bubbles from enhanced personalized
social network services, surveillance with mesh-based face recognition, etc. Such potential negative
impacts should be addressed as we conduct domain-specific follow-up works.

9

	Introduction
	Preliminary
	Higher-Order Transformers
	Transformers generalize DeepSets
	Higher-order Transformer layers

	Asymptotically Efficient Higher-Order Transformers
	Linear layers with reduced complexity
	Sparse Transformer layers
	Kernel attention trick
	Theoretical analysis and comparison to message-passing

	Experiments
	Discussion
	Appendix
	Proofs
	Proof of Proposition 1 (Section 3.2)
	Proof of Property 1 (Section 4)
	Proof of Proposition 2 (Section 4.1)
	Validity of Proposition 1 when using lightweight linear layers (Section 4.1)
	Proof of Property 2 (Section 4.2)
	Proof of Property 3 (Section 4.3)
	Proof of Theorem 2 (Section 4.4)

	Experimental details (Section 5)
	Implementation details of higher-order Transformers
	Efficient implementation of 1–>k layers
	Runtime and memory analysis
	Synthetic chains
	Large-scale graph regression
	Set-to-graph prediction
	k-uniform hyperedge prediction

	Potential negative social impacts

