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ABSTRACT

Parameter-efficient fine-tuning has demonstrated promising results across various
visual adaptation tasks, such as classification and segmentation. Typically, prompt
tuning techniques have harnessed knowledge from a single pre-trained model,
whether from a general or a specialized medical domain. However, this approach
typically overlooks the potential synergies that could arise from integrating diverse
domain knowledge within the same tuning process. In this work, we propose a
novel Mixture-of-Experts prompt tuning method called pMoE , which leverages the
strengths of multiple expert domains through expert-specialized prompt tokens
and the learnable dispatcher, effectively combining their expertise in a unified
model framework. Our pMoE introduces expert-specific prompt tokens and utilizes
a dynamic token dispatching mechanism at various prompt layers to optimize the
contribution of each domain expert during the adaptation phase. By incorporating
both domain knowledge from diverse experts, the proposed pMoE significantly
enhances the model’s versatility and applicability to a broad spectrum of tasks.
We conduct extensive experiments across 47 adaptation tasks, including both
classification and segmentation in general and medical domains. The results
demonstrate that our pMoE not only achieves superior performance with a large
margin of improvements but also offers an optimal trade-off between computational
efficiency and adaptation effectiveness compared to existing methods.

1 INTRODUCTION

The rapid advancement of unsupervised representation learning (He et al., 2020; Chen et al., 2021; Xie
et al., 2021; Caron et al., 2021; Oquab et al., 2023), particularly in visual tasks, has led to an increasing
demand for adaptable models that can efficiently transfer knowledge across domains. In recent years,
parameter-efficient fine-tuning methods (Jia et al., 2022; Yoo et al., 2023; Mo et al., 2024b) have
emerged as a powerful tool, achieving strong performance while reducing the computational burden
associated with traditional fine-tuning approaches. Among these, prompt tuning, where learnable
prompt tokens are added to the input sequences, has gained significant attention for its ability to
adjust models pre-trained on large datasets with minimal additional parameters.

However, most existing prompt tuning approaches (Jia et al., 2022; Yoo et al., 2023; Mo et al., 2024b)
focus on adapting a single pre-trained model (Chen et al., 2021; He et al., 2021), either trained on
general visual tasks or specialized datasets, like medical images. While this strategy has yielded
encouraging results, it inherently limits the model’s capacity to benefit from cross-domain knowledge.
For example, models pre-trained on general visual datasets might struggle with highly specialized
medical tasks. Moreover, the capability provided by a single model is often insufficient to address a
real-world downstream task to be adapted to. Solving a complex problem may require a high-level
semantic understanding ability from models pre-trained with language supervision, as well as a
low-level feature capturing ability from segmentation models. The challenge, therefore, is how to
integrate expertise from multiple domains in a way that maximizes both performance and efficiency.

A key challenge in this context is the effective coordination of knowledge from multiple, often distinct,
domain experts. Traditional approaches to fine-tuning are not designed to handle the potential conflicts
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or redundancies that arise when incorporating diverse sources of expertise. Furthermore, determining
the optimal contribution of each expert dynamically, without inflating computational costs, remains
an unsolved problem. This challenge is further compounded by the varying data characteristics
and task requirements across general and specialized domains, such as the medical field, making it
difficult to strike the right balance between generalization and specialization during adaptation.

To address this challenge, we propose a novel framework for prompt tuning, called pMoE for Mixture-
of-Experts Prompt Tuning, which explicitly addresses this challenge by leveraging knowledge from
multiple expert domains. Our pMoE first introduces expert-specific prompt tokens to each pre-trained
model. Then, to facilitate information exchange and determine the contribution of each expert during
adaptation, pMoE utilizes a learnable dispatcher module that can dynamically select and fuse tokens
from diverse experts. Unlike previous methods that are confined to a single knowledge source, the
proposed pMoE effectively integrates various domain expertise, optimizing the adaptation process
across diverse tasks. Besides, the dispatcher module is compatible with all existing prompt tuning
methods for a single model, and can also be extended to incorporate sophisticated architectures,
making pMoE flexible and powerful.

We validate the effectiveness of pMoE through extensive experiments on 47 visual adaptation bench-
marks, including both classification and segmentation tasks from general and medical domains. Our
results demonstrate that pMoE not only achieves state-of-the-art performance, outperforming the
previous method by 2.36% in terms of accuracy on ImageNet-21K classification, but also strikes a
balance between computational efficiency and adaptation efficacy. We show that pMoE can largely
improve multiple existing prompt tuning methods for a single model across all general and medical
tasks. By utilizing the strengths of multiple domain experts, our approach sets a new standard for
flexible and efficient visual adaptation.

Overall, our contributions can be summarized into three main folds:

• We propose pMoE , a novel Mixture-of-Experts Prompt Tuning framework that extends visual
prompt tuning for prompting diverse experts together, allowing for effective and adaptable
fine-tuning across both general and medical visual domains.

• We design a learnable dispatcher module that can flexibly select and fuse expert-specific
prompt tokens, enabling dynamically allocating tokens based on the complexity and nature
of the visual task.

• We conduct extensive experiments across diverse datasets, including medical image analysis
and general segmentation tasks, demonstrating that pMoE significantly outperforms existing
prompt-based adaptation methods.

2 RELATED WORK

Visual Adaptation. Visual adaptation seeks to transfer knowledge from pre-trained vision models to
new tasks. Early approaches, such as full fine-tuning (Dosovitskiy et al., 2021), involved updating
both the pre-trained backbone and task-specific heads. Recent research has focused on more efficient
alternatives, particularly parameter-efficient tuning techniques. For instance, SideTune (Zhang et al.,
2020a) introduced a side network that linearly interpolates between pre-trained features and side-
tuned features. Bias tuning methods, such as TinyTL (Cai et al., 2020) and BitFit (Ben Zaken et al.,
2022), focused on tuning only the bias terms of the backbone to reduce the number of trainable
parameters. Adapter-based methods (Houlsby et al., 2019; Pfeiffer et al., 2020) injected lightweight
layers into the transformer architecture, introducing task-specific parameters without retraining the
full network. These approaches, however, primarily target models pre-trained in supervised settings,
with fewer studies exploring parameter-efficient tuning in the context of self-supervised learning, a
gap that we address with our proposed method. Our pMoE takes this further by introducing prompt
tuning for Mixture-of-Experts to enhance adaptability and scalability across diverse visual domains.

Visual Prompt Tuning. Visual Prompt Tuning (VPT) (Jia et al., 2022) has recently gained traction as
a parameter-efficient method for visual adaptation. VPT introduces learnable prompt tokens, appended
to the input sequence, that modulate information flow through a pre-trained vision transformer. This
approach has demonstrated strong performance on a variety of visual tasks, especially when used with
supervised ViT backbones. Building on this, GaPT (Yoo et al., 2023) proposed adding gated prompts
that control each transformer block’s influence over the prompt tokens, further improving adaptability.
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LSPT (Mo et al., 2024b) extended this concept by incorporating temporal prompts that retain long-
term task-specific information, mitigating catastrophic forgetting. Our method expands upon these
advancements by introducing Mixture-of-Experts Prompt Tuning. Unlike previous methods, our
pMoE dynamically selects different expert prompts based on the complexity of the task, allowing for
fine-grained control over model adaptation. This leads to superior performance across both general
and medical domain tasks, as evidenced by our experimental results.

Mixture-of-Experts. Mixture-of-Experts (MoE) models, initially proposed to enhance model
capacity without increasing computational cost, have shown promise in diverse areas such as natural
language processing (Shazeer et al., 2017). MoE divides tasks among several ”experts,” each
specialized in certain aspects of the input, allowing for greater task-specific specialization while
maintaining parameter efficiency. Recent works in vision have begun to explore MoE for efficient
transfer learning and visual adaptation (Riquelme et al., 2021). However, these approaches largely
focus on architectural improvements and do not directly tackle prompt tuning in visual tasks. To our
knowledge, pMoE is the first framework to apply MoE mechanisms to prompt tuning in vision tasks.
By enabling task-dependent expert selection, pMoE achieves superior adaptability and performance,
particularly in challenging tasks such as fine-grained classification and medical image analysis.

3 METHOD

Given a set of images, our target is to efficiently adapt pre-trained Vision Transformers (ViTs) to
downstream visual tasks using specialized learnable prompts. We propose a novel mixture-of-experts
prompt tuning framework, named pMoE , for capturing multiple expert blocks as prompt sources
within pre-trained ViTs, as illustrated in Figure 1.

In this section, we first describe the problem setup and notations, and also revisit the visual prompt
tuning technique for a single model in Section 3.1. Then, we introduce our main method, consisting
of added expert prompt tokens in Section 3.2 and the dispatcher module to enable effectively utilizing
knowledge from diverse experts in Section 3.3.

3.1 VISUAL PROMPT TUNING FOR A SINGLE MODEL

Problem Setup. We consider a ViT model consisting of a patch embedding layer, a stack of L
transformer layers, and a classification head. For an input image X with shape of H ×W × 3, we
denote the input patch tokens for the l + 1-th layer as Zl = [zlC , z

l
1, ..., z

l
N ] ∈ R(N+1)×D, where

N = HW/P 2, P is the patch size, and D is the dimension of the token, and zlC ∈ R1×D is an
additional learnable classification token concatenated with patch tokens. The transformer layer
processes classification and patch tokens as Zl+1 = TransLayerl+1(Zl). The token z0i = embed(xi),
for i ∈ {1, 2, ..., N}, is obtained by embedding the i-th patch xi of the input image X.

Revisit Visual Prompt Tuning. Visual Prompt Tuning (VPT) (Jia et al., 2022) was introduced to adapt
pre-trained ViTs for downstream tasks by fine-tuning continuous prompt tokens in the representation
space. VPT prepends learnable prompt tokens P = [p1, ...,pNp ] ∈ RNp×D to the input patch tokens,
where Np is the number of prompt tokens, and D is the token dimension. VPT fine-tunes these
prompt tokens while freezing the ViT’s pre-trained weights and the classification head. VPT-deep
extends this approach by injecting layer-specific prompt tokens Pl = [pl

1, ...,p
l
Np

] ∈ RNp×D into
each layer. The transformer layer processes tokens as:

[Zl+1
P ,Zl+1] = TransLayerl+1([Pl,Zl]) (1)

Here, Zl+1
P is discarded after each block, leading to incomplete usage of accumulated prompts across

layers. Our method aims to address these limitations by using these tokens for enabling prompt
exchange between domain-specific experts dynamically. Some recent research improves the VPT by
introducing more operations on prompt tokens (Yoo et al., 2023; Mo et al., 2024b). Note that our
framework is compatible with these modifications, as long as prompt tokens exist.

3.2 EXPERT PROMPT TOKENS

The core of our pMoE lies in its ability to leverage and effectively integrate multiple domain-specific
experts1 through a set of learnable prompt tokens. Thus, we first introduce Expert Prompt Tokens

1In this paper, an expert refers to a pre-trained model.
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Figure 1: Illustration of the proposed pMoE framework. Here, we demonstrate how the dispatcher handles
tokens and produces integrated prompt tokens for Expert k, with the same method applied to other experts as
well. The dynamic dispatching method takes expert prompt tokens from all experts and the state of the current
expert as inputs, and outputs dispatching weights for controlling portions to integrate prompt tokens for the
next layer. Different colors represent distinct weight groups, applied to corresponding expert prompt tokens,
yielding different integrated prompt tokens. This dynamic dispatching mechanism ensures communication and
interaction among diverse experts, making the model contribute the most relevant knowledge to the final output.

(EPTs), specialized to capture domain-specific knowledge, allowing the model to access diverse
expert knowledge dynamically during the adaptation process. Specifically, for each domain expert, a
dedicated set of learnable prompt tokens is assigned. These expert-specific tokens are injected at the
input layer, similar to VPT, but with multiple expert sources. The prompt tokens can be defined as:

P = {Pexpert1 , . . . ,Pexpertk , . . . ,PexpertK} (2)

where Pexpertk represents prompt tokens for the k-th domain expert2. For instance, Pexpert1 can be
injected to the DINO (Oquab et al., 2023) model to capture some basic discriminative features, and
injecting Pexpert2 to a medical vision encoder (e.g., LVM-Med (Nguyen et al., 2023)) with richer
domain knowledge can provide deeper understanding on medical images. Moreover, similar to
VPT-deep, EPTs can also be injected layer-wisely, catching different information in different layers.

3.3 DYNAMICALLY SELECT AND FUSE TOKENS WITH THE DISPATCHER

After obtaining domain-specific knowledge, we consider the deigns of utilizing EPTs and patch
tokens, for effectively leveraging knowledge from multiple domain experts and contributing to better
performance in the downstream task than using any of the single model. To address the challenge of
handling potential conflicts or redundancies among diverse experts, and identifying key information
for downstream tasks, the framework must (1) enable communications among experts to facilitate
information exchanging and then (2) decide what information should be preserved accordingly.
Therefore, pMoE introduces a dynamic dispatcher module that takes EPTs from all experts, and
decide what should be preserved according to the state of the current expert.

Inserting Dispatcher Layer. A learnable dispatcher layer (DispLayerl) can be inserted across
all experts, before tokens entering the subsequent transformer layer (index l + 1) of every expert.
Although the dispatcher layer is shared for all experts for efficiency and facilitating communications, it
needs to wisely choose the most relevant information for each expert, aggregating them into Integrated
Prompt Tokens (IPTs) for further processing. This is enabled with a dynamic dispatching method
(explained in the next paragraph). Then, IPTs (P̂l

expertk
for expert k) and patch tokens Zl

expertk
are sent

2We use notations with subscript “expert” and its index to denote expert-specific information, while notions
without this subscript represent the aggregation of information from all experts.

4



Published as a conference paper at ICLR 2025

to TransLayerl+1
expertk

, producing accumulated prompt tokens Zl+1
P,expertk

and patch tokens Zl+1
expertk

.

[Zl+1
P,expertk

,Zl+1
expertk

] = TransLayerl+1
expertk

([P̂l
expertk

,Zl
expertk

]) (3)

Dynamic Dispatching Weights. The dynamic dispatching method should enable communication
among all experts and also consider expert-specific states. It contains two steps. (1) The dispatcher
layer takes expert-specific states as inputs, thus making different decisions for each expert accordingly,
and output dynamic dispatching weights Dl

expertk
. Expert-specific states contain EPTs of the current

expert Pl
expertk

, accumulated prompt tokens from the last layer Zl
P,expertk

, and patch tokens from the

last layer Zl
expertk

. (2) IPTs P̂l
expertk

are obtained by weighted addition of all EPTs using expert-specific
weights Dl

expertk
. This process can be expressed as:

Dl
expertk

= DispLayerl([Pl
expertk

,Zl
P,expertk

,Zl
expertk

])

P̂l
expertk

[n] = Dl
expertk

[n]×Pl[·, n],

P̂l
expertk

= [P̂l
expertk

[1], . . . , P̂l
expertk

[n], . . . , P̂l
expertk

[Np]].

Let Np be the number of prompt tokens for each expert and K be the number of experts. D is the
dimension of the token. Here, Dl

expertk
∈ RNp×K and Dl

expertk
[n] ∈ R1×K where n is the index.

Pl ∈ RK×Np×D and we use Pl[·, n] ∈ RK×D to denote the n-th EPT of all experts. So, the n-th
IPT of the current expert is the weighted combination of n-th EPTs of all experts. The DispLayerl

converts tokens with dimension D into weights with dimension K via following operations:

[Dl
E,expertk

;Dl
P,expertk

;Dl
Z,expertk

] = MLPs([Pl
expertk

;Zl
P,expertk

;Zl
expertk

]),

Dl
expertk

= softmax(Dl
E,expertk

+Dl
P,expertk

+ Average(Dl
Z,expertk

)).

where Pl
expertk

,Zl
P,expertk

∈ RNp×D, Dl
E,expertk

,Dl
P,expertk

∈ RNp×K , and Zl
expertk

∈ RNz×D,
Dl

Z,expertk
∈ RNz×K , where Nz denote the number of patch tokens. We take the average over

patches and then broadcast it to Np. And softmax normalization is performed over the second
dimension. Detailed algorithm is in Appendix B.

In summary, the dispatcher takes all EPTs with the learned domain knowledge inside them, and patch
tokens of the current expert, and then send integrated tokens to the next layer of the current expert.
This comprehensive consideration ensures communication and interaction among diverse experts.
Besides, the dispatching decision is learned by the dispatcher layer, which considers both information
in all experts and the state of the current expert, making each expert contributes necessary knowledge
to the final output accordingly.

Explanations and Remarks. The dynamic dispatching mechanism in pMoE maintains the compu-
tational efficiency benefits of prompt tuning methods. Since the dispatcher layer comprehensively
accounts for information utilization and is shared across all experts, it remains lightweight, ensuring
that pMoE does not largely increase tunable parameters — most still come from the original prompt
tokens. Our results (ref. Section C) also demonstrate that when the same number of tunable prompt
tokens is introduced across all models, pMoE can achieve a synergistic effect, where combined
performance exceeds individual contributions. This strategy enhances adaptation performance while
minimizing the risk of overfitting to a single domain.

In pMoE , IPTs are designed to interact with patch tokens only from the corresponding expert in the
transformer layer, but EPTs can communicate and exchange across all experts in the dispatcher layer.
This is different with naively using shared prompts for all experts, enabling learning expert-specific
knowledge and collaboration among all experts at the same time.

Note that the dispatcher module is flexible and can be added only to the first layer, similar to vanilla
VPT. Here, EPTs interact with the input image patches, and their contribution is dynamically weighted
based on the task and data characteristics. When the dispatcher is added to other layers, it selectively
decides the expert-specific prompts that should propagate through each layer. This ensures that
knowledge from diverse experts can be exploited optimally across all stages of adaptation.

Besides, tokens Zl
P originally discarded by VPT-deep in equation 1 are well considered in pMoE ,

addressing the issue of incomplete usage of accumulated prompts across layers.
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Table 1: Comparison results of visual prompt tuning of supervised ImageNet-21K ViT-B/16 weights on VTAB-
1K benchmarks. Numbers in (·) denote the number of downstream datasets.

Method Natural (7) Specialized (4) Structured (8) Average

VPT (Jia et al., 2022) 78.48 82.43 54.98 69.42
EXPRES (Das et al., 2023) 79.70 84.00 55.00 70.21
SNF (Wang et al., 2023) 83.79 86.13 59.61 74.10
Bi-AdaptFormer (Jie et al., 2023) 82.11 86.40 62.43 74.73
LSPT (Mo et al., 2024b) 85.26 88.57 66.25 77.95
LSPT + pMoE (ours) 87.18 90.25 69.32 80.31

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For the general domain, we leverage two popular classification benchmarks: FGVC (Wah
et al., 2011; Nilsback & Zisserman, 2008; Gebru et al., 2017; Khosla et al., 2011; Van Horn et al.,
2015) and VTAB-1K (Zhai et al., 2019). We follow the same training and validation split as prior
work (Jia et al., 2022; Yoo et al., 2023; Mo et al., 2024b). For medical imaging, we utilize a broad set
of datasets from the Med-VTAB benchmark (Mo et al., 2024a), covering a wide range of medical
tasks. For the segmentation tasks, we include the ADE20K (Zhou et al., 2017; 2018), Kvasir-seg
polyp (Jha et al., 2020) and the ISIC skin lesion dataset (Gutman et al., 2016). Both datasets are
evaluated using 5-fold cross-validation, with performance reported as the average across test splits.

Evaluation Metrics. To evaluate the performance of pMoE across general and medical image analysis
tasks, we employ several standard evaluation metrics. For classification tasks, we use classification
accuracy and the area under the receiver operating characteristic curve (AUC). For segmentation
tasks, we assess performance using mask Intersection-over-Union (mIoU). These metrics provide a
comprehensive measure of our model’s ability to generalize across both general image classification
and medical image analysis tasks, ensuring an accurate and fair comparison with existing methods.

Implementation. We implement pMoE using PyTorch (Paszke et al., 2019) library. The pre-trained
Vision Transformers (ViTs) used in our experiments are initialized from publicly available weights of
ViT-B/16 (Dosovitskiy et al., 2021) models. For all experiments, we freeze the backbone transformer
layers and fine-tune only the newly introduced prompt tokens and layers. For both general and
medical datasets, we fine-tune the prompt tokens with the AdamW optimizer (Loshchilov & Hutter,
2017), using a learning rate of 1e-4 and a weight decay of 1e-5. The batch size is set to 32 for all
datasets, and training is conducted over 30 epochs.

4.2 COMPARISON TO PRIOR WORK

To comprehensively evaluate the performance of pMoE , we conducted extensive comparisons against
state-of-the-art adaptation techniques across both general and medical domain tasks. These experi-
ments were designed to test classification and segmentation benchmarks, offering a holistic view of
how well pMoE adapts in varied environments.

Supervised ImageNet-21k Training. To validate the effectiveness of pMoE in visual prompt tuning
under supervised settings, we evaluated its performance using the ImageNet-21K pre-trained ViT-
B/16 model on the VTAB-1K benchmarks (Zhai et al., 2019). We compared pMoE with several
recent methods (Das et al., 2023; Wang et al., 2023; Jie et al., 2023), including VPT (Jia et al.,
2022), EXPRES (Das et al., 2023), SNF (Wang et al., 2023), Bi-AdaptFormer (Jie et al., 2023), and
LSPT (Mo et al., 2024b), all of which are leading methods in visual prompt tuning. As shown in
Table 1, pMoE achieves the highest average score across the VTAB-1K benchmarks, surpassing all
previous methods in the Natural, Specialized, and Structured task categories. Specifically, pMoE
outperforms LSPT (Mo et al., 2024b) by 1.92 on Natural tasks, 1.68 on Specialized tasks, and
3.07 on Structured tasks. The superior performance of pMoE is attributed to its dynamic prompt
token mechanism, which effectively captures diverse domain-specific knowledge. Additionally, our
approach significantly improves upon EXPRES (Das et al., 2023), which focuses on learning residual
tokens, by leveraging a more flexible prompt architecture that dynamically integrates multiple expert
domains. These results confirm the efficacy of pMoE in achieving state-of-the-art results for visual
prompt tuning, both in terms of accuracy and adaptability, across diverse image classification.
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Table 2: Comparison results of DINO v2 pre-trained vision transformers on FGVC and VTAB-1k datasets.
Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt tokens or adapter
parameters, and the task heads.

Method Total Params CUB Flowers Cars Dogs NABirds Nature Specialized Structured

VPT (Jia et al., 2022) 1.02X 82.67 94.41 79.18 83.33 75.99 70.27 83.04 42.38
VPT (Jia et al., 2022) 1.04X 82.95 94.65 79.37 83.62 76.21 70.55 83.42 42.69
VPT + pMoE (ours) 1.04X 83.38 94.85 79.72 83.95 76.73 71.03 83.85 43.11
GaPT (Yoo et al., 2023) 1.02X 82.86 93.71 79.02 83.37 76.02 74.84 83.38 49.10
GaPT (Yoo et al., 2023) 1.04X 83.05 93.98 79.25 83.68 76.28 75.13 83.67 49.46
GaPT + pMoE (ours) 1.04X 83.52 94.62 79.69 84.06 76.85 75.68 84.15 50.02
LSPT (Mo et al., 2024b) 1.05X 84.29 95.06 80.12 84.25 77.16 77.19 85.69 52.82
LSPT (Mo et al., 2024b) 1.10X 84.85 95.57 80.63 84.53 77.52 78.13 86.35 53.38
LSPT + pMoE (ours) 1.10X 86.07 96.58 81.12 85.17 78.06 78.82 86.98 53.97

Table 3: Comparison results of visual prompt tuning of DINO v2 pre-trained vision transformers on color images.
Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt tokens or adapter
parameters, and the task heads.

Method Total Hyper MESAD AMLC APTOS ISIC Kvasir LCBC MLLB EyePACS
Params Polyp Prosta Cell Eye Skin Polyp Cell Cell Eye

VPT (Jia et al., 2022) 1.02X 62.89 43.78 35.75 57.52 50.89 66.53 42.87 35.37 48.75
VPT (Jia et al., 2022) 1.04X 63.15 43.97 35.98 57.83 51.06 66.92 43.11 35.76 48.97
VPT + pMoE (ours) 1.04X 65.23 45.08 37.53 59.62 52.75 68.73 45.68 37.89 50.67
GaPT (Yoo et al., 2023) 1.02X 65.18 45.79 37.26 59.37 51.58 67.13 45.16 36.85 51.57
GaPT (Yoo et al., 2023) 1.04X 65.57 46.08 37.53 59.68 51.82 67.46 45.52 37.21 51.92
GaPT + pMoE (ours) 1.04X 67.43 47.97 39.45 61.27 53.56 69.82 46.73 39.65 53.78
LSPT (Mo et al., 2024b) 1.05X 67.23 47.53 38.72 61.25 53.62 69.79 47.51 38.92 52.86
LSPT (Mo et al., 2024b) 1.10X 67.95 48.16 39.38 61.87 54.37 71.53 48.25 39.67 53.58
LSPT + pMoE (ours) 1.10X 69.83 50.26 41.25 63.16 56.25 75.68 49.82 41.56 56.87

General Domain Classification. To evaluate the versatility of pMoE in adapting to general visual
tasks beyond the medical domain, we conducted experiments on two established benchmarks:
FGVC and VTAB-1K. The results in Table 2 compare our approach with several recent methods,
including VPT (Jia et al., 2022), GaPT (Yoo et al., 2023), and LSPT (Mo et al., 2024b). The FGVC
benchmark consists of five fine-grained classification datasets, where small intra-class differences
make adaptation particularly challenging. As shown in Table 2, the proposed pMoE demonstrates
superior performance across multiple FGVC tasks, notably improving results on CUB, Flowers, and
Cars datasets. Specifically, pMoE outperforms LSPT (Mo et al., 2024b) by 1.22 on the CUB dataset
and 1.01 on Flowers. To further extend our assessment, we employed the VTAB-1K benchmark,
which includes 19 diverse tasks across three categories: Natural, Specialized, and Structured. These
tasks represent a variety of real-world challenges, providing a robust testing ground for adaptation
methods. Our pMoE outperforms existing approaches in all three categories, achieving improvements
of 0.69 on Natural, 0.63 on Specialized, and 0.59 on Structured tasks when compared to LSPT.
These results validate the general applicability of pMoE , proving its adaptability across diverse
general-domain tasks and establishing its competitiveness in fine-grained classification.

Medical Domain Classification. The evaluation of our proposed pMoE on medical imaging tasks, as
summarized in Table 3, demonstrates its superior performance in handling various complex medical
datasets, including tasks like polyp detection and skin analysis. In polyp detection tasks, such as
Kvasir, pMoE outperforms state-of-the-art methods like LSPT (Mo et al., 2024b) by 4.15, and in
skin lesion, we observe a 1.88 improvement. The results indicate that using Mixture-of-Experts
significantly enhances the model’s capacity to differentiate intricate patterns in medical images.
Moreover, as detailed in Table 4, our pMoE provides significant improvements over existing methods
for X-ray images, especially in distinguishing subtle features in chest and bone X-rays. In terms of
OCT, CT, and MRI modalities, Table 5 highlights superior performance in modalities requiring high-
detail orientation, such as brain tumor identification and chest CT analysis. These findings highlight
the generality of the proposed pMoE in medical imaging tasks, showing significant improvements
across a wide range of applications, from cell and polyp detection to complex tasks like skin lesion
identification and ophthalmic analysis. By leveraging its mixture-of-experts framework, pMoE offers
state-of-the-art performance with minimal additional parameters, making it a highly effective model
for medical domain adaptation.
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Table 4: Comparison results of visual prompt tuning of DINO v2 pre-trained vision transformers on X-ray
images. Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt tokens or
adapter parameters, and the task heads.

Method Total Vindr CBIS COVIDx SYMH RSNAB CheXpert RSNA
Params Lung Breast Lung Shoulder Bone Chest Lung

VPT (Jia et al., 2022) 1.02X 65.73 74.61 76.18 76.86 51.72 70.85 69.25
VPT (Mo et al., 2024b) 1.04X 66.02 74.89 76.43 77.12 51.98 71.06 69.52
VPT + pMoE (ours) 1.04X 68.31 76.75 78.56 79.38 54.23 73.58 72.81
GaPT (Yoo et al., 2023) 1.02X 66.92 75.15 77.25 77.25 52.83 71.37 70.29
GaPT (Yoo et al., 2023) 1.04X 67.37 75.52 77.83 77.79 53.46 71.85 70.78
GaPT + pMoE (ours) 1.04X 69.82 77.85 80.16 80.07 56.52 74.69 74.15
LSPT (Mo et al., 2024b) 1.05X 67.87 76.23 78.33 77.96 53.51 71.92 70.86
LSPT (Mo et al., 2024b) 1.10X 68.59 76.92 78.98 78.73 54.37 72.68 71.62
LSPT + pMoE (ours) 1.10X 73.21 80.53 82.39 82.26 58.79 76.85 76.91

Table 5: Comparison results of visual prompt tuning of DINO v2 pre-trained vision transformers on OCT, CT,
and MRI images. Total Params denotes the total number of parameters for the backbone encoder ViT-B, prompt
tokens or adapter parameters, and the task heads.

Method Total Heide CC-CCII Mosmed COVID-C RICORD PPMI Tumor
Params Eye Chest Chest Chest Chest Brain Brain

VPT (Jia et al., 2022) 1.02X 64.78 61.26 63.65 61.78 59.53 56.93 63.37
VPT (Jia et al., 2022) 1.04X 65.02 61.53 63.89 62.03 59.82 57.26 63.69
VPT + pMoE (ours) 1.04X 67.35 64.06 66.52 65.38 63.21 60.21 66.82
GaPT (Yoo et al., 2023) 1.02X 65.06 61.37 63.69 61.95 59.71 56.97 63.52
GaPT (Yoo et al., 2023) 1.04X 65.59 61.82 64.13 62.39 60.23 57.43 63.98
GaPT + pMoE (ours) 1.04X 68.78 65.32 67.52 65.89 63.51 60.87 67.39
LSPT (Mo et al., 2024b) 1.05X 65.23 61.56 63.75 62.12 59.85 57.08 63.67
LSPT (Mo et al., 2024b) 1.10X 65.95 62.34 64.52 62.95 60.63 57.86 64.45
LSPT + pMoE (ours) 1.10X 68.72 65.83 68.31 67.26 65.38 61.57 69.16

Table 6: Comparison results of visual prompt tuning of MAE & MoCo v3 pre-trained vision transformers on
ADE-20K for semantic segmentation. SS and MS denote single-scale and multi-scale, respectively.

Method MAE MoCo v3
mIoU (SS) mIoU (MS) mIoU (SS) mIoU (MS)

VPT (Jia et al., 2022) 37.76 38.80 35.50 37.15
VPT + pMoE (ours) 38.25 39.56 36.23 38.12
GaPT (Yoo et al., 2023) 38.44 39.81 36.81 38.55
VPT-Deep + pMoE (ours) 39.15 40.75 37.92 39.89
LSPT (Mo et al., 2024b) 39.72 41.51 37.92 39.73
LSPT + pMoE (ours) 40.68 42.87 39.36 41.58

General Domain Segmentation. In addition to classification tasks, we evaluate the effectiveness of
our proposed pMoE on semantic segmentation. Following prior works (Jia et al., 2022; Yoo et al.,
2023), we adopt the SETR-PUP (Zheng et al., 2021) model as the segmentation transformer frame-
work on the ADE20K dataset (Zhou et al., 2017; 2018). Table 6 reports a comparative segmentation
performance analysis between our pMoE and existing visual prompt tuning approaches. We utilize
both MAE and MoCo v3 pre-trained ViT-B/16 weights, ensuring a comprehensive evaluation across
multiple pre-trained models. Compared to VPT (Jia et al., 2022) and GaPT (Yoo et al., 2023), our
pMoE demonstrates significant performance gains across all key segmentation metrics. For both MAE
and MoCo v3 backbones, we observe substantial improvements of up to 1.36 in MAE and 1.85 in
MoCo v3, showcasing the robust adaptability of pMoE for dense prediction tasks. These improve-
ments can be attributed to the inherent structure of our mixture-of-experts approach, which effectively
leverages multiple experts to fine-tune visual representations, resulting in superior segmentation.

Medical Domain Segmentation. In the medical domain, segmentation plays a crucial role in
identifying and delineating anatomical structures or pathological regions. We benchmarked our
pMoE against several state-of-the-art visual prompt tuning methods on diverse medical segmentation
datasets. Table 7 provides a detailed comparison of the performance across key medical segmentation
tasks, including Kvasir polyp and Skin lesion segmentation. Our pMoE significantly outperforms prior
approaches (Jia et al., 2022; Yoo et al., 2023) in all metrics, particularly in complex segmentation tasks
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Table 7: Comparison results of visual prompt tuning of MAE & MoCo v3 pre-trained vision transformers on
Kvasir Polyp and Skin Lesion for medical segmentation. mIoU metrics on a single scale are reported.

Method MAE MoCo v3
mIoU (Kvasir-seg) mIoU (Skin) mIoU (Kvasir-seg) mIoU (Skin)

VPT (Jia et al., 2022) 42.87 74.23 40.65 72.68
VPT + pMoE (ours) 43.52 75.16 42.08 73.76
GaPT (Yoo et al., 2023) 43.95 75.52 42.17 73.89
VPT-Deep + pMoE (ours) 45.38 77.21 43.79 75.86
LSPT (Mo et al., 2024b) 45.81 77.63 43.92 76.27
LSPT + pMoE (ours) 47.95 80.35 46.56 79.83

Table 8: Ablation studies on Expert Prompt Tokens (EPTs) and Dispatcher.

EPTs Dispatcher CUB Flowers Cars Dogs NABirds

✗ ✗ 82.95 94.65 79.37 83.62 76.21
✓ ✗ 83.07 94.71 79.45 83.69 76.32
✓ ✓ 83.38 94.85 79.72 83.95 76.73

Table 9: Ablation studies on the type of mixture-of-experts models.

Expert 1 Expert 2 CUB Flowers Cars Dogs NABirds

MoCo v3 CLIP 83.38 94.85 79.72 83.95 76.73
DINO CLIP 83.76 95.27 80.52 84.65 77.38
DINO MoCo v3 83.17 94.72 79.56 83.78 76.58
DINO MAE 83.28 94.86 79.67 83.89 76.67
MAE CLIP 83.56 95.01 80.06 84.26 76.95

Table 10: Comparison results on ViT-L/16 weights.

Method Total Params Natural Specialized Structured

VPT (Jia et al., 2022) 1.03X 70.86 83.76 43.05
VPT (Jia et al., 2022) 1.06X 71.93 84.98 44.12
VPT + pMoE (ours) 1.06X 72.87 85.97 45.06
GaPT (Yoo et al., 2023) 1.03X 75.42 83.97 49.78
GaPT (Yoo et al., 2023) 1.06X 76.67 85.06 50.86
GaPT + pMoE (ours) 1.06X 77.73 86.19 51.97
LSPT (Mo et al., 2024b) 1.06X 78.68 86.75 53.86
LSPT (Mo et al., 2024b) 1.12X 80.25 87.98 55.03
LSPT + pMoE (ours) 1.12X 81.67 89.12 56.35

that require high spatial precision. For instance, we observe a 2.14 improvement in Kvasir polyp and
a 2.72 boost in lesion when compared to LSPT (Mo et al., 2024b). The improved performance of our
pMoE in medical segmentation tasks is attributed to its MoE-based architecture, which allows for the
specialization of different experts, each focusing on specific segmentation challenges. These results
underscore the potential of our pMoE as a state-of-the-art solution for medical image segmentation.

4.3 EXPERIMENTAL ANALYSIS

In this section, we performed ablation studies to demonstrate the benefit of Expert Prompt Tokens
and Dispatcher. We also conducted extensive experiments to explore the impact of pre-trained model
types, model size, and number of prompt layers.

Expert Prompt Tokens & Dispatcher. To validate the efficacy of the Expert Prompt Tokens
(EPTs) and Dispatcher components in our prompt tuning framework, we conduct ablation studies,
isolating the impact of each component. Table 8 reports the results of experiments comparing the full
pMoE model with variants that exclude either Expert Prompt Tokens or Dispatcher. We observe a
notable drop in performance when either component is removed, highlighting their synergistic role in
improving task adaptation and performance across various benchmarks. Our analysis shows that the
inclusion of Expert Prompt Tokens significantly enhances the model’s ability to specialize prompts
based on task complexity. Similarly, Dispatcher helps in distributing task-specific knowledge across
deeper layers of the network, allowing for better contextual understanding and representation. These
elements lead to a consistent boost across all tasks, confirming their importance in our design.
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Figure 2: Visualization of Mixture-of-Experts path. Our pMoE can dynamically choose a distinct, task-specific
path of experts for each benchmark type, demonstrating the ability to adapt to the particularities of each task.

Pre-trained Model Types. The choice of pre-trained model types plays a crucial role in downstream
task performance. We conduct experiments using four different types of pre-trained models: MAE,
CLIP, DINO, and MoCo v3. Table 9 compares the results across these models. As expected,
models pre-trained with contrastive learning objectives such as CLIP and MoCo v3 show improved
generalization in visual domains, while MAE and DINO offer strong feature representations for
image classification. Our findings indicate that the pMoE framework is highly adaptable to various
pre-training regimes, consistently outperforming baseline methods regardless of the underlying model.
However, the highest improvements are seen when utilizing DINO and MoCo v3, suggesting that
these pre-trained models offer richer representations, which benefit from the specialized learning
pathways provided by MoE.

Large Pre-trained Backbone. We also evaluate the effect of using larger backbone models in
conjunction with the pMoE framework. Table 10 compares results when scaling up from ViT-B to ViT-
L models. As expected, larger backbone models improve performance across most tasks due to their
increased capacity to capture finer details. However, the pMoE framework consistently demonstrates
its capacity to improve over baseline methods, regardless of the model size. This scalability highlights
the versatility of our method, making it applicable to both standard and large-scale models.

Visualization of Mixture-of-Experts Path. To illustrate the adaptability of pMoE , we visualize the
expert selection paths with the maximum activation value on experts across different layers for various
types of benchmarks: Natural, Specialized, and Structured. As shown in Figure 2, pMoE dynamically
selects a distinct, task-specific path of experts for each benchmark type, demonstrating the model’s
ability to adapt to the particularities of each task. This adaptive mechanism allows pMoE to efficiently
route information through the most relevant experts at different layers, enabling the model to focus
on task-specific features while preserving generalization. The visualizations highlight the diverse
paths chosen for different tasks, reflecting how the framework optimally allocates resources across
layers based on the task complexity and domain, ultimately contributing to the superior performance
observed in our experiments.

5 CONCLUSION

In this work, we present pMoE , a novel prompt-tuning framework that leverages Mixture-of-Experts
mechanisms to improve visual adaptation across a wide range of tasks. By integrating Expert Prompt
Tokens and Dispatcher, our approach achieves significant gains in performance compared to existing
visual prompt tuning techniques. Our ablation studies clearly demonstrate the distinct benefits brought
by each of these components, illustrating how pMoE dynamically allocates model capacity based on
task complexity, leading to more efficient and accurate visual adaptation. Extensive experiments
across multiple domains validate the versatility and effectiveness of our method. On general domain
tasks, pMoE shows consistent improvements in fine-grained classification and semantic segmentation,
outperforming traditional techniques on diverse benchmarks. In the medical domain, our pMoE
demonstrates remarkable advancements in both classification and segmentation tasks. Our exploration
of different pre-trained model types further confirms the robustness of our approach, highlighting the
generalizability of pMoE across various vision transformers and initialization methods. Moreover, we
have shown that scaling to larger backbone architectures significantly enhances the model’s ability.
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our experiments are conducted on widely used datasets from both general and medical domains,
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To ensure the reproducibility of our results, we have provided detailed explanations of our methodol-
ogy and experimental setups in Section 4. Our ablation studies and algorithmic design are thoroughly
documented, and additional experimental details are included in the Appendices A and B. We are
committed to sharing our code and pre-trained models with the research community upon publication,
allowing for transparency, easy replication of our experiments, and further development.

REFERENCES

Aptos 2019 blindness detection. Kaggle dataset. URL https://www.kaggle.com/c/
aptos2019-blindness-detection/data.

Vivek Singh Bawa, Gurkirt Singh, Francis KapingA, I. Skarga-Bandurova, Elettra Oleari, Alice
Leporini, Carmela Landolfo, Pengfei Zhao, Xiao Xiang, Gongning Luo, Kuanquan Wang, Liangzhi
Li, Bowen Wang, Shang Zhao, Li Li, Armando Stabile, F. Setti, Riccardo Muradore, and Fabio
Cuzzolin. The saras endoscopic surgeon action detection (esad) dataset: Challenges and methods.
arXiv preprint arXiv:2104.03178, 2021.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), Dublin, Ireland, May 2022.
Association for Computational Linguistics.

Hanna Borgli, Vajira Thambawita, Pia Smedsrud, Steven Hicks, Debesh Jha, Sigrun Eskeland, Kristin
Randel, Konstantin Pogorelov, Mathias Lux, Duc Tien Dang Nguyen, Dag Johansen, Carsten
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APPENDIX

In this appendix, we present addition implementation and datasets details in Section A. We also
present the detailed algorithm for our pMoE in Section B. We further provide additional experimental
analyses in Section C.

A EXPERIMENTAL DETAILS

Datasets. For the general domain, we leverage two popular classification benchmarks: FGVC (Wah
et al., 2011; Nilsback & Zisserman, 2008; Gebru et al., 2017; Khosla et al., 2011; Van Horn et al., 2015)
and VTAB-1K (Zhai et al., 2019). The FGVC benchmark consists of five fine-grained classification
tasks, including CUB-200-2011 (Wah et al., 2011), Oxford Flowers (Nilsback & Zisserman, 2008),
Stanford Cars (Gebru et al., 2017), Stanford Dogs (Khosla et al., 2011), and NABirds (Van Horn
et al., 2015). We follow the same training and validation split as prior work (Jia et al., 2022; Yoo et al.,
2023; Mo et al., 2024b). For VTAB-1K (Zhai et al., 2019), we include 19 diverse visual classification
tasks grouped into three categories: Natural images, Specialized images captured with specific
equipment, and Structured images for object counting. Each task contains 1000 training samples,
and we follow the standard splits used in previous work (Jia et al., 2022; Yoo et al., 2023; Mo et al.,
2024b). For the medical domain, we use a broad set of datasets from the Med-VTAB benchmark (Mo
et al., 2024a), covering a range of medical tasks. These include: Color medical images include nine
datasets, including HyperKvasir (Borgli et al., 2020), MESAD Prostatectomy (Bawa et al., 2021),
Kvasir (Kvasirv2), AMLC (Matek et al., 2019), LHNCBC (Lhncbc malaria), MLLBone (Matek
et al., 2021), APTOS (Aptos 2019 blindness detection), EyePACS (Kaggle dr dataset (eyepacs)),
and ISIC (Skin lesion images for melanoma classification). X-ray images consist of seven datasets,
including Vindr (Nguyen et al., 2022), COVIDx (Wang et al., 2020), RSNA (Shih et al., 2019),
CBIS (Lee et al., 2017), SYMH (Shoulder X-ray Classification), RSNA Bone (Halabi et al., 2019),
and CheXpert (Irvin et al., 2019). OCT, CT, and MRI modalities contains seven datasets, including
Heidelberg (Kermany et al., 2018), CC-CCII (Zhang et al., 2020b), Mosmed (Morozov et al., 2020),
COVID-C (Rahimzadeh et al., 2021), RICORD (Tsai et al., 2021), PPMI (Marek et al., 2011), and
Brain-Tumor (Brain Tumor MRI Dataset). For the segmentation tasks, we include the ADE20K (Zhou
et al., 2017; 2018), Kvasir-seg polyp (Jha et al., 2020) and the ISIC skin lesion dataset (Gutman et al.,
2016). The ADE20K dataset consists of 20K images fully annotated with objects, spanning over 150
semantic categories. The Kvasir-seg dataset consists of 1000 polyp images and their corresponding
binary label masks, while the ISIC skin lesion dataset includes 900 training and 379 test images for
the task of dermoscopic image segmentation.

Implementation. We implement our pMoE framework using PyTorch (Paszke et al., 2019). All
experiments are conducted on NVIDIA A100 GPUs, with 80 GB of memory, allowing us to efficiently
fine-tune models across diverse datasets. For our experiments, we use Vision Transformer (ViT-B/16)
models pre-trained on ImageNet-21K (Deng et al., 2009). The pre-trained models are initialized
with publicly available weights and are then adapted for downstream tasks using the proposed pMoE
framework. We fine-tune the models using the AdamW optimizer (Loshchilov & Hutter, 2017), with
a learning rate of 1e-4 and weight decay of 1e-5. The batch size is set to 32 across all datasets, and
models are trained for 30 epochs for each experiment. For FGVC datasets, such as CUB, Flowers,
and NABirds, we follow the standard training and validation splits provided in the respective datasets.
For VTAB-1K benchmarks, we use the splits from prior works (Jia et al., 2022; Yoo et al., 2023;
Mo et al., 2024b). While pMoE introduces additional complexity through the use of multiple experts
and dynamic dispatching, the increase in FLOPs (floating-point operations) is kept minimal due to
the sparse activation of experts. In practice, we observe that the computational overhead remains
manageable, and the trade-off is justified by the significant performance gains achieved in both
general and medical visual adaptation tasks.

For the ablation studies on prompt layers (Table 13), we vary the number of layers that receive prompt
tokens. Specifically, we experiment with using 3, 6, 9, and 12 prompt layers. As demonstrated in the
results, adding more prompt layers improves the model’s ability to capture complex visual features,
but with diminishing returns beyond 9 layers due to increased computational overhead. For each
experiment, we vary the number of experts and prompt layers, as shown in Tables 12 and 13. As
the number of experts increases, the model captures richer domain-specific knowledge, leading to
improved performance, particularly on complex datasets such as FGVC’s fine-grained classification
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Algorithm 1 pMoE : Mixture-of-Experts Prompt Tuning Framework
Input: Image X, K pre-trained experts, and each one includes one patchifier (i.e., Patchifierexpertk )
and L transformer layers (i.e., TransLayerlexpertk

for the l-th one).
Introduced learnable weights: Expert Prompt Tokens (EPTs) Pl = {Pl

expert1
, . . . ,Pl

expertK
}, where

Pl
expertk

∈ RNp×D and D is the dimension of all kinds of tokens, MLPs in the dispatcher layer with
input dimension D and output dimension K.
Output: Final task-specific output y.

1: Extract patch tokens Z0
expertk

∈ RNz×D from input image X for each expert k = 1, . . . ,K:

Z0
expertk

= Patchifierexpertk(X)

2: for l = 0 to L− 1 do
3: for k = 1 to K do
4: Compute dispatching weights Dl

expertk
∈ RNp×K for the k-th expert from the newly added

EPTs Pl
expertk

, accumulated prompts Zl
P,expertk

(excluded for the first layer), and patch
tokens Zl

expertk
:

[Dl
E,expertk

;Dl
P,expertk

;Dl
Z,expertk

] = MLPs([Pl
expertk

;Zl
P,expertk

;Zl
expertk

])

Dl
expertk

= softmax(Dl
E,expertk

+Dl
P,expertk

+Average(Dl
Z,expertk

, d = 1), d = 2)

5: Fuse tokens Pl ∈ RK×Np×D using dispatching weights:

P̂l
expertk

[n] = Dl
expertk

[n]×Pl[·, n]

P̂l
expertk

= [P̂l
expertk

[1], . . . , P̂l
expertk

[n], . . . , P̂l
expertk

[Np]]
6: Prepend expert prompt tokens to patch tokens to the l-th transformer layer:

[Zl+1
P,expertk

;Zl+1
expertk

] = TransLayerl+1
expertk

([P̂l
expertk

;Zl
expertk

])

7: end for
8: end for
9: Combine outputs from all experts {ZL

expert1
, . . . ,ZL

expertK
} into a unified representation:

Zcombined = Average(ZL
expert1

, . . . ,ZL
expertK

)

10: Pass the combined representation through a task-specific head to produce the output:

y = Head(Zcombined)

11: Return: Final task-specific output y.

tasks. For classification tasks, we report accuracy as the primary metric, including the mean accuracy
across tasks in VTAB-1K and FGVC. For segmentation tasks, Intersection over Union (IoU) is
used as the evaluation metric. Each experiment is run multiple times, and we report the average
performance across multiple runs to ensure robustness and consistency of results.

B ALGORITHM FOR pMoE

In this section, we describe the overall procedure for our proposed framework pMoE , which leverages
a dynamic Mixture-of-Experts (MoE) prompt tuning mechanism to integrate knowledge from multiple
domain experts. The key components of the algorithm include the injection of Expert Prompt Tokens
(EPTs) and the dynamic dispatching mechanism, which ensures efficient use of expert knowledge, as
shown in Algorithm 1.

Designs for the Dispatcher Layer. Considering the computation efficiency, we first provide an initial
simple implementation for the dispatcher layer, which is MLPs. Experiment results in Section C
demonstrate that simple MLPs already show competitive performance. We notice that improvements
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Table 11: Comparison results of visual prompt tuning shallow models (VPT-Shallow) on VTAB-1K benchmarks.
Numbers in (·) denote the number of downstream datasets.

Method Total Params Natural (7) Specialized (4) Structured (8) Average

VPT-Shallow (Jia et al., 2022) 1.01X 67.34 82.26 37.55 57.94
VPT-Shallow (Jia et al., 2022) 1.02X 67.51 82.39 37.72 58.10
VPT-Shallow + pMoE (ours) 1.02X 68.72 83.81 39.58 59.63

Table 12: Ablation studies on the number of experts in MoE-MLPs for the dispatcher.

# expert CUB Flowers Cars Dogs NABirds

3 83.17 94.76 79.51 83.75 76.45
6 83.38 94.85 79.72 83.95 76.73
9 83.43 94.87 79.75 83.98 76.78

regarding the dispatcher layer can be further made here. To this end, we find a better design for the
dispatcher layer, having superior performance without introducing much more computation costs
at the same time. We leverage the idea of MoE once again. Specifically, each row in D represents
a decision for dispatching tokens, with each decision learned by a set of MLP parameters. Here,
each MLP making a decision can be abstracted as a dispatching expert, with each expert producing
an integrated token. Innovatively, we introduce multiple experts and a router during the training
process to determine which dispatching expert is activated. This approach allows for more flexible
and dynamic decision-making, while the sparse activation of experts does not impose a significant
computational burden.

C EXPERIMENTAL ANALYSIS

In this section, we provide a detailed experimental analysis to validate the effectiveness of pMoE .
We perform ablation studies to explore the impact of key design choices, such as the use of shallow
models, the number of experts, and the number of prompt layers. These studies are critical to
understanding how different configurations of pMoE affect its generalization across diverse tasks.

VPT-Shallow Models. We analyze the impact of applying visual prompt tuning to shallow models
by reducing the number of prompt layers. As shown in Table 11, the VPT-Shallow (Jia et al.,
2022) models perform reasonably well on simpler tasks, particularly in the Natural and Specialized
categories. However, there is a noticeable drop in performance on more complex tasks, such as those
in the Structured category. Specifically, while the VPT-Shallow method achieves an average score of
58.10, the Structured tasks are particularly challenging, with scores as low as 37.72. By integrating
our proposed pMoE framework (VPT-Shallow + pMoE), we observe significant improvements across
all categories, with a notable gain in the Structured category (+1.86) and a boost in the overall average
(+1.53). These results highlight that while VPT-Shallow models are effective for less complex tasks,
the addition of Mixture-of-Experts (MoE) mechanisms in pMoE allows for better handling of task
complexity, ultimately leading to stronger overall performance across diverse tasks.

Number of Experts. Table 12 reports the results when varying the number of experts used in pMoE .
As the number of experts increases, the model demonstrates improved performance across various
datasets, particularly in complex tasks like CUB, Flowers, and NABirds. For instance, moving from 3
experts to 6 experts provides a noticeable boost in performance for most tasks, with the performance
on CUB increasing from 83.17 to 83.38 and on Dogs from 83.75 to 83.95. However, the improvement
begins to plateau as the number of experts increases beyond 6. Moving from 6 experts to 9 shows
only marginal gains, with slight improvements in CUB (+0.05) and NABirds (+0.05), while the
performance on Flowers and Cars remains nearly identical. This suggests that while increasing the
number of experts allows the model to capture more diverse domain-specific knowledge, there are
diminishing returns beyond a certain point. Adding too many experts can increase computational
costs without providing proportional gains in performance.

Number of Prompt Layers. Table 13 explores the impact of varying the number of prompt layers
in pMoE . The results show that increasing the number of prompt layers generally leads to better
performance across most tasks. For example, performance on the CUB dataset improves from 83.08
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Table 13: Ablation studies on the number of prompt layers.

# layer CUB Flowers Cars Dogs NABirds

3 83.08 94.68 79.42 83.68 76.29
6 83.15 94.72 79.53 83.79 76.43
9 83.29 94.78 79.65 83.86 76.62

12 83.38 94.85 79.72 83.95 76.73

with 3 layers to 83.38 with 12 layers. Similarly, in the NABirds dataset, the score increases from
76.29 to 76.73. These improvements indicate that more prompt layers enable the model to capture
more complex and nuanced features, leading to better adaptation for fine-grained classification tasks.
However, there is a point of diminishing returns. For instance, moving from 9 layers to 12 layers
provides only marginal gains, with increases of just 0.09 on CUB and 0.11 on NABirds. Additionally,
increasing the number of prompt layers introduces more computational overhead, which could affect
model efficiency. Therefore, while using more prompt layers can enhance model performance, it
is essential to balance the number of layers with computational costs to achieve the best trade-off
between performance and efficiency.
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