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We bear all responsibility in case of violation of rights. The data created or used during this study are1

openly available on the project’s website (https://sites.google.com/stanford.edu/clevrer-humans). We2

confirm that the data is under CC0 license. We will provide maintenance to the website and dataset3

regularly and upon request.4

The rest of this supplementary document is organized as the following. First, in Section A we5

provide visualizations of data collected in CLEVRER-Humans, as well as more analysis on the6

comparison between human causal judgments and heuristics-based labels. In Section B, we describe7

the implementation details of models studied in the main paper and add additional failure case8

analysis of models. Next, in Section C, we describe the user interface for dataset collection. Finally,9

in Section D, we supplement dataset sheets for CLEVRER-Humans.10

A Dataset Visualization and Analysis11

Fig. 2 and Fig. 3 show the example graph collected in the stage I (causal event cloze) and stage II12

(binary CEG labelling), respectively. First, Fig. 2 shows that the causal cloze tasks can progressively13

collect a large number of human-written event descriptions by re-using the response of previous14

annotators. On average, we can obtain 29.4 descriptions per video, highlighting the advantage of our15

design. Second, the condensed CEGs contains high-quality causal relations of physical events, as16

shown in Fig. 3. It demonstrates both the language diversity and the richness of causal relations in17

the CEGs of CLEVRER-Humans. These figures provide a straightforward illustration of our data18

collection pipeline and the quality of our data.19

A.1 Dataset Statistics20

First, CLEVRER-Humans contains dense annotations of causal relations between physical events.21

Fig. 1a and Fig. 1b show the distributions of the number of nodes and edges in each CEG. The22

average number of CEG nodes is 4.71 and the average number of labeled edges is 12.7. These dense23

annotations of CEGs form the rich and complicated causal structures in our dataset.24

Second, CLEVRER-Humans offers diverse free-form language descriptions while retaining balances25

in object properties. Fig. 1c shows the length distribution of event descriptions: the average length is26

7.00 (as a reference, the average event description length of CLEVRER is 8.93). CLEVRER-Humans27

has a vocabulary length of size 219, which is much greater than CLEVRER (82). Fig. 1d and Fig. 1e28
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Figure 1: Statistics on the CLEVRER-Humans dataset. From left to right, the first row figures are
distributions of (a) the number of nodes per CEG, (b) the number of edges per CEG, and (c) sentence
lengths excluding the "which of the following is responsible for" prefix. The second row figures are
distributions of (d) object shapes, (e) colors, (f) event type attributions based on verbs, and (g) CEG
edge scores labelled by MTurkers, respectively.

show the distribution of object property concepts: colors and shapes. They remain unbiased when29

considering the synonyms such as “ball” and “sphere” and “gray” and “silver.”30

Next, most importantly, CLEVRER-Humans engage a variety of physical events for causal reasoning31

tasks. In particular, Fig. 1f shows the distribution of event types computed based on the main verb of32

the event description. The outer circle represents the general event families. The corresponding inner33

breakdowns display more than 10 variations of the expression based on verbs for each event type.34

In comparison, the original CLEVRER dataset contains only three event types (and verbs): enter,35

exit, and collide. Therefore, CLEVRER-Humans significantly improves the diversity and brings in a36

challenge for machines to recognize and ground these events in practice.37

In the following box, we list all verbs that have been annotated by human annotators and generated38

by our machine generative model. We have lemmatized all verbs to remove the tense.39

come, move, change, stop, throw, slow, go, travel, begin, spin, roll, stand, halt, roll, lose,
leave, head, want, hurl, enter, hit, collide, push, bump, push, tag, sideswipe, bounce, strike,
touch, cause

We also would like to point out that for some verbs, if they seem to be synonyms (e.g., bump and40

sideswipe), they can have subtle differences in physical grounding. For example, A bumps into B41

usually implies that A is moving faster than B and its collision changed the state of B. Furthermore,42

different tense of the same verb have different meanings in sentences: "the event that ball A moved is43

responsible for the collision" is different from "the event that ball A is moving is responsible for the44

collision." In the former case, ball A does not have to be moving while the collision happens.45

It is possible to hand-craft a lot of rules to handle each individual cases (e.g., bump, sideswipe, roll),46

but that will require additional hyperparameters for thresholds, and may be hard to align with human47

perception.48

Finally, CLEVRER-Humans’ annotation reflects the subjective judgment of causality in physical49

events. CLEVRER-Humans offers 5 choices when asking MTurkers to label the causality level.50

Fig. 1g shows the distribution of edge scores with an average of 2.37. Note that this distribution is51

skewed towards lower scores (as shown by the Gaussian approximation in the dotted curve). This52

reflects the fact that most event pairs do not have causal relationships. Finally, although we have53
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0: the cyan cube sideswipes the grey cylinder
1: the green ball hits the cyan cube
2: the green ball touches the grey cylinder
3: the green ball bumps into the cyan cube
4: the cyan cube was moving in direction opposite to the grey cylinder
5: the cyan cylinder came from below
6: the cyan cylinder struck the cyan cube
7: the cyan cube was struck by the cyan cylinder
8: the cyan cylinder moved
9: the green ball was pushed by the cyan cube
10: the gray cylinder moved
11: the green ball came from above
12: the square cyan was hit by the cyan cube causing the grey cylinder to move 
away
13: the cyan cube is pushed to the right side
14: the cyan cube spins counterclockwise
15: the green ball collided with the cyan cube
16: grey cylinder moved forward
17: the blue rubber cylinder bumped the cyan cube in the way of the green ball
18: the green ball slides down into the scene into the cyan cube
19: the green ball touched the cyan cube
20: the green ball bounces off the cyan cube and touches the grey cylinder
21: cyan is on a direct path to green ball path
22: the cyan cylinder hits the cyan cube
23: the green ball was already moving downwards
24: the green ball had velocity
25: the green ball rolled down into the screen and bounced into the cyan cube
26: the cyan cylinder hit the cyan cube
27: the green ball and the cyan cube were heading to the same point
28: the green ball bounces off the blue square which was traveling in the opposite 
direction

0: the brown cube starts to spin clockwise
1: the brown cube hits the silver cube and then hit the red cube
2: the brown cube came from the west
3: the brown cube starts to spin clockwise because gold metal shere to swipe
4: the brown cube hits the metal purple cube
5: the brown cube hit the ash cube by the side
6: the metal purple cube was in the way
7: the red cylinder collides with the metal purple cube
8: the grey cube touched the green ball
9: the grey cube moved south
10: the red cube ends up in the east
11: the silver cube hits the green ball
12: the brown cube collided with the silver cube after the silver cube was struck 
by the red cylinder
13: the brown cube collided with the grey cube
14: the ash cube moves to the right
15: the gray cube spun
16: the silver cube hit the green ball
17: the red cylinder collided with the yellow cylinder
18: the red cylinder pushed the ash cube away from the brown cube's path
19: the red cylinder hit the metal purple cube
20: the brown cube came from the left
21: the red cylinder hit the ash cube from the top
22: ricochets off to left and bounces into red cube
23: the brown cube came from the side
24: the brown cube started off on the west and was moving east
25: the brown cube was pushed by an unknown and unseen force
26: the silver cube absorbed the force from the brown cube in order to hit the red 
cube
27: the red cylinder hit the grey cylinder which changed its direction

1 2

3 4

43

1 2

Figure 2: Visualization of two samples of annotations collected in Stage I causal cloze tasks. They
are collected progressively by feeding the response of a user as the input of another one. The black
arrows indicate the annotation orders.

binarized the edge labels for the sake of consistency with CLEVRER, the raw score-based judgment54

can be potentially helpful in other tasks such as cognitive science studies.55

Therefore, we can conclude that CLEVRER-Humans is a high-quality causal relation dataset with56

significantly more diverse event types and language descriptions than CLEVRER.57

3



Events
A: the yellow ball comes in from the right
B: the purple cylinder travels to the right 
C: the purple cylinder moves upwards
D: the red cylinder bounces away
E: the yellow ball sideswiped the purple cylinder
F: the yellow ball hit the red cylinder
G: the purple cylinder bumps the purple cylinder

A
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CEG
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CEGEvents
A: the cyan cube moved  
B: the green cube moves towards the right
C: the brown cylinder moved west
D: the yellow cylinder came from the side 
E: the cyan cube collide with the green cube
F: the green cube hits the brown cylinder

cause bidirectional irrelevance 

1 2 3 4

1 2 3 4

Figure 3: Visualization of two samples of CEGs in CLEVRER-Humans. The green arrows represent
causal relations and the red edges represent bidirectional irrelevance. We can see the rich causal
relations among physical events presented in the CEGs.
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Figure 4: Effect of different causality thresholds on the binarized human causal relation. The x-axis
is the ablation threshold (i.e., 4 means a score ≥ 4 represents a causal relation). The y-axis is the
conditional probability.

Y = y1 Y = y2 Y = y1 ∧ y2 Y = y1 ∨ y2 Y = y1 ⊕ y2

P(X = Human | Y) 0.62 0.61 0.23 0.34 0.34
P(Y | X = Human) 0.96 0.54 0.29 0.62 0.33

Table 1: Comparison between different combinations of heuristics-generated causal labels and human
labels, on a sampled subset of CLEVRER [1]. The entry P(X|Y) denotes the fraction of event relations
that are annotated as causal by protocol X given that the relations are annotated as causal by protocol
Y. y1, y2 denote the existence of causal relations defined CLEVRER’s heuristic and Counterfactual
causal relation, respectively.
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A.2 Comparison between Heuristic and Human Causal Judgments58

We supplement the effect of different thresholds on the graded causal relation in Fig. 4. In the human59

performance study, we asked the participants to choose a threshold from 1-5 if they had to binarize60

their judgment. The average threshold suggested by the participants is 3.6. In practice, we choose a61

threshold of 4 to obtain the causal relation that humans are more certain about.62

Having shown the two common heuristics-generated causal labels (CLEVRER’s and counterfactual63

intervention) diverges from human judgment, we also provide the results on comparisons between64

different combinations of heuristics-generated causal labels and human judgments. We use the logic65

operators and (∧), or (∨), xor (⊕). As shown in Table 1, none of these combinations can give an66

close enough approximation to human judgment, which further justifies our motivation to use human67

labeled causal data for CLEVRER-Humans.68
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B Implementation Details69

In this section, we present the implementation details of our neural-network-based event description70

generator, the baseline models studied in the main paper, and the error bars for models across different71

random seeds.72

B.1 Stage II Implementation73

We first describe the input pre-processing for neural event generators. For each object, we concatenate74

the one-hot encoding of physical properties (including shapes, colors, and materials) and the motion75

information (including location, orientation, velocity, angular velocity, and whether the object is76

inside the camera view) in each of the 128 frames in a video. For each object, at each time step, the77

input dimension is 24.78

Our rule-based event detector for object pairs works as the following. For object pairs, we first extract79

all segments that are composed of consecutive frames when two objects are close two each other.80

Specifically, we say two objects are close if the L∞ norm of the displacement vector between two81

objects is smaller than 0.5 meter (i.e., their x, y, z displacements are all smaller than 0.5 meter).82

Within each segment, the event detector predicts event types including moving together, object83

approaching, and collision, based on changes in the motion information. For example, if two objects84

are physically close for more than 20 frames without rapid changes in velocity, we consider them85

relatively static, thus “moving together.” If both objects change directions within their close period,86

we consider a collision happened. We can further distinguish the changes in relative positions (either87

“bouncing back” or “one approaching another”) by the sign of the dot product of velocity vectors. For88

any object pair, if no events are detected in the course of the entire video, we do not include this pair89

for future captioning.90

After getting the input sequences, we use neural event generators consisting of an encoder and a91

decoder to produce captions. The encoder uses a linear layer and a GRU unit to encode the input92

sequence [2]. The decoder applies Softmax on the embedding of input and the hidden state to produce93

the attention weights. It then uses GRU and a linear layer to produce an English caption of specific94

objects in the video. Single-object and pairwise captioning models share the same architecture but95

are trained independently. The hidden dimension of both the encoder and the decoder is 256 for96

single-object models and 128 for pairwise models. The dropout rate for the decoder is set to 0.3 for97

single-object models and 0.1 for pairwise models. All models are trained with a learning rate of 0.001.98

For the grammar check module in the post processor, we drop the sentences with two consecutively99

repeated words. We also exclude the sentences that miss verbs or verb arguments, such as sentences100

ending with words “from,” “to,” “at,” “is,” etc.101

B.2 Baseline Implementation102

Language-Only models. For the language-only models, we use a LSTM [3] with GloVe [4] word103

embedding. The hidden dimension of 512 and the dropout rate is 0.2. We use the Adam optimizer [5]104

with a learning rate is 4× 10−4 and a weight decay of 10−5. The batch size is 4. Following the data105

splits in CLEVRER, we split 20% of the training pairs as the validation set and choose the model106

with the highest validation accuracy.107

CNN+LSTM. For the CNN+LSTM models, we use a pre-trained ResNet-50 to extract 2,048-108

dimensional features from the video frames [6]. We uniformly sample 25 frames for each video as109

input. The word embedding for questions is initialized by the GloVe [4] word embedding. Both110

LSTMs (the question encoder and the video sequence encoder) have 1 layer with a hidden dimension111

of 512. We apply a dropout rate of 0.2 on the input layer and 0.5 on the hidden layers. We use112

the Adam [5] optimizer with a weight decay of 5× 10−4. The learning rate is 10−5 training from113

scratch and 10−3 for finetuning. The batch size is 128 for both trained-from-scratch and finetuning114

experiments. We split 20% of the training pairs as the validation set and choose the model with the115

highest validation accuracy.116
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Question: What is responsible for the red cube 
sideswiped the purple cylinder?
Choice: The red cube bumped the red cylinder.
Answer: Wrong
Model prediction: Correct

Question: What is responsible the purple ball 
collides with the brown cube?
Choice: The purple ball comes up. 
Answer: Wrong
Model prediction: Correct

Figure 5: Examples of common prediction errors. The arrows in the image represent the moving
direction of objects of interest in the video. Left: failure caused by nuances in human language.
While the purple ball is constantly moving upwards coordinate-wise, humans understand the phrase
"comes up" as more of the later part of the trajectory (after the purple ball collides with the brown
ball). Therefore, machines cannot give a correct prediction. Right: failure in bridging the domain
shift. Humans may consider the change in the trajectory to be minor and appears not to be a deciding
factor of the outcome event, but the model predicts it as a cause following similar heuristics in
CLEVRER.

BERT+LSTM We supplement CNN+BERT models as a model with a stronger text encoder. The117

CNN is the same as in the CNN+LSTM baseline. We use the pretrained BERT uncased base model118

from HuggingFace library [7]. The BERT tokenizer is set to max length 32 padding and truncation.119

During training, We fix weights of the text encoder. We use the Adam optimizer with a weight decay120

of 5× 10−4, and a learning rate of 10−5 training from scratch and 10−3 for finetuning. The batch121

size is 128. We choose the model with highest validation accuracy with 20% of the training set as the122

validation set.123

ALOE. We implement our model based on the publicly released code [8]. Since the public release124

does not contain training code, we implement the training procedure using the following settings.125

For object embeddings, we use the pre-trained MONet embeddings released by the authors. For126

optimization, we use the Adam [5] optimizer with a weight decay of 10−3 (we have also benchmarked127

10−2, 10−3 and 10−4). We split 5% of the training pairs as the validation set and choose the model128

with the highest validation accuracy.129

B.3 Error analysis130

We summarize the common failures of the models: for pretrained-only models, the common error131

comes from the failure of incorporating more diverse language and events. For example, as shown in132

Table 2, the program parser of NS-DR and VRDP fails to generate proper programs for descriptions133

in CLEVRER-Humans. The deficiency of language understanding often leads to wrong predictions.134

For training from scratch models, one possible reason to the test errors is the nuances in human135

language. Specifically, models do not only need to identify the objects being referred to but also136

their physical properties: the cause of "the red cube slows down" can be hard to identify because137

speed does not appear to be as explicit as other properties such as colors and shapes. As shown138

in our comparison between human judgement and heuristics-based causal judgements, the nuance139

in language can influence human judgments, posing difficulties for machines to ground the events140

and simulate the reasoning process. For instance, the left figure in Fig. 5 illustrates the nuances141

in language resulting a discrepancy between human judgment and prediction. Moreover, for large142
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Event Parsed program

The purple sphere slows down
from the right.

["events", "objects", "purple", "filter_color", "sphere", "filter_shape",
"unique", "filter_collision", "objects", "unique", "filter_color",
"sphere", "filter_shape", "unique", "filter_collision", "unique"]

The red ball comes to a stop. ["events", "objects", "red", "filter_color", "unique", "filter_collision",
"objects", "red", "filter_color", "unique", "filter_collision", "unique"]

The yellow cube comes from the
right side at a fast speed.

["events", "objects", "yellow", "filter_color", "cube", "filter_shape",
"unique", "filter_out", "unique"]

Table 2: Examples of errors produced by program parser. In the first row, the model cannot identify
the event "slow down from the right" and gives incorrect parsing to find another object involved in a
collision ("filter_collision"). In the second row, the model cannot represent the event "come to a stop"
due to the expand in vocabulary and gives an incorrect output ("filter_collision"). In the third row, the
model mistakenly represents the enter event as the exit event ("filter_out") because the description
is more complicated in CLEVRER-Humans. We follow the notation of programs as in NSDR and
VRDP.

models such as ALOE, learning to simulate human reasoning process from scratch based on very143

little data can be difficult, especially with limited training size.144

For finetuned models, we have not seen significant improvement brought by the pretraining phase.145

This is primarily because of the domain gap between human judgement and heuristics-based labelling.146

Specifically, our human experiments have shown that p(Human | CLEVRER-Heuristic) = 0.62. That147

is, only 62% of the event pairs that have been labelled as causal in CLEVRER, are labelled as causal148

by human annotators. The right figure in Fig. 5 gives an example of the error caused by the domain149

shift. Future work may consider other ways of pretraining, such as pretraining on event recognition,150

which may be more transferable, and pretraining with other types of heuristics.151
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C Labeling Interface152

We develop labeling interfaces based on boto3 with Amazon MTurk python API. We include example153

trials of both the causal cloze tasks and CEG annotation tasks in Fig. 6 and Fig. 7, respectively.154

The full instruction texts are provided on the labeling page of our project’s website. The estimated155

hourly pay to the Mechanical Turk participants is about $6.1 and the total amount spent on participant156

compensation is about $3500. Specifically, the cloze tests and part of the pairwise causal relationship157

annotations were completed by users from the U.S., and the pay was $7.7/hour (above federal158

minimum wage). At a later stage of our project, we were unfortunately constrained by the budget159

available to us and opened the tasks to workers outside the U.S. Thus, overall, our average hourly160

wage is $6.1. Our goal has always been to commit to best practice and offer fair pay to users whenever161

possible, and we will continue to do so in the future.162

In causal cloze tasks, the participants are asked to write an event description given a cause or outcome163

event, as shown in Fig. 6. We specify the expectation of responses (such as using complete sentences,164

avoiding ambiguous third-person pronouns, etc.) in the instruction. We design a small comprehension165

quiz with 7 multiple choice questions and 2 chances to submit to ensure the participants understand166

the instructions correctly.167

In the CEG annotation tasks, the participants are asked to label the correctness and causal relation of168

two event descriptions as shown in Fig. 7. We give 4 examples with detailed explanations to help169

them understand the rationale of the task. We also give an illustration of object colors and shapes for170

reference. Bounding boxes are added to the videos to accelerate the process of locating objects of171

interest.172

Figure 6: Example of a causal cloze trial. The participants are asked to fill in the blank after watching
a video. They can also select the checkboxes if they do not understand the prompt.
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Instructions
In this task, you will be shown a video and two events. Your task is to

Check whether the two event descriptions are correct
If both correct, evaluate how much event A is responsible for event B. (Score 1-5)

Example Tasks
Example 2 (out of 4)

Event A: the red cylinder slides into the grey cylinder.
Event B: the grey cylinder moves left. 

Question 1: Choose one. Here "incorrect" means either grammatically or factually. 
 Event A is incorrect 
 Event B is incorrect 
 Both event A and B are incorrect 
 Both event A and B are correct 

Explanation: Choice 4 is selected because both event A and B are grammatically correct and they actually
happened in the video. 

Question 2: How much is event A responsible for event B? 
 1 - not responsible at all 
 2 - a bit responsible 
 3 - moderately responsible 
 4 - quite responsible 
 5 - extremely responsible 

Explanation: One may think event A is higly responsible for event B as event A is the direct cause of event B.
However, there's no right answer to this question - just select the answer you think is most reasonable.

I've read this example task. Show me next example task.

0:01 0:05

Figure 7: Example of a CEG trial. The participants are first asked to select if the event descriptions are
correct. If both correct, they are asked to label the level of causal relations between the descriptions.
For each event pair, we provide bounding boxes for objects involved in the events for better annotation
efficiency.
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D Dataset Release173

Our dataset is under CC0 License. We provide a documentation using data statements for NLP in [9].174

Short form data statement CLEVRER-Humans is a large-scale video reasoning dataset of human-175

annotated physical event descriptions and their causal relations. It contains machine-generated texts176

based on crowdsourcing data in US English (en-US). The language quality and causal structure177

annotations are obtained by watching videos, reading texts, and entering responses on MTurk.178

The following is the long form data statement of CLEVRER-Humans:179

Curation Nationale CLEVRER-Humans contains descriptions and causal relations of physical180

events such as an object entering the scene and two objects colliding with each other. The goals in181

selecting texts were to ensure the interpretability and correctness of the descriptions and to provide182

a variety of free-form captioning of physical events in videos. We first collected human written183

event descriptions by causal cloze tasks, then used machine learning models to generate more natural184

language descriptions based on the curated data. We post-processed the data by grammar checking,185

object existence checking, and verb re-balancing. Finally, we obtained human annotations on the186

texts through crowdsourcing: if the labelers annotated the texts interpretable and correct, we ask them187

to provide a pairwise graded causal judgment of the events.188

Language Variety The event description data for causal cloze tasks were collected on MTurk.189

Information about which varieties of English are represented is not available, but at least CLEVRER-190

Humans includes US (en-US) mainstream English.191

Speaker Demographic We used a cascaded generator composed of a rule-based event detector and192

a neural pairwise generator to generate texts. When the curating training data in causal cloze tasks,193

we restricted the location of these MTurkers to be in the US. It is expected that most speakers use194

English as their native language. Estimated demographics of MTurkers may refer to [10].195

Annotator Demographic We hire the MTurkers with the approved HITs of 1000 or higher. We196

expect the MTurkers to be the general public who are familiar with basic crowdsourcing process.197

When collecting data, we release the tasks in batches, where each HIT contains 30 QA pairs mostly198

coming from one or two videos. We perform quality check to unsure annotators have sufficient199

knowledge of English language. We also answer their questions about the annotation process by200

emails. It is expected that most speakers use English as their native language. Estimated demographics201

of annotators may refer to [10].202

Speech Situation The intended audience of the texts is the general public. The texts are all in203

written form. MTurkers are expected to read the text and watch the video when doing causal cloze204

and causal labeling tasks. The video is about 5 seconds, which can be played as many times as one205

wishes.206

Text Characteristics The texts are plain English descriptions of a physical event in a video. A207

sentence usually contains one or more physical object(s) (i.e. sphere, cylinder, or cube) and the208

related movements or interactions presented in the video. Ideally, the generated event descriptions209

can maintain the vocabulary and structural characteristics similar to the training data from causal210

cloze tasks. The detailed statistics of the text are shown in the Dataset Statistics section.211

Recording Quality N/A212

Other N/A213

Provenance Appendix The videos of CLEVRER-Humans are from the CLEVRER dataset [1].214
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D.1 Intended Use215

CLEVRER-Humans can be used as a benchmark in physical scene understanding and causal reasoning.216

It evaluates machines ability to understand and analyze physical interventions in a restricted setting.217

Machines are provided with a short video and expected to answer questions regarding the causes of218

events in the video.219

D.2 Maintenance Plan220

We will host our dataset permanently on our project’s website. Users are granted access to the dataset221

through links on the website. We provide versioning of the dataset and archive backup regularly.222

D.3 Quality Check223

Quality checks over CEG node correctness are performed by majority voting. Since we have split224

the annotation of each video to 3 annotators, and they will see overlapping events and annotate their225

correctness. Checks for edge correctness are performed by including additional “quality checking”226

questions. Specifically, each annotator will see 3 videos and 10 questions for each video. 1 of the227

video will be from a small and manually-curated dataset by authors, containing 30 videos. The entire228

answer set will be accepted if and only if the annotators answers those quality-checking questions229

correctly (more specifically, have a small divergence with our answer).230
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