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A Detailed Related Work

OOD Detection Algorithms. We will briefly review many representative OOD detection algorithms
in three categories. 1) Classification-based methods use an ID classifier to detect OOD data [7]°.
Representative works consider using the maximum softmax score [7], temperature-scaled score
[14] and energy-based score [23, 71] to identify OOD data. 2) Density-based methods aim to
estimate an ID distribution and identify the low-density area as OOD data [10]. 3) The recent
development of generative models provides promising ways to make them successful in OOD
detection [11, 12, 14, 72, 73]. Distance-based methods are based on the assumption that OOD data
should be relatively far away from the centroids of ID classes [9], including Mahalanobis distance
[9, 45], cosine similarity [74], and kernel similarity [75].

Early works consider using the maximum softmax score to express the ID-ness [7]. Then, temperature
scaling functions are used to amplify the separation between the ID and OOD data [14]. Recently,
researchers propose hyperparameter-free energy scores to improve the OOD uncertainty estimation
[23, 71]. Additionally, researchers also consider using the information contained in gradients to help
improve the performance of OOD detection [18].

Except for the above algorithms, researchers also study the situation, where auxiliary OOD data can
be obtained during the training process [13, 70]. These methods are called outlier exposure, and have
much better performance than the above methods due to the appearance of OOD data. However, the
exposure of OOD data is a strong assumption [4]. Thus, researchers also consider generating OOD
data to help the separation of OOD and ID data [76]. In this paper, we do not make an assumption
that OOD data are available during training, since this assumption may not hold in real world.

OOD Detection Theory. [49] rejects the typical set hypothesis, the claim that relevant OOD
distributions can lie in high likelihood regions of data distribution, as implausible. [49] argues that
minimal density estimation errors can lead to OOD detection failures without assuming an overlap
between ID and OOD distributions. Compared to [49], our theory focuses on the PAC learnable
theory of OOD detection. If detectors are generated by FCNN, our theory (Theorem 12) shows
that the overlap is the sufficient condition to the failure of learnability of OOD detection, which is
complementary to [49]. In addition, we identify several necessary and sufficient conditions for the
learnability of OOD detection, which opens a door to studying OOD detection in theory. Beyond
[49], [50] paves a new avenue to designing provable OOD detection algorithms. Compared to [50],
our paper aims to characterize the learnability of OOD detection to answer the question: is OOD
detection PAC learnable?

Open-set Learning Theory. [51] is the first to propose the agnostic PAC guarantees for open-set
detection. Unfortunately, the test data must be used during the training process. [29] considers the
open-set domain adaptation (OSDA) [52] and proposes the first learning bound for OSDA. [29]
mainly depends on the positive-unlabeled learning techniques [77, 78, 79]. However, similar to [51],
the test data must be available during training. To study open-set learning (OSL) without accessing
the test data during training, [24] proposes and studies the almost PAC learnability for OSL, which
is motivated by transfer learning [80, 81]. In our paper, we study the PAC learnability for OOD
detection, which is an open problem proposed by [24].

Learning Theory for Classification with Reject Option. Many works [53, 54] also investigate the
classification with reject option (CWRO) problem, which is similar to OOD detection in some cases.
[55, 56, 57, 58, 59] study the learning theory and propose the agnostic PAC learning bounds for
CwRO. However, compared to our work regarding OOD detection, existing CwRO theories mainly
focus on how the ID risk (i.e., the risk that ID data is wrongly classified) is influenced by special
rejection rules. Our theory not only focuses on the ID risk, but also pays attention to the OOD risk.

Robust Statistics. In the field of robust statistics [60], researchers aim to propose estimators and
testers that can mitigate the negative effects of outliers (similar to OOD data). The proposed estimators
are supposed to be independent of the potentially high dimensionality of the data [61, 62, 63]. Existing
works [64, 65, 66] in the field have identified and resolved the statistical limits of outlier robust
statistics by constructing estimators and proving impossibility results. In the future, it is a promising
and interesting research direction to study the robustness of OOD detection based on robust statistics.

>Note that, some methods assume that OOD data are available in advance [13, 70]. However, the exposure of
OOD data is a strong assumption [4]. We do not consider this situation in our paper.
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PQ Learning Theory. Under some conditions, PQ learning theory [67, 68] can be regarded as the
PAC theory for OOD detection in the semi-supervised or transductive learning cases, i.e., test data
are required during the training process. Additionally, PQ learning theory in [67, 68] aims to give
the PAC estimation under Realizability Assumption [21]. Our theory focuses on the PAC theory
in different cases, which is more difficult and more practical than PAC theory under Realizability
Assumption.

B Limitations and Potential Negative Societal Impacts

Limitations. The main limitation of our work lies in that we do not answer the most general question:

Given any hypothesis space H and space PDxvy, what is the necessary and sufficient condition to
ensure the PAC learnability of OOD detection?

However, this question is still difficult to be addressed, due to limited mathematical skills. Yet, based
on our observations and the main results in our paper, we believe the following result may hold:

Conjecture: If H is agnostic learnable for supervised learning, then OOD detection is learnable in
Dxy if and only if compatibility condition (i.e., Condition 3) holds.

We leave this question as a future work.

Potential Negative Societal Impacts. Since our paper is a theoretical paper and the OOD detection
problem is significant to ensure the safety of deploying existing machine learning algorithms, there
are no potential negative societal impacts in our paper.

C Discussions and Details about Experiments in Figure 1

In this section, we summarize our main results, then give the details of the experiments in Figure 1.

C.1 Summary

‘We summarize our main results as follows:

e A necessary condition (i.e., Condition 1) for the learnability of OOD detection is proposed.
Theorem 2 shows that Condition 1 is the necessary and sufficient condition for the learnability of
OOD detection, when the domain space is the single-distribution space 9)[()}’5". This implies the
Condition 1 is the necessary condition for the learnability of OOD detection.

e Theorem 3 has shown that the overlap between ID and OOD data can lead the failures of OOD
detection under some mild assumptions. Furthermore, Theorem 12 shows that when K = 1, the
overlap is the sufficient condition for the failures of OOD detection, when the hypothesis space is
FCNN-based or score-based.

e Theorem 4 provides an impossibility theorem for the total space Z3,. OOD detection is not

learnable in 7% for any non-trivial hypothesis space.

e Theorem 5 gives impossibility theorems for the separate space Z5-. To ensure the impossibility
theorems hold, mild assumptions are required. Theorem 5 also implies that OOD detection may be
learnable in the separate space 2%, if the feature space is finite, i.e., |X| < +oco. Additionally,
Theorem 10 implies that the finite feature space may be the necessary condition to ensure the
learnability of OOD detection in the separate space.

e When |X| < 400 and K = 1, Theorem 6 provides the necessary and sufficient condition for
the learnability of OOD detection in the separate space %+ . Theorem 6 implies that if the OOD
detection can be learnable in the distribution-agnostic case, then a large-capacity model is necessary.
Based on Theorem 6, Theorem 7 studies the learnability in the K > 1 case.

e The compatibility condition (i.e., Condition 3) for the learnability of OOD detection is proposed.
Theorem 8 shows that Condition 3 is the necessary and sufficient condition for the learnability of
OOD detection in the finite-ID-distribution space 2% . This also implies Condition 3 is the necessary
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condition for any prior-unknown space. Note that we can only collect finite ID datasets to build
models. Hence, Theorem 8 can handle the most practical scenarios.

e To further understand the importance of the compatibility condition (Condition 3). Theorem 9

considers the density-based space @%’, We discover that Realizability Assumption implies the
compatibility condition in the density-based space. Based on this observation, we prove that OOD

detection is learnable in Qﬁ‘(’f, under Realizability Assumption.

e Theorem 10 gives practical applications of our theory. In this theorem, we discover that the finite
feature space is a necessary and sufficient condition for the learnability of OOD detection in the
separate space 7%, when the hypothesis space is FCNN-based or score-based.

e Theorem 11 has shown that when K = 1 and the hypothesis space is FCNN-based or score-based,
Realizability Assumption, Condition 3, Condition 1 and the learnability of OOD detection in the

density-based space DSL(’?, are all equivalent.

e Meaning of Our Theory. In classical statistical learning theory, the generalization theory guarantees
that a well-trained classifier can be generalized well on the test set as long as the training and test sets
are from the same distribution [21, 22]. However, since the OOD data are unseen during the training
process, it is very difficult to determine whether the generalization theory holds for OOD detection.

Normally, OOD data are unseen and can be various. We hope that there exists an algorithm that
can be used for the various OOD data instead of some certain OOD data, which is the reason why
the generalization theory for OOD detection needs to be developed. In this paper, we investigate
the generalization theory regarding OOD detection and point out when the OOD detection can be
successful. Our theory is based on the PAC learning theory. The impossibility theorems and the
given necessary and sufficient conditions outlined provide important perspectives from which to think
about OOD detection.

C.2 Details of Experiments in Figure 1

In this subsection, we present details of the experiments in Figure 1, including data generation,
configuration and OOD detection procedure.

Data Generation. ID and OOD data are drawn from the following uniform (U) distributions (note
that we use U(I) to present the uniform distribution in region I).
e The marginal distribution of ID distribution for class ¢: for any ¢ € {1, ..., 10},

Dx,yi=c = U(I.), where I. = [d.,d. + 4] x [1, 5], @)
here d; = 5 + gapy; * (¢ — 1) 4+ 4(¢ — 2) and gapy; is a positive constant.
e The class-prior probability for class ¢: for any ¢ € {1, ..., 10},

11—«

Dy,(y=c) = 10

o The marginal distribution of OOD distribution:
Dx, = U(Iout), where Iy = [d1 — 1,d1o + 5] X [5 + gap;o, 10 + gapp]- (8)

Figure 2 shows the OOD and ID distributions, when gap;; = 20 and gap;5 = —2. In Figure 1, we
draw n data from ID distribution (n = 15,000, 20, 000, 25, 000) and 25, 000 data from the OOD
distribution.

Configuration. The architecture of ID classifier is a four-layer FCNN. The number of neurons in
hidden layers is set to 100, and the number of neurons of output layer is set to 10. These neurons use
sigmoid activations. We use the Adam optimizer [82] to optimize the network’s parameters (with
the ¢5 loss). The learning rate is set to 0.001, and the max number of training iterations is set to
10, 000. Within each iteration, we use full batch to update the network’s parameters. gap; is set to
20 in our experiments. In Figure 1b, gap;o = —2 (the overlap exists, see Figure 2), and in Figure Ic,
gapyo = 100 (no overlap).

OOD Detection Procedure. We first train an ID classifier with n data drawn from the ID distribution.
Then, according to [23], we apply the free-energy score to identify the OOD data and calculate the
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Figure 2: ID and OOD distributions in Figure 1.

a-risk (with the 0-1 loss). We repeat the above detection procedure 20 times and report the average
a-risk in Figure 1. Note that, following [23], we choose the threshold used by the free-energy method
so that 95% of ID data are correctly identified as the ID classes by the OOD detector.
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D Notations

D.1 Main Notations and Their Descriptions

In this section, we summarize important notations in Table 1.

Table 1: Main notations and their descriptions.

Notation Description

e Spaces and Labels

dand X C R? the feature dimension of data point and feature space

Yy ID label space {1, ..., K'}

K+1 K + 1 represents the OOD labels

Yan YU{K +1}

o Distributions

X1, Xo, Y1, Yo ID feature, OOD feature, ID label, OOD label random variables
Dx;vi, Dxovo ID joint distribution and OOD joint distribution

D%y D%y = (1 —a)Dxv; + aDxov,, Vo €[0,1]

rout class-prior probability for OOD distribution

Dxvy Dxy = (1 77rout)DXIyI +7TOUtDXOy0,Called domain
Dx,,Dxq,Dx marginal distributions for Dx;v;, Dx v, and Dxy, respectively
e Domain Spaces

Dxy domain space consisting of some domains

238 total space

Dxy seperate space

PRXY single-distribution space

2%y finite-ID-distribution space

7 density-based space

o Loss Function, Function Spaces

€(~, ) loss: Vau X Vau — RZ()Z K(yl, yg) = 0ifand only if Y1 = Y2
H hypothesis space

H® ID hypothesis space

HP hypothesis space in binary classification

Fi scoring function space consisting some | dimensional vector-

o Risks and Partial Risks

valued functions

Rp(h) risk corresponding to Dxy
RB(h) partial risk corresponding to D x;y;
R%(h) partial risk corresponding to D x v,
R%(h) a-risk corresponding to D%y
e Fully-Connected Neural Networks
q a sequence (l1, ..., 1y) to represent the architecture of FCNN
o activation function. In this paper, we use ReLU function
Fq FCNN-based scoring function space
Ha FCNN-based hypothesis space
fw,b FCNN-based scoring function, which is from FJ
w,b FCNN-based hypothesis function, which is from Hg
e Score-based Hypothesis Space
E scoring function
A threshold
Hg:;ﬁs score-based hypothesis space—a binary classification space
hl’c\ B score-based hypothesis function—a binary classifier

Given f = [f1, ..., 1], forany x € X,

argmax f¥(x) := max{k € {1,...,1} : f¥(x) > fi(x),Vi=1,...,1},

ke{1,...,0}

where f* is the k-th coordinate of f and f? is the i-th coordinate of f. The above definition about
arg max aims to overcome some special cases. For example, there exist k1, k2 (k1 < k2) such that
fFr(x) = fr2(x) and f51(x) > fi(x), f*2(x) > fi(x), Vi € {1,...,{}—{k1, k2}. Then, according
to the above definition, ky = argmax,c gy FF(x).
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D.2 Realizability Assumption

Assumption 2 (Realizability Assumption). A domain space 9 xvy and hypothesis space H satisfy
the Realizability Assumption, if for each domain D xy € PDxvy, there exists at least one hypothesis
function h* € H such that Rp(h*) = 0.

D.3 Learnability and PAC learnability

Here we give a proof to show that Learnability given in Definition 1 and PAC learnability are
equivalent.

First, we prove that Learnability concludes the PAC learnability.

According to Definition 1,

Esw0,, R (A(S)) < inf Ro(h) + cons(n),

which implies that

ESND;;IYI [Rp(A(S)) — i%gg-t Rp(h)] < €cons(n).
Note that Rp(A(S)) — infreyy Rp(h) > 0. Therefore, by Markov’s inequality, we have
P(Rp(A(S)) —hlg?f{ Rp(h) <e)>1 —Es~py . [Rp(A(S)) —huel?f_l Rp(h)]/e > 1 —€cons(n)/e.
Because €qons(n) is monotonically decreasing, we can find a smallest m such that econs(m) > €6
and €cons(m — 1) < €4, for 6 € (0,1). We define that m(e, §) = m. Therefore, for any ¢ > 0 and
d € (0,1), there exists a function m(e, §) such that when n > m(e, 0), with the probability at least

1 — 4, we have

Rp(A(S5)) — inf Rp(h) <e,

which is the definition of PAC learnability.
Second, we prove that the PAC learnability concludes Learnability.

PAC-learnability: for any e > 0 and 0 < § < 1, there exists a function m(e, §) > 0 such that when
the sample size n > m(e, 0), we have that with the probability at least 1 — § > 0,

Note that the loss ¢ defined in Section 2 has upper bound (because Y U { K + 1} is a finite set). We
assume the upper bound of ¢ is M. Hence, according to the definition of PAC-learnability, when the
sample size n > m(e, §), we have that

Es[Rp(A(S)) — jnf Rp(h)] < €(1 —0) +2M6 < e+ 2M3.

If we set § = ¢, then when the sample size n > m(e, €), we have that

Es[Rp(A(S)) — fffequ{ Rp(h)] < (2M + 1)e,

this implies that

which implies the Learnability in Definition 1. We have completed this proof.

D.4 Explanations for Some Notations in Section 2

First, we explain the concept that S ~ D% - in Eq. (2).
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S = {(x',y'),...,(x",y™)} is training data drawn independent and identically distributed from
D X1Yq-

D'y, denotes the probability over n-tuples induced by applying Dx;y; to pick each element of the
tuple independently of the other members of the tuple.

Because these samples are i.i.d. drawn n times, researchers often use S ~ D' ,” to represent a
sample set S (of size n) whose each element is drawn i.i.d. from Dx,y;.

Second, we explain the concept "+ in (1 — ") Dx, + 7" Dy,

For convenience, let P = (1 — 7°"") Dy, and Q = m°"*Dx,,. Itis clear that P and @) are measures.
Then P + @ is also a measure, which is defined as follows: for any measurable set A C X', we have

(P +@Q)(A4) = P(A) + Q(A).

For example, when P and @ are discrete measures, then P + () is also discrete measure: for any

xe X,

(P +Q)(x) = P(x) + Q(x).
When P and @ are continuous measures with density functions f and g, then P+ (@) is also continuous
measure with density function f + g¢: for any measurable A C X,

PA4) = [ fxax. Q) = [ gxix.

then

(P +Q)(A) = /A F(%) + gx)dx.

Third, we explain the concept E(x, ) py £(h(X),y).

The concept E(x )~ D £(7(x),y) can be computed as follows:

E ey ((h(x), 4) = / ((h(x), )dDxy (x, ).
X X Van

For example, when Dxy is a finite discrete distribution: let Z = {(x!,y'), ..., (x™,y™)} be the
support set of Dy, and assume that a’ is the probability for (x*,y*), i.e., a* = Dxy (x*,y*). Then

Eegyenas Lh(X), ) = / 0(h(x), )dDxy (x,7)
X X YVan

=Y atne) ).

When Dx is a continuous distribution with density f, and Dy x (Y = k|X = x) (k-th class-
conditional distribution for x) is a*(x), then

E gy (), ) = / ((h(x), )dDxy (x, 9)
X X Van

K+1

= [ 3 tthi0. b)) (),

X k=1

where Dy |x (Y = k| X = x) is the k-th class-conditional distribution.

23



E Proof of Theorem 1

Theorem 1. Given domain spaces Dxy and D’ = {D%y :VDxy € Dxy,Va € [0,1)}, then
1) D' is a priori-unknown space and Dxy C Dy;

2) if Dxv is a priori-unknown space, then Definition 1 and Definition 2 are equivalent;

3) OOD detection is strongly learnable in Zxvy if and only if OOD detection is learnable in D', .
Proof of Theorem 1.

Proof of the First Result.

To prove that &' is a priori-unknown space, we need to show that for any D;“(/Y € 9%y, then
D%y € DYy forany a € [0, 1).

According to the definition of Py, for any D$y € Py, we can find a domain Dxy € Zxy,
which can be written as Dxy = (1 — 7°") Dy y; + 7" Dx, v, (here 7°"* € [0, 1)) such that

D%Y = (1 - O‘/)DXIYI + O/DXOYO'

Note that DS = (1 — @) Dx,v; + aDxove -

Therefore, based on the definition of 7%, for any a € [0,1), D%y € P, which implies that
D'y is a prior-known space. Additionally, for any Dxy € Zxy, we can rewrite Dxy as D",
thus Dxy = D5y € Py, which implies that Zxy C Py

Proof of the Second Result.

First, we prove that Definition 1 concludes Definition 2, if Zxy is a prior-unknown space:

The domain space Zxy is a priori-unknown space, and OOD detection is learnable in Zxy for H.

4

OOD detection is strongly learnable in Zxy for H: there exist an algorithm A : U2 (X x V)" —
H, and a monotonically decreasing sequence €(n), such that e(n) — 0, as n — +o0

ESND?(I [RQD(A(S)) — }%E’L RaD(h)] < E(TL), Ya € [0,1], VDxy € Dxy.

Y1

In the priori-unknown space, for any Dxy € Pxy, we have that for any « € [0, 1),
Dgé(y = (1 - O‘)DXIYI + O‘DXoYo € Ixvy.

Then, according to the definition of learnability of OOD detection, we have an algorithm A and a
monotonically decreasing sequence €qons(n) — 0, as n — 400, such that for any a € [0, 1),

ESNDS%IYI Rpa(A(S)) < ;i?;f{ Rpa(h) + €cons(n), (by the property of priori-unknown space)
where
Roe(A(S) = [ HAS)) 0%y ) Roeh) = [ HA0.9)dD5(x0)
X x yau X' x yall

Since Rp«(A(S)) = R} (A(S)) and Rpa(h) = R$ (h), we have that
(o3 : (e}
Es~pr . RY(A(S)) < hlgt RY(h) + €cons(n), Va €10,1). )
Next, we consider the case that « = 1. Note that
. . . o > 1 : : out — out .
gt 2, () = Hipipto il RBT(h) = fuf, R () (1o
Then, we assume that h, € H satisfies that
out s out <e.
RE* (he) }%g;f_[ Rp*(h) <€
It is obvious that

Rp(he) 2 inf Rp(h).
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Let « — 1. Then, for any € > 0,
R%*(he) = lim R} (h.) = limsup R}, (he) > limsup inf RY(h),
a—1 heH

a—1 a—1

which implies that

fof RE"(h) = lim Rp*(he) > limlimsup inf R (h) = limsup inf RE(h). (1)

Combining Eq. (10) with Eq. (11), we have

inf RO (A) = limsup inf R%(h) = liminf inf R%(h 12
jnf Rp (h) imsup fnf p(h) = limin jnf D (h), (12)
which implies that

. out — 3 [0

g R (h) = Ly fnf, (1) =

Note that
Es~py . RH(A(S)) = (1 - a)Es~py , RB(A(S)) + aEs~py . RE(A(S)).
Hence, Lebesgue’s Dominated Convergence Theorem [36] implies that

lim Espy , R (A(S)) =Es~py , RE"(A(S)). (14)

Using Eq. (9), we have that

lim Espy , RH(A(S)) < lim inf R (R) + ccons(n). (15)

Combining Eq. (13), Eq. (14) with Eq. (15), we obtain that
Es~py s REH(A(S)) < }g?f_[ RB*(h) + €cons(n).
Since RA(A(S)) = RL(A(S)) and RE*(h) = RL(h), we obtain that
Es~py,,, Bp(A(S)) < inf Rp(h) + écons(n). (16)

Combining Eq. (9) and Eq. (16), we have proven that: if the domain space Zxy is a priori-unknown
space, then OOD detection is learnable in Zxy for H.

OOD detection is strongly learnable in Zxy for H: there exist an algorithm A : U;‘;ﬁ (XXY)™ — H,
and a monotonically decreasing sequence €(n), such that e(n) — 0, as n — 400,

ESND;‘IYI RaD(A(S)) < hlg;‘-t RaD(h) + 6(%)7 Va € [O, 1], VDxy € Dxvy.

Second, we prove that Definition 2 concludes Definition 1:

OOD detection is strongly learnable in Zxy for H: there exist an algorithm A : UT>3 (X x V)" — H,

n=1
and a monotonically decreasing sequence €(n), such that (n) — 0, as n — 400,

ESNDSL(IYI [RQD(A(S)) — }}275 RaD(h)} < 6(71), Va € [07 1]7 VDxy € Dxv.

OOD detection is learnable in Zxy for H.

If we set v = 7°U, then Es~py R%(A(S)) < infren RY(h) + €(n) implies that
ESND}IYI Rp(A(9)) < }%2’7{[ Rp(h) + €(n),

which means that OOD detection is learnable in Zxy for H. We have completed this proof.
Proof of the Third Result.

The third result is a simple conclusion of the second result. Hence, we omit it. O
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F Proof of Theorem 2

Before introducing the proof of Theorem 2, we extend Condition 1 to a general version (Condition 4).
Then, Lemma 1 proves that Conditions 1 and 4 are the necessary conditions for the learnability of
OOD detection. First, we provide the details of Condition 4.

Let AP = {(A1,..., ) : 23':1 Aj < land A\; > 0,Vj = 1,...,1}, where [ is a positive integer.
Next, we introduce an important definition as follows:

Definition 6 (OOD Convex Decomposition and Convex Domain). Given any domain Dxy € Pxy,
we say joint distributions Q1, ..., Qi, which are defined over X x {K + 1}, are the OOD convex
decomposition for Dxvy, if

l
Dxy = (1= \)Dxyvi + Y \Q5,
j=1

=1
for some (A1,...,\;) € AP, We also say domain Dxy € PDxy is an OOD convex domain corre-
sponding to OOD convex decomposition Q1, ..., Qy, if for any (aq, ..., ;) € A?,

l l

(1- Z a;)Dxv; + Zanj € Pxy.
Jj=1 j=1
‘We extend the linear condition (Condition 1) to a multi-linear scenario.

Condition 4 (Multi-linear Condition). For each OOD convex domain D xy € Pxvy corresponding
to O0OD convex decomposition Q1, ..., Q;, the following function

l l
fD7Q(a1, ...,O{l) := inf ((1 — Z@])RIB(}L) + ZajRQj (h)), V(Oél, ...,al) € A?
=1

Jj=1

satisfies that
l l
fo.@lars o) = (1= a;)fp.q(0)+ > a;fpolay),
j=1 j=1

where 0 is the 1 x [ vector, whose elements are 0, and o is the 1 x [ vector, whose j-th element is 1
and other elements are 0.

When [ = 1 and the domain space Zxy is a priori-unknown space, Condition 4 degenerates into
Condition 1. Lemma 1 shows that Condition 4 is necessary for the learnability of OOD detection.

Lemma 1. Given a priori-unknown space 9xy and a hypothesis space H, if OOD detection is
learnable in Dxy for H, then Conditions | and 4 hold.

Proof of Lemma 1.
Since Condition 1 is a special case of Condition 4, we only need to prove that Condition 4 holds.

For any OOD convex domain Dxy € Zxy corresponding to OOD convex decomposition Q1 ..., Q;,
and any (a1, ...,aq) € A, we set

l
1
Q%= > Qs
Dim j=1
Then, we define
l

1
D%y =(1- Zai)DXIYI + (Z a;)Q%, which belongs to Zxy .
i=1 i=1

Let

R%(h) = /X A9, p)ADgy ().
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Since OOD detection is learnable in Zxy for H, there exist an algorithm A : U FE XY —
and a monotonically decreasing sequence €(n), such that ¢(n) — 0, as n — +oo and

0< Eswpg,, RH(A(S)) = inf B (h) < e(n).

Note that
By, RB(A(S)) = (1=} a5)Eswpy, , RB(A(S)) + Z By, Fa, (A()),
and
}%IeliRD( ) fD,Q(ala"'aal)a
where

Rq, (A(S)) = /X e, (AO60.1)3Q, ).

Therefore, we have that for any (o, ..., q) € AP,

(1 - Zaj)ESNDn Ri%(A Z%ESND;( v B, (A(9)) = fp.gan, . ar)| < e(n).
(17)
Let

l
gn(al, ...,al) = (1 - Zaj)ESND?(IYIRm + ZOCJESND} v Q_/ (A(S))
=1

Note that Eq. (17) implies that
nEI—Poo gn(ala cey O{l) = fD,Q(ah cey Odl), V(Oél, ey Oél) € A(l)7
lim g,(0) = fp,o(0).

n—-+oo

(18)

Step 1. Since o ¢ A?, we need to prove that
lim IESNDn RQJ. (A(9)) = f(aj),i.e.,ngrfoogn(aj) = f(a;), (19)

n—-+o0o
where «; is the 1 x [ vector, whose j-th element is 1 and other elements are 0.

Let D xy = 0.5 * Dx;y; + 0.5 % Q;. The second result of Theorem 1 implies that

out out
. YIRD (A(9)) < huel’}f-LR (h) + €(n).

Since R%m(A(S)) = Ry, (A(S)) and R%ut(h) _ RQj(h),
n . < o ) .
Es~py \, flQ; (A(9)) < }%g?f_[ Rg,(h) +¢€(n)

Es~pr

Note that infj,cx RQj (h) < Es-pn

X1Y7

Rq,(A(S)). We have

0 < sy, Ro,(A(S)) = inf Ro, (k) < e(n). (20)

Eq. (20) implies that

Jim Es.py, Ro,(A(S)) = inf Ro, (h) en

We note that infy,c3; Rq, (h) = fp,q(c;). Therefore,

lim Es~py, RQj(A(S)):fD,Q(aj), i.e., lim g,(aj) = f(ey). (22)

n—+0oo —+oo
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Step 2. It is easy to check that for any (o, ..., ;) € AY,

l l
lim gn(aq,...,q) = lim ((1—Zaj)gn(0)+2ajgn(aj))
j=1 J=1

n—-+4o0o n—-+4o0o
1 l (23)
=(1- z; aj) lim gn(0)+ z; aj lim gn(a;).
Jj= j=
According to Eq. (18) and Eq. (22), we have
ngffoogn(ah ) = fpglar,..,aq), Y(ai,..,q) € AP,
Lim ga(0) = fp.0(0), (24)
Jim gn(eg) = fley),
Combining Eq. (24) with Eq. (23), we complete the proof. O

Lemma 2. .
inf R%(h) = (1 — «) inf RB(h inf R (h), V. 0,1
jnf b(h) = ( a)hlgH D()+ozhlgH P (h), Ya €[0,1),

if and only if for any € > 0,
{h' e H:RE(H) < ;3275 RB(h) +2eyN{h € H:RE(K) < hig;f{ RAM(h) + 2¢} # 0.

Proof of Lemma 2. For the sake of convenience, we set fp(«) = infrey R$(h), for any o € [0, 1].
First, we prove that fp(a) = (1 — ) fp(0) + afp(1l), Yo € [0,1) implies
{h e H:RE(M) < jnf. RB(h) +2eyN{h € H: RE(K) < jnf, REY(h) + 2¢} # 0.
1€ 1€

Forany e > 0and 0 < o < 1, we can find h& € H satisfying that

RH(h) < inf RY (R .

D(he) = ol D(h) +e

Note that

: a — o in out > o : in : out
inf B (h) = inf ((1—a)RB(h) +aRB () > (1—a) inf R(h) +a inf RE"(h).

Therefore,
1—a) inf RD inf RAY(h) < inf RY(h) < R%(hY) < inf R% . 2
(1-a) inf Rp(h) +a inf Rp™(h) < inf Rp(h) < Rp(he) < inf Rp(h) +e (29
Note that fp(a) = (1 —a)fp(0) + afp(1),Va € [0,1), i.e.,
inf R%(h) = (1 — ) inf RS inf RO 1). 2
jof Rp(h) =(1-a) inf R5(h) +a inf Rp™(h),Va € [0,1) (26)

Using Eqgs. (25) and (26), we have that for any 0 < a < 1,
e > | R (h?) = jinf Rp(h)| = |(1—a)(RE(h?) — inf Rp(h)) +a(Rp"(hE)— inf RE"(R))|
(27)

Since R%(h®) — infrey RYE(h) > 0 and R (hS) — infrey R5(h) > 0, Eq. (27) implies that:
forany0 < a < 1,

RB() < inf RE(R) + /(1 —a),
REU(2) < inf RE(h) + /o
Therefore,

he e {W € H: RH(W) < hirequ{RB(h)—i—e/(l—a)}ﬁ{h’ €H:RY(W) < higjfr’lR%‘t(h)—&—e/oz}.
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If we set @ = 0.5, we obtain that for any € > 0,

{h' e H:RB(H) < }g{ RB(h) +2ey N {h € H: REY(K) < }3161% R{M(h) + 2¢} # 0.

Second, we prove that for any € > 0, if

{h' e H:RB(H) < jnf RB(h) +2eyN{h € H:RE(H) < jnf, RY*(h) + 2¢} # 0,
then fp(a) = (1 — @) fp(0) + afp(1), forany a € [0, 1).
Leth. € {h € H : RE(K) < infrey RB(R)+2e}N{W € H : R (D) < infey RE(h)+2¢}.
Then,

: a < R« < _ : in : out < i a

}%g?f_t Ry (h) < RH(he) < (1 —a) hlél?f_[ R5(h) +Olhl£17f{ RE"(h) + 2¢ < }}g}f{ R (h) + 2e,
which implies that | fp(a) — (1 — @) fp(0) — afp(1)]| < 2e.
Ase =0, |fp(a) — (1 —a)fp(0) — afp(1)] < 0. We have completed the proof. O

Theorem 2. Given a hypothesis space H and a domain D xy, OOD detection is learnable in the
single-distribution space @)%’ﬁy for H if and only if linear condition (i.e., Condition 1) holds.

Proof of Theorem 2. Based on Lemma 1, we obtain that Condition 1 is the necessary condition for the

learnability of OOD detection in the single-distribution space 9)1?3)5". Next, it suffices to prove that
Condition 1 is the sufficient condition for the learnability of OOD detection in the single-distribution
space 22X . We use Lemma 2 to prove the sufficient condition.

Let .% be the infinite sequence set that consists of all infinite sequences, whose coordinates are
hypothesis functions, i.e.,

F ={h=(h1,....hn,..) :Yhp € H,n=1,....,+00}.

For each h € .7, there is a corresponding algorithm A°: A (S) = h,,, if |S| = n. .7 generates
an algorithm class & = {Ap, : Vh € .Z}. We select a consistent algorithm from the algorithm class
.

We construct a special infinite sequence h = (hi,...,h,,...) € Z. For each positive integer
n, we select h,, from {h' € H : RE(W) < infhrey RB(R) +2/n} N {K € H : REH(R') <

infrey RA*M(h) + 2/n} (the existence of h,, is based on Lemma 2). It is easy to check that
Es~py . RE(A4(5)) < jnf. R (h) +2/n.
Es~py s RBY(AR(9)) < éélyfi Ry (h) +2/n.
Since (1—a) infrey RB(h)+ainfrey RY(h) < infrey R (h), we obtain that for any « € [0, 1],
ESwDBL(IYIR%(Ail(S)) < ;52% R%(h) +2/n.

We have completed this proof. O

G Proofs of Theorem 3 and Theorem 4

G.1 Proof of Theorem 3

Theorem 3. Given a hypothesis space H and a prior-unknown space Dxy:, if there is Dxy € Dxy,
which has overlap between ID and OOD, and infc3 R (h) = 0 and infyeyy RE*(h) = 0, then
Condition 1 does not hold. Therefore, OOD detection is not learnable in Dxy for H.

®In this paper, we regard an algorithm as a mapping from U} (X x V)™ to H. So we can design an
algorithm like this.
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Proof of Theorem 3. We first explain how we get f1 and fo in Definition 4. Since D is absolutely
continuous respect to u (Dx < p), then Dx, < pand Dx, < p. By Radon-Nikodym Theorem
[36], we know there exist two non-negative functions defined over X: f; and fo such that for any
p-measurable set A C X,

Dx,(4) = /A fix)du(x), Do (A) = /A fox)du(x).

Second, we prove that for any « € (0, 1), infyeyy R (h) > 0.
We define A,, = {x € X : fi(x) > L and fo(x) > L }. Itis clear that

U:,rlozolAm ={x € X: fi(x) >0and fo(x) > 0} = Aoverlap:

and
Am C Am+1 .

Therefore,
ml—lg}oo ,U/(Am) = ,U(onerlap) > 07
which implies that there exists m such that
1(Amgy) > 0.
For any a € (0,1), we define cq = miny, cy,, ((1 — @) ming, ey £(y1,y2) + ol(ys, K +1)). Itis
clear that ¢, > 0 for € (0,1). Then, for any h € H,

R (h)

_ / (h(x),y)dD%y (x, y)
X' X Van

— [ (1= dDsx o)+ [ al(h0.9)dDxor (.0
XxY Xx{K+1}

> / (1 - a)(h(x), y)dDxvi (x,9) + / af(h(x), y)dDx v, (% 9)
A <Y Ao x (41}

- / ((1-a) / 0(h(x), 3)dDy; x, (41x))dDx, (%)
Ammg v

al(h(x), K + 1)dDx, (x)

+
T

mQ

= /A (1= a) min, £(h(x), 42)dDx, (x) + /A al(h(x), K +1)dDx, (x)
= /Amo S ylilérali ((n(x), y2) filx)du(x) + /Am0 al(h(x), K + 1) fo(x)du(x)
1 . .
2 mo /Amo (1= o) min (h(x), y2)du(x) + = /A al(h(x), K + 1)dpu(x)
= i/ ((1 —a) mir31; (h(x),y2) + al(h(x), K + 1))dM(X) > CiM(AmO) -0
mo J A, y2€ —
Therefore,
inf R () > - p(Apy) > 0.

Third, Condition 1 indicates that infyey RY(h) = (1 — ) infrey RB(R) + ainfreqy RB(R) =0
(here we have used conditions inf,ez R (h) = 0 and infrep; REE(h) = 0), which contradicts with
infrey RY(h) > 0 (o € (0,1)). Therefore, Condition 1 does not hold. Using Lemma 1, we obtain
that OOD detection in Zxy is not learnable for H. O
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G.2 Proof of Theorem 4

Theorem 4 (Impossibility Theorem for Total Space). OOD detection is not learnable in the total
space 9 a“ v for 1, if |¢ o H| > 1, where ¢ maps ID labels to 1 and maps OOD labels to 2.

Proof of Theorem 4. We need to prove that OOD detection is not learnable in the total space Q}HY
for M, if H is non-trivial, i.e., {x € X : Jhq, ho € H,s.t. h1(x) € Y, ha(x) = K + 1} # (.

The main idea is to construct a domain D xy satisfying that: _
1) the ID and OOD distributions have overlap (Definition 4); and 2) R5(hy) = 0, R3*(he) = 0.

According to the condition that H{ is non-trivial, we know that there exist hy, ho € H such that
hy (Xl) e, hg(xl) = K+1,forsomex; € X. Weset Dxy = 0'5*5(X1,h1(x1))+0'5*5(X1,h2(x1))’
where 4 is the Dirac measure. It is easy to check that RIS (hy) = 0, R (ha) = 0, which implies that
inf,ey R5(h) = 0 and infjcy R (R) = 0. In addition, the ID distribution d(x1,h1 (x1)) and OOD
distribution 0 (x, ,(x,)) have overlap x;. By using Theorem 3, we have completed this proof.  [J

H Proof of Theorem 5

Before proving Theorem 5, we need three important lemmas.

Lemma 3. Suppose that Dxvy is a domain with OOD convex decomposition Q1, ..., Q; (convex
decomposition is given by Definition 6 in Appendix F), and D xy is a finite discrete distribution, then
(the definition of fp ¢ is given in Condition 4)

! !
fD7Q(a17"'7 Z fDQ )+Za]fD7Q(a])7 v(ala"'val) GA?,
j=1 j=1
if and only if
arg min Rp(h ﬂargmmRQ )ﬂargminRiﬁ(h),
heH j=1 heH heH

where 0 is the 1 x [ vector, whose elements are 0, and o is the 1 x [ vector, whose j-th element is 1
and other elements are 0, and

Ro,(= [ u(h(.0)dQ(x.p).
Ax{K+1}
Proof of Lemma 3. To better understand this proof, we recall the definition of fp g(cu, ..., q;):

foolar,..,oq) = }}2%( (1 —Za] RB(h —I—ZaJRQ] ), Y(aq,...,ap) € A7

First, we prove that if

l l
fD7Q(a17“'7 = Z fDQ )+Za]fD7Q(aj)7 V(Oé]_,.-.,a[) eAloa
=1 j=1
then,
argmin Rp(h ﬂ argmin Rq, (h ﬂarg min R (h).
heH heH heH

Let Dxy = (1— 22:1 A )Dxv; + 23:1 A;Q;, for some (A1, ..., A;) € AP. Since Dxy has finite

support set, we have

l

argmin Rp(h) = argmin ( (1 — Y N\)RB(h) + Y MR # 0.
HeH o) hen (( ; ’ Z 2 )
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We can find that hy € arg ming, 4 ((1 - 22:1 ) RiB(h) + 22:1 AiRg, (h)) Hence,

l

l
Z)\]RmthrZ/\RQ hosz( Z JRB(h +ZARQ ). @8
j=1 j=1

=1

Note that the condition fp (o, ...,0q) = (1 — 2221 a;)fp,o(0) + 2221 a; fp,o(a;) implies

l l
(1=3" ) jnf RBN+Y N inf Ra, (k) = inf ((1 Z/\ VR (h +Z>\ Rq,(h)). (29)
=1 j=1

Therefore, Eq. (28) and Eq. (29) imply that

l l l l
) inf Rin( Sinf Ro.(h) = (1 — )Rn Ro. (ho).
;AJ inf R} )+;AJ jnf Ro,(h) = (1= N)Rp(ho) + ) AjRq, (ho). (30)

J=1 Jj=1

Since R5(ho) > infreyn RB(h) and Rq, (ho) > infrewn RS, (h), for j = 1,...,1, then using Eq.
(30), we have that

RiSha) = st RS

Rg, (ho) = iirel%RQJ (h), ¥j=1,..,1,

which implies that
l

ho € ﬂ arg min Rq, ( )ﬂargmin RB(h).

oy hew heM
Therefore,
l
argmin Rp(h) C ﬂ argmin Rq, (h ﬂarg min RS (h). 31)
her i her heH

Additionally, using
1 !
foqlan, o) = (1= ;) fp.o(0) + > _ a;fpqolay), Y(ay,....ar) € A7,
j=1 j=1

we obtain that for any b’ € ﬂézl argminy, cq, Rg, (h) (arg min, .y, R (h),
!
1t R = o, (11 = S0 500+ 3 )
=(1- Z Aj) jof RB(h) + Z Aj jnf Rq, (h)
kZA )R (h +ZARQJ Rp(h),

which implies that
h' € argmin Rp(h).

heH
Therefore,
1
ﬂ argmin Rq, (h ﬂ argmin R5(h) C argmin Rp(h). (32)
heH heH heH

j=1
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Combining Eq. (31) with Eq. (32), we obtain that

l

ﬂ arg min R, ( )ﬂarg min RS (h) = argmin Rp(h).
j=1 heH heH heH

Second, we prove that if

l
argmin Rp(h) = ﬂ argmin Rq, (h ﬂarg min RB(h),
heH j=1 heH heH

then,
l l
foqlar, o) = (1= 0;))fp.o(0) + > a;fpqla;), V(ai,..,a) € A}
j=1 j=1

We set
l

ho € arg min R arg min RB(h),
jﬂl heH JCIN her )

then, for any (ay, ..., aq) € A?,

l l l
(130 o, B+ 2o o o )= o, (11~ 500+ 3 )
j=1 j=1 =
l l

S (]. — ZO[j)RiB(h()) + ZOZjRQ]. (h())

Jj=1 j=1
l ' l
=(1- ; a;) inf RE5(h) + ; a; inf Ro,(h).

Therefore, for any (a1, ...,qq) € AP,

1—20@ 1nf R5(h —&-Zaj 1nf RQJ :hlg?f{( 1—20@ RE(h +ZO‘3RQJ )

which implies that: for any (o, ..., o) € AP,

l l
foolan, ) = (1= a;)fp.o(0) + D ajfpolay).
=1

j=1

We have completed this proof. O
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Lemma 4. Suppose that Assumption 1 holds. If there is a finite discrete domain Dxy € D%+ such
that infpeqy RY"(h) > 0, then OOD detection is not learnable in 9% for H.

Proof of Lemma 4. Suppose that suppDx, = {x3", ...,xP"'}, then it is clear that D xy has OOD
convex decomposition dyenut, ..., 5x?ut, where Jy is the dirac measure whose support set is {x}.
Since H is the separate space for OOD (i.e., Assumption 1 holds), then Vj =1, ..., [,

inf R, h) =0,

Jnf Rs, o (h)

where
Ry (0) = [ €000, K + 1) ).
i X 7

This implies that: if ﬂézl argming, ey Rs_,., (h) # 0, then for V' € ﬂ§:1 argming, ey Rs_,.. (),

W) =K +1,Vi=1,..,1.

Therefore, if ﬂ;:l arg miny, ¢y Rs_,,. (h) () arg miny,cqy RB(h) # 0,

then for any h* € ﬂé‘:1 arg miny, ¢4 Rs ., (h) (arg miny, s R (h), we have that

RA(x™) = K 4+ 1, Vi=1,...,1.

Proof by Contradiction: assume OOD detection is learnable in 2%y for 7, then Lemmas 1 and 3
imply that
!

m argmin R .., (h) ﬂ argmin RB(h) = argmin Rp(h) # 0.
jo1 hE€M i heH het

Therefore, for any h* € arg min,,, Rp(h), we have that

R (x0) = K+ 1, Vi=1,...,1,

(3

which implies that for any h* € argmin, 4 Rp(h), we have R%'*(h*) = 0, which implies that
infheq.[ RODut(h) = 0.

It is clear that inf,c4 R%*(h) = 0 is inconsistent with the condition infj,c3 R%*(h) > 0. There-
fore, OOD detection is not learnable in 2% for H. O

Lemma 5. If Assumption 1 holds, VCdim(¢ o H) = v < 400 and sup, ¢y {x € X : h(x) €
Y} > m such that v < m, then OOD detection is not learnable in D%+, for H, where ¢ maps ID’s
labels to 1 and maps OOD’s labels to 2.

Proof of Lemma 5. Due to supy, ¢y, [{x € X : h(x) € Y}| > m, we can obtain a set
C = {X1y ey Ximy Xmt1 }s
which satisfies that there exists &4 €  such that ﬁ(xi) € Yforanyi=1,....,m,m+ 1.
Let 7—[% ={(¢poh(x1),...; d0 h(Xm),d 0o h(Xmy1) : h € H}. Itis clear that
(1,1,01) = (¢ 0 A(x1), ey § 0 h(Xm), § © h(Xmy1)) € HE,
where (1,1, ..., 1) means all elements are 1.
Let Hﬁlﬂ = {(¢oh(x1), ..., 00h(Xy,), doh(Xm+1) : his any hypothesis function from X to V. }.

Clearly, 7—[2 - ’Hfﬁwl and |’Hfm+1| = 2mT1  Sauer-Shelah-Perles Lemma (Lemma 6.10 in [21])

implies that
HEL <> (")
i=0
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Since Y, (mﬂ) < 2m*1 _ 1 (because v < m), we obtain that |7—lg\ < 2m+1 _ 9 Therefore,

(2

’H% U{(2,2...,2)} is a proper subset of ’HfLH, where (2,2, ..., 2) means that all elements are 2. Note
that (1, 1...,1) (all elements are 1) also belongs to ”H,dé. Hence, ’Hg Uu{(2,2...,2)tu{(1,1....,1)} is
a proper subset of Hfl 41» Which implies that we can obtain a hypothesis function A’ satisfying that:

1)(¢ © h/(Xl), @O h/(xm)v ¢o h/(xm-i-l)) ¢ Hg;

2) There exist x;j,x, € C such that ¢ o h'(x;) = 2 and ¢ o h'(x,) = 1.
LetCi =CN{xeX:poh(x)=1}andCo =CN{x e X:¢poh/(x)=2};
Then, we construct a special domain Dxy:

Dxy = 0.5% Dx, * Dy;x; + 0.5 % Dx,, * Dy, x,, where

1 ~
Dx, = — Z dx and Dy x,(y|x) =1, if h(x) =y and x € C¥;
|CI‘ xeC
and
1 .
Dx, = ol > dx and Dy, x, (K +1]x) =1, if x € Co.

x€Co

Since Dxy is a finite discrete distribution and (¢ o h'(x1), ..., 0 0o A/ (%), @ 0 ' (Xins1)) € 7—[%, it
is clear that arg min, .4, Rp(h) # () and infyeyy Rp(h) > 0.

Additionally, Ri3(h) = 0. Therefore, inf,cy R (h) = 0.

Proof by Contradiction: suppose that OOD detection is learnable in &% for 7{, then Lemma 1
implies that

. _ . in . out
}:gqf{RD(h) = 0'5*;%275}217(@ +0.5*}%2£[RD (h).

Therefore, if OOD detection is learnable in 2% for H, then infj,c3; RA"(h) > 0.

Until now, we have constructed a domain D xy (defined over X' X Y1) with finite support and
satisfying that inf,c4 R%™(h) > 0. Note that H is the separate space for OOD data (Assumption
1 holds). Using Lemma 4, we know that OOD detection is not learnable in 5% for H, which is
inconsistent with our assumption that OOD detection is learnable in &% for H. Therefore, OOD
detection is not learnable in 2% for H. We have completed the proof. O

Theorem 5 (Impossibility Theorem for Separate Space). If Assumption 1 holds, VCdim(¢ o H) <
+o00 and sup ey [{x € X : h(x) € V}| = +o0, then OOD detection is not learnable in separate
space D%y for H, where ¢ maps ID labels to 1 and maps OOD labels to 2.

Proof of Theorem 5. Let VCdim(¢ o H) = v. Since sup, ¢y, {x € X : h(x) € V}| = +o0, it is
clear that sup,,c4 |[{x € X : h(x) € Y}| > v. Using Lemma 5, we complete this proof. O

I Proofs of Theorem 6 and Theorem 7

I.1 Proof of Theorem 6

Firstly, we need two lemmas, which are motivated by Lemma 19.2 and Lemma 19.3 in [21].

Lemma 6. Let Ci,...,C,. be a cover of space X, i.e., >, C; = X. Let Sx = {x',..,x"} bea
sequence of n data drawn from Dx,, i.i.d. Then

ESXND;;I( Z Dm(@))é

i:CiﬂSX:@

r
en
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Proof of Lemma 6.

T

Escung, (2 Dxil@) =3 (Dxi(C)  Esmpy, (le,scm) ).

:C;NSx =0 i=1

where 1 is the characteristic function.

For each 7,
Esy~py (1cinsx=0) / 1o,nsx=0d DX, (Sx)
X”'L
(/ch nixy—0dDx, (x))"
_ (1 DXI )" < e—nDXI(Ci).
Therefore,

T

ESXND;I( Z DXI(CZ»)) < ZDXI(Ci)e_"DXI(C”)
i=1

:C;NS=0

— )

<r max Dy, (C;)e "Px(C) < -
i€{l,...,r} ne

here we have used inequality: max;e ;... -} a;e” "% < 1/(ne). The proof has been completed. []

Lemma 7. Let K = 1. When X C R is a bounded set, there exists a monotonically decreasing
sequence €cons(m) satisfying that €cons(m) — 0, as m — 0, such that

EXNDXI 7SND}IYI dist(x, T (X, S)) < €cons (n),
where dist is the Euclidean distance, T1(x, S) = argming. g dist(x,X), here Sx is the feature

part of S, i.e., Sx = {x!,...,x"}, if S = {(x}, y}), ..., (x", y™)}.

Proof of Lemma 7. Since X is bounded, without loss of generality, we set X C [0, 1)d. Fixe =1/T,

for some integer T'. Let 7 = T and C}, Cs, ..., C,. be a cover of X: for every (ay, ...,ar) € [T]? :=
[1,...,T]%, there exists a C; = {x = (x1,...,7q) : Vj € {1,...,d},z; € [(a; — 1)/T,a;/T)}.

If x, x” belong to some C;, then dist(x, x’) < V/de; otherwise, dist(x,x’) < V/d. Therefore,

EXNDXUSND;L(IYI diSt(X, s (X, S))

SES~D;§IYI(\@€ Z Dx,(Ci) + Vd Z DXI(Ci)>

i:CiﬂSX75@ :C;NSx =0
S]ESXND;L(I (\/&6 Z DXI(Ci) + \/a Z DXI (CZ)) .
i:CiﬂSX;é@ i:CiﬁSx:(D

Note that C1, ..., C. are disjoint.
Therefore, } ;. o520 Dx:1(Ci) < Dx,(3;.c,ns5 20 Ci) < 1. Using Lemma 6, we obtain

EXNDXI’SNDEL(IYI dist(x, 71 (x, 5)) < Vide + —— T‘f = Ve + i

If we set € = 20~/ (@+1) then

2Vd Vd

< nl/(d+1) + 2denl/(d+1)"

Ex~Dx,,5~D% . dist(x, m1(x, S))

2/d d :
If we set €cons(n) = nl/(‘dcl) + Qden}adﬂ) , we complete this proof. O
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Theorem 6. Let K = 1 and |X| < +o00. Suppose that Assumption 1 holds and the constant function
hi" := 1 € H. Then OOD detection is learnable in D%, for H if and only if H.y — {h°"} C H,
where H.1 is the hypothesis space consisting of all hypothesis functions, and h°"* is a constant
function that h°"* := 2, here 1 represents ID data and 2 represents OOD data.

Proof of Theorem 6. First, we prove that if the hypothesis space H is a separate space for OOD (i.e.,
Assumption 1 holds), the constant function A'™ := 1 € H, then that OOD detection is learnable in
D%y for H implies Hay — {R°*} C H.

Proof by Contradiction: suppose that there exists A’ € H,y such that i’ # h°"* and b/ ¢ H.
Let X = {X1,..., X}, Cr={x € X : M (x) € Y}and Co = {x € X : W/ (x) = K + 1}.
Because h/ # h°“, we know that C1 # ().
We construct a special domain Dxy € 2% if Co = 0, then Dxy = Dx, * Dy x,; otherwise,
Dxy =0.5% Dx, * Dy;x; + 0.5 x Dx, * Dyy|x,, Where
1

Dy, = Gl > 0y and Dy, x,(ylx) =1, if '(x) = yandx € (1,
xeCy
and 1
Xo = 0] > bk and Dy, x, (K + 1[x) =1, ifx € Co.
O

xeCo

Since h' ¢ H and |X| < 400, then arg min, .4, Rp(h) # 0, and inf,c3 Rp(h) > 0. Additionally,
RIB(h™) = 0 (here h'™ = 1), hence, infyey REB(R) = 0.

Since OOD detection is learnable in 2%, for H, Lemma 1 implies that

: _ __,outy : in out : out
}%Iequ_[RD(h)*(l m )}%Iequ_[RD(h)JFW huel7f-[RD (h),

where 7% = Dy (Y = K + 1) = 1 or 0.5. Since infcyy RS (h) = 0 and infr,eq; Rp(h) > 0, we
obtain that inf,ey R%™(h) > 0.

Until now, we have constructed a special domain Dxy € 2%, satisfying that inf,c4 R (h) > 0.
Using Lemma 4, we know that OOD detection in &% is not learnable for H, which is inconsistent
with the condition that OOD detection is learnable in &% for H. Therefore, the assumption (there
exists i/ € Hay such that b’ # h°" and h ¢ H) doesn’t hold, which implies that H.y — {h°"*} C H.

Second, we prove that if H, — {h°**} C H, then OOD detection is learnable in 2%, for H.

To prove this result, we need to design a special algorithm. Let dyp = miny x/ex and xx dist(x,x’),
where dist is the Euclidean distance. It is clear that dg > 0. Let
1, if dist(x,m1(x,.5)) < 0.5 % do;
A(9)(x) = e 1
2, if dist(x,m(x,5)) > 0.5 % do,
where 71 (x, S) = arg ming g dist(x,X), here Sx is the feature part of S, i.e., Sx = {x*,...,x"},
if S ={(x",y"), ... (x"y")}.

For any x € suppDx,, it is easy to check that for almost all S ~ D' y.,
dist(x, 71 (x,.5)) > 0.5 * do,

which implies that

A(S)(x) =2,
hence,
Es~py,y, RD"(A(S)) = 0. (33)

Using Lemma 7, for any x € suppDx,, we have
EXNDXI =SND§(IYI diSt(X, T (X, S)) < €cons (TL),

where €cons(n) — 0, as n — 0 and €cons(n) is @ monotonically decreasing sequence.
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Hence, we have that
Dx; x Dy, ({(x,5) : dist(x,m1(x,5)) > 0.5%do}) < 2€cons(n)/do,
where Dx, X D}IYI is the product measure of Dx, and D}IYI [36]. Therefore,
Dx, x Dy, ({(x,5) : A(S)(x) = 1}) > 1 — 2€cons(n)/do,

which implies that _
Espy . RB(A(S)) < 2Becons (n) /do, (34)
where B = max{/(1,2),£(2,1)}. Using Eq. (33) and Eq. (34), we have proved that
Rp(A(S)) <0+ 2Becons(m)/do < }ig’_{ Rp(h) + 2Bécons(m)/dop. (35)
3

IESND;‘I Y1

It is easy to check that A(S) € Han — {h°"*}. Therefore, we have constructed a consistent algorithm
A for H. We have completed this proof. O

1.2 Proof of Theorem 7

Theorem 7. Let |X| < +00 and H = H'™ @ HP. If Han — {h°"*} C HP and Condition 2 holds,
then OOD detection is learnable in 9% for H, where H. and h°%t are defined in Theorem 6.

Proof of Theorem 7. Since |X| < +oo, we know that |H| < +oo, which implies that H™ is
agnostic PAC learnable for supervised learning in classification. Therefore, there exist an algorithm
A Ute (X x V)™ — MM and a monotonically decreasing sequence €(n), such that e(n) — 0, as
n — 400, and for any Dxy € 2%,

Es-py,,, RB(A™(S) < inf RE(h) +e(n).

Since |X| < +oo and HP almost contains all binary classifiers, then using Theorem 6 and Theorem

1, we obtain that there exist an algorithm AP : Ut (X x {1,2})” — HP and a monotonically
decreasing sequence €' (n), such that €’(n) — 0, as n — +o00, and for any Dyy € P%-,

B3y, Fio) (AP (6(9))) < inf Rip)(h) + € (n),
Es~ny,, Rilh) (A(6(5))) < inf R3h) (k) +¢'(n),

where ¢ maps ID’s labels to 1 and OOD’s label to 2,

in ) (AY(6(9))) = /X | UA(0(8))(9,6(1)ADx, v, 0c.). 36)
Rz (h) = /X A9, 600D, 05 ), 37
RIS, (AP (6(5))) = /X ey (AT, 6D, (5,), (38)
and
RO, (h) = /X e, (060, 6D, (5,), (39)

here ¢(S) = {(x*, d(y")), ..., (x", d(y")) }. if S = {(x*, "), ... (x",y™)}.

Note that " almost contains all classifiers, and D%y is the separate space. Hence,

Es~py , Riip) (AY(6(9))) < ¢(n), Eswpy , R (A(6(S))) < ¢ (n).

Next, we construct an algorithm A using A™ and A°U,
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K+1, if AP(¢(9))(x)

2;
A(S)(x) = { AT(S)(x), if AP(9(S))(x) = 1.

Since infy, ey Ri;‘(D) (¢poh) =0, infprey RE*(h) = 0, then by Condition 2, it is easy to check that

inf RZ(h) = inf RIB(R).
hetgin p(h) by b(h)

Additionally, the risk RI5(A(S)) is from two parts: 1) ID data are detected as OOD data; 2) ID data
are detected as ID data, but are classified as incorrect ID classes. Therefore, we have the inequality:

Es~py . RB(A(9)) < Es~py RB(A™(S)) + Es~py . Sy (AP (6(5)))

. ; . ‘ (40)
< f R5(h ! = inf R5(h !

< it R0+ e(n) + () = inf R(R) + eln) + o (n),

where ¢ = maxy, y,ey £(y1,y2)/ min{f(1,2),£(2,1)}.

Note that the risk R (A (S)) is from the case that OOD data are detected as ID data. Therefore,
Es~py . RBY(A(S)) < CESND}‘TmIYI Ré?}))(Ab@(S)))

< cé'(n) < inf RE™(h) + ce'(n) “h
- ~hen P ’

Note that (1 — o) infrey RB(R) + ainfreqy RO (h) < infreqy R%(h). Then, using Eq. (40) and
Eq. (41), we obtain that for any o € [0, 1],

Eswng,, RB(A(S)) < inf Ry (h) +e(n) + e (n).

According to Theorem 1 (the second result), we complete the proof. O

J Proofs of Theorems 8 and 9

J.1 Proof of Theorem 8

Lemma 8. Given a prior-unknown space Pxy and a hypothesis space H, if Condition 3 holds, then
for any equivalence class [D'y-] with respect to Dxy, OOD detection is learnable in the equivalence
class [D'] for H. Furthermore, the learning rate can attain O(1/n).

Proof. Let .# be a set consisting of all infinite sequences, whose coordinates are hypothesis functions,
ie.,

F ={h=(h1,....hn,..) :Yhp e H,n=1,....,+00}.

For each h € .Z, there is a corresponding algorithm Ap: Ap(S) = hy, if |S| = n. # generates an
algorithm class &7 = {Ap, : Vh € % }. We select a consistent algorithm from the algorithm class <.

We construct a special infinite sequence h = (711, weey By, ...) € F. For each positive integer n, we
select h,, from

. out : out . in . in
- QD/ ]{h’ € H:RY(W) < jnf Rp (h)+2/n}({' € H: RB(K) < jof Rp(h)+2/n}.

The existence of h,, is based on Condition 3. It is easy to check that for any Dxy € [D'y+ ],
Es~py . RB(A;(5)) < jnf. R (h) +2/n.
Es~pg .y BB (AR(9)) < jnf RB*(h) +2/n.
Since (1—a)infyey RB(h)+ainfreqy RYE(h) < infrey R (h), we obtain that for any o € [0, 1],
Es~py . R%(A;(9)) < }%gqf_l R (h) +2/n.

Using Theorem 1 (the second result), we have completed this proof. O

39



Theorem 8. Suppose that X is a bounded set. OOD detection is learnable in the finite-ID-distribution
space DX, for H if and only if the compatibility condition (i.e., Condition 3) holds. Furthermore,

the learning rate €cons(n) can attain O(1/vn1=9), for any 6 € (0,1).
Proof of Theorem 8.
First, we prove that if OOD detection is learnable in @)l?)/ for H, then Condition 3 holds.

Since 2% is the prior-unknown space, by Theorem 1, there exist an algorithm A : U5 (X' x V)" —
‘H and a monotonically decreasing sequence €.ons(n), such that €cons(n) — 0, as n — 400, and for
any Dxy € 9%y,

Espy,,, [RB(A(S)) = inf RB()] < cons(n),
Espy,,, [RB(A(S)) = inf RE*(h)] < €cons(n).
Then, for any € > 0, we can find n, such that € > €cons(n¢), therefore, if n = n., we have
Es.py, [RD(A(S)) - jnf Rp(h)] <e,
Es~pre, [Rp"(A(S)) - Jnf RP(h)] <,
which implies that there exists S, ~ D'y y. such that
RB(A(S.) — inf RE(R) <,
RY(A(S,)) — jnf RY(h) <e.

Therefore, for any equivalence class D] with respect to 2%, and any € > 0, there exists a
hypothesis function A (S.) € H such that for any domain Dxy € [D’y],

A(S) e {W € H:RY(H) < gg{ RO (h) + ey n{h € H: RE(K) < gg?f{Rig(h) + €},

which implies that Condition 3 holds.
Second, we prove Condition 3 implies the learnability of OOD detection in 2%, for H.

For convenience, we assume that all equivalence classes are [D], ..., [D%]. By Lemma 8, for
every equivalence class [D%], we can find a corresponding algorithm A p: such that OOD detection
is learnable in [D%.] for . Additionally, we also set the learning rate for A p: is €’(n). By Lemma
8, we know that €*(n) can attain O(1/n).

Let Z be X’ x ). Then, we consider a bounded universal kernel K (-, -) defined over Z x Z. Consider
the maximum mean discrepancy (MMD) [83], which is a metric between distributions: for any
distributions P and ) defined over Z, we use MMD g (@, P) to represent the distance.

Let .% be a set consisting of all finite sequences, whose coordinates are labeled data, i.e.,

F ={S=(51,..,54,..,Sm) : Vi =1, ...,m and V labeled data S, }.

Then, we define an algorithm space as follows:

o ={Ag’ VS € T},

where
Ags(S) = Api(9), ifi = argmin MMDg (Ps,, Ps),
i€{l,...m}
here 1 ]
PS:E Z 5(x,y)a PSZZﬁ Z 75(x,y)
(x,y)€8 (x,9)€8;

"In this paper, we regard an algorithm as a mapping from UF>3 (X x Y)™ to H. So we can design an
algorithm like this.
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and d(x, ) is the Dirac measure. Next, we prove that we can find an algorithm A from the algorithm
space <7 such that A is the consistent algorithm.

Since the number of different equivalence classes is finite, we know that there exists a constant ¢ > 0
such that for any different equivalence classes [D'y/] and [D%+/] (i # j),

MMD (D, y,, Dk y.) > c.

Additionally, according to [83] and the property of 2% (the number of different equivalence classes

is finite), there exists a monotonically decreasing €(n) — 0, as n — +oo such that forany Dxy € 2,
1

Vnl=0

Therefore, for every equivalence class [D¥], we can find data points Sp: such that

ESND}IYIMMDK(DXIYN Ps) < 6(71), where e(n) = O( ) (42)

i c
MMDK(DXIWPSN) < 100"

Let S’ = {Sp1,...,Spi, ..., Spm }. Then, we prove that A g is a consistent algorithm. By Eq. (42),
it is easy to check that forany ¢ € {1,...,m} andany 0 < 6 < 1,

Pspir, [MMDg (DY, y,, Ps) < %1)] >1-4,
which implies that
Py py, [MMDjc(Ps,,., Py) < @ o
Therefore, (here we set 6 = 200e(n)/c)
200¢(n)
c

Ps~piz, [As/(S) # Ap:(9)] <

Because A p: is a consistent algorithm for [D%], we conclude that for all « € [0, 1],

i 200B
By i, [Fb(As()) ~ inf B3 (0)] < el(n) + 200,

C
where €'(n) = O(1/n) is the learning rate of A p; and B is the upper bound of the loss /.
Let €% (n) = max{e}(n), .., €™ (n)} + 202L,

Then, we obtain that for any Dxy € 2%, and all a € [0, 1],

: max 1
B0 [R5 (As () — jnf R ()] < €™(n) = O( ).
According to Theorem 1 (the second result), Ag- is the consistent algorithm. This proof is completed.

O

J.2 Proof of Theorem 9

Theorem 9. Given a density-based space @é‘(’)b/, if wW(X) < 400, the Realizability Assumption
holds, then when H has finite Natarajan dimension [21], OOD detection is learnable in .@j}’f/ for H.
Furthermore, the learning rate €cons(n) can attain O(1/vn'=9), for any 6 € (0,1).

Proof of Theorem 9. First, we consider the case that the loss £ is the zero-one loss.

Since u(X) < 400, without loss of generality, we assume that u(X') = 1. We also assume that
f1is Dx,’s density function and fo is Dx,’s density function. Let f be the density function for
0.5 % Dx, + 0.5 * Dx,. Itis easy to check that f = 0.5 * f; + 0.5 * fo. Additionally, due to
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Realizability Assumption, it is obvious that for any samples S = {(x1, 1), .-, (Xn, Un)} ~ D%,y
1.i.d., we have that there exists h* € H such that

I, .
. Zf(h (xi),9:) = 0.
n-
=1
Given m data points S,,, = {x},...,x],} C X™. We consider the following learning rule:

1 n
— ), K +1 ject to — ), yi) = 0.
ggﬁng +1), subjectto nZﬁ(h(xl),yz) 0

=1

We denote the algorithm, which solves the above rule, as Agmg. For different data points S,,,, we
have different algorithm A g, . Let S be the infinite sequence set that consists of all infinite sequences,
whose coordinates are data points, i.e.,

S :={S:=(51,52,...,5m,...) : Sy, are any m data points, m = 1, ..., +00}. (43)

Using S, we construct an algorithm space as follows:

of = {Ag:VS €S}, where Ag(S) = Ag (S), if |S| = n.

Next, we prove that there exists an algorithm Ag € o7, which is a consistent algorithm. Given
data points S,, ~ u”, i.i.d., using the Natarajan dimension theory and Empirical risk minimization
principle [21], it is easy to obtain that there exists a uniform constant Cy such that (we mainly use the
uniform bounds to obtain the following bounds)

in . in CG
Es~py . hSGI;_I[)S Rp(h) < ﬁg?f_t Rp(h) + Joie
and c
Es,un Ru(As, (S), K +1) < inf R, (h K + 1)+ ———, (44)
heHs n —0
where
HS - {hGH Z Xz » Yi *O} here S = {(Xlayl) (Xnayn)} NDSL(IYN
=1
and
R, K +1) = B (b, K + 1) = [ €(b), K + 1)dn(x)
X
Due to Realizability Assumption, we obtain that inf;,cy RiB(h) = 0. Therefore,
E Rin(h) < -2 45
o~ien 2 T < @
which implies that (in following inequalities, g is the groundtruth labeling function, i.e., Rp(g) = 0)
C .
O > Eouny,,, sup RB(N) Esvoy,,, sw [ U(hGx.900)i(x)du(x)
P heHs T hens g<K+1
2
>—Esp~ Sup/ L(h(x), g(x))du(x).
b DXIYI hers Jg<r 1 ( ( ) ( )) ﬂ( )
This implies that (here we have used the property of zero-one loss)
Cpb
Es~pz inf {(h(x), K +1)d > € X: <K+1)— —.
i [ RGO K 100 2 il X o) < K+ 1) - S

8In this paper, we regard an algorithm as a mapping from U}>% (X x V)™ to H. So we can design an
algorithm like this.
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Therefore,

. Cpb
Es~py y hle%-ltcs R,(h,K+1)>puxeX:gx)<K+1) - Wk (46)
Additionally, R, (9, K + 1) = p(x € X : g(x) < K + 1) and g € H g, which implies that
hlerg R,(h, K+1)<puxeX:gx) <K+1). 47
s
Combining inequalities (46) and (47), we obtain that
. Cpb
‘ESND;IYI hlergs Ry(h, K +1)—p(x e X:g(x) <K+1)| < =1 (48)
Using inequalities (44) and (48), we obtain that
Co(b+1
Esy ) B, Ru(As, (). K +1) — plx € X s gx) < K + 1)) < LD
n
By Fubini theorem, we have that
Co(b+1)
Es,~unEs~py , Ru(As,(S), K +1) —px e X:g(x) <K+ 1)| < e (49)
Using inequality (45), we have
in 09
Es.~unEs~py , Rp(As, (5)) < T (50)
which implies that (here we use the property of zero-one loss)
Eg, o / U(As, (S)(x), K+ 1)du(x) — pulx € X : g(x) < K +1)] < =2
Sy ~prlbs~pn Sn ) - : S .
T e " 1)
Combining inequalities (49) and (51), we have
2bCy Co(b+ 1)
Es,~unEs~py .. /7 U(As, (S)(x), K + 1)du(x)| < ——= —".
g=K+1 n n
Therefore, there exist data points S/, such that
Es~py , Rp"(As;)
By, [ A (K + Dfolxdu(x) -
g=K+1

4b209 209(()2 + b)
<5y, [ A (S)00,K + 1aue) < T+ T

Combining inequalities (45) and (52), we obtain that for any n, there exists data points S/, such that
40?Cy 209(b2 +b) Ch
Vit Tt V)

We set data point sequences S’ = (57, 5%, ..., S.,, ...). Then, Ag/ € o is the universally consistent
algorithm, i.e., for any o € [0, 1]

ESND?{IYI R%(Asﬁl) S max{

4b209 209([)2 + b) Cy
\/nl=0 * V=0 7 \/pi=0 }

We have completed this proof when ¢ is the zero-one loss.

ESNDBL(IYI R} (Ag) < max{
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Second, we prove the case that ¢ is not the zero-one loss. We use the notation £y_1 as the zero-one
loss. According the definition of loss introduced in Section 2, we know that there exists a constant
M > 0 such that for any y1,y2 € Vai,

1
Mgofl(ylva) < Uy1,y2) < Mlo—1(y1,y2)-

Hence, )
7D () < RS() < MRE (1),

where R%’e"’l is the a-risk with zero-one loss, and R%’g is the a-risk for loss £.
Above inequality tells us that Realizability Assumption holds with zero-one loss if and only if
Realizability Assumption holds with the loss ¢. Therefore, we use the result proven in first step. We

can find a consistent algorithm A such that for any o € [0, 1],

1
1-0

RE 1 (A) <O ),

n

which implies that for any « € [0, 1],
1

a, 1
17 ES~Dx RE(A) < Of ).

nl—

;

We have completed this proof. O

K Proof of Proposition 1 and Proof of Proposition 2

To better understand the contents in Appendices K-M, we introduce the important notations for
FCNN-based hypothesis space and score-based hypothesis space detaily.

FCNN-based Hypothesis Space. Given a sequence q = (11, l2, ..., {4), where [; and g are positive
integers and g > 2, we use g to represent the depth of neural network and use [; to represent the
width of the i-th layer. After the activation function o is selected, we can obtain the architecture of
FCNN according to the sequence q. Given any weights w; € R'*!-1 and bias b; € R%*!, the
output of the i-layer can be written as follows: for any x € R",

fz(X) = O'(Wifi_l(X) + bz)7 Vi = 2, ey g — 1,
where f;_;(x) is the i-th layer output and f; (x) = x. Then, the output of FCNN is fy, ,(x) =
wofy_1(x) + by, where w = {wo,...,wy} and b = {ba, ..., b, }.
An FCNN-based scoring function space is defined as:

FS = {fwp : Vw; € REio1 b, e REX =2, g}

Additionally, given two sequences q = (I, ...,[;) and g’ = (I}, ..., ], ), we use the notation q S q'
to represent the following equations and inequalities:
g < gI> ll = lll? lg = l;’a
L, <l, VYi=1,..,g—1,
ly-1 <U, Yi=g,...g — 1L

Given a sequence q = (ly, ...l,) satisfying that [; = d and [, = K + 1, the FCNN-based scoring
function space F¢ can induce an FCNN-based hypothesis space. Before defining the FCNN-based
hypothesis space, we define the induced hypothesis function. For any fw 1, € FJ, the induced
hypothesis function is:

hwp(x) = argmax f",f,,b(x), Vx e X,
ke{l,...K+1}

where fv’f/,b(x) is the k-th coordinate of fy, p, (x). Then, we define the FCNN-based hypothesis space

as follows:
Hg = {hw,b tVw; € Rlixh*l, Vb, € RliX1, 1=2, ...,g}.
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Score-based Hypothesis Space. Many OOD algorithms detect OOD data using a score-based
strategy. That is, given a threshold ), a scoring function space F; C {f : X — R'} and a scoring
function F : F; — R, then x is regarded as ID, if E(f(x)) > \; otherwise, x is regarded as OOD.

Using E, A and f € FZ, we can generate a binary classifier hg\ ot

[ 1, i BE(f(x) >\
h# g (%) -—{ 2, if B(f(x)) < A,

where 1 represents ID data, and 2 represents OOD data. Hence, a binary classification hypothesis
space H°, which consists of all h?, g 1s generated. We define the score-based hypothesis space

oA L fpX .
How = {he g VE € FJ}
Next, we introduce two important propositions.

Proposition 1. Given a sequence q = (11, ...ly) satisfying that I, = d and l; = K + 1 (note that d
is the dimension of input data and K + 1 is the dimension of output), then the constant functions hq,
ha,....hx 11 belong to Hg, where hi(x) = i, for any x € X. Therefore, Assumption I holds for Hg.

Proof of Proposition 1. Note that the output of FCNN can be written as
fwb(x) = wofy_1(x) + by,

where w, € RETUXlo-1 b ¢ RUKFUXT and f, (x) is the output of the [, ;-th layer. If we
set wg = 0, and set by, = y;, where y; is the one-hot vector corresponding to label ¢. Then
fw b(x) = y;, for any x € X. Therefore, h;(x) € He,foranyi=1,.. K, K + 1. O

Note that in some works [84], by is fixed to 0. In fact, it is easy to check that when g > 2 and
activation function o is not a constant, Proposition 1 still holds, even if b, = 0.

Proposition 2. For any sequence q = (11, ...,1,) satisfying that I, = d and l, = [ (note that d is
the dimension of input data and | is the dimension of output), if {v € R : E(v) > \} # 0 and
{v e R : E(v) < A} # 0, then the functions hy and hy belong to ’Hg)}‘; where hy(x) = 1 and
ha(x) = 2, for any x € X, where 1 represents the ID labels, and 2 represents the OOD labels.
Therefore, Assumption I holds.

Proof of Proposition 2. Since {v € R! : E(v) > A} # 0 and {v € R! : E(v) < A} # (), we can
findv, € {veR : E(v)>Alandv, € {ve R : E(v) < A}

For any fy, , € FJ, we have
fwb(x) = wyfy_1(x) + by,
where w, € Réxlg—1, b, € R¥>1 and f,_1(x) is the output of the /,_;-th layer.
If we set wy = 0;5;,_, and b, = vy, then fy 1,(x) = v; for any x € X, where 0;5;,_, is | x l5_1

zero matrix. Hence, h, can be induced by fy, 1,. Therefore, h; € ’Hg’)};.

Similarly, if we set w, = 0;x1,_, and by = v, then f, 1 (x) = vy for any x € X, where Orxi1,_, is
I x l4—1 zero matrix. Hence, hy can be induced by £, ,. Therefore, ho € HZ% O

It is easy to check that when g > 2 and activation function o is not a constant, Proposition 2 still
holds, even if by = 0.

L Proof of Theorem 10

Before proving Theorem 10, we need several lemmas.

Lemma 9. Let o be ReLU function: max{z,0}. Given q = (I1,...,ly) and q' = (I}, ..., 1}) such
thatly, =1y andly =1}, and l; <1j (i =1,...,g — 1), then F§ C Fg, and Hg C Hg,.
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Proof of Lemma 9. Given any weights w; € R!*!i-1 and bias b; € R%*!, the i-layer output of
FCNN with architecture q can be written as

f;(x) = o(wifi_1(x) +b;), Vxc R Vi=2 ...¢g—1,
where f;_; (x) is the i-th layer output and f; (x) = x. Then, the output of last layer is
fw b(x) = wefy_1(x) + by.
We will show that fy, 1, € F& - We construct fw b’ as follows: for every w) € Rli“;—l, ifll—1;>0
andl}_, —1;_1 > 0, we set
b= [ 0(1;]—0;»“]

where 0,,, means the p x ¢ zero matrix. If I — l; =0and I]_; — l;_1 > 0, we set

W — w; 01 x7_,—tio1)
' O —tiyxt;_,  Ow—1yx(t_,~ti_1)]

wi=[ Wi Oux@_ -1, »], b;=b;.

If I

iy —li—1=0andl, —1; > 0, we set

/ w; / bi

= b, = .
Wi { O(Z;li)xl§_1:| T { 0(l§—li)><1:|
Ifl} ; —l;—1 =0andl; —l; =0, we set

It is easy to check thatif I, — I; > 0

/ fz’
fi = { O —1)x1]| "

Ifl; — 1, =0,
fl =f.
Since l’g -1, =0,
f; = fg, i.e., fw/,b’ = fw,b'
Therefore, fw b, € }'g/, which implies that g C fg,. Therefore, Hg C Hg,. O

Lemma 10. Let o be the ReLU function: o(x) = max{x,0}. Then, q < q' implies that F§ C Fg,,
HG CHG, whereq = (I, ..., lg) and q' = (13, ..., [},).

Proof of Lemma 10. Given I" = (I7,...,17,,) satisfying that g < ¢", i’ = [; fori = 1,...,9 — 1,
I =lg-1fori=g,..,¢g" — 1,and Iy, = l,, we first prove that 7§ C FJ, and HS C H,r.
Given any weights w; € R'*!i-1 and bias b; € R!*!, the i-th layer output of FCNN with
architecture q can be written as

f;(x) = o(wifi_1(x) +b;), Vx e R Vi=2 ..,9g—1,
where f; 1 (x) is the i-th layer output and f; (x) = x. Then, the output of the last layer is

fw b (%) = wyfy_1(x) + by.
We will show that fy, 1, € Fg,. We construct fy 1, as follows: if i = 2,...,g — 1, then w =w
and b = b ifi=g,...,¢g" — 1, thenw; =1;,_ ;, , andb] =0; _, 1, where I; _, ;,_, is the
lg—1 x ly_y identity matrix, and 0y, _, »1 is the [;_; X 1 zero matrix; and if i = ¢”, then W’g’,, =Wy,
b;’,, = by. Then it is easy to check that the output of the ¢-th layer is
£ =f,_1,Vi=g—1,9,....9" — 1.

Therefore, fw b = fw b, which implies that 7§ C Fqr- Hence, HY C H,.

When ¢” = ¢/, we use Lemma 9 (q” and q satisfy the condition in Lemma 9), which implies that
Far CFq» Hyr C Hgy. Therefore, Fg C Fg,, Hg C He. O
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Lemma 11. [85] If the activation function o is not a polynomial, then for any continuous function
f defined in R%, and any compact set C C RY, there exists a fully-connected neural network with
architecture q (I, = d,ly = 1) such that

inf — <€
L max | fup() = (0] < ¢

Proof of Lemma 11. The proof of Lemma 11 can be found in Theorem 3.1 in [85]. O

Lemma 12. [f the activation function o is the ReLU function, then for any continuous vector-valued
function £ € C(R%;RY), and any compact set C C RY, there exists a fully-connected neural network
with architecture q (I1 = d, 1y = 1) such that

inf f —f
o, TEX [fwb(x) — f(x)[2 <,

where || - ||2 is the £ norm. (Note that we can also prove the same result, if o is not a polynomial.)

Proof of Lemma 12. Letf = [f1,..., fi] T, where f; is the i-th coordinate of f. Based on Lemma 11,
we obtain [ sequences q', q2,....q" such that

inf max|g1(x) — f1(x)| < €/V1,

g1 6.7:;’1 xeC

inf — < l
.- max [ga(x) — fo(x)| < ¢/ V1,

inf max |g(x) — fi(x)] < e/VI.

ngf:l xeC

It is easy to find a sequence q = (lq,...,14) (I; = 1) such that " < q, forall i = 1,...,1. Using
Lemma 10, we obtain that F gi, C ]-"g . Therefore,

inf - 1
it maxlg(x) — ()] < e/V1,

inf max|g(x) — fa(x)| < ¢/V1,

gEFg xeC

inf max |g(x) — fi(x)| < ¢/ V1.

ge}‘g xeC

Therefore, for each i, we can find gy p: from FJ such that
max |gwi,b"’ (X) - f’L (X)| < e/ﬂa
xeC

where w* represents weights and b’ represents bias.

We construct a larger FCNN with g = (13,3, ..., [;) satisfying that I} = d, I} = I *[;,fori =2,..., g.
We can regard this larger FCNN as a combinations of [ FCNNs with architecture q, that is: there are m
disjoint sub-FCNNs with architecture q in the larger FCNN with architecture q’. For i-th sub-FCNN,
we use weights w' and bias b’. For weights and bias which connect different sub-FCNNs, we set
these weights and bias to 0. Finally, we can obtain that gw 1, = [gw! bl; Jw2, b2 -+ ng’bL]T € Fgs
which implies that

W —f .
mas g (x) — £(0)]2 < ¢

We have completed this proof. O
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Given a sequence q = (ly, ..., ;), we are interested in following function space Fam:
Fam ={M-(cof):VfeFJ}
where o means the composition of two functions, - means the product of two matrices, and
Mo | tix@-n O ,
O1x,-1) 1

here 1;,(;, 1) is the 1 x (I, — 1) matrix whose all elements are 1, and 0y, (;, 1) is the 1 x (I, — 1)
zero matrix. Using FJ y;, we can construct a binary classification space H{ y;, which consists of all
classifiers satisfying the following condition:

h(x) = arg min fly(x).
k={1,2}

where f¥;(x) is the k-th coordinate of M - (o o f).

Lemma 13. Suppose that o is the ReLU function: max{z,0}. Given a sequence q = (l1,...,14)
satisfying that [y = d and lg = K + 1, then the space Hg \q contains ¢ o Hg, and H7 \p has finite
VC dimension (Vapnik—Chervonenkis dimension), where ¢ maps ID data to 1 and OOD data to 2.
Furthermore, if given q' = (13, ..., 1) satisfying that I, = K and l; = l;, fori =1,...,g — 1, then
Ho CHY o Hom

Proof of Lemma 13. For any hy, v € Hg, then there exists fy, 1, € Fg such that h. p, is induced by
fw . b. We can write fy, 1, as follows:
fwb(x) = wyfy_1(x) + by,

where w, € RE+Dxlo-1 b ¢ REHDXT and £, (x) is the output of the /,_;-th layer.

Suppose that
V1 b1
Vo b2
Wy = e |y bg= e |
VK by
VK41 br+1

where v; € R'*%s-1 and b; € R.

We set
fw’,b’ (X) = W;fg_l(x) + blg7
where
Vi by
wp= | =] P
VK bx

It is obvious that fy,/ b/ € fg,. Using £/ 1 € .Fg,, we construct a classifier Ay 1,y € Her

hw' pr = argmax f";,,b,,
ke{l,...,K}

where f"fv, b 18 the k-th coordinate of fy,/ 1.

Additionally, we consider
fw,b,B =M. O'(B . fw,b) S ‘/—-g,Mv
where
B= | lt,-vxt,-1n —la,—nx
01x(1,—1) 0 '
here I;, _1)x(1,—1) is the (I; — 1) x (I, — 1) identity matrix, 01, (;,_1) is the 1 x (I, — 1) zero
matrix, and 1, _1)x1 is the (I, — 1) x 1 matrix, whose all elements are 1.
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Then, we define that for any x € X,

hw b,B(X) := arg max fv]f;,b,B (x),
ke{1,2}
where f"fv b.B(X) is the k-th coordinate of fy, 1, g(x). Furthermore, we can check that hw 1, g can be
written as follows: for any x € X,

B ) 1, if f\}v,b,B(x) > 05
WEEET 2, i £l p(x) <0

It is easy to check that
hw,b,B = ¢ o hw,b7
where ¢ maps ID labels to 1 and OOD labels to 2.
Therefore, hy b(x) = K + 1 if and only if hw b B = 2; and hyw b(x) = k (k # K + 1) if and only
if hw,b,B = 1 and hyw b/ (x) = k. This implies that Hg C Hg, @ H yp and ¢ o Hg C H p-
Let q be (1, ...,14,2). Then F\; C F¢. Hence, HY oy C HZ. According to the VC dimension

theory [37] for feed-forward neural networks, 'Hg has finite VC dimension. Hence, ’H;M has finite
VC-dimension. We have completed the proof. O

Lemma 14. Let |X| < 400 and o be the ReLU function: max{x,0}. Given r hypothesis functions
hi,ho,....h. € {h: X — {1,...,1}}, then there exists a sequence = (l1,...,1,) withl; = d and
lg =1, suchthat hy, ..., h, € Hg.

Proof of Lemma 14. For each h; (i = 1,...,7), we introduce a corresponding f; (defined over X’)
satisfying that for any x € X, f;(x) = yy if and only if h;(x) = k, where y; € R! is the one-hot
vector corresponding to the label k. Clearly, f; is a continuous function in X', because X’ is a discrete
set. Tietze Extension Theorem implies that f; can be extended to a continuous function in R.

Since X is a compact set, then Lemma 12 implies that there exist a sequence q* = (I%, ..., l;i) (i =d

and l;i =) and f 1, € FJ; such that

1

mase [, () — £506) 1, < 70—

where || - ||¢, is the £5 norm in R!. Therefore, for any x € X, it easy to check that

arg max fv’f,vb(x) h;(x),

kell,....1}
where fv’f,’b(x) is the k-th coordinate of fw b (x). Therefore, h;(x) € Hg,.

Let g be (I1,...,14) (I1 = d and I, = I) satisfying that " < q. Using Lemma 10, we obtain that
’Hgi C Hg, foreach i = 1,...,r. Therefore, hy, ..., h, € Hg. O

Lemma 15. Let the activation function o be the ReLU function. Suppose that |X| < +oco. If
{veR":E(v) >\ and {v € R : E(v) < \} both contain nonempty open sets of R' (here, open
set is a topological terminology). There exists a sequence q = (11, ...,1g) (1 = dand l; = 1) such
that ’Hg:’\E consists of all binary classifiers.

Proof of Lemma 15. Since {v € R : E(v) > A}, {v € R' : E(v) < A} both contain nonempty
open sets, we can find vy € {v € R' : E(v) > A}, vo € {v € Rl : E(v) < A} and a constant
r > 0 such that B,.(v1) C {v € Rl : E(v) > A} and B,(v2) C {v € Rl : E(v) < A}, where
B.(vi) ={v:|v—=ville, <r}and B.(v2) = {v :|v = va|le, <7}, here || - ||¢, is the {5 norm.
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For any binary classifier h over X', we can induce a vector-valued function as follows: for any x € X,

vy, if h(x) =1;
flx) = { vo, if h(x) = 2.

Since X is a finite set, then Tietze Extension Theorem implies that f can be extended to a continuous
function in R?. Since X is a compact set, Lemma 12 implies that there exists a sequence q" =
(1h, ...,lgh) (I" = d and l;’h = 1) and fw,, € FZ, such that

.
mace [ () — £3) ez < 2

where || - ||¢, is the ¢2 norm in R’. Therefore, for any x € X, it is easy to check that E(fy 1 (x)) > A
if and only if h(x) = 1, and E(fw b(x)) < A if and only if h(x) = 2.
For each h, we have found a sequence q" such that & is induced by fwb € ]-"gh , E and \. Since

|X| < o0, only finite binary classifiers are defined over X'. Using Lemma 14, we can find a
sequence q such that Hb), = ’Hg:)}g, where H?), consists of all binary classifiers. O

Lemma 16. Suppose the hypothesis space is score-based. Let |X| < +oo. If {v € Rl : E(v) > A}
and {v € R' : E(v) < A} both contain nonempty open sets, and Condition 2 holds, then there exists
a sequence q = (l1,...,1) (I1 = d and ly = 1) such that for any sequence q' satisfying q < q' and
any ID hypothesis space H™, OOD detection is learnable in the separate space D5 for H™ o HP,
where HP = ’Hg’,?‘E and H™ e HP is defined below Eq. (4).

Proof of Lemma 16. Note that we use the ReLU function as the activation function in this lemma.
Using Lemma 10, Lemma 15 and Theorem 7, we can prove this result. O

Theorem 10. Suppose that Condition 2 holds and the hypothesis space H is FCNN-based or score-
based, i.e., H = Hg or H = H™ o HP, where H'™ is an ID hypothesis space, H® = HZ’,?; and
H = H™ o HP is introduced below Eq. (4), here E is introduced in Egs. (5) or (6). Then

There is a sequence q = (l1,...,lg) such that OOD detection is
learnable in the separate space % for H if and only if | X'| < +oc.

Furthermore, if |X| < 400, then there exists a sequence q = (11, ...,1g) such that for any sequence
q’ satisfying that @ < q', OOD detection is learnable in D%+ for H.

Proof of Theorem 10. Note that we use the ReLLU function as the activation function in this theorem.
e The Case that 7 is FCNN-based.

First, we prove that if | Y| = +oc, then OOD detection is not learnable in 7% for Hg, for any
sequence q = (l1,...,ly) (h =dandl, = K +1).

By Lemma 13, Theorems 5 and 8 in [86], we know that VCdim(¢ o Hg) < 400, where ¢ maps ID
data to 1 and maps OOD data to 2. Additionally, Proposition | implies that Assumption | holds and
SUD g {x € X : h(x) € Y}| = 400, when |X'| = +o0. Therefore, Theorem 5 implies that OOD

detection is not learnable in 7% for Hg, when |X'| = +oo.

Second, we prove that if | X'| < 400, there exists a sequence q = (I1,...,1y) (lh =dandl, = K +1)
such that OOD detection is learnable in 7% for Hg.

Since |X'| < +o0, it is clear that |H,y| < 400, where H.,)) consists of all hypothesis functions from
X to Yau. According to Lemma 14, there exists a sequence g such that H,;; C Hg. Additionally,

Lemma 13 implies that there exist %™ and H® such that Hg C Hin o HP. Since M,y consists all
hypothesis space, Han = Hg = H™ @ HP. Therefore, H" contains all binary classifiers from &’ to
{1,2}. Theorem 7 implies that OOD detection is learnable in 7% for Hg.
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Third, we prove that if |X| < oo, then there exists a sequence q = (l1,...,ly) (I; = d and
lg = K + 1) such that for any sequence q’ = (I, ..., I}, ) satisfying that q < q’, OOD detection is
learnable in 7% for Hg,.

We can use the sequence q constructed in the second step of the proof. Therefore, Hg = Han.
Lemma 10 implies that Hg C HZ,. Therefore, HJ, = Han = HJ. The proving process (second step
of the proof) has shown that if |X'| < 400, Condition 2 holds and hypothesis space H consists of all
hypothesis functions, then OOD detection is learnable in 2% for H. Therefore, OOD detection is
learnable in 7% for Hg,. We complete the proof when the hypothesis space H is FCNN-based.

o The Case that 7{ is score-based

Fourth, we prove that if | X| = +oo, then OOD detection is not learnable in 25 for H'" e HP,
where HP = HZ’% for any sequence q = (I1,...,15) (l1 = d, l; = 1), where E is in Egs. (5) or (6).

By Theorems 5 and 8 in [86], we know that VCdim(?—lg”)jE) < +00. Additionally, Proposition 2
implies that Assumption 1 holds and supy 4. |[{x € X : h(x) € V}| = +o0, when |X| = +oc.
Hence, Theorem 5 implies that OOD detection is not learnable in 2%, for Hg, when |X| = +oo.

Fifth, we prove that if |X'| < +oo, there exists a sequence q = ({1, ...,1y) (I1 = dand I, = [) such
that OOD detection is learnable in %, for for " @ HP, where HP = ’ng‘g for any sequence
q=(l,...,1ly) (1 =d,1; =1), where E is in Eq. (5) or Eq. (6).

Based on Lemma 16, we only need to show that {v € R : E(v) > A} and {v € R' : E(v) < A}
both contain nonempty open sets for different scoring functions E.

. exp (v") exp (v*/T) l c
Since maxyeq1,. 1} m, maXye(1,. 1} m and T'logy ", _, exp (v°/T) are
continuous functions, whose ranges contain (7,1), (7, 1), (0,400) and (0, +00), respectively.

Based on the property of continuous function (E~1(A) is an open set, if A is an open set), we obtain
that {v € R! : E(v) > A} and {v € R! : E(v) < A} both contain nonempty open sets. Using
Lemma 16, we complete the fifth step.

Sixth, we prove that if | X'| < 400, then there exists a sequence q = (l1,...,l;) (lh =dand [, =1)
such that for any sequence q' = (1}, ..., l;,) satisfying that q < q’, OOD detection is learnable in

Dy for for H" @ HP, where HP = ’Hg}?‘E, where F is in Eq. (5) or Eq. (6).

In the fifth step, we have proven that Eq. (5) and Eq. (6) meet the condition in Lemma 16. Therefore,
Lemma 16 implies this result. We complete the proof when the hypothesis space H is score-based. [

M Proofs of Theorem 11 and Theorem 12

M.1 Proof of Theorem 11

Theorem 11. Suppose that each domain Dxy in 9;’;’, is attainable, i.e., arg min, ., Rp(h) # 0
(the finite discrete domains satisfy this). Let K = 1 and the hypothesis space H be score-based

(H = Hg% where E is in Egs. (5) or (6)) or FCNN-based (H = H). If u(X) < +o0, then the
Jollowing four conditions are equivalent:

Learnability in Qf“b/ for H <= Condition | <= Realizability Assumption <= Condition 3

Proof of Theorem 11.
1) By Lemma 1, we conclude that Learnability in .@;3 for H = Condition 1.

2) By Proposition 1 and Proposition 2, we know that when K = 1, there exist hy, ho € H, where
hy = 1 and hy = 2, here 1 represents ID, and 2 represent OOD. Therefore, we know that when

K =1, infpey R2(h) = 0 and infj,cp RY®(h) = 0, for any Dxy € 242,

By Condition 1, we obtain that inf,cy Rp(h) = 0, for any Dxy € @fﬂb, Because each domain
Dxy in .@fﬂb, is attainable, we conclude that Realizability Assumption holds.
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We have proven that Condition 1= Realizability Assumption.
3) By Theorems 5 and 8 in [86], we know that VCdim(¢ o Hg) < +o0 and VCdim(Hg:}\;) < +o0.
Then, using Theorem 9, we conclude that Realizability Assumption=- Learnability in @;‘;ﬁ for H.
4) According to the results in 1), 2) and 3), we have proven that

Learnability in @;{‘, for H <Condition 1< Realizability Assumption.

5) By Lemma 2, we conclude that Condition 3=-Condition 1.

6) Here we prove that Learnability in 7 é‘(f, for H =Condition 3. Since ¥ é‘(f, is the prior-unknown
space, by Theorem 1, there exist an algorithm A : U5 (X x J)" — H and a monotonically
decreasing sequence €.ons(n), such that €.ons(n) — 0, as n — 400, and for any Dxy € 9;‘(’3,

Es~py,, [RB(A(S)) — inf RE(A)] < ccons(n),

ESND?(IYI [RODut<A(S)) — }ig% R(Blt(h)] S ECOHS(n).

Then, for any ¢ > 0, we can find n, such that € > €cons(n¢), therefore, if n = n., we have
ne in _ s in <
Espre,. [RB(A(S)) }ig?f{ Rp(h)] <e,

ne out s out <
]ESNDXIYI [RD (A(9)) }%Iel;f{ Rp (h)] 6
which implies that there exists S, ~ D' y. such that
in A ) — inf in h) <
R5(A(Se)) }%QHRD( ) <e
out A ) — inf out h) < e.
RH(A(S.) — nf R (h) < e
Therefore, for any equivalence class [D’yy| with respect to @;‘ﬂb/ and any € > 0, there exists a
hypothesis function A(S,) € H such that for any domain Dxy € [Dyy],
A(S) e {W € H:RY'(W) < jnf. Ry (h)+ ey n{h € H: RE(K) < jnf. RB(h) + €},
;S S
which implies that Condition 3 holds. Therefore, Learnability in :@j‘(’; for H =Condition 3.

7) Note that in 4), 5) and 6), we have proven that

Learnability in 24, for H =Condition 3=Condition 1, and Learnability in 2%{. for % <Condition
1, thus, we conclude that Learnability in .@é‘(’f, for H <Condition 3<Condition 1.

8) Combining 4) and 7), we have completed the proof.

M.2 Proof of Theorem 12

Theorem 12. Let K = 1 and the hypothesis space H be score-based (H = Hg”%, where E is in

Egs. (5) or (6)) or FCNN-based (H = Hg)). Given a prior-unknown space Jxy: if there exists a
domain Dxy € PDxy, which has an overlap between ID and OOD distributions (see Definition 4),
then OOD detection is not learnable in the domain space P xvy for H.

Proof of Theorem 12. Using Proposition 1 and Proposition 2, we obtain that inf,c3 RS (h) = 0 and
infrey RY(h) = 0. Then, Theorem 3 implies this result. O

Note that if we replace the activation function ¢ (ReLU function) in Theorem 12 with any other
activation functions, Theorem 12 still hold.
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