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Appendix

A CONVERGENCE ANALYSIS

A.1 PRELIMINARIES

We first recall a few standard notions for smooth and weakly-convex functions on R<.
Definition 2 (Lipschitz continuity). A function f : R — R is L-Lipschitz if for all z,z' € R,

If(@) = fO) < Llle— 2|

Definition 3 (Smoothness). A differentiable function f : R* — R is f-smooth if for all z,z' € R,
IVf(z) = V@) < Lz —a'.

Consider the problem
minmax f(x,y).
z oy

Given this min-max problem we define

d(z) = gl"leagf(x,y),

where f(x,-) is concave on a convex, bounded set Y. Even though & may be nonconvex, one can
still seek stationary points of ® as a proxy for global minimizers.

Definition 4 (Stationarity — differentiable case). A point x € R is an e-stationary point of a
differentiable ® if
[Ve(z)|| < e.

When € = 0, x is a true stationary point.

If @ is not differentiable (e.g. in the general nonconvex-concave setting), we weaken this via weak
convexity.
Definition 5 (Weak convexity). A function ® : R? — R is (-weakly convex if

> () + 5[l

is convex.

In particular, one can define the Moreau envelope of ®, which both smooths and regularizes it.
Definition 6 (Moreau envelope). For A > 0, the Moreau envelope of ® is

D, (z) = Ini]éld {@(w) + %wax”?}

we

Lemma A.1 (Smoothness of the Moreau envelope). If f is {-smooth and Y is bounded, then the
envelope ®1(2¢) of () = maxyecy f(x,y) is differentiable, {-smooth, and {-strongly convex.

This allows an alternative stationarity measure:

Definition 7 (Stationarity via Moreau envelope). A point x is e-stationary for an ¢-weakly convex ® if

VP10 @) < e

Lemma A.2 (Proximity to ordinary subgradients). If x satisfies ||V ®1(2¢) ()| < €, then there exists
T such that

min < e and |z—-2z| < 5.
min €] < le—2ll < %
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Finally, since our algorithm performs a mirror-ascent update on the dual variable ¢ € A, we require
some standard facts about the associated Bregman divergence on the probability simplex. Concretely,
let

p: R - R bea strictly convex C'! generator.

Then for any p1, ps € A"~ ! the Bregman divergence is defined by

Dy(p1llp2) = @(p1) — wp2) — (Ve(p2), p1 —q).

Definition 8 (Legendre generator). A function o is called a Legendre generator on the simplex if

1. @ is strictly convex and continuously differentiable on the open simplex {x > 0, >, x; =

1},
2. its gradient N o extends continuously to the closed simplex A",

3. and ¢ attains its global minimum at the uniform distribution u = (1/n,...,1/n).

Example A.1 (Negative-entropy / KL generator). When

n
x) = E x;Inx;,
i=1

one obtains the Kullback—Leibler divergence,

Dxwr(p1llp2) = Zpl i 111 L, 1-

Since we initialize and maintain all iterates in the interior of Ag, this divergence remains finite
throughout our mirror-ascent steps.

Property A.1 (Nonnegativity & convexity). For any Legendre generator @, one has

Dy,(pllg) >0, Dy(pllg) =0 <= p=gq,

and D (- ||q) is convex in its first argument.

Lemma A.3 (Boundedness on the simplex). If both @ and ¥V are bounded on the closed simplex,
then

max D .
p1,p2€AN—1 o (P1lp2)

Lemma A.4 (KL-bound under interior iterates). Suppose during mirror-ascent every dual iterate
g+ € Ag satisfies

g >0 Vi=1,....,G,t=0,1,...,
for some § > 0. Then for any two such iterates p1,p2 € Ag,

Dxuy(p1llp2) < D.
Where D = ln%.

Proof. Since py ; > ¢ for all ¢, we have

) ) 1
lnpl’l < lnpl’l = In: + lnpy,
P2, d 0

and because ), p1; = land >, pi;Inp;,; <O,

P1,i
D Zl : < 'Ll ’Ll 7 S 1 <
kL(p1]|p2) = E p1, Il E p1, H + E P1,: 0Py, ﬂ 5

13



Under review as a conference paper at ICLR 2026

A.2 PROPERTIES OF THE ROBUST LOSS

Assumption A.1. The cost function ¢ : (X x Y x X x V) — Ry is continuous. For each v € X
andy € Y, c(-, (z,y)) is 1-strongly convex with respect to the norm || - ||.

Assumption A.2 (Lipschitz Loss Function). Consider the loss function L. Then for every function f
with model parameters 6 € © and for every (z,y) € (X,Y) we assume that L is K-Lipschitz with
respect to 6

Assumption A.3 (Lipschitz smoothness of the loss). Consider the loss function L. Then for every
Sunction f with model parameters 6 € © and for every (x,y) € (X,Y) we assume

[Vo £ltoizy) = Vo Llfoizy)| < Loo 6 =0
Ve 003 :9) = Vay £ 9] < L | o) = @)
Vo £(foi2,9) — Vo L(fo;2',)|| < Loz || (2,9) — (@', ¢/)
IV £Ufo:2,9) = Vay L(forsz,y)|| < Lzo 16— 6|

Lemma A.5 (Smoothness of the penalized surrogate). Suppose the loss L : © x (X x)) - R
satisfies Assumptions[A.1)and[A.3] (smoothness in 0 and z) with constants Lgg, Ly, L9, L., and
that the transport cost c¢(z,w) is convex in w. Let Fy denote the robust loss for each environment

such that
Fy(0,z,y) = sup  o(fo; (z,y), (z",y)),
(z",y")e(X,Y)

)

where
o(fo; (z,y), (@', y) = L(fo; 2", y) — ve((z,y), (2, ).

Then we have that F is L y—smooth, where

Lg:L.g
Ly=Lpg+ ——.
! ['7 - LZZ]Jr
Proof. The proof follows from Lemma 1 in|Sinha et al.[{(2017) O

Lemma A.6 (Lipschitzness of the robust surrogate). Under Assumption the robust group-level
loss

Fy(0,z,y) = sup {E(fg;u,v) - 70((m,y), (uw))}

(u,w)eEX XY
is K-Lipschitz in 6.

Proof. Let
Fy0:,y) = swp { £(fosu,0) = ve((y), (w,0) }.
(u,w)EX XY
() Fy(0;2,y) — Fo(0'52,y) < K[|0 —¢'].

Choose (u*,v*) € argmax(, ) {L(fo; u,v) — v c((x,y), (u,v))}, which according to Sinha et al.
(2017) exists for v > L,,. Then

Fy(6;2,y) = E(fg;u*,v*) — fyc((:c,y), (u*,v*)),
and by definition of the supremum,
Fy(0'52,y) > L(for;u",0") = ye((z,y), (u*,0")).
Subtracting gives
Fy(0;2,y) — Fy(0';2,y) < L(fo;u*,v") — L(for;u’,v*).
By Assumption[A.2]
|L(fosu*,v") = L(for;u”,0")] < K0~ 0.

Hence
Fy(;2,y) — Fy(0';2,y) < K|0—0"||.
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(i) Fo(0's 2, y) — Fo(0;2,y) < K16 — ¢']|.

Choose (i, 0) € arg max(y,,){L(for; u,v) —vc((z,y), (u,v))}. Then
Fy(0';2,y) = L(for;0,0) = e((,y), (@, 0)),

and

Fy(0:2,y) > L(fo:0,0) —ve((z,y), (a,0)).
Subtracting yields

Fy(0';3,y) — Fy(6;2,y) < L(fo;0,0) — L(fo;0,0) < K|[0—06].

Combining (i) and (ii) gives
| Fy(0:2,y) — Fy(0s2,9)| < K10 —0].

A.3 CONVERGENCE ANALYSIS FOR DESCENT-MIRROR-ASCENT

From Lemmas[A.5]and[A.6| we have that the robust loss per group

Fg(e) = E(a:,y)NlP’g(’y ( )Su(pX y){‘c(f9; u, U) - "yC((;L‘, y)a (ua ’U))}
u,)e s

is Ly—smooth and K —Lipschitz. Then we have the following lemma.
Lemma A.7. Suppose for each group g = 1, ..., G the robust-loss function

Fy(0) = ]E(Z.vy)wpg( . sup {E(fg; u,v) — ’yc((x,y), (u,v))}
o (u,w)EX XY

is

o (-smoothin 0: ||VFy(0) — VE,(¢')| < |6 — ¢

, and
* K-Lipschitz in 0: |Fy(0) — Fy(6')| < K [0 — ¢'|].
Define the weighted aggregate

G
V(,q) =Y q,Fy(0),  (0,9) €O x Ag.
g=1

Then:

1. V is {-smooth and

2. (0, -) is K-Lipschitz in 0, uniformly over q € Ag.

Proof. Fix any g € Ag and 0,60’ € ©. Since the weights g, > 0 sum to 1, we have

G G
IV0(0,0) = Vou (0, )l = |3 0y (VE,(0) = VEL(@))|| < D ag 00|
g=1 g=1

— o0
Thus ¥(+, g) is -smooth. Similarly
IVq®(0,q) — V¥ (0,q) =0 < 0flg — ¢I.

¥ is max{0, ¢} = ¢-smooth. Likewise

G G
W0, 0) 00, )] = | 0, (Fy(0) = Fy(0)| < D ay K90 = K [}0— 0]

So ¥(-, q) is K-Lipschitz in 6.
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We define G
(0, q) = ZQQFQ(9)~
g=1

and from Lemma[A.7)we know that it is L ;—smooth and K —Lipschitz.

We also define

P() = max ¥
(0) = max ¥(6, q)

. In order to prove convergence we use the notion of stationarity based on the Moreau envolope,
such as Py /o7, () = ming: P(0") 4+ Ly||6" — 6]|3. In this case, showing that the gradient of Moreau
envolope converges to a small value is equal to showing that § converges to a stationary point as
shown in Davis and Drusvyatskiy| (2019).

Lemma A.8. Given assumptionsand let Ay = P(0:) — U(0:,q¢). Then, we have

Pyjor;(01,) < Pryjop; (0r—1) + 200 LAy — %HVPUQLf(@t—l)HQ + oLy K?

Proof. The proof follows the same steps as the proof in the GDA version of Lemma D.3 in|Lin et al.
(2020) O

Lemma A.9. Given assumptionsand let Ay = P(0y) — U (6, qt). ThenVs <t — 1 we have
Ay < mpK?(2t—25—1)+((0p, 1) =V (04—1,q—1))+L s (Drr(q*(05)||ge—1)—Drcr.(q* (0s) )

where ¢*(0) = arg maxzea, (0, q).

Proof. By the definition of Bregman Divergence we have that

Nq(q — a)" V¥ (0i—1,q:-1) < Drr(qllgi—1) — Drr(allar) — Drcr(gel|ge—1).

Since ¥(f;_1,-) is concave we have

V(Oi—1,q) <V(O—1,q-1) + (0 — @-1)Vq¥(Or—1,q-1) (1).

Since ¥(6;_1, ) is L y—smooth we have
—W(Oi—1,q:) < —(0r—1,9-1) — (@ — qt—1)Vq¥(0r—1,9—1) + Ly Drr(qel|lge—1) (2).
Adding (1) and (2), for ny = L% and given the Bregman Definition, we get
U(0i—1,q) — V(0i—1, @) < (¢ —q:) Vq¥(0i—1, qe—1) + Ly Dxr(qe || ge-1)

< Ly {DKL(qII q—1) — Dxw(q || Qt)]

Plugging ¢ = ¢*(6) for s <t — 1 we get

W (-1, ¢*(0s)) — ¥(Or—1, @) < Ly |:DKL (a*(0s) | gt—1) — Dxr(q"(65) || Qt):|
By the definition of A;_; we have

Apq < (\11(91571, q*(9t71)) — \Il(et,h q*(@s)))
+ (U0, qt) — Y01, q1-1))

+ Ly [Di(a0) a1) = Dicu(a"(0:) lar)].
Since (05, g*(05)) > ¥(bs, q) for all ¢ € Ag, we obtain
V(014" (01) = O(01,4"(0) < [P(Orr, ¢ (0r1)) = ¥ (05, ¢* (01-0)) |

+ [0, 7(0) ~ 2 (61, a76)].
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Since ¥(+, ¢) is K-Lipschitz in 0 for any fixed g, it follows that
(01, ¢*(0—1)) — V(0s, ¢*(6s=1)) < K ||i—1 — 0] < m K> (t—1—35),
(s, ¢*(0s)) — U(bi—1, ¢"(0s)) < K |01 — 0| < o K> (t—1—35),
(01, q¢) — V(0 @) < K01 — 6] < mo K>
Putting these pieces together yields the wanted result. O

Lemma A.10. Given assimptions and let Ay = P(0;) — U(0,q:). Then the following
statement holds

N

1
T+1

T ~
L;D A
(;At) <ngK*B+1)+ 5 t T2

where Ag = P(6) — (6o, qo), B is the block size of how we group the AVs € [0, T] and where
D is the upper bound of the simplex Ag where q takes values in using the Bregman Divergence.

Proof. In the deterministic setting, we partition the sequence {A;}1_ into blocks with size at most

B:
{AS (AP A

There are [ (T + 1)/B] such blocks. Hence

1 T {(TH)/BW—l 1 min{(j+1)B—1, T}
DI e DY (B 2 At>'
t=0 §=0 t=jB

Furthermore, setting s = 0 in the inequality of Lemma[A.9]yields

B-1
Y A < e K?B® + Li(Dir(q*(0s)llai-1) — Dir(a*(0s)lla)) + (¥(05,q5) — (6o, q0))
=0

<y K*B* + Ly D + (¥(05,98) — ¥(0o, q))-
Similarly, letting s = jB for1 < j < [(I'+1)/B| — 1in Lemma gives
(j+1)B-1

Z Ay < mpK*B* + Ly D + [Y(041)8, ag+18) — Y08, ¢;B)].
{=;B

Combining the above gives
Ly D ¥(0ri1, gr41) — (0o, go)

B T+1

T

1

LS A < KB 4
T+1 =

Since ¥(+, ¢) is K-Lipschitz in 6 for any fixed g, it follows that
(0741, 1) — (00, q0) = [Y(Or41,q741) — (00, qr41)] + [¥(00.qr+1) — ¥ (00, q0)]
<np K2 (T+1) + A,
where Ag = ¥(6y, @) — ¥(6o, qo)-
O

Theorem A.1 (Convergence of Descent-Mirror-Ascent). Under Assumptions [A.2] and [A.3] and
choosing the step-sizes

N = min{ e? e } Ng = i
16Ly K2’ 4096 L3K2 D [ q Lf’

Algorithm[2| returns an e-stationary point of
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in at most

L3K?DA L3DA
o(—=—+ =)
5 5
iterations Ag = P(0y) — ¥(0y, qo) and Ap = P1yap,(00) — ming Py jap, (6).

Proof. The proof follows the same steps to combine lemmas[A.8] [A.9] and [A.T0]as in Theorem ... in

Sinha et al.[{(2017). The only difference is that we define B as B = %1 / % O

B EXPERIMENTAL DETAILS

B.1 DATASETS
B.1.1 ADULT INCOME DATASET

We use the UCI Adult dataset Becker and Kohavi| (1996), which contains demographic and occupa-
tional information for 47,621 individuals, along with a binary label indicating whether annual income
exceeds $50,000.

Preprocessing. We begin by fetching the dataset from the UCI repository and removing rows with
missing values. Some race categories (Amer-Indian-Eskimo, Asian-Pac-Islander) are merged into
a single Other category to simplify group definitions. All categorical features are encoded using
LabelEncoder, and continuous features are normalized with StandardScaler. The target is
binarized as 1 for > $50,000 and 0 for < $50,000.

Group Definitions. We construct groups by crossing the sensitive attribute race with the income
label. This yields six groups. The distribution of individuals across these groups is shown below:

e Group 0 — White, income > 50K: 10,485 individuals (=~ 22%).

e Group 1 — White, income <50K: 30,301 individuals (=~ 64%).

* Group 2 — Black, income >50K: 555 individuals (=~ 1%).

» Group 3 — Black, income <50K: 3,980 individuals (~ 8%).

* Group 4 — Other race, income >50K: 501 individuals (~ 1%).

e Group 5 — Other race, income <50K: 1,799 individuals (= 4%).

Train/Test Splits. For each of ten seeds, we split the dataset into train and test sets with a ratio of 70—
30, stratified by group. For robustness evaluation, we induce a covariate shift by enforcing a uniform
distribution over the attribute educat ion in the training set, while leaving the test distribution as in
the original dataset. This ensures a mismatch between training and test environments, which serves
as a controlled distributional shift.

Distributions. Figures[5|and[6] show the distributions over educat ion for sections @.Iand @.2]
respectively. These illustrate the impact of our preprocessing and the induced train—test shift.

B.1.2 STROKE DATASET

We use the public healthcare stroke dataset, which includes demographic and clinical covariates and
a binary label indicating stroke occurrence.

Preprocessing. We remove rows with missing values and drop entries with
smoking_status=Unknown. Smoking is binarized as never smoked— 0 and {formerly
smoked, smokes}— 1. Categorical variables are encoded as follows: gender € {Male, Female,
Other} — {0,1,2}, ever_married (No/Yes)— {0, 1}, work_type via categorical codes, and
Residence_type (Rural/Urban)— {0,1}. We define the prediction target target=stroke
and drop heart_disease, stroke, and id. All remaining features are scaled to [—1, 1] with
MinMaxScaler.
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education distribution (train vs. test)
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Figure 5: Train—test shift in the educat ion marginal on the Adult dataset. We construct training splits with a
uniform distribution over educat ion, while the test split retains the dataset’s natural distribution. The example
shown is for seed 42; other seeds (18, 1999, 2025, etc.) realize the same pattern by construction.

Group Definitions. Groups are the Cartesian product of an age bin and the outcome:
age_bin=W¥{age > 60} crossed with target (stroke/no stroke), yielding four groups:

» Group 0: age < 60, stroke= 0: 2,324 individuals (~ 67.8%).
e Group 1: age < 60, stroke= 1: 48 individuals (~ 1.4%).

* Group 2: age > 60, stroke= 0: 922 individuals (= 26.9%).

* Group 3: age > 60, stroke= 1: 132 individuals (=~ 3.9%).

Train/Test Splits (Smoking environments). For each of ten seeds, we construct a training
set by sampling equal numbers from the two smoking categories and shuffling (after scaling,
smoking_statuse€ {—1,1}), and we use the remaining samples as the test set. This induces a
controlled mismatch between the training distribution (balanced by smoking) and the test distribution
(natural). We emit a warning if any group is missing in either split.

Distributions. Figures[7 and [8|report the distributions of smoking_status for sections 4.1 and
A 2] respectively. These illustrate the impact of our preprocessing and the induced train—test shift.

B.1.3 COLORED MNIST

Base dataset and label binarization. We start from the torchvision MNIST dataset
(train=True/False). Each example’s digit d € {0,...,9} is mapped to a binary label. In
particular for digits 0-5 y = 0, and for digits 6-9 y = 1.

Digit-marginal control (environment shift). To induce a controlled change in the digit distribution
between train and test, we subsample each split using per-digit inclusion probabilities. By default, the
training split keeps 80% of digits {0, 1,2, 5,6, 7} and 20% of digits {3, 4, 8,9}, while the test split
swaps these rates (keeps 20% of {0,1,2,5,6, 7} and 80% of {3,4,8,9}).

Color assignment (spurious correlation). For each included image, color is coupled to the binary
label in training but neutral in testing. Train: with probability 0.9 we assign red if y,;, = 0 and green
if ybin = 1; with probability 0.1 we flip the color. Test: we use a 50-50 split independent of the label,
i.e., Pr(red | ybin) = Pr(green | ypin) = 0.5 for both yni, € {0,1}. Coloring is implemented by
copying the grayscale MNIST intensities into a single RGB channel (red channel for “red”, green
channel for “green”) and setting the other channels to zero. The final digits resemble those in Fig. [0}

Groups. Groups are defined as the cartesian product of color and binary label: red_0, green_0,
red_1,green_1.
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(a) Test environment with 90% above threshold and 10% below threshold.
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(b) Balanced test environment with 50%—50% split.
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(¢) Test environment with 10% above threshold and 90% below threshold.

Figure 6: Examples of constructed test environments by varying the proportion of samples above vs. below the
education threshold. Shown are the extreme settings (90-10, 10-90) and the balanced case (50-50).

B.2 MODEL ARCHITECTURES

Tabular models. For all tabular datasets, we employ a multilayer perceptron (MLP) with two
hidden layers. The first hidden layer maps the input features to a 64-dimensional representation,
followed by an Exponential Linear Unit (ELU) activation. The second hidden layer consists of 32
units, also followed by an ELU activation. The output layer is a single linear unit producing a scalar
prediction. Unless otherwise stated, no dropout is applied. This architecture is kept fixed across all
methods to ensure fair comparisons.
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Figure 7: Train—test shift in the smoking marginal on the Stroke dataset. We construct training splits with a
uniform distribution over smoking, while the test split retains the dataset’s natural distribution. The example
shown is for seed 42; other seeds ( 18, 1999, 2025, etc.) realize the same pattern by construction.

Colored MNIST. For the Colored MNIST experiments, we use a simple convolutional neural
network (CNN) commonly employed in prior work on distributionally robust learning. The network
consists of two convolutional layers: the first with 32 filters of size 3 x 3, and the second with 64
filters of size 3 x 3. Each convolutional layer is followed by a ReLU activation and 2 x 2 max
pooling. The resulting feature maps are flattened and passed through a fully connected layer with 128
units and ReLU activation, followed by a final linear layer producing a single scalar output. This
lightweight CNN is sufficient for the binary classification task (digit < 4 vs. > 4) while allowing
controlled evaluation under distribution shifts.

B.3 HARDWARE AND IMPLEMENTATION

All experiments were implemented in PyTorch (v2.2.0) with CUDA 12.3 and cuDNN enabled.
Training and evaluation were performed on a Linux workstation equipped with two NVIDIA TITAN
RTX GPUs (24 GB memory each, driver 545.23.08). El

C MULTI-MODAL EXPERIMENTS

C.1 CHEXPERT (PNEUMONIA, IMAGE+METADATA)

Dataset and task. We use frontal chest radiographs from CheXpert to predict pneumonia (binary
label). Each example includes an image and structured metadata; in our setup we use Sex, standard-
ized age (Age_z), and the radiographic finding Cardiomegaly, an abnormal enlargement of the
heart visible on chest X-rays.

Preprocessing. Images are resized to 224 x224 and normalized with ImageNet statistics. Meta-
data are processed as follows: Sex is binarized, Age_ z is z-scored using training statistics, and
Cardiomegaly is encoded as {0, 1}.

'We will release all code and scripts to reproduce our results.
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Groups. Following the tabular experiments, groups are defined by age and outcome: (age <60 vs.
>60) x (pneumonia 0/1), yielding four intersectional groups.

Train/test construction (environment shift). To induce a covariate shift, the training split is
constructed to have a uniform marginal over Cardiomegaly (approximately 50-50 present/absent),
while the fest split retains the dataset’s natural (imbalanced) prevalence. This mirrors the single-
environment shifts used in the tabular studies but on the metadata side of the multimodal input.

Model (multimodal fusion). For the CheXpert pneumonia experiments we use a multimodal
network that fuses image features with structured metadata (e.g., Sex, Age). The image backbone is
a ResNet 18 with the final fully connected layer replaced by an identity, yielding a global feature vector
of dimension feat_dim (= 512 for ResNet18). This vector is projected to img_out_dim=256
via a linear layer, ReL U, and dropout (p=0.1).

Metadata is passed through a small MLP with hidden sizes {64} (Linear—-ReLU-Dropout). The
projected image embedding and the metadata embedding are concatenated and fed to a fusion MLP
with hidden sizes {128}, ending in a single linear logit for binary classification.

Robustness setup (metadata-only DRO). In all CheXpert runs, distributional robustness is
applied only to the metadata, not to the image pixels. Concretely, the DRO inner maximization
perturbs the metadata vector in the standardized space using an ¢, transport cost; images remain fixed.
This targets uncertainty in the tabular attributes (e.g., prevalence shifts in Cardiomegaly) while
avoiding adversarial image perturbations.

Hyperparameters. We run 5 different experiments with fixed seeds. For training, we run 200
epochs. Batch sizes are 256 for ERM/DRO and 64 per group for GroupDRO/Combined. Optimizers
are SGD with momentum 0.9 and weight decay 10~%; learning rates are 0.05 (ERM, DRO) and 0.1
(GroupDRO, Combined). Group weights use exponentiated gradients with step size 7,=0.1 and one
update per epoch. For robustness, we sweep v € {1074,1073,1072,1071, 1,2, 3,4}. The inner
ascent (applied only to metadata, not images) uses 10 steps and ascent learning rate 0.1. Training
runs on a single GPU when available.

Results. Figure [10freports performance on the CheXpert pneumonia task. We observe that our
method consistently outperforms the baselines in terms of worst-group accuracy, where gains are
especially pronounced across mid-range values of . At the same time, our method significantly
reduces the accuracy range (right), indicating more equitable performance across groups, while
maintaining competitive average accuracy. Interestingly, for very small ~, performance deteriorates
because the induced ambiguity set is overly large: when groups are not far from each other, this over-
smoothing leads to a loss of useful structure. In contrast, at moderate values of +, our method achieves
clear improvements over Group DRO, suggesting that properly calibrated robustness penalties better
capture distributional uncertainty without collapsing group-specific signal. Overall, results indicate
that our method achieves both higher subgroup robustness and substantially reduced disparities, while
maintaining stable average performance.
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Figure 8: Examples of constructed test environments by varying the proportion of samples of smoking and non
smoking patients. Shown are the extreme settings (90-10, 10-90) and the balanced case (50-50).
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(a) (b)

Figure 9: Two Colored MNIST examples with two different labels and their corresponding colors.
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Figure 10: Performance of ERM, DRO, Group DRO, and our method on the CheXpert pneumonia prediction
task as a function of the robustness penalty «. Left: Average accuracy. Middle: Worst-group accuracy. Right:
Accuracy range across groups.
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