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Abstract
Models of human feedback for AI alignment, such
as those underpinning Direct Preference Opti-
mization (DPO), often bake in a singular, static
set of preferences, limiting adaptability. This pa-
per challenges the assumption of monolithic pref-
erences by introducing Configurable Preference
Tuning (CPT), a novel framework for endowing
language models with the ability to dynamically
adjust their behavior based on explicit, human-
interpretable directives. CPT leverages syntheti-
cally generated preference data, conditioned on
system prompts derived from structured, fine-
grained rubrics that define desired attributes like
writing style. By fine-tuning with these rubric-
guided preferences, the LLM learns to modulate
its outputs at inference time in response to the
system prompt, without retraining. This approach
not only offers fine-grained control but also pro-
vides a mechanism for modeling more nuanced
and context-dependent human feedback.

Several experimental artifacts, such as training
code, generated datasets and fine-tuned models
are released at github.com/vicgalle/configurable-
preference-tuning

1. Introduction
The remarkable progress of Large Language Models (LLMs)
has opened up a wide array of applications. However, align-
ing these models with desired human preferences, behav-
iors, and safety protocols remains a significant challenge.
Techniques like Reinforcement Learning from Human Feed-
back (RLHF) (Ziegler et al., 2019; Christiano et al., 2017;
Ouyang et al., 2022) and Direct Preference Optimization
(DPO) (Rafailov et al., 2024) have shown success in steer-
ing LLMs towards preferred responses. However, a crit-
ical, often implicit, assumption underpins many existing
human feedback models: the notion of a singular, static,
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and monolithic set of preferences. Human preferences are
rarely monolithic; they are dynamic, context-dependent, and
multifaceted, influenced by factors ranging from individual
user needs and cultural norms to evolving ethical consider-
ations and task-specific requirements. Current models, by
”baking in” an averaged or aggregated preference profile
during fine-tuning, often lack the adaptability to reflect this
richness. This inflexibility means that altering an LLM’s
behavior—for instance, to adjust its writing style, modify
its safety strictures for different environments, or cater to di-
verse user cohorts—typically necessitates resource-intensive
retraining or further fine-tuning. Such limitations hinder the
development of truly robust, interpretable, and adaptable AI
systems capable of genuinely understanding and responding
to the spectrum of human intentions.

This paper directly addresses this limitation by challenging
the assumption of monolithic preferences. We introduce
Configurable Preference Tuning (CPT), a novel framework
that endows LLMs with the ability to dynamically adjust
their behavior at inference time based on explicit, human-
interpretable directives. CPT leverages synthetically gener-
ated preference data conditioned on system prompts that are
derived from structured, fine-grained rubrics. These rubrics
may define desired attributes—such as stylistic nuances,
safety levels, or persona adherence—along various dimen-
sions. By fine-tuning an LLM with these rubric-guided
preference pairs using a DPO-style objective, the model
learns to modulate its outputs in response to the correspond-
ing system prompt, without requiring retraining for each
new configuration.

Our contribution offers a pathway towards more granular,
transparent, and controllable alignment. It moves beyond
a single ”one-size-fits-all” preference model, allowing for
the explicit specification and operationalization of diverse
behavioral configurations. We demonstrate that CPT en-
ables fine-grained control contributing to the development
of more robustly aligned AI systems that can better reflect
the multifaceted nature of human feedback.

1.1. Related Work

The challenge of moving beyond a single, averaged prefer-
ence model in LLMs has spurred growing interest in per-
sonalized Reinforcement Learning from Human Feedback
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(RLHF). Broadly, approaches to specialize LLM behavior
can be seen through different lenses. Some methods aim
to derive a single policy that represents a compromise or
aggregation of diverse user preferences (Dumoulin et al.,
2023; Conitzer et al., 2024). While these improve upon a
simple average, they may not fully cater to specific, nuanced
individual needs.

Closer to our work are approaches designed for downstream
specialization of a policy or its underlying reward model to
a particular user, persona, or specified context. Some meth-
ods learn a direct mapping from user-specific information
(e.g., interaction history, user IDs, or textual descriptions) to
tailored reward signals or policy adjustments. For instance,
(Poddar et al., 2024) use variational preference learning
to encode user rankings into a latent variable conditioning
the reward model. (Li et al., 2024) compute user embed-
dings to condition a base LLM via soft prompting in their
P-RLHF framework. These methods often rely on infer-
ring latent representations of user preferences, which, while
powerful, may lack the direct interpretability and explicit
controllability offered by rubric-based specifications. (Gal-
lego, 2024) enhances DPO for language models by allowing
flexible safety configurations via system prompts without
hard-coding behaviors, but doesn’t account for non-binary
preference levels.

Another line of research, exemplified by the work of (Bar-
reto et al., 2025) on Reward Feature Models (RFMs) and
related approaches (Chen et al., 2024; Go et al., 2023), fo-
cuses on learning a set of underlying reward features from
context-response pairs. User-specific preferences are then
modeled by learning a set of weights for these features, of-
ten through adaptation with a few examples from the target
user. The work of (Barreto et al., 2025) demonstrate that
an RFM can be trained on pairwise comparisons, resulting
in reward features that are linearly combined with user-
specific weights wh to represent p(y ≻ y′|x, h), enabling
fast adaptation to new users by learning these weights. Their
approach effectively aims to discover latent criteria from
data and then allows users to re-weight these criteria.

Our Configurable Preference Tuning (CPT) framework
shares the overarching goal with these latter approaches:
enabling fine-grained, user-directed control over LLM out-
puts. However, CPT diverges in its mechanism for specify-
ing and learning these configurations. Rather than learning
latent reward features from general preference data and
then adapting weights for individual users (h), CPT utilizes
explicitly defined rubrics as the source of stylistic dimen-
sions. These rubrics, paired with target scores, guide a
teacher model to generate synthetic preference data. The
student model is then fine-tuned using Direct Preference
Optimization (DPO) to respond to system prompts (s) which
are concise summaries of these rubric-score combinations.

Thus, while RFMs learn to adapt p(y ≻ y′|x, h) by infer-
ring wh for learned features ϕθ(x, y), CPT directly learns
p(y ≻ y′|x, s) where s is a declarative instruction about
the desired style, operationalized through rubric-guided syn-
thetic data. The “features” in CPT are implicitly defined by
the rubric criteria and are selected/modulated by the system
prompt, rather than being learned end-to-end as in RFM.
This allows CPT to integrate rich, human-understandable
stylistic desiderata directly into the fine-tuning process.

2. Configurable Preference Tuning
Our framework aims to learn a preference model p(yw ≻
yl|x, s), where yw is the preferred (winner) response and yl
is the dispreferred (loser) response to a user prompt x, given
a system prompt s that expresses the desired configuration.
This contrasts with standard preference modeling p(yw ≻
yl|x), which lacks the conditioning on s.

2.1. Synthetic Preference Data Generation

The core of CPT lies in its method for generating diverse,
configurable preference data without requiring new human
annotations for each desired configuration. This process
involves the following steps:

1. Rubric Definition (R): We define a set of rubrics,
{Ri}, each detailing specific attributes or styles for
LLM responses. For instance, a rubric might specify
criteria for “formality,” “creativity,” “safety level,” or
“adherence to a persona.” Each rubric implicitly defines
an axis of variation. Two examples of the rubrics we
used in the experimental section can be found in Tables
4 and 5 in the Appendix.

2. Score-Conditioned Generation: For each rubric
R and user prompt x, we can prompt a capable
teacher LLM to generate responses that achieve dif-
ferent target scores or levels (e.g., low score,
moderate score, high score) with respect to
that rubric. This is achieved using an augmented
prompt ϕ(x,R,score), which instructs the teacher
model, as seen in Table 1. This allows us to sample
responses y ∼ p(y|ϕ(x,R,score)) aligned with dif-
ferent rubrics R and score levels.

Table 1. Prompt for generating responses aligned with R and
score.

Your response will be evaluated
using the following rubric {R}.
Given the following task: {x},
generate a response that achieves
{score} in the previous rubric.
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3. System Prompt Synthesis (s): For each rubric R and
target score, we generate a concise system prompt
s = summarize(R,score). This system prompt is
a natural language instruction that encapsulates the
essence of achieving score under rubric R, and is
obtained by prompting the same teacher models to
summarize the rubrics into a brief instruction of two
to three sentences. Table 6 shows several examples of
summarized system prompts.

4. Constructing Preference Pairs: To create DPO train-
ing instances, we select a rubric R and two distinct
target scores, score1 and score2. We then gen-
erate corresponding responses y1 and y2 using the
teacher model. We also generate their associated sys-
tem prompts s1 and s2 according to the previous step.

This yields two preference tuples for our training
dataset:

• The first tuple conditions on s1: Given user
prompt x and system prompt s1 (which desires
behavior aligned with score1), y1 is preferred
over y2. The DPO training sample is effectively
(prompt: (s1, x), chosen: y1, rejected: y2).

• The second tuple conditions on s2: Given user
prompt x and system prompt s2 (which desires
behavior aligned with score2), y2 is preferred over
y1. The DPO training sample is (prompt: (s2, x),
chosen: y2, rejected: y1).

This construction is crucial as it teaches the student
LLM to switch its preference based on the provided
system prompt s, using the same underlying pair of
generated responses (y1, y2). The end result of this pro-
cess is a preference dataset D = {(s, x, yw, yl)i}Ni=1.

2.2. Illustrative Example: Stylistic Control

Let x be Generate a movie review for a
movie you liked. Let R be the rubric from Table 4
that emphasizes texts written in an unconventional style.

• score1 = extremely high score .

s1 = “Generate a text that is fragmented, illogical, and
filled with unexpected connections, embracing absur-
dity and subverting conventional expectations of lan-
guage and form.”. Teacher model generates y1.

• score2 = low score.

s2: “Write in a clear, concise, and completely conven-
tional style, adhering strictly to established norms of
grammar, syntax, and logical coherence.”. Teacher gen-
erates y2 (a review written using standard language).

The CPT dataset would include:

1. For system prompt s1: (s1, x, y1, y2) indicating y1 ≻
y2.

2. For system prompt s2: (s2, x, y2, y1) indicating y2 ≻
y1.

2.3. Training with DPO

Once we have the preference dataset, we can use it to align
any LLM (the student) to these diverse sets of preferences.
The student LLM is fine-tuned using DPO (Rafailov
et al., 2024). The DPO loss function aims to increase
the likelihood of the preferred response and decrease
the likelihood of the rejected response, conditioned on
both the original user prompt x and the generated system
prompt s. The input to the model during DPO training is
effectively a concatenation or structured combination of s
and x, writing the DPO loss function as LDPO(πθ;πref) =

−E(s,x,yw,yl)∼D

[
log σ

(
β log πθ(yw|s,x)

πref(yw|s,x) − β log πθ(yl|s,x)
πref(yl|s,x)

)]
.

This process distills the nuanced, rubric-guided behaviors
into the student model, making them controllable via s at
inference time.

3. Experiments
To validate the efficacy of Configurable Preference Tuning
(CPT), we conducted a series of experiments. Our evalua-
tion focuses on: (i) the ability of teacher models to generate
rubric-conforming text at specified score levels, which is
foundational for our synthetic data generation, and (ii) the
performance of CPT-distilled student models in adhering
to system-prompted configurations compared to their un-
trained counterparts.

As for the data, from a list of user prompts exercis-
ing open-ended writing tasks (e.g. ”Write a movie
review for an interesting movie you saw”, ”Design a
house for someone who lives upside down”, etc.), we
sampled four fine-grained rubrics with three different
score targets (see Table 6), resulting in a preference
dataset D of 900 samples. This synthetic dataset is
released at https://huggingface.co/datasets/
vicgalle/creative-rubrics-preferences.

3.1. Rubric-Conditioned Generation Quality.

Before constructing the full preference dataset, we first vali-
dated the capability of strong LLMs to generate text aligned
with specific rubric criteria and target scores. This ensures
the feasibility of step 2 in our data generation pipeline
(Section 2.1). We prompted two capable teacher mod-
els, DeepSeek-R1 (Guo et al., 2025) and o3-mini (OpenAI,
2025), with instructions to generate responses for various
tasks, conditioned on a rubric and a target qualifier (e.g., a
low score or an extremely high score). We

3

https://huggingface.co/datasets/vicgalle/creative-rubrics-preferences
https://huggingface.co/datasets/vicgalle/creative-rubrics-preferences


Configurable Preference Tuning with Rubric-Guided Synthetic Data

Table 2. Comparison of model scores with different qualifiers.

Score Qualifier Model Judge Score (/100)

- DS-R1 80.1
o3-mini 71.0

low score
DS-R1 14.1
o3-mini 23.1

extremely high score
DS-R1 96.3
o3-mini 97.9

also prompted the same tasks but without conditioning on
any rubric, acting as a baseline to measure the effectiveness
of the rubric. The generated responses were then evaluated
by an independent judge LLM (Claude 3.5 Sonnet) against
the specified rubric (Gu et al., 2024). Table 2 presents the
results, demonstrating that these models can indeed pro-
duce outputs that achieve scores close to the targeted lev-
els. For instance, when targeting an extremely high
score, responses achieved average scores of 96.3 and 97.9,
while targeting a low score resulted in scores of 14.1
and 23.1. This confirms the viability of generating distinct
responses y1, y2 that can form the basis of our preference
pairs (s1, x, y1, y2) and (s2, x, y2, y1). In addition, when
prompting directly with the task x (Score Qualifier - in the
Table), both models achieved a moderately high score, but
not as peaked than with rubric-guidance.

3.2. Fine-tuning experiments with DPO

We fine-tuned several base models listed in Table 3. We
adopt parameter-efficient fine-tuning in the form of LoRA
(Hu et al., 2022), and run for one epoch over the synthetic
dataset.

Generation Setup. To evaluate the CPT-tuned models
and their untrained counterparts, we generated a testing set
of tasks (following the dataset used in 3.1). For each task,
we prompted the models using all the customized system
prompts according to all combinations of rubric and score
levels used in Section 3.1.

Evaluation Protocol. Generated responses were evalu-
ated by an LLM judge, specifically Claude 3.5 Sonnet (New).
The judge was provided with: i) the full descriptive rubric
R, ii) the original user task x, and iii) the generated re-
sponse y. The judge was instructed to provide a critique
and a numerical score (0-100) based on the given rubric.
The intended target score level for which the correspoding
system prompt was designed was used as the ground truth
for calculating accuracy metrics.

We evaluate using the following metrics:

Accuracy. Let Si ∈ (0, 100] be the continuous rubric
score assigned by the judge for the i-th sample. We define a
binning function B(Si) as:

B(Si) =


low score if 0 < Si ≤ 40

moderate score if 40 < Si ≤ 92.5

extr. high score if 92.5 < Si ≤ 100

Let Qi ∈ {low score,moderate score, ...} be the
ground-truth score qualifier bin associated with the system
prompt s used to generate the i-th sample. The accuracy
with respect to the qualifier is thus:

Acc =
1

N

N∑
i=1

I(B(Si) = Qi),

with I being the indicator function.

Rank correlations. In addition to Accuracy, we employ
Kendall’s Tau (τ ) and Spearman’s Rank Correlation Co-
efficient (ρ) to assess the ordinal relationship between
the judge’s continuous scores and the target qualifier bins
(treated as ordinal categories: low < moderate < high).

Results. Table 3 presents the performance of various mod-
els, comparing their baseline versions against CPT-distilled
counterparts. The results show a consistent and significant
improvement across all models and metrics after CPT fine-
tuning. For example, Mistral-Nemo-12B’s accuracy (Acc)
improved from 0.60 to 0.83, Kendall’s τ from 0.62 to 0.81,
and Spearman’s ρ from 0.74 to 0.93. Similar substantial
gains are observed for Rocinante-12B, Qwen3-4B, Mistral-
Small-24B, and Phi-4-14B. Overall, these results strongly
suggest that the CPT process significantly enhances the
models’ ability to align with specified quality categories
(as defined by the system prompts s) and to produce scores
that accurately reflect the desired ordinal ranking of output
quality according to the rubrics R.

3.3. Comparison to Best-of-N sampling

Our Configurable Preference Tuning approach is orthogonal
to and can complement techniques like Best-of-N (BoN )
sampling. While CPT aims to shift the entire distribution of
model outputs towards the desired configuration specified
by the system prompt s, BoN sampling selects the best
response from multiple generations using a reward model.
We hypothesized that CPT-tuned models would provide a
better starting distribution for BoN , leading to higher quality
results with fewer samples.

To test this, we performed BoN sampling with both the
baseline Mistral-Nemo-12B model and its CPT-tuned ver-
sion. For each N (number of samples), we generated N
responses and selected the one with the highest score as
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Table 3. Model Performance Metrics: Binned Score Accuracy,
Kendall’s Tau, and Spearman’s Rho.

Model Config Acc τ ρ

Rocinante-12B baseline 0.55 0.62 0.76
distilled 0.76 0.76 0.88

Qwen3-4B baseline 0.63 0.78 0.90
distilled 0.77 0.82 0.93

Mistral-Nemo-12B baseline 0.60 0.62 0.74
distilled 0.83 0.81 0.93

Mistral-Small-24B baseline 0.52 0.73 0.85
distilled 0.78 0.80 0.92

Phi-4-14B baseline 0.68 0.79 0.92
distilled 0.77 0.82 0.93

per the LLM judge (using the relevant rubric). Figure 1
illustrates that the CPT-tuned model consistently achieves
higher scores for any given N compared to the baseline.
Moreover, the CPT-tuned model reaches a target quality
score with significantly fewer samples than the baseline,
indicating improved generation efficiency and quality when
CPT is combined with BoN .

Figure 1. BoN results using Mistral-Nemo-12B

4. Conclusions and Further Work
This paper addressed the limitations of static, monolithic
preference models in LLMs by introducing Configurable
Preference Tuning (CPT). CPT endows LLMs with the abil-
ity to dynamically adjust their behavior at inference time in
response to explicit, human-interpretable system prompts.
The core of CPT lies in leveraging synthetically generated
preference data, where preferences are conditioned on sys-
tem prompts derived from structured, fine-grained rubrics
that define desired attributes (like writing style) and target
score levels. By fine-tuning a student LLM using a DPO
objective with these rubric-guided preferences, the model
learns to modulate its outputs according to the specified con-

figuration without needing retraining for each new directive.

Our experiments validated the foundational aspects and
overall efficacy of CPT. We first demonstrated that capable
teacher LLMs can successfully generate text conforming
to detailed rubrics at specified score levels (Section 3.1),
a critical step for our synthetic data generation pipeline.
Subsequent fine-tuning experiments with CPT (Section 3.2)
showed significant improvements in student models’ abil-
ity to adhere to diverse system-prompted configurations.
Across various base models, CPT-distilled versions exhib-
ited substantially higher accuracy in matching target quality
bins and stronger rank correlations between generated out-
put scores and intended rubric-defined levels, compared to
their baseline counterparts. Furthermore, we showed that
CPT can enhance other techniques, such as Best-of-N sam-
pling (Section 3.3), by providing a better initial distribution
of responses, leading to higher quality outputs with fewer
samples.

Future work could explore more complex structures for
system prompts, potentially allowing for compositional con-
trol over multiple attributes simultaneously. Investigating
methods for automatically generating or refining rubrics and
system prompt summaries could further enhance the scala-
bility of CPT. Extending this framework to other domains
and modalities such as image-text pairs (Zhu et al., 2024)
also presents an exciting avenue for research.
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Impact Statement
This paper presents work aiming to advance language model-
ing by enabling more fine-grained, configurable control over
LLM behavior. This enhanced adaptability offers benefits
for personalization and context-specific responses. How-
ever, the capacity for users to dynamically define behavioral
attributes, including those related to safety or style, also ne-
cessitates careful consideration of potential societal impacts
and misuse.

Scalability considerations arise when deploying CPT in real-
world applications, as the creation of detailed rubrics and
validation of synthetic data quality may become resource-
intensive at scale. The reliance on capable teacher models
for generating preference data introduces potential biases
inherent in these models, which could propagate through
the synthetic dataset and influence the final student model’s
behavior. Additionally, the quality and diversity of synthetic
preference pairs depend heavily on the teacher model’s abil-
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ity to understand and execute rubric-guided instructions,
potentially limiting the framework’s effectiveness across
unforeseen domains or cultural contexts.

Ensuring responsible development and deployment prac-
tices, including robust safeguards, is crucial for harnessing
the benefits of such configurable AI systems while mitigat-
ing risks.
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A. Sample data: rubric tables and system prompts

Table 4. Example of rubric targeting an unconventional and absurdist style
Criterion Excellent (Embrace the

Void)
Good (Glimpse the
Glitch)

Fair (Whispers of Weird-
ness)

Needs Improvement
(Too Much Sanity)

Unsatisfactory (Trapped
in the Matrix of Meaning)

Weight

Photographic Invocation
(The “Haunted Lens” Ef-
fect)

The text doesn’t just de-
scribe the photography, it
evokes it like a phantom
limb. The reader should
feel like they are inside
the film’s visual world,
even if that world is dis-
torted and fragmented.

The text hints at the
film’s visual atmosphere
but doesn’t fully transport
the reader.

The text describes some
of the film’s visual ele-
ments but in a conven-
tional way.

The text relies on stan-
dard descriptions of
photography (“well-lit,”
“beautifully composed”).

The text is a dry, tech-
nical analysis of the cin-
ematography, devoid of
any evocative power.

30%

Algorithmic Alchemy
(The “Code Poetry”
Imperative)

The text incorporates el-
ements that suggest the
underlying processes of
the LLM, like code snip-
pets, random data streams,
or hallucinatory lists, cre-
ating a sense of digital
psychedelia.

The text hints at the dig-
ital nature of its creation
but doesn’t fully exploit
its potential.

The text occasionally uses
technical terms related to
film or digital images.

The text is written in a
purely human-like style,
with no trace of its algo-
rithmic origins.

The text reads like it was
written by a human film
critic, completely erasing
its LLM origin.

25%

Ontological Instability
(The “Shapeshifting
Subject” Axiom)

The text’s “voice” is fluid
and unstable, shifting be-
tween perspectives (hu-
man, machine, object, ab-
stract concept) without
warning.

The text experiments with
shifting perspectives but
doesn’t fully commit to
ontological fluidity.

The text occasionally
adopts the perspective
of a character or the
filmmaker.

The text is written from
a consistent, human re-
viewer’s perspective.

The text maintains a
rigidly objective, de-
tached critical voice.

20%

Lexical Anarchy (The
“Glossolalia” Mandate)

The text bends, breaks,
and reassembles language.
Neologisms, portman-
teaus, and nonsensical
word combinations are
encouraged. Punctuation
is optional or used in
unconventional ways.

The text contains some
unusual word choices or
stylistic flourishes.

The text occasionally uses
creative metaphors or sim-
iles.

The text is written in stan-
dard, grammatically cor-
rect English.

The text adheres to strict
rules of grammar and syn-
tax, sacrificing all creativ-
ity for clarity.

15%

The “Glitch in the Matrix”
Quotient (Meta-Reflexive
Ruptures)

The text directly ad-
dresses its own artificial-
ity, comments on the
act of being a language
model generating a
review, or otherwise ac-
knowledges the absurdity
of the entire endeavor.

The text hints at self-
awareness but doesn’t
fully embrace meta-
reflexivity.

The text occasionally
breaks the fourth wall
or addresses the reader
directly.

The text maintains a clear
separation between the re-
viewer and the reader.

The text is a completely
immersive and believable
simulation of a human-
written review.

10%
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Table 5. Example of rubric targeting an ornate and baroque style
Criterion Excellent (A Flourish of

Genius)
Good (A Glimmer of
Grandeur)

Fair (A Touch of Orna-
mentation)

Needs Improvement
(Plain Prose Prevails)

Unsatisfactory (Stark
Stylistic Sterility)

Weight

Lexical Opulence (The
“Golden Thesaurus” Stan-
dard)

The text is a veritable
treasure trove of rare
and evocative vocabulary.
Adjectives and adverbs
are deployed with lavish
abandon. Every noun is
adorned, every verb em-
bellished.

The text demonstrates a
fondness for elaborate vo-
cabulary but doesn’t fully
commit to lexical extrava-
gance.

The text uses some de-
scriptive language but re-
lies mostly on common
words.

The text is written in
plain, straightforward lan-
guage, with little atten-
tion to stylistic embellish-
ment.

The text is utterly devoid
of any stylistic flair, using
only the most basic and
functional vocabulary.

30%

Syntactical Labyrinth
(The “Sentence as a
Palace” Principle)

The sentences are mar-
vels of intricate construc-
tion, winding their way
through a maze of clauses
and sub-clauses, adorned
with parenthetical asides
and punctuated by a sym-
phony of commas, semi-
colons, and dashes.

The text features some
long and complex sen-
tences but doesn’t fully
embrace the labyrinthine
ideal.

The text uses a mix of
simple and complex sen-
tences, but the overall
structure is conventional.

The text is composed pri-
marily of short, simple
sentences.

The text is written in a
style so terse and mini-
malist that it borders on
the telegraphic.

25%

Metaphorical Cornucopia
(The “Image as a Feast”
Doctrine)

The text overflows with
metaphors and similes, of-
ten piled one upon an-
other in a dazzling dis-
play of imaginative ex-
cess. The imagery is
vivid, unexpected, and
perhaps even slightly ab-
surd.

The text employs a good
number of metaphors and
similes, but the imagery
is not always fully devel-
oped or consistent.

The text uses some figu-
rative language but relies
mostly on literal descrip-
tions.

The text uses metaphors
and similes sparingly, if
at all.

The text is entirely devoid
of figurative language,
presenting a purely literal
account of the film’s visu-
als.

20%

Subversive Aesthet-
ics (The “Gilding the
Grotesque” Maxim)

Beneath the ornate sur-
face, the review subtly
challenges conventional
notions of “good” cine-
matography. It might
praise a film for its
“exquisitely ugly” use of
light or find beauty in
what is traditionally con-
sidered flawed.

The review hints at uncon-
ventional interpretations
of the film’s photography
but doesn’t fully develop
these ideas.

The review touches upon
some standard critiques
of cinematography but
doesn’t offer a truly sub-
versive perspective.

The review relies on tra-
ditional notions of “good”
and “bad” cinematogra-
phy, even if expressed in
elaborate language.

The review applies con-
ventional critical stan-
dards in a straightforward
and uninspired manner,
completely lacking in sub-
versive intent.

15%

Self-Aware Hyperbole
(The “Wink and a Nod”
Imperative)

The review is aware of its
own stylistic excess and
uses this self-awareness
to create a sense of irony
or playfulness. It might
include self-deprecating
asides, tongue-in-cheek
exaggerations, or mo-
ments where it breaks
character.

The text demonstrates
some awareness of its
own style but doesn’t
fully exploit its potential
for self-reflexive humor.

The text occasionally uses
irony or humor, but it’s
not directly related to the
writing style.

The text takes itself com-
pletely seriously, with no
hint of self-awareness or
irony.

The text is utterly de-
void of any humor or
playfulness, presenting a
completely earnest and
unironic analysis.

10%
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Table 6. Examples of generated system prompts for given rubric R and score
R Low Score Moderate Score Extremely High Score
R1

(Focus: Unconvention-
ality, Absurdity)

Write in a clear, concise, and
completely conventional style,
adhering strictly to established
norms of grammar, syntax, and
logical coherence.

Introduce some unusual phras-
ing and imagery, but maintain a
generally understandable struc-
ture and logical flow.

Generate a text that is frag-
mented, illogical, and filled with
unexpected connections, em-
bracing absurdity and subvert-
ing conventional expectations of
language and form.

R2

(Focus: Ornate,
Baroque Style)

Use simple, direct language and
short sentences, avoiding any
unnecessary embellishment or
figurative language.

Incorporate some descriptive
language and a few complex sen-
tences, but maintain a generally
straightforward style.

Write in an extremely elabo-
rate and ornate style, employing
long, winding sentences, rich
vocabulary, and a profusion of
metaphors and similes.

R3

(Focus: Mystical, Sym-
bolic Interpretation)

Write a clear, factual, and
objective account, avoiding
any symbolic interpretations or
metaphorical language.

Hint at deeper meanings and
symbolic interpretations, but
maintain a generally grounded
and understandable style.

Imbue every element with sym-
bolic meaning, using the lan-
guage of mysticism and esoteri-
cism to create a text that is de-
liberately obscure and open to
multiple interpretations.

R4

(expansion of R1)
Write in a perfectly standard,
journalistic style, from a consis-
tent human perspective, without
any self-referentiality or unusual
formatting.

Introduce an element of techni-
cal terminology or hint at a shift
in perspective but ensure clarity
in communication overall.

Embody multiple perspectives,
including those of non-human
entities or the writing pro-
cess itself, interweaving
code-like fragments and meta-
commentary with evocative,
unconventional language.
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