
Supplementary material: Template based Graph
Neural Network with Optimal Transport Distances

1 Notations

An undirected attributed graph G with n nodes can be modeled in the OT context as a tuple (C,F ,h),
where C ∈ Sn(R) is a matrix encoding relationships between nodes, F = (f1, ...,fn)> ∈ Rn×d is
a node feature matrix and h ∈ Σn is a vector of weights modeling the relative importance of the
nodes within the graph (Figure 1 of the main paper). We always assume in the following that values
in C and F are finite. Let us now consider two such graphs G = (C,F ,h) and G = (C,F ,h), of
respective sizes n and n (with possibly n 6= n). The Fused Gromov-Wasserstein (FGW) distance is
defined for α ∈ [0, 1] as [14, 15]:

FGWα(C,F ,h,C,F ,h) = min
T∈U(h,h)

EFGWα (C,F ,C,F ,T) (1)

with U(h,h) := {T ∈ Rn×n+ |T1n = h,T>1n = h}, the set of admissible coupling between h and
h. For any T ∈ U(h,h), the FGW cost EFGWα can be decomposed as

EFGWα (C,F ,C,F ,T) = αEGW (C,C,T) + (1− α)EW (F ,F ,T) (2)

which respectively refers to a Gromov-Wasserstein matching cost EGW between graph structures C
and C reading as

EGW (C,C,T) =
∑
ijkl

(Cij − Ckl)2TikTjl (3)

and a Wasserstein matching cost EW between nodes features F and F ,

EW (F ,F ,T) =
∑
ik

‖fi − fk‖22Tik (4)

2 Theoretical results

Preliminaries. Given two graphs G and G, we first provide a reformulation of each matching costs
EGW and EW through matrix operations which will facilitate the readability of our proof.

By first expanding the GW matching cost given in (3) and using the marginal constraints over
T ∈ U(h,h), EGW can be expressed as

EGW (C,C,T) =
∑
ij

C2
ijhihj +

∑
kl

C
2

klhkhl − 2
∑
ijkl

CijCklTikTjl

= 〈C2,hh>〉+ 〈C2
,hh

>〉 − 2〈T>CT ,C〉

= 〈T>C2T ,1n×n〉+ 〈TC
2
T>,1n×n〉 − 2〈T>CT ,C〉

(5)

where power operations are applied element-wise and 1p×q is the matrix of ones of size p× q for any
integers p and q.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Then through similar operations EW can be expressed as

Eα(C,F ,h,C,F ,h,T) =
∑
i

‖fi‖22hi +
∑
k

‖fk‖22hk − 2
∑
ik

〈fi,fk〉Tik

= 〈F 21d,h〉+ 〈F 2
1d,h〉 − 2〈FF

>
,T 〉

= 〈T>F 2,1n×d〉+ 〈TF
2
,1n×d〉 − 2〈F>T ,F>〉

(6)

Lemma 1 The TFGW embeddings are invariant to strong isomorphism.

Proof of Lemma 1. First, as our TFGW embeddings can operate after embedding the nodes feature
of any graph, let us also introduce such an application. Given any feature matrix F = (f1, ...,fn)> ⊂
Rn×d, we denote by φ : Rn×d → Rn×d′ an application such that φ(F) = (ϕ(f1), ..., ϕ(fn))> with
ϕ : Rd → Rd′ .
Let us now consider any pair of graphs G1 = (C1,F1,h1) and G2 = (C2,F2,h2) defined as in the
section 1. Assume that G1 and G2 are strongly isomorphic. This is equivalent to assuming that they
have the same number of nodes n and there exists a permutation matrix P ∈ {0, 1}n×n such that
C2 = PC1P

>, F2 = PF1 and h2 = Ph1 [15, 4].

First observe that the application φ preserves the relation of strong isomorphism. Indeed, as φ
operates on each node independently through ϕ, we have φ(F2) = Pφ(F1) i.e,

φ(F2) = (ϕ(F2,1), ..., ϕ(F2,n)) = P (ϕ(F1,1), ..., ϕ(F1,n)) = Pφ(F1) (7)

Therefore the embedded graphs (C1, φ(F1),h1) and (C2, φ(F2),h2) are also strongly isomorphic
and are associated by the same permutation P linking G1 and G2.

Let us consider any graph template G = (C,F ,h). We will prove now that the FGW cost from
(C1, φ(F1),h1) to G applied in T is the same than the FGW cost from (C2, φ(F2),h2) to G applied
in PT . To this end we will prove that analog relations hold for the Gromov-Wasserstein and the
Wasserstein matching costs independently (in this generic scenario), then we will conclude thanks
the equation (2) which expresses FGW as a linear combination between both aforementioned costs.

First using the reformulation of EGW of equation (5), we have

EGW (C1,C,T) = 〈T>C2
1T ,1n×n〉+ 〈TC

2
T>,1n×n〉 − 2〈T>C1T ,C〉

= 〈T>P>C2
2PT ,1n×n〉+ 〈TC

2
T>,P>1n×nP 〉 − 2〈T>P>C2PT ,C〉

= 〈(PT)>C2
2PT ,1n×n〉+ 〈PTC

2
(PT)>,1n×n〉 − 2〈(PT)>C2PT ,C〉

= EGW (C2,C,PT)
(8)

where we used C2
1 = (P>C2P)2 = P>C2

2P and the invariance to permutations of 1n×n.

Then, for EW similar operations using equation (6) and φ(F2)2 = (Pφ(F1))2 = Pφ(F1)2 lead to,

EW (φ(F1),F ,T) = 〈T>φ(F1)2,1n×d〉+ 〈TF
2
,1n×d〉 − 2〈φ(F1)>T ,F

>〉

= 〈T>P>φ(F2)2,1n×d〉+ 〈TF
2
,P1n×d〉 − 2〈φ(F2)>PT ,F

>〉

= 〈(PT)>φ(F2)2,1n×d〉+ 〈PTF
2
,1n×d〉 − 2〈φ(F2)>PT ,F

>〉
= EW (φ(F2),F ,PT)

(9)

Therefore, the same result holds for FGW combining equations (2), (8) and (9) as

EFGWα (C1, φ(F1),C,F ,T) = αEGW (C1,C,T) + (1− α)EW (φ(F1),F ,T)

= αEGW (C2,C,PT) + (1− α)EW (φ(F2),F ,PT)

= EFGWα (C2, φ(F2),C,F ,PT)

(10)

2

Following an analog derivation than above, one can easily prove for T ∈ U(h2,h) that

EFGWα (C2, φ(F2),C,F ,T) = EFGWα (C1, φ(F1),C,F ,P>T) (11)

Using the relations (10) and (11), we will now prove the following equality

FGWα(C1, φ(F1),h1,C,F ,h) = FGWα(C2, φ(F2),h2,C,F ,h) (12)

First of all, the existence of optimal solutions for both FGW problems is ensured by the Weierstrass
theorem [11]. We denote an optimal coupling T ?

1 ∈ U(h1,h) for FGWα(C1, φ(F1),h1,C,F ,h).
Assume there exists an optimal coupling T ?

2 for FGWα(C2, φ(F2),h2,C,F ,h) such that

EFGWα (C2, φ(F2),C,F ,T ?
2) < EFGWα (C2, φ(F2),C,F ,PT ?

1) (13)

then using the equalities (11) for the l.h.s and (10) for the r.h.s, we have

EFGWα (C1, φ(F1),C,F ,P>T ?
2) < EFGWα (C1, φ(F1),C,F ,T ?

1) (14)

which contradicts the optimality of T ?
1 . Therefore such T ?

2 can not exist and necessarily PT ?
1 is an

optimal coupling for FGWα(C2, φ(F2),h2,C,F ,h). Finally, we can conclude using the optimality
of T ?

1 and PT ?
1 for their respective FGW matching problems and the equality (10):

EFGWα (C1, φ(F1),C,F ,T ?
1) = EFGWα (C2, φ(F2),C,F ,PT ?

1)

⇔ FGWα(C1, φ(F1),h1,C,F ,h) = FGWα(C2, φ(F2),h2,C,F ,h)
(15)

�

3 Complements on our experimental results on synthetic datasets

4-CYCLES: sample (y=0) 4-CYCLES: sample (y=0) 4-CYCLES: sample (y=1) 4-CYCLES: sample (y=1)

Figure 1: Few samples with different labels y ∈ {0, 1} from the dataset 4-CYCLES.

SKIP-CIRCLES: sample (y=0) SKIP-CIRCLES: sample (y=3) SKIP-CIRCLES: sample (y=6) SKIP-CIRCLES: sample (y=9)

Figure 2: Unique sample from different labels y ∈ {0, 3, 6, 9} corresponding respectively to
{2, 5, 11, 16} hops from the dataset SKIP-CIRCLES.

We provide here some insights and results on the synthetic datasets studied in section 3.1 of the main
paper.

3

Datasets. We considered two synthetic datasets:

• 4-CYCLES [7, 10] contains graphs with (possibly) disconnected cycles where the label yi
is the presence of a cycle of length 4, as illustrated in Figure 1.

• SKIP-CIRCLES [3] contains circular graphs with skip links and the labels (10 classes) are
the lengths of the skip links among {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}, as illustrated in figure 2.

Details on the experiments reported in the paper. The experiments reported in the main paper,
focus on the adjacency matrices for Ci for which two flavours of TFGW are investigated: 1) in
TFGW-fix we fix the templates by sampling one template per class from the training dataset (this
can be seen as a simpler FGW feature extraction); 2) for TFGW we learn the templates from the
training data (as many as the number of classes). For both methods we used the FGW fixing α = 1
(i.e the GW distance) as degrees are not discriminant for these datasets. We fixed for both methods
the same MLP learned to predict labels from the TFGW embeddings. This MLP (ψv) contains 2
layers of 128 hidden units each, with ReLU activations. The models are learnt for 1000 epochs using
Adam optimizer with an initial learning rate of 0.01 and taking the whole train dataset as a batch. For
DropGIN [10] and GIN [17] we replicated their experiments taking the same settings than the ones
described by [10]. For 4-CYCLES, they used 4 GIN layers composed of 2 layers each with 16 hidden
units and batch normalization. For SKIP-CIRCLES, they used 9 similar GIN layers except that for
each GIN layer the number of layer-wise hidden units is set to 32 instead of 16. Finally, as prescribed
by [10] we set the number of runs to r = 50 and the node dropout probability p = 2

m where m is the
mean number of nodes in the graphs in the dataset. These methods also use the Adam optimizer with
an initial learning rate of 0.01, where the learning rate by 0.5 every 50 epochs during 1000 epochs.
Switching their optimization scheme to the ones used for TFGW did not change the reported results
so we kept the one from the original paper.

2 4 6 8 10

0.94

0.96

0.98

1.00

(TFGW-fix) SKIP-CIRCLES
 accuracies over K

SP
ADJ

Figure 3: Test accuracies on
SKIP-CIRCLES of TFGW-fix
for K ∈ {2, ..., 10}.

Additional experiments. To further emphasize the discrimina-
tive power of the TFGW embeddings, we report here additional
experiments conducted on the SKIP-CIRCLES simulated datasets.
For adjacency (ADJ) and shortest-path (SP) matrices as Ci, instead
of using one template per class (K = 10) as reported in the main
paper for the sake of conciseness, we stress the TFGW-fix models
by learning on K ∈ {2, ..., 10} fixed templates sampled from the
dataset. We report in Figure 3, the test accuracies averaged over
10 simulations with the same other settings than for the previously
reported experiments. The averaged accuracies are illustrated in
bold, while the intervals between the minimum and the maximum
accuracy across runs is illustrated with a lower intensity. We can
see that both methods perfectly distinguish the classes using at most
3 templates. Moreover only 2 suffice to achieve such performance
using SP matrices, which is not the case for ADJ matrices. These
results support our detailed analyzes in section 3 of the paper where the SP matrices are shown to
better perform than ADJ ones, when no pre-processing of the node features is used.

4 Complement on the experiments on real datasets

We detail here few aspects of our experiments on real datasets reported in section 3.2 and 3.3 of the
main paper. We first report some statistics on these datasets in Table 1.

Graph Classification benchmark. We complete here the description of the settings and the
validated hyper-parameters that we used in our benchmark whose results are reported in Table 2 of
the main paper.

For our method TFGW, we validate the number of templates K in {β|Y|}β , with β ∈ {2, 4, 6, 8}
and |Y| the number of classes. Only for ENZYMES with 6 classes of 100 graphs each, we validate
β ∈ {1, 2, 3, 4}. All parameters of our TFGW layers are learned, namely the templates structure
Ck, feature matrix F k, the weights hk, and finally a single trade-off parameter α. Moreover these
templates are initialized by randomly sampling from the train dataset, a same number of graphs

4

Table 1: Statistics on real datasets considered in our benchmark.
datasets features #graphs #classes mean #nodes min #nodes max #nodes median #nodes
MUTAG {0..6} 188 2 17.93 10 28 17.5
PTC-MR {0, .., 17} 344 2 14.29 2 64 13
ENZYMES R18 600 6 32.63 2 126 32
PROTEIN R29 1113 2 29.06 4 620 26
NCI1 {0, ..., 36} 4110 2 29.87 3 111 27
IMDB-B None 1000 2 19.77 12 136 17
IMDB-M None 1500 3 13.00 7 89 10
COLLAB None 5000 3 74.5 32 492 52

−4 −2 0 2 4 6
0

5

10

15

20

25

30

LDA in the embed. for PTC (4 temp., No GNN)
Class 0
Class 1

−6 −4 −2 0 2 4
0

10

20

30

40

LDA in the embed. for PTC (4 temp., 2 layers)
Class 0
Class 1

−6 −4 −2 0 2 4
0

5

10

15

20

25

30

LDA in the embed. for PTC (8 temp., 2 layers)
Class 0
Class 1

Figure 4: LDA 1D projections of the distance embeddings for different models learned on PTC.

1 2 3 4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distances to templates (No GNN)

1 2 3 4

10

15

20

25

30

Distances to templates (2 GIN layers)

1 2 3 4 5 6 7 8

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Distances to templates (2 GIN layers)

Figure 5: Distributions of the distance to the templates fo each templates for different models learned
on PTC.

for each class. We also learn φu taken as a GIN architecture [17] composed of L = 2 GIN layers
aggregated using the Jumping Knowledge (concatenation) scheme [18]. Every GIN layer is a MLP of
2 layers with batch normalization, whose number of units is validated in {16, 32} for bioinformatics
datasets and fixed to 64 for social network datasets, as in [17]. For predictions, the same MLP ψv
than for the experiments on synthetic datasets is used. Finally a dropout technique is applied to ψv
with a rate validated in {0, 0.2, 0.5}. We learn our models over 500 epochs using Adam optimizer
with an initial learning rate of 0.01 and a batch size of 128.

For OT-GNN [2] which is the approach the most similar to TFGW, the exact same settings and
validated hyper-parameters are considered. For WEGL [6], we validated the number of layers
L ∈ {1, 2, ..., 6} for their non-parametric embeddings, then learnt Random Forest classifiers shown
to achieve the best results on average across datasets, whose hyper-parameters are validated as in
the original paper. For GIN [17] and DropGIN [10] which share the same architecture than TFGW
except for the pooling strategy (sum aggregation instead of FGW distances), we also validated the
same hyper-parameters than for TFGW. For PPGN [8], we validated the same 3 architectures than
authors, as the learning rates taken in

{
5.10−5, 10−4, 5.10−4, 10−3

}
and its decay every 20 epochs

taken in {0.5, 1}, while fixing a small batch size of 8 as motivated by authors’ implementations.
For Patchy-SAN [9], we validated their receptive field parameter in k ∈ {5, 10, 10E} considering
the same other settings than the authors. For DIFFPOOL [19], following the discussion of the
authors, we validated for their default version the number of pooling layer in {1, 2}, the clustering
ratios in {10%, 25%}. Finally for the kernel methods, we cross validated the SVM parameters
C ∈ {10−7, 10−6, ..., 107} and γ ∈ {2−10, 2−9, ..., 210} using the scikit-learn implementation [1].
Then for the FGW kernel [15], we validated 15 values of the trade-off parameter α via a logspace
search in (0, 0.5) and symmetrically (0.5, 1). For WL [12] and WWL [13], the number of WL step
is validated in {1, ..., 10} while taking the discrete and continuous versions of the WL refinement
suggested in [13].

5

Template 1 Template 2

Template 3 Template 4

FGW templates for PTC
Class 0 Class 0 Class 0 Class 0

Class 1 Class 1 Class 1 Class 1

Samples from PTC

Figure 6: Illustration of the templates learned on PTC with K = 4 and L = 0 (on the left side), and
some samples from this dataset (on the right sight). The graph structures are represented using the
entries of Ck (resp. Ci) as repulsive strength and the corresponding edges are colored in shades of
grey (black being the maximum). The node colors are computed based on their features F k (resp.
Fi). The nodes size are made proportional to the weights hk (resp. hi).

Additional visualization of the TFGW embeddings. In this paragraph we complete the analysis
of our TFGW embeddings detailed in the section 3.3 of the main paper. Especially, we illustrate the
LDA in Figure 4 and the distributions 5 of our distance embeddings learned on PTC with L = 0 and
L = 2, and the number of templates K varying in {4, 8}. Note that these embeddings are the same
than studied thanks to a PCA in the main paper. First, the figure 4 supports our conclusions regarding
the separability of our embeddings, which becomes more linear when increasing the number of
GIN layers from L = 0 to L = 2 and the number of templates from K = 4 to K = 8. Then, the
distribution of the distances in figure 5 exhibits that the discrimination between samples of different
classes is achieved through the modes of these distributions. One can also notice that the range
of distances increases considerably from L = 0 to L = 2. This coincides with the fact that the
learned templates are extreme points in the embedding, as illustrated in the main paper, which might
encode "exaggerated" features in order to maximize the margin between classes in the embedding.
An instance of such learned templates are illustrated in figure 6. By comparing these templates (on
the left) with samples from the dataset (on the right), we can clearly see that the learned templates
do not represent realistic graphs from the data. Such behavior was to be expected in our end-to-end
framework where the prediction task is achieved by a MLP with non-linear activations. However
we believe that our promising results achieved thanks to our TFGW modeling can open the door to
novel and hopefully more interpretable end-to-end architectures.

1 2 3 4 5 6
Number of layers L

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cie

s

PTC: test accuracies of best GIN models depending on L

Figure 7: Test accuracies on PTC of GIN for
L ∈ {1, ..., 6}.

Sensitivity of GIN to the number of layers.
We aim here to benchmark our sensitivity anal-
ysis to the number of templates and the number
of GIN layers of TFGW, reported in the section
3.3 of the main paper. To this end, we learned
GIN models with a number of GIN layers vary-
ing in L ∈ {1, 2, ..., 6}, using analog settings
and validation than detailed in our graph classi-
fication benchmark. The test accuracies of the
validated models for each L are reported in Fig-
ure 7. First, the model with L = 4 (default for
the method [17]) leads to best performances on
average. Then, no clear pattern of overfitting is
observed for L > 4, as indeed L = 5 leads to
worst performances but L = 6 leads to the second best model in this benchmark. Such behavior may
come from the Jumping Knowledge scheme (with concatenation) [18] as argued by the authors.

Complements on runtimes. We complete in this paragraph the benchmark on runtimes provided in
the section 3.2 of the main paper. We report for the best models selected for the benchmark in Table 2
of the main paper, their averaged prediction time per graph while using CPU and/or GPU. These were

6

Table 2: Benchmark of averaged prediction time per graph (in ms) on CPU or GPU vs accuracy drop
w.r.t TFGW models of compared methods for best models reported in Table 2 of the main paper.

PTC PROTEINS

CPU runtimes (ms) GPU runtimes (ms) Accuracy drop
w.r.t TFGW (%) CPU runtimes (ms) GPU runtimes (ms) Accuracy drop

w.r.t TFGW (%)
(ours) TFGW 12.1 20.7 - 45.9 21.8 -

OT-GNN 7.6 8.8 4.4 27.1 11.1 4.9
GIN 0.19 0.06 9.4 2.5 0.09 6.7

DropGIN 14.3 2.1 10.1 79.8 4.7 6.0
PPGN 32.1 26.1 6.8 91.7 11.6 5.8

taken on CPUs (Intel Core i9-9900K CPU, 3.60 GHz) or a GPU Quatro RTX 4000. As illustrated in
Table 4, TFGW has approximately the same or lower averaged prediction time per graph on CPU,
as recent DropGIN and PPGN architectures. However, GIN, DropGIN and PPGN, get a 3-30 times
speedup on GPU when TFGW is slower on GPU for PTC and 2x faster for PROTEIN (acceleration
of matrix product for large graphs but overhead time for transfering between CPU and GPU for small
graphs). This shows that TFGW is not yet accelerated on GPU but remains reasonable in practice,
so one can still benefit from it in the GNN and MLP models. Note that the main bottleneck of the
method is the OT network flow CPU solver that is called in the Conditional Gradient solver of FGW
in the current implementation (see POT implementation [5]). Recent works focused on accelerating
network flow algorithms on GPU which will probably be integrated soon in CUDA and will allow a
similar speedup for TFGW, coupled for instance with GIN, in the future.

How does TFGW behave with other GNN architectures than GIN? Our intuition re-
garding this matter is that using our TFGW layer to obtain the graph representations con-
sistently leads to better performances than simple sum pooling over graph nodes, regardless
of the GNN architectures. Moreover, performances of both approaches should be correlated.
To support these affirmations, we investigate here the use of Graph Attention networks [16,
GAT] for graph classification, either using a simple sum pooling or using the TFGW layer.

Table 3: Test set classification accuracies from 10-
fold CV. The first (resp. second) best performing
method is highlighted in bold (resp. underlined).

MUTAG PTC PROTEIN
GAT (L=1) 89.4(1.0) 53.1(3.4) 77.8(1.7)
GAT (L=2) 91.1(2.5) 52.0(4.0) 76.3(3.1)
GAT (L=3) 88.9(1.7) 53.4(3.8) 75.9(2.3)
GAT (L=4) 91.2(2.8) 50.9(5.8) 77.6(2.7)

GIN 90.1(4.4) 63.1(3.9) 76.2(2.8)

First, as the GAT architecture was investigated
by its authors on node classifications and not
graph classifications, we study the behavior of
GAT layers within a comparable framework than
the one proposed by GIN, on 3 bioinformatic
datasets. We use the same Jumping Knowledge
scheme than GIN, i.e we concatenate features
produced at each GAT layer, then we sum them
across all nodes to get the graph representation
fed to the finale classifier ψv . To fit to the bench-
mark reported in Table 2 of the main paper, we
validate the features dimension in {16, 32} (using a single attention head in GAT layers) and the
dropout ratios applied to ψv in {0, 0.2, 0.5}, while considering L ∈ {1, 2, 3, 4} GAT layers. The
results in terms of accuracy are reported in Table 3. GAT provides competitive performances on
MUTAG and PROTEIN datasets compared to GIN, while GIN largely outperforms GAT on the PTC
dataset. Also, it seems harder to find a consensus across datasets on L for GAT-based architectures
compared to GIN’s ones. Finally, we observed that using multi-head attention was prone to overfitting
and led to lower performances on these graph classification tasks, so such suggestions from GAT’s
authors on node classification tasks seem to not hold for these graph-level tasks.

Table 4: Test set classification accuracies from 10-fold
CV of the TFGW models using GAT or GIN as φu. The
first (resp. second) best in bold (resp. underlined).

TFGW- φu L input MUTAG PTC PROTEIN

GAT
2 ADJ 95.4(3.5) 68.7(5.8) 83.4(2.8)

SP 96.2(3.0) 67.9(5.8) 82.6(2.9)

1 ADJ 94.8(3.1) 66.9(5.4) 82.1(3.3)
SP 96.4(3.3) 68.3(6.0) 82.3(3.1)

GIN
2 ADJ 96.4(3.3) 72.4(5.7) 82.9(2.7)

SP 94.8(3.5) 70.8(6.3) 82.0(3.0)

1 ADJ 94.8(3.1) 68.7(5.8) 81.5(2.8)
SP 95.4(3.5) 70.9(5.5) 82.1(3.4)

Finally, we investigate the merge of our
TFGW layer with GAT layers, as φu to
produce node embeddings. We follow an
analog validation than for TFGW coupled
with GIN, setting L ∈ {1, 2}. The results
are reported in the following table. We can
see that TFGW with GAT leads to com-
petitive performances compared to TFGW
with GIN, at least of MUTAG and PRO-
TEIN. GAT clearly struggles on the PTC
dataset, however with our TFGW layer in-
stead of a sum pooling, we observe a boost

7

of performances from 53.4% to 68.7%. Even if TFGW coupled with GIN on PTC is still considerably
better than TFGW with GAT. Therefore, the choice of GNN architectures to produce node embed-
dings to feed to the TFGW layer matters, but the gain from using TFGW seems to be independent of
the GNN architecture.

References
[1] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pretten-

hofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux.
API design for machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122, 2013.

[2] B. Chen, G. Bécigneul, O.-E. Ganea, R. Barzilay, and T. Jaakkola. Optimal transport graph
neural networks. arXiv preprint arXiv:2006.04804, 2020.

[3] Z. Chen, S. Villar, L. Chen, and J. Bruna. On the equivalence between graph isomorphism
testing and function approximation with gnns. Advances in neural information processing
systems, 32, 2019.

[4] S. Chowdhury and F. Mémoli. The Gromov-Wasserstein distance between networks and stable
network invariants. arXiv:1808.04337 [cs, math], Sept. 2019. arXiv: 1808.04337.

[5] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel,
A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotomamonjy,
I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer.
Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

[6] S. Kolouri, N. Naderializadeh, G. K. Rohde, and H. Hoffmann. Wasserstein embedding for
graph learning. In International Conference on Learning Representations, 2021.

[7] A. Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020.

[8] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks.
Advances in neural information processing systems, 32, 2019.

[9] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs. In
International conference on machine learning, pages 2014–2023. PMLR, 2016.

[10] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer. DropGNN: Random dropouts increase
the expressiveness of graph neural networks. In Advances in Neural Information Processing
Systems, 2021.

[11] F. Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

[12] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

[13] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt. Wasserstein weisfeiler–
lehman graph kernels. In Advances in Neural Information Processing Systems, pages 6436–6446.
Curran Associates, Inc., 2019.

[14] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N. Courty. Fused gromov-wasserstein
distance for structured objects. Algorithms, 13(9):212, 2020.

[15] T. Vayer, N. Courty, R. Tavenard, and R. Flamary. Optimal transport for structured data with
application on graphs. In International Conference on Machine Learning, pages 6275–6284.
PMLR, 2019.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018.

8

[17] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[18] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka. Representation learning
on graphs with jumping knowledge networks. In International Conference on Machine Learning,
pages 5453–5462. PMLR, 2018.

[19] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical graph
representation learning with differentiable pooling. Advances in neural information processing
systems, 31, 2018.

9

	Notations
	Theoretical results
	Complements on our experimental results on synthetic datasets
	Complement on the experiments on real datasets

