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Abstract

Recent work has shown that deep reinforcement
learning agents have difficulty in effectively using
their network parameters. We leverage prior in-
sights into the advantages of sparse training tech-
niques and demonstrate that gradual magnitude
pruning enables value-based agents to maximize
parameter effectiveness. This results in networks
that yield dramatic performance improvements
over traditional networks, using only a small frac-
tion of the full network parameters. Our code is
publicly available, see Appendix A for details.

1. Introduction

Despite successful examples of deep reinforcement learn-
ing (RL) being applied to real-world problems (Mnih et al.,
2015; Berner et al., 2019; Vinyals et al., 2019; Fawzi et al.,
2022; Bellemare et al., 2020), there is growing evidence
of challenges and pathologies arising when training these
networks (Ostrovski et al., 2021; Kumar et al., 2021a; Lyle
et al., 2022; Graesser et al., 2022; Nikishin et al., 2022;
Sokar et al., 2023; Ceron et al., 2023). In particular, it
has been shown that deep RL agents under-utilize their
network’s parameters: Kumar et al. (2021a) demonstrated
that there is an implicit underparameterization, Sokar et al.
(2023) revealed that a large number of neurons go dor-
mant during training, and Graesser et al. (2022) showed
that sparse training methods can maintain performance with
a very small fraction of the original network parameters.

One of the most surprising findings of this last work is that
applying the gradual magnitude pruning technique proposed
by Zhu & Gupta (2017) on DQN (Mnih et al., 2015) with a
ResNet backbone (as introduced in Impala (Espeholt et al.,
2018)), results in a 50% performance improvement over
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Figure 1. Scaling network widths for ResNet architecture, for
DQN and Rainbow with an Impala-based ResNet (Espeholt et al.,
2018). We report the interquantile mean after 40 million environ-
ment steps, aggregated over 15 games with 5 seeds each; error bars
indicate 95% stratified bootstrap confidence intervals. Replay ratio
is fixed to the standard 0.25. The default network is Dense, which
we indicate with a blue color in all the plots, for clarity.

the dense counterpart, with only 10% of the original param-
eters (see the bottom right panel of Figure 1 of Graesser
et al. (2022)). Curiously, when the same pruning technique
is applied to the original CNN architecture there are no
performance improvements, but no degradation either.

That the same pruning technique can have such qualitatively
different, yet non-negative, results by simply changing the
underlying architecture is interesting. It suggests that train-
ing deep RL agents with non-standard network topologies
(as induced by techniques such as gradual magnitude prun-
ing) may be generally useful, and warrants a more profound
investigation.

In this paper we explore gradual magnitude pruning as a
general technique for improving the performance of RL
agents. We demonstrate that in addition to improving the
performance of standard network architectures for value-
based agents, the gains increase proportionally with the
size of the base network architecture. This last point is
significant, as deep RL networks are known to struggle with
scaling architectures (Ota et al., 2021; Farebrother et al.,
2023; Taiga et al., 2023; Schwarzer et al., 2023).
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Our main contributions are as follows. We:

e present gradual magnitude pruning as a general
technique for maximizing parameter efficiency
in value-based RL;

e demonstrate that networks trained with this
technique produce stronger agents than their
dense counterparts, and continue improving as
we scale the size of the initial network;

e investigate this technique across a varied set of
agents and training regimes, including actor-
critic methods;

e present in-depth analyses to better understand
the reasons behind their benefits.

2. Related Work

Scaling in Deep RL  Deep neural networks have been the
driving factor behind many of the successful applications
of reinforcement learning to real-world tasks. However,
it has been historically difficult to scale these networks,
in a manner similar to what has led to the “scaling laws”
in supervised learning, without performance degradation;
this is due in large part to exacerbated training instabilities
that are endemic to reinforcement learning (Van Hasselt
et al., 2018; Sinha et al., 2020; Ota et al., 2021). Recent
works that have been able to do so successfully have had to
rely on a number of targeted techniques and careful hyper-
parameter selection (Farebrother et al., 2023; Taiga et al.,
2023; Schwarzer et al., 2023; Ceron et al., 2023).

Cobbe et al. (2020); Farebrother et al. (2023) and Schwarzer
et al. (2023) switched from the original CNN architecture
of Mnih et al. (2015) to a ResNet based architecture, as
proposed by Espeholt et al. (2018), which proved to be
more amenable to scaling. Cobbe et al. (2020) and Fare-
brother et al. (2023) observe advantages when increasing
the number of features in each layer of the ResNet architec-
ture. Schwarzer et al. (2023) show that the performance of
their agent (BBF) continues to grow proportionally with the
width of their network. Bjorck et al. (2021) propose spectral
normalization to mitigate training instabilities and enable
scaling of their architectures. Ceron et al. (2023) propose
reducing batch sizes for improved performance, even when
scaling networks.

Ceron et al. (2024) demonstrate that while parameter scal-
ing with convolutional networks hurts single-task RL per-
formance on Atari, incorporating Mixture-of-Expert (MoE)
modules in such networks improves performance. Fare-
brother et al. (2024) demonstrate that value functions trained
with categorical cross-entropy significantly improves perfor-
mance and scalability in a variety of domains.

Sparse Models in Deep RL Previous studies (Schmitt
et al., 2018; Zhang et al., 2019) have employed knowledge
distillation with static data to mitigate instability, resulting
in small, but dense, agents. Livne & Cohen (2020) intro-
duced policy pruning and shrinking, utilizing iterative policy
pruning similar to iterative magnitude pruning (Han et al.,
2015), to obtain a sparse DRL agent. The exploration of the
lottery ticket hypothesis in DRL was initially undertaken by
Yu et al. (2019), and later Vischer et al. (2021) demonstrated
that a sparse winning ticket can also be identified through
behavior cloning. Sokar et al. (2021) proposed the use of
structural evolution of network topology in DRL, achieving
50% sparsity with no performance degradation. Arnob et al.
(2021) introduced single-shot pruning for offline Reinforce-
ment Learning.

Graesser et al. (2022) discovered that pruning often yields
improved results, and dynamic sparse training methods,
where the sparse topology changes throughout training (Mo-
canu et al., 2018; Evci et al., 2020), can significantly out-
perform static sparse training, where the sparse topology
remains fixed throughout training. Tan et al. (2023) enhance
the efficacy of dynamic sparse training through the introduc-
tion of a novel delayed multi-step temporal difference target
mechanism and a dynamic-capacity replay buffer. Grooten
et al. (2023) proposed an automatic noise filtering method,
which uses the principles of dynamic sparse training for
adjusting the network topology to focus on task-relevant
features.

Overparameterization in Deep RL  Song et al. (2019)
and Zhang et al. (2018) highlighted and the tendency of RL
networks to overfit, while Nikishin et al. (2022) and Sokar
et al. (2023) demonstrated the prevalence of plasticity loss
in RL networks, leading to a decline in final performance.
Several strategies have been proposed to mitigate this, such
as data augmentation (Yarats et al., 2021; Cetin et al., 2022),
dropout (Gal & Ghahramani, 2016), and layer and batch nor-
malization (Ba et al., 2016; loffe & Szegedy, 2015). Hiraoka
et al. (2021) demonstrated the success of employing dropout
and layer normalization in Soft Actor-Critic (Haarnoja et al.,
2018), while Liu et al. (2020) identified that applying /o
weight regularization on actors can enhance both on- and
off-policy algorithms.

Nikishin et al. (2022) identify a tendency of networks to
overfit to early data (the primacy bias), which can hin-
der subsequent learning, and propose periodic network re-
initialization as a means to mitigate it. Similarly, Sokar
et al. (2023) proposed re-initializing dormant neurons to
improve network plasticity, while Nikishin et al. (2023) pro-
pose plasticity injection by temporarily freezing the current
network and utilizing newly initialized weights to facilitate
continuous learning.
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Figure 2. Gradual magnitude pruning schedules used in our ex-
periments, to a target sparsity of 95%, as specified in Equation 1.
Impact of varying pruning schedules, see Figure 10.

3. Background

Deep reinforcement learning The goal in Reinforcement
Learning is to optimize the cumulative discounted return
over a long horizon, and is typically formulated as a Markov
decision process (MDP) (X, A, P, r,~y). An MDP is com-
prised of a state space X, an action space 4, a transition
dynamics model P : X x A — A(X) (where A(X) is a dis-
tribution over a set X), a reward function R : X x A — R,
and a discount factor v € [0,1). A policy 7 : X — A(A)
formalizes an agent’s behaviour.

For a policy m, Q™(x,a) represents the expected
discounted reward achieved by taking action a in
state x and subsequently following the policy m:
Q™(x,a) = E [>27'R(xsa)|x0 =z, a9 = al.
The optimal Q-function, denoted as Q*(x, a), satisfies the
Bellman recurrence

Q*(x,a) = Ex o p(x/|x,a) [R(X,a) + 7 maxy Q* (x,a")].

Most modern value-based methods will approximate () via
a neural network with parameters 6, denoted as Q9. This
idea was introduced by Mnih et al. (2015) with their DQN
agent, which has served as the basis for most modern deep
RL algorithms. The network (Qy is typically trained with a
temporal difference loss, such as:

L(0) =

E

(x,a,r,x’)~D

2
(r + vgleaﬁé? (x',a’) — Qe(xﬁ)) ] )

Here D represents a stored collection of transitions
(xt, a¢, rt, X¢+1) which the agent samples from for learning
(known as the replay buffer). @ is a static network that
infrequently copies its parameters from (Jy; its purpose is
to produce stabler learning targets.

Rainbow (Hessel et al., 2018) extended, and improved, the
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Figure 3. Evaluating how varying sparsity affects perfor-

mance for DQN with the ResNet architecture and a width multi-
plier of 3. See Section 4.1 for training details.

original DQN algorithm with double Q-learning (van Has-
selt et al., 2016), prioritized experience replay (Schaul et al.,
2016), dueling networks (Wang et al., 2016), multi-step
returns (Sutton, 1988), distributional reinforcement learn-
ing (Bellemare et al., 2017), and noisy networks (Fortunato
et al., 2018).

Gradual pruning In supervised learning settings there
is a broad interest in sparse training techniques, whereby
only a subset of the full network parameters are trained/used
(Gale et al., 2019). This is motivated by computational
and space efficiency, as well as speed of inference. Zhu &
Gupta (2017) proposed a polynomial schedule for gradually
sparsifying a dense network over the course of training by
pruning model parameters with low weight magnitudes.

Specifically, let sp € [0, 1] denote the final desired spar-
sity level (e.g. 0.95 in most of our experiments) and let
tstart and tonq denote the start and end iterations of pruning,
respectively; then the sparsity level at iteration ¢ is given by:

. M
3
t — tgis .
o1 (1 . tt) if atare < 1< fona
tend - tstart
0.0 ift < Tstart
Sp ift > tend

Graesser et al. (2022) applied this idea to deep RL networks,
setting tsgart at 20% of training and te,q at 80% of training.

4. Pruning can boost deep RL performance

We investigate the general usefulness of gradual magnitude
pruning in deep RL agents in both online and offline settings.
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Figure 4. Scaling network widths for the original CNN archi-
tecture of Mnih et al. (2015), for DQN (left) and Rainbow (right).
See Section 4.1 for training details.

4.1. Implementation details

For the base DQN and Rainbow agents we use the Jax im-
plementations of the Dopamine library' (Castro et al., 2018)
with their default values. It is worth noting that Dopamine
provides a “compact” version of the original Rainbow agent,
using only multi-step updates, prioritized replay, and distri-
butional RL. For all experiments we use the Impala architec-
ture introduced by Espeholt et al. (2018), which is a 15-layer
ResNet, unless otherwise specified. Our reasoning for this
is not only because of the results from Graesser et al. (2022),
but also due to a number of recent works demonstrating that
this architecture results in generally improved performance
(Schmidt & Schmied, 2021; Kumar et al., 2022; Schwarzer
et al., 2023).

We use the JaxPruner” (Lee et al., 2024) library for grad-
ual magnitude pruning, as it already provides integration
with Dopamine. We follow the schedule of Graesser et al.
(2022): begin pruning the network 20% into training and
stop at 80%, keeping the final sparse network fixed for the
rest of training. Figure 2 illustrates the pruning schedules
used in our experiments (for 95% sparsity). We evaluate our
agents on the Arcade Learning Environment (ALE) (Belle-
mare et al., 2013) on the same 15 games used by Graesser
et al. (2022), chosen for their diversity®. For computational
considerations, most experiments were conducted over 40
million frames (as opposed to the standard 200 million);
in our investigations we found the qualitative differences
between algorithms at 40 million frames to be mostly con-
sistent with those at 100 million (e.g. see Figure 10).

"Dopamine code available at https://github.com/
google/dopamine.

2JaxPruner code available at https://github.com/
google-research/jaxpruner.

*Discussed in A.4 in Graesser et al. (2022).
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Figure 5. Scaling replay ratio for Rainbow with the ResNet ar-
chitecture with a width multiplier of 3. Default replaly ratio is
0.25. See Section 4.1 for training details.

We follow the guidelines outlined by Agarwal et al. (2021)
for evaluation: each experiment was run with 5 independent
seeds, and we report the human-normalized interquantile
mean (IQM), aggregated across the 15 games, configura-
tions, and seeds, along with 95% stratified bootstrap con-
fidence intervals. All experiments were run on NVIDIA
Tesla P100 GPUs, and each took approximately 2 days to
complete. All hyper-parameters are listed in Appendix F.

4.2. Online RL

While Graesser et al. (2022) demonstrates that sparse net-
works are capable of maintaining agent performance, if
these levels of sparsity were too high, performance even-
tually degrades. This is intuitive, as with higher levels of
sparsity, there are fewer active parameters left in the net-
work. One natural question is whether scaling our initial
network enables high levels of sparsity. We thus begin our
inquiry by applying gradual magnitude pruning on DQN
with the Impala architecture, where we have scaled the con-
volutional layers by a factor of 3. Figure 3 confirms that
this is indeed the case: 90% and 95% sparsity produce a
33% performance improvement, and 99% sparsity maintains
performance.

A sparsity of 95% consistently yielded the best performance
in our initial explorations, so we primarily focus on this
sparsity level for our investigations. Figure 1 is a strik-
ing result: we observe close to a 60% (DQN) and 50%
(Rainbow) performance improvement over the original (un-
pruned and unscaled) architectures. Additionally, while the
performance of the unpruned architectures decreases mono-
tonically with increasing widths, the performance of the
pruned counterparts increases monotonically. In Figure 6
we evaluated pruning on DQN and Rainbow over all 60
Atari 2600 games, confirming our findings are not specific
to the 15 games initially selected.
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Figure 6. Evaluating performance on the full Atari 2600 suite.
DOQON (left) and Rainbow (right), both using the ResNet architecture
with a width of 3. We report IQM performance with error bars
indicating 95% confidence interval. See Section 4.1 for training
details.

When switching both agents to using the original CNN
architecture of Mnih et al. (2015) we see a similar trend
with Rainbow, but see little improvement in DQN (Figure 4).
This result is consistent with the findings of Graesser et al.
(2022), where no real improvements were observed with
pruning on CNN architectures. An interesting observation
is that, with this CNN architecture, the performance of
DQN does seem to benefit from increased width, while the
performance of Rainbow suffer from slight degradation.

When evaluating on more modern value-based agents,
specifically IQN (Dabney et al., 2018) and Munchausen-
IQN (Vieillard et al., 2020), we observe the same advantages
arising from pruning (see Appendix G.2).

Our findings thus far suggest that the use of gradual mag-
nitude pruning increases the parameter efficiency of these
agents. If so, then these sparse networks should also be able
to benefit from more gradient updates. The replay ratio*,
which is the number of gradient updates per environment
step, measures exactly this; it is well-known that it is diffi-
cult to increase this value without performance degradation
(Fedus et al., 2020; Nikishin et al., 2022; Schwarzer et al.,
2023; D’Oro et al., 2023).

In Figure 5 we can indeed confirm that the pruned archi-
tectures maintain a performance lead over the unpruned
baseline even at high replay ratio values. The sharper rate of
decline with pruning may suggest that the pruning schedule
needs to be re-tuned for these settings.

4.3. Low data regime

Kaiser et al. (2020) introduced the Atari 100k benchmark to
evaluate RL agents in a sample-constrained setting, allow-
ing agents only 100k> environment interactions. For this

“In the hyperparameters established in (Mnih et al., 2015), the
policy is updated every 4 environment steps collected, resulting in
a replay ratio of 0.25.

SHere, 100k refers to agent steps, or 400k environment frames,
due to skipping frames in the standard training setup.
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Figure 7. Performance of DrQ(e¢) (left) and DER (right) when
trained for 40M frames. Both agents use a ResNet architecture
with a width multiplier of 3. See Section 4.1 for training details.

regime, Kostrikov et al. (2020) introduced DrQ, a variant of
DQN which makes use of data augmentation; the hyperpa-
rameters for this agent were further optimized by Agarwal
etal. (2021) in DrQ(e). Similarly, Van Hasselt et al. (2019)
introduced Data-Efficient Rainbow (DER), which optimized
the hyperparameters of Rainbow (Hessel et al., 2018) for
this low data regime.

When evaluated on this low data regime, our pruned agents
demonstrated no gains. However, when we ran for 40M en-
vironment interactions (as suggested by Ceron et al. (2023)),
we do observe significant gains when using gradual magni-
tude pruning, as shown in Figure 7. Interestingly, In DrQ(e)
the pruned agents avoid the performance degradation affect-
ing the baseline when trained for longer.

4.4. Offline RL

Offline reinforcement learning focuses on training an agent
solely from a fixed dataset of samples without any envi-
ronment interactions. We used two recent state of the art
methods from the literature: CQL (Kumar et al., 2020) and
CQL+C51 (Kumar et al., 2022), both with the ResNet ar-
chitecture from Espeholt et al. (2018). Following Kumar
et al. (2021b), we trained these agents on 17 Atari games
for 200 million frames iterations, where where 1 iteration
corresponds to 62,500 gradient updates. We assessed the
agents by considering a dataset composed of a random 5%
sample of all the environment interactions collected by a
DQN agent trained for 200M environment steps (Agarwal
et al., 2020).

Note that since we are training for a different number of
steps than our previous experiments, we adjust the pruning
schedule accordingly. As shown in Figure 8, both CQL and
CQL+CS51 observe significant gains when using pruned net-
works, in particular with wider networks. Interestingly, in
the offline regime, pruning also helps to avoid performance
collapse when using a shallow network (width scale equal
to 1), or even improve final performance as in the case of
CQL+C51.
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4.5. Actor-Critic methods

Our investigation thus far has focused on value-based meth-
ods. Here we investigate if gradual magnitude pruning
can yield performance gains for Soft Actor Critic (SAC;
Haarnoja et al., 2018), a popular policy-gradient algorithm.
We evaluated SAC on five continuous control environments
from the MuJoCo suite (Todorov et al., 2012), using 10 in-
dependent seeds for each. In Figure 9 we present the results
for Walker2d-v2 and Ant-v2, where we see the advantages
of gradual magnitude pruning persist; in the remaining three
environments (see Appendix E) there are no real observable
gains from pruning. In Appendix G.1 we see a similar trend
with PPO (Schulman et al., 2017).

4.6. Stability of the pruned network

We followed the pruning schedule proposed by Graesser
et al. (2022), which adapts naturally to differing training
steps (as discussed above for the offline RL experiments).
This schedule trains the final sparse network for only the
final 20% of training steps. A natural question is whether
the resulting sparse network, when trained for longer, is
still able to maintain its performance. To evaluate this,
we trained DQN for 100 million frames and applied two
pruning schedules: the regular schedule we would use for
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Figure 10. Impact of varying pruning
schedules, for DQN with an Impala-based
ResNet with a width multiplier of 3.

100M as well as the schedule we would normally use for
40M training steps (see Figure 2).

As Figure 10 shows, even with the compressed 40M sched-
ule, the pruned network is able to maintains its strong per-
formance. Interestingly, with the compressed schedule the
agent achieves a higher performance faster than with the
regular one. This suggests there is ample room for exploring
alternate pruning schedules.

4.7. Learning rate and Batch size scaling

The default learning rate or batch size may not be optimal
for large neural networks. The default learning for DQN
is 6.25 x 10~°. We run experiments with a learning rate
divided by the width scale factor (so 2.08 x 10~° for a
width factor of 3, and 1.25 x 10~° for a width factor of 5).
While these learning rates do improve the performance of
the baseline, it is still surpassed by pruning (see Figure 28).
We observe a similar trend when evaluating different batch
size values. The default batch size is 32 (for all value based
agents used in this paper), and we ran experiments with
batch sizes of 16 and 64. In all cases, pruning maintains
its strong advantage (see Figure 29). These results are con-
sistent with the thesis that pruning can serve as a drop-in
mechanism for increasing agent performance.
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Figure 11. Empirical analyses for four representative games when applying pruning. From left to right: training returns, average
Q-target variance, average parameters norm, average (Q-estimation norm, srank (Kumar et al., 2021a), and dormant neurons (Sokar et al.,
2023). All results averaged over 5 seeds, shaded areas represent 95% confidence intervals.

5. Why is pruning so effective?

We focus our analyses on four games: BeamRider, Break-
out, Enduro, and VideoPinball. For each, we measure the
variance of the () estimates (QVariance); the average norm
of the network parameters (ParametersNorm); the average
norm of the @)-values (QNorm); the effective rank of the
matrix (Srank) as suggested by Kumar et al. (2021a), and
the fraction of dormant neurons as defined by Sokar et al.
(2023).

We present our results in Figure 11. What becomes evident
from these figures is that pruning (i) reduces variance, (ii)
reduces the norms of the parameters, (iii) decreases the
number of dormant neurons, and (iv) increases the effective
rank of the parameters. Some of these observations can be
attributed to a form of normalization, whereas others may
arise due to increased network plasticity.

Lyle et al. (2024) show that increased parameter norm ac-
companies plasticity loss in different neural architectures.
In Figure 11, we observe a low parameter norm value when
applying gradual pruning, which represent a high final per-
formance return.

5.1. Comparison to other methods

In order to disentangle the impact of pruning from normal-
ization and explicit plasticity injection, we compare against
existing methods in the literature.

Lottery ticket baseline Frankle & Carbin (2018) argued
that neural networks contain sparse sub-networks that can
be trained at high levels of sparsity without gradual pruning;
the authors provide an algorithm for finding these winning
tickets. After training a network with pruning, we train a
new network with the final mask fixed (i.e. not adjusted
during training) and with the parameters initialized as in
the original dense network. We found that the proposal
under-performs both the pruning approach and the unpruned
baseline. It is interesting to observe that both the pruning
approach and the lottery ticket experiment seem to still be
progressing at 40M, whereas the baseline seems to start
deteriorating (Figure 13).

Dynamic sparse training baselines Evci et al. (2020)
proposed RigL as a dynamic sparse training mechanism
that maintains a sparse network throughout the entirety of
training. In Appendix G.3 we evaluated RigL at various spar-
sity levels and found that, while effective, RigL is unable to
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Figure 12. Comparison against network resets (Nikishin et al., 2022), weight decay,
ReDo (Sokar et al., 2023) and the normalization of (Kumar et al., 2022). Left: Sample
efficiency curves with a width factor of 3; Right: final performance after 40M frames with
varying widths (right panel). All experiments run on DQN with the ResNet architecture and

a replay ratio of 0.25.

match the performance of gradual magnitude pruning; these
results are consistent with those of Graesser et al. (2022).

Normalization baselines To investigate the role normal-
ization plays on the performance gains produced by pruning,
we consider two types of /5> normalization that have proven
effective in the literature. The first is weight decay (WD), a
standard technique that adds an extra term to the loss that
penalizes ¢2 norm of the weights, thereby discouraging net-
work parameters from growing too large. The second is
L2, the regularization approach proposed by Kumar et al.
(2022), which is designed to enforce an ¢5 norm of 1 for the
parameters.

Plasticity injection baselines We compare against two
recent works that proposed methods for directly dealing with
loss of plasticity. Nikishin et al. (2022) observed a decline
in performance with an increased replay ratio, attributing
it to overfitting on early samples, an effect they termed the
“primacy bias”. The authors suggested periodically resetting
the network and demonstrated that it proved very effective
at mitigating the primacy bias, and overfitting in general
(this is labeled as Reset in our results).

Sokar et al. (2023) demonstrated that most deep RL agents
suffer from the dormant neuron phenomenon, whereby neu-
rons increasingly “turn off” during training of deep RL
agents, thus reducing network expressivity. To mitigate this,
they proposed a simple and effective method that Recycles
Dormant neurons (ReDo) throughout training.

As Figure 12 illustrates, gradual magnitude pruning sur-
passes all the other regularization methods at all levels of
scale, and throughout the entirety of training. Interestingly,
most of the regularization methods suffer a degradation

Number of Frames (in millions)

Figure 13. Lottery ticket hypothesis ex-
periment. Taking the final pruned net-
work (with a width factor of 3) and retrain-
ing with the original initialization results
in worse performance.

when increasing network width. This suggests that the ef-
fect of pruning cannot be solely attributed to either a form
of normalization or plasticity injection. However, as we will
see below, increased plasticity does seem to arise out of its
use. We provide sweeps over various baseline hyperparame-
ters in Appendices G.5 to G.8.

5.2. Impact on plasticity

Plasticity is a neural network’s capacity to rapidly adjust
in response to shifting data distributions (Lyle et al., 2022;
2023; Lewandowski et al., 2023); given the non-stationarity
of reinforcement learning, it is crucial to maintain to ensure
good performance. However, RL networks are known to
lose plasticity over the course of training (Nikishin et al.,
2022; Sokar et al., 2023; Lee et al., 2023).

Lyle et al. (2023) conducted an assessment of the covari-
ance structure of gradients to examine the loss landscape
of the network, and argued that improved performance, and
increased plasticity, is often associated with weaker gradient
correlation and reduced gradient interference. Our observa-
tions align with these findings, as illustrated in the gradient
covariance heat maps in Figure 14. In dense networks, gra-
dients exhibit a notable colinearity, whereas this colinearity
is dramatically reduced in the pruned networks.

6. Discussion and Conclusion

Prior work has demonstrated that reinforcement learning
agents have a tendency to under-utilize its available pa-
rameters, and that this under-utilization increases through-
out training and is amplified as network sizes increase
(Graesser et al., 2022; Nikishin et al., 2022; Sokar et al.,
2023; Schwarzer et al., 2023). RL agents achieve strong
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Figure 14. Gradient covariance matrices for Breakout (left) and VideoPinball (right) atari games. Dark red denotes high negative
correlation, while dark blue indicates high positive correlation. The use of pruning induces weaker gradient correlation and less gradient
interference, as evidenced by the paler hues in the heatmaps for the sparse networks.

performance in the majority of the established benchmarks
with small networks (relative to those used in language
models, for instance), so this evident parameter-inefficiency
may be brushed off as being less critical than other, more
algorithmic, considerations.

As RL continues to grow outside of academic benchmarks
and into more complex tasks, it is almost surely going to
necessitate larger, and more expressive, networks. In this
case parameter efficiency becomes crucial to avoid the per-
formance collapse prior works have shown, as well as for
reducing computational costs (Ceron & Castro, 2021).

Our work provides convincing evidence that sparse train-
ing techniques such as gradual magnitude pruning can be
effective at maximizing network utilization, especially as
the initial networks are scaled (see Figures 1 and 4). The
results in Figures 8, 7, and 10 all demonstrate that the sparse
networks produced by pruning are better at maintaining sta-
ble performance when trained for longer. The advantages of
pruning remain even when sweeping over various baseline
hyper-parameters (see Appendices G.4 and G.9 to G.11). It
is worth noting that the performance of the dense baselines
does improve when adjusting the learning rate based on the
width multiplier (Appendix G.9); however, pruning is still
the most performant in these settings.

Collectively, our results demonstrate that, by meaningfully
removing network parameters throughout training, we can
outperform traditional dense counterparts and continue to
improve performance as we grow the initial network archi-
tectures. Our results with varied agents and training regimes
imply gradual magnitude pruning is a generally useful tech-
nique which can be used as a “drop-in” for maximizing
agent performance.

Future work It would be natural to explore incorporat-
ing gradual magnitude pruning into recent agents that were
designed for multi-task generalization (Taiga et al., 2023;

Kumar et al., 2022), sample efficiency (Schwarzer et al.,
2023; D’Oro et al., 2023), and generalizability (Hafner et al.,
2023). Further, the observed stability of the pruned net-
works may have implications for methods which rely on
fine-tuning or reincarnation (Agarwal et al., 2022).

Recent advances in hardware accelerators for training sparse
networks may result in faster training times, and serve as
an incentive for further research in methods for sparse net-
work training. Further, the fact that a consequence of this
approach is a network with fewer parameters than when
initialized renders it appealing for downstream applications
on edge devices.

At a minimum, we hope this work serves as an invitation to
explore non-standard network architectures and topologies
as an effective mechanism for maximizing the performance
of reinforcement learning agents. Reinforcement learning
agents typically use networks originally designed for sta-
tionary problems; therefore, other topologies might be better
suited to the non-stationary nature of RL.
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A. Code availability

Our experiments were built on open source code, mostly from the Dopamine repository. The root directory for these is
https://github.com/google/dopamine/tree/master/dopamine/, and we specify the subdirectories below (with clickable links):

e DQN and Rainbow agents from /jax/agents/

e Atari-100k agents from /labs/atari-100k/

Sparsity scripts from JaxPruner /jaxpruner/baselines/dopamine/

Resnet architecture from /labs/offline-rl/jax/networks.py (line 108)

Dormant neurons metric, Reset, ReDo and Weight Decay from /labs/redo/

SAC and PPO experiments from /google-research/rigl/rl/

For the srank metric experiments we used code from:
https://github.com/google-research/google-research/blob/master/
generalization_representations_rl_aistats22/coherence/coherence_compute.py

B. Atari Game Selection

Most of our experiments were run with 15 games from the ALE suite (Bellemare et al., 2013), as suggested by Graesser
et al. (2022). However, for the Atari 100k agents (subsection 4.3), we used the standard set of 26 games (Kaiser et al., 2020)
to be consistent with the benchmark. We also ran some experiments with the full set of 60 games. The specific games are
detailed below.

15 game subset: MsPacman, Pong, Qbert, (Assault, Asterix, BeamRider, Boxing, Breakout, CrazyClimber, DemonAttack,
Enduro, FishingDerby, Spacelnvaders, Tutankham, VideoPinball. According to (Graesser et al., 2022), these games were
selected to be roughly evenly distributed amongst the games ranked by DQN’s human normalized score in (Mnih et al.,
2015) with a lower cut off of approximately 100% of human performance.

26 game subset: Alien, Amidar, Assault, Asterix, BankHeist, BattleZone, Boxing, Breakout, ChopperCommand, Crazy-
Climber, DemonAttack, Freeway, Frostbite, Gopher, Hero, Jamesbond, Kangaroo, Krull, KungFuMaster, MsPacman, Pong,
PrivateEye, Qbert, RoadRunner, Seaquest, UpNDown.

60 game set: The 26 games above in addition to: AirRaid, Asteroids, Atlantis, BeamRider, Berzerk, Bowling, Carnival,
Centipede, DoubleDunk, ElevatorAction, Enduro, FishingDerby, Gravitar, IceHockey, JourneyEscape, MontezumaRevenge,
NameThisGame, Phoenix, Pitfall, Pooyan, Riverraid, Robotank, Skiing, Solaris, Spacelnvaders, StarGunner, Tennis,
TimePilot, Tutankham, Venture, VideoPinball, WizardOfWor, YarsRevenge, Zaxxon.

C. Sparsity Levels
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Figure 15. Evaluating how varying the sparsity parameter affects performance for a given architecture on DQN (Mnih et al., 2015)
and Rainbow agent. We report results aggregated IQM of human-normalized scores over 15 games.
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Figure 16. Evaluating how varying the sparsity parameter affects performance for a given architecture, resnet with a width multiplier
of 3, on Rainbow agent. We report results aggregated IQM of human-normalized scores over 15 games.

D. Scaling Replay Ratios

Width Scale = 1

Width Scale = 3

5 5
o .
5 }\ Pruning
Q N
£4- 4+ '\.\ -¢-0
T ‘N —- 0.95
§3' g:, 3 }’\\ SN 0.99
> — ~.~_~ SS .\.
p - \.\t\\‘ S~ N.;
@ 27 KUTS< 27 . §~
€ ) '~ e S~o N
S ¥ b \.\ ~o NN\’ N
T ) I CNGEE
= 11 ! s 14 ~ao
o T~9
- T T T T T T T T

0.25 0.5 1 2 0.25 0.5 1 2
Replay Ratio Replay Ratio

Figure 17. Scaling replay ratio for resnet architecture (default is 0.25), for a width factor of 1 (left) and a width factor of 3 (right)
using DQN agent. We report interquantile mean performance with error bars indicating 95% confidence intervals. On the x-axis we report

the replay ratio value.

E. MuJoCo environments
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Figure 18. Evaluating how varying the sparsity parameter affects performance of SAC on three MuJoCo environments when in-
creasing width x5. We report returns over 10 runs for each experiment.
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F. Hyper-parameters list

Default hyper-parameter settings for DER (Van Hasselt et al., 2019) and DrQ(e) (Kaiser et al., 2020; Agarwal et al., 2021).
Table 1 shows the default values for each hyper-parameter across all the Atari games.

Table 1. Default hyper-parameters setting for DER and DrQ(e) agents.

Atari
Hyper-parameter DER DrQ(e)
Adam’s(e) 0.00015  0.00015
Adam’s learning rate 0.0001 0.0001
Batch Size 32 32
Conv. Activation Function ReLU ReLU
Convolutional Width 1 1
Dense Activation Function ReLU ReLU
Dense Width 512 512
Normalization None None
Discount Factor 0.99 0.99
Exploration € 0.01 0.01
Exploration € decay 2000 5000
Minimum Replay History 1600 1600
Number of Atoms 51 0
Number of Convolutional Layers 3 3
Number of Dense Layers 2 2
Replay Capacity 1000000 1000000
Reward Clipping True True
Update Horizon 10 10
Update Period 1 1
Weight Decay 0 0
Sticky Actions False False
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Default hyper-parameter settings for DQN (Mnih et al., 2015), Rainbow (Hessel et al., 2018), IQN (Dabney et al., 2018),
Munchausen-IQN (Vieillard et al., 2020). Table 2 shows the default values for each hyper-parameter across all the Atari

games.

Table 2. Default hyper-parameters setting for DQN, Rainbow, IQN, Munchausen-IQN agents.

Atari
Hyper-parameter DQN Rainbow IQN M-IQN
Adam’s (¢) 1.5e-4 1.5e-4  3.125e-4 3.125e-4
Adam’s learning rate 6.25e-5  6.25e-5 Se-5 Se-5
Batch Size 32 32 32 32
Conv. Activation Function ReLU ReLU ReLU ReLU
Convolutional Width 1 1 1 1
Dense Activation Function ReLU ReLU ReLU ReLU
Dense Width 512 512 512 512
Normalization None None None None
Discount Factor 0.99 0.99 0.99 0.99
Exploration € 0.01 0.01 0.01 0.01
Exploration € decay 250000 250000 250000 250000
Minimum Replay History 20000 20000 20000 20000
Number of Atoms 0 51 - -
Kappa - - 1.0 1.0
Num tau samples - - 64 64
Num tau prime samples - - 64 64
Num quantile samples - - 32 32
Number of Convolutional Layers 3 3 3 3
Number of Dense Layers 2 2 2 2
Replay Capacity 1000000 1000000 1000000 1000000
Reward Clipping True True True True
Update Horizon 1 3 3 3
Update Period 4 4 4 4
Weight Decay 0 0 0 0
Sticky Actions True True True True
Tau - - 0 0.03
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Default hyper-parameter settings for CQL (Kumar et al., 2020) and CQL+CS51 (Kumar et al., 2022) offline agents. Table 3

shows the default values for each hyper-parameter across all the Atari games.

Table 3. Default hyper-parameters setting for CQL and CQL+C51 agents.

Atari
Hyper-parameter CQL CQL+C51
Adam’s(e) 0.0003125 0.00015
Batch Size 32 32
Conv. Activation Function ReLU ReLU
Convolutional Width 1 1
Dense Activation Function ReLU ReLU
Normalization None None
Dense Width 512 512
Discount Factor 0.99 0.99
Learning Rate 0.00005 0.0000625
Number of Atoms 0 51
Number of Convolutional Layers 3 3
Number of Dense Layers 2 2
Fixed Replay Capacity 2,500,000 steps 2,500,000 steps
Reward Clipping True True
Update Horizon 1 3
Update Period 1 1
Weight Decay 0 0
Replay Scheme Uniform Uniform
Dueling False True
Double DQN False True
CQL coef 0.1 0.1

Default hyper-parameter settings for CNN architecture (Mnih et al., 2015) and Impala-based ResNet (Espeholt et al., 2018)
Table 4 shows the default values for each hyper-parameter across all the Atari games.

Table 4. Default hyper-parameters for neural networks.

Atari
Hyper-parameter CNN architecture (Mnih et al., 2015) Impala-based ResNet (Espeholt et al., 2018)
Observation down-sampling (84, 84) (84, 84)
Frames stacked 4 4
Q-network (channels) 32, 64, 64 32,64, 64
Q-network (filter size) 8x8,4x4,3x3 8x8,4x4,3x3
Q-network (stride) 4,21 4,21
Num blocks - 2
Use max pooling False True
Skip connections False True
Hardware Tesla P100 GPU Tesla P100 GPU
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G. Additional experiments

Unless otherwise specified, in all experiments below we report the interquantile mean after 40 million environment steps,
aggregated over 15 games with 5 seeds each; error bars indicate 95% stratified bootstrap confidence intervals (Agarwal
etal., 2021).

G.1. Experiments with PPO on MuJoCo

We used the PPO implementation from (Graesser et al., 2022) and ran some initial experiments with MuJoCo, increasing
the width by 5x. As with our SAC experiments, we see no real change in performance, with perhaps some mild gains
in Humanoid-v2. One reason why we may not see performance improvements in neither SAC nor PPO is that in ALE
experiments, all agents use Convolutional layers, whereas for the MuJoCo experiments (where we ran SAC and PPO) the
networks only use dense layers.

Nonetheless, it is worth noting that Graesser et al. (2022) saw degradation with pruning at width=1 (Figure 16 in their paper),
with almost a total collapse at 99% sparsity. In contrast, our results with 5x width shows strong performance even at 99%

sparsity.
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Figure 19. Proximal Policy Optimization (PPO) (Schulman et al., 2017) on MuJoCo environments when increasing width x5. We report
returns over 10 runs for each experiment.

G.2. Experiments with IQN and M-IQN

While Rainbow is still a competitive agent in the ALE and both DQN and Rainbow are still regularly used as baselines in
recent works, exploring newer agents is a reasonable request. To address this, we ran experiments with Implicit Quantile
Networks (IQN) (Dabney et al., 2018) and Munchausen-IQN (Vieillard et al., 2020) with widths of 1 and 3; consistent with
our submission’s findings, we observe significant gains when using pruning.
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Figure 20. IQN (Implicit Quantile Networks) (Dabney et al., 2018) with ResNet architecture (with a width factor of 1 and 3).
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Figure 21. M-IQN (Munchausen-Implicit Quantile Networks) (Vieillard et al., 2020) with ResNet architecture (with a width factor of 1
and 3).

G.3. Comparison with RigLL

We have run a comparison with RigL. (Evci et al., 2020). While RigL. can be somewhat effective, it is unable to match the
performance of pruning.

I
]

Width Scale = 1 47 Width Scale = 3

w
1

w
1

Sparsity

—— 0 21
—o— 0.95 14

IQM Human Normalized Score
N
1

1_.
:_0..9_9____—./0/
0- 0-
T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40
Number of Frames (in millions) Number of Frames (in millions)

Figure 22. The Rigged Lottery (RigL) (Evci et al., 2020) for DQN with ResNet architecture (with a width factor of 1 and 3).

G.4. Varying Adam’s ¢

The default value for Adam’s € is 1.5e — 5; we ran experiments by dividing/multiplying this value by 3 ( 5e — 5 and 4.5e — 4,
respectively). In all these cases, pruning maintains a significant advantage over the dense baseline.
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Figure 23. Adam’s epsilon (¢) (Kingma & Ba, 2014) for DQN with ResNet architecture and a width multiplier of 3.
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G.5. Sweeping over ReDo threshold 7

This parameter (introduced in Definition 3.1 of (Sokar et al., 2023)) defines the threshold for determining neuron dormancy.
Sokar et al. (2023) suggested using 0.1 with the CNN network. Since we are using the Impala network architecture, we
tested three additional values: (0, 0.025, 0.3). We found that 0.1, as used in Figure 12 of our submission, yields the best
performance.
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Figure 24. Varying ReDo’s 7 threshold (Sokar et al., 2023) for DQN with ResNet architecture and a width multiplier of 3.

G.6. Frequency of network resets

We varied the frequency of network resets (Nikishin et al., 2022) to evaluate whether this could help mitigate the performance
loss when increasing the network width. While more infrequent resets (every 250000 steps compared to the default value
of 100000) improves performance slightly, it still drastically under-performs with respect to the baseline and the pruning
approach.
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Figure 25. Varying the reset period (Nikishin et al., 2022) for DQN with ResNet architecture and a width multiplier of 3.
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G.7. Layer to reset

In our paper we followed the approach of Nikishin et al. (2022) and Sokar et al. (2023) of resetting only the last layer. We
explored resetting different layers, but found it resulted in no significant performance difference.
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Figure 26. Resetting different layers (Nikishin et al., 2022), DQN with ResNet architecture and a width multiplier of 3.

G.8. Varying weight decay

We ran a sweep over the following values 10e=% , 10e=® , 10e~* , 10e~3, and 10e~2, using the Impala architecture with a
width factor of 3. The best performance is obtained with 10e~2, which is the value suggested by Sokar et al. (2023), and the
value used in Figure 12 of our submission.

w
o
]

Width Scale = 3

N
Ul
1

N
o
1

Weight Decay

—@— 1le-06 —./.———'—__.
le-05

IQM Human Normalized Score
=
ul
1

1.0 —e— 0.0001
05l —* 0.001
0.01 o
0.04_= 2
1 1 1 1 Ll
0 10 20 30 40

Number of Frames (in millions)

Figure 27. Weight Decay (WD) for DQN with ResNet architecture with a width factor of 3.
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G.9. Varying learning rates

The default learning for DQN is 6.25e — 5. As suggested by the reviewer, we have run experiments with a learning rate
divided by the width scale factor (so 2.08e — 5 for a width factor of 3, and 1.25e — 5 for a width factor of 5). These learning
rates do improve the performance of the baseline, but it is still surpassed by pruning. These results are consistent with the
thesis of the paper: pruning can serve as a drop-in mechanism for increasing agent performance.
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Figure 28. Learning rate evaluation for DQN agent with ResNet architecture (with a width factor of 3 left and 5 right). These learning
rate values correspond to dividing the default learning rate by the factor we used to amplify the size of the neural network. The dashed
lines indicate the final performance for dense (blue) and 0.95% sparse (orange) nets when using the default learning rate (Ir: 6.25¢ — 5).

G.10. Varying batch size

The default batch size is 32, and ran experiments with batch sizes of 16 and 64. In all cases, pruning maintains its strong
advantage.
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Figure 29. Batch size (Ceron et al., 2023) for DQN with ResNet architecture and a width multiplier of 3.
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G.11. Varying update horizon

We explored using an update horizon of 3 for DQN (the default is 1) and found that pruning still maintains its advantage.
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Figure 30. Multi-step return (Sutton, 1988) for DQN with ResNet architecture and a width multiplier of 3.
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