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A RELATED WORKS

In this section we introduce some existing algorithms that directly tackles the formulation, repeated
here:

1
minIiAr/nize -3 logdetWW™ + g(WX). (1)

More specifically, we introduce two algorithms that rely on existing off-the-shelf toolboxes to solve
linear programming problems as a sub-routine in each iteration. There exists an early work based on
augmented Lagrangian method specifically designed for ACA (Bioucas-Dias| 2009). We will include
it in the experiment comparing all these algorithms, but the description is omitted as it is somewhat
similar in the spirit of our proposed L-ADMM.

A.1 BLOCK COORDINATE DESCENT (BCD)

This method only works when W is square, so det WW™ = | det W|?. Using the Laplace’s formula,
we know that det W is a linear function with respect to the ith row of W using the co-factor expansion

k
detW = " (=)™ Wj; det W,
j=1
where the matrix W;; is obtained by deleting the ith row and jth column of W. Then to apply the
block coordinate descent algorithm (Bertsekasl [1999), one would minimize —| f?wi| + g,-(wIX ),
where f; € R¥ is a vector defined according to the co-factor expansion formula, and g; is a function
in R¥ by fixing all except the ith row of W.

It looks as if we need to solve two linear programs for each row update, one to maximize fjw; and
one to minimize fw;, but it turns out one only needs to maximize fiw;. For BCA and SCA where
there is a sign ambiguity in each component, either solution is a sign flip of the other and equally
good; for NCA and ACA, due to the nonnegativity constraint, the sign of fiw; should equal to that
of det W. Furthermore, recall that the Cramer’s rule shows that

[P, = (-1 detPy; [ detP,
meaning we can simply define f; as the ith column of P~!, and it would not affect the row updates.

The idea was first proposed to solve ACA by Chan et al.|(2009). Several follow-up works have been
proposed to solve related problems, such as NCA (Huang et al.| 2016), ACA (Huang & Ful 2019)),
BCA (Hu & Huang, |2023b), and SCA (Hu & Huang} 2023a). Notice that BCD works the best when
the constraints are all separable over the blocks (Bertsekas, [1999); this makes BCD works fairly good
on BCA, SCA, and NCA, but not particularly well on ACA (even though it was first proposed on this
problem).

A.2 FRANK-WOLFE (FW)

The Frank-Wolfe algorithm, also known as the conditional gradient method for constrained opti-
mization (Bertsekas, [1999)), iteratively minimizes a linear objective, defined by the gradient at the
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Algorithm 1 Solving (I) with BCD

initialize W (g

repeat
fori=1,..., kdo
f=wle

w =argmin—f'w + g (w}X)
w
replace ith row of W with w"

end for
until convergence

current iterate, under the same constraint set to determine the search direction and obtain the next
iterate via some line search approach along the search direction. For the log-determinant objective in
(), we have that the gradient is —(P)". As a result, the Frank-Wolfe algorithm for (T) is given in
Algorithm[2]

Algorithm 2 Solving (1) with Frank-Wolfe

initialize P (o)

fort =0,1,2,... until convergence do
W, = argmMi/n —Tr(WIt)W) + g(WX)
a«—1
while —log | det(W ;) + a; (W4 —W (1)))| > —log | detW ()| + (a/2) Tr(W(‘tl) (Wg—-W)) do

a— a2

end while
W) =W +a(Wa—W)

end for

Regarding the line search step, the backtracking line search (Armijo rule) (Bertsekas,|1999) is used to
guarantee sufficient decrease of the objective function. Since g is convex, as long as W () is feasible,
then W ;1) is also feasible since it is a convex combination of W ;) and P4, which are by definition
feasible. Therefore, the only nontrivial part is to find a feasible initialization P (o). This can be done
by optimizing an arbitrary linear objective subject to g (which means one should not apply line search
at this step).

Frank-Wolfe was proposed to solve an instance of (1) by Hu & Huang/on SCA (2023a)) and NCA/ACA
(2024).

The two proposed algorithms 2] and [I] shows striking similarities, especially considering they both
fundamentally solve linear programs in each iteration. For nonconvex optimization, both algorithms
guarantees that every limit point is a stationary point with some additional assumptions, which is
reassuring to know. The differences are as follows:

1. Block coordinate descent is guaranteed to monotonically improve the objective function
by design, so there is no need for line search as in Frank-Wolfe. This could save some
computation as calculating det W may not be cheap when k is large.

2. On the other hand, each iteration of Frank-Wolfe only need to calculate W once for the
update of all its k rows, whereas BCD requires to recalculate W~! for each of its row
updates. Overall, the per-iteration complexity is almost identical.

A.3 NUMERICAL PERFORMANCES

We now provide some numerical experiments to demonstrate how our proposed L-ADMM performs
compared to the existing algorithms outlined in this section. The settings are exactly the same as in
§4, except that in the figures the horizontal axis shows time elapsed in seconds, not iterations—while
L-ADMM takes hundreds to thousands of iterations to converge, neither BCD nor FW takes more
than a few tens, but their per-iteration complexities are much higher as they require solving linear
programs as a sub-routine.
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Figure 1: Convergence of L-ADMM vs. BCD and FW for various latent component analyses models
on 10 random trials.
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The convergence behavior of 10 random trials of L-ADMM, BCD, and FW are shown for BCA,
SCA, and NCA in Figure[I] For ACA, we find that BCD proposed by [Chan et al.| (2009) takes too
long to converge in all cases due to the fact that the constraints are not separable over the rows,
so BCD is not included; instead, we include another augmented Lagrangian method called SISAL
designed specifically for ACA as comparison. As we can see, L-ADMM works significantly better
than BCD and FW in all cases. In some cases, BCD or FW may not even solve the problem, such as
FW for BCA or BCD for NCA, which is in fact reasonable as we are trying to solve a nonconvex
problem—what is incredible is that L-ADMM always works within a very short amount of time,
which motivates this works. L-ADMM is overall comparable to the highly efficient SISAL, which is
a dedicated algorithm for ACA, while L-ADMM is also highly flexible for other problems.

B PROOF OF LEMMA 3.2

Recall the proposed L-ADMM is

Wt+l — (S[ + U[ + '}/SIT)XT
St — PrOXyg(WHlX -u,) . 2
Ups1 < U + 841 — WX

and Lemma 3.2 is
Lemma B.1. When running the L-ADMM iterations, if S; satisfies

log | detStS;| < TrSlS; —k, (3)

then S;41 also satisfies
log | detSHlS;I < TrSHlsg -k,

It is well known that Tr(StSS) equals to the sum of its
eigenvalues, and det(StS:) equals to the product of its

imaginary

eigenvalues. Since we do not restrict §;S ; to be symmetric, 15
its eigenvalues may be complex. However, we do restrict 1
S tsg to be real, so its complex eigenvalues always come 0s

real

in conjugate pairs. This means if a complex eigenvalue / S
takes the form p + in, then p — in is also an eigenvalue.

A sufficient condition for (3)) is that all eigenvalues satisfy A

1
p =12 3log(p” +n?). €5

This inequality obviously holds if n = O (i.e., this eigen-

value is real) when p > 0 as per the famous inequality

p — 1 > logp. What is somewhat less obvious is that Figure 2: If all the eigenvalues of StS;
this inequality also holds when p > |n| when n # 0. It fall in the shaded region on the complex
is easy to verify that for a fixed 7, the second derivative plane, then the inequality (3] is satisfied.
of —(1/2) log(p? + n?) with respect to p is positive when

o > |n|. Thus invoking the first-order condition for a

convex function at point 1, we obtain the inequality ().

The resulting condition R (A1) > |J(A)] for every eigenvalue A of the matrix S,ShT defines a region on
the complex plane in which it can reside in order for (3)) to hold. This region is illustrated in Figure[2]
Note that if @) is true for S8, itis trivially true for its inverse (S,SQ;)’1 as well.
Proof of Lemma 3.2. Replacing X = A;Sy in (2), we first obtain from the W update that

Wieaidy = (S: +U)S] +y(8:S) 7,

and the U update gives .
Ut+lsh' =(U; + St+l)st; - Wi Ay,

4
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Canceling W, Ay gives us
(Stv1 = Urs1)S; = SeS] +7(S:8) ™" )

Since we assume S;S g, sois (S tSE) ~T, and noticing that they share the same eigen basis, all eigenval-
ues of (B) satisfies (@), therefore we have

log| det(St+1 = Ure1)Sy| < Tr(Siv1 = Urn)S] — k. ©)

Notice that
Si41 - U1 =W X -Uy,

while
St = Proxyg(WHlX -Uy),

so we equivalently have
Syl = PrOXyg(SHl —Ui).

Since we have (), by using the property of proximal operator, we have

log | det Proxyg (S¢+1 — U[+1)S'£| < TrProx, g (841 — UHI)S; — k.

This completes the proof. O

C PCA EQUIVALENCE
. . . . _ 2 .
Consider the main formulation with g(-) = (1/2)]| - ||
1 1
inimize —~ logdetWW™ + = ||[WX]|[3. 7
minimize —>logde > [| Is @)
Taking the gradient with respect to W and setting it equal to zero at optimum W, we have
wi=w,xx".
We assume that W, is a wide matrix with linearly independent rows, so W*Wi = I, therefore
multiplying both sides by W7, on the right gets
I=W,XX'W]
This shows two things:

1. The symmetric matrix XX can be diagonalized by W . This can happen if rows of W, are
eigenvectors of XX and their Euclidean norms equal to one over the square root of their
corresponding eigenvalue.

2. At optimum, the second term in (7)) exactly equals to (1/2)||W,X ||12: = k /2, meaning that

we only need to worry about the first term when picking the eigenvectors of XX to construct
w,.

As aresult, it is easy to conclude that an optimal solution is W, = ¥ El U, where X is a diagonal
matrix with the k largest singular values of X on the diagonal, and columns of U} are their corre-
sponding left singular vectors. Note that QW , would also be optimal for any orthogonal matrix Q,
showing that this model is not identifiable.

This indeed provides yet another interpretation of the famous PCA problem.
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