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A RELATED WORKS

In this section we introduce some existing algorithms that directly tackles the formulation, repeated
here:

minimize
𝑾

−1
2

log det𝑾𝑾⊤+ 𝑔 (𝑾𝑿 ). (1)

More specifically, we introduce two algorithms that rely on existing off-the-shelf toolboxes to solve
linear programming problems as a sub-routine in each iteration. There exists an early work based on
augmented Lagrangian method specifically designed for ACA (Bioucas-Dias, 2009). We will include
it in the experiment comparing all these algorithms, but the description is omitted as it is somewhat
similar in the spirit of our proposed L-ADMM.

A.1 BLOCK COORDINATE DESCENT (BCD)

This method only works when𝑾 is square, so det𝑾𝑾⊤ = | det𝑾 |2. Using the Laplace’s formula,
we know that det𝑾 is a linear function with respect to the 𝑖 th row of𝑾 using the co-factor expansion

det𝑾 =

𝑘∑︁
𝑗=1

(−1)𝑖+𝑗𝑊𝑖 𝑗 det𝑾 𝑖 𝑗 ,

where the matrix𝑾 𝑖 𝑗 is obtained by deleting the 𝑖 th row and 𝑗 th column of𝑾 . Then to apply the
block coordinate descent algorithm (Bertsekas, 1999), one would minimize −|𝒇⊤𝑖𝒘 𝑖 | + 𝑔𝑖 (𝒘⊤𝑖𝑿 ),
where 𝒇 𝑖 ∈ R𝑘 is a vector defined according to the co-factor expansion formula, and 𝑔𝑖 is a function
in 𝑹𝑘 by fixing all except the 𝑖 th row of𝑾 .

It looks as if we need to solve two linear programs for each row update, one to maximize 𝒇⊤𝑖𝒘 𝑖 and
one to minimize 𝒇⊤𝑖𝒘 𝑖 , but it turns out one only needs to maximize 𝒇⊤𝑖𝒘 𝑖 . For BCA and SCA where
there is a sign ambiguity in each component, either solution is a sign flip of the other and equally
good; for NCA and ACA, due to the nonnegativity constraint, the sign of 𝒇⊤𝑖𝒘 𝑖 should equal to that
of det𝑾 . Furthermore, recall that the Cramer’s rule shows that[

𝑷 −1]
𝑗 𝑖
= (−1)𝑖+𝑗 det𝑷 𝑖 𝑗

/
det𝑷 ,

meaning we can simply define 𝒇 𝑖 as the 𝑖 th column of 𝑷 −1, and it would not affect the row updates.

The idea was first proposed to solve ACA by Chan et al. (2009). Several follow-up works have been
proposed to solve related problems, such as NCA (Huang et al., 2016), ACA (Huang & Fu, 2019),
BCA (Hu & Huang, 2023b), and SCA (Hu & Huang, 2023a). Notice that BCD works the best when
the constraints are all separable over the blocks (Bertsekas, 1999); this makes BCD works fairly good
on BCA, SCA, and NCA, but not particularly well on ACA (even though it was first proposed on this
problem).

A.2 FRANK-WOLFE (FW)

The Frank-Wolfe algorithm, also known as the conditional gradient method for constrained opti-
mization (Bertsekas, 1999), iteratively minimizes a linear objective, defined by the gradient at the
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Algorithm 1 Solving (1) with BCD

initialize𝑾 (0)
repeat

for 𝑖 = 1, . . . , 𝑘 do
𝒇 =𝑾 −1𝒆 𝑖
𝒘 = arg min

𝒘
−𝒇⊤𝒘 + 𝑔𝑖 (𝒘⊤𝑖𝑿 )

replace 𝑖 th row of𝑾 with 𝒘⊤

end for
until convergence

current iterate, under the same constraint set to determine the search direction and obtain the next
iterate via some line search approach along the search direction. For the log-determinant objective in
(1), we have that the gradient is −(𝑷 †)⊤. As a result, the Frank-Wolfe algorithm for (1) is given in
Algorithm 2.

Algorithm 2 Solving (1) with Frank-Wolfe

initialize 𝑷 (0)
for 𝑡 = 0, 1, 2, . . . until convergence do
𝑾 𝑑 = arg min

𝑾
−Tr(𝑾 †

(𝑡 )𝑾 ) + 𝑔 (𝑾𝑿 )
𝛼 ← 1
while − log | det(𝑾 (𝑡 ) +𝛼𝑡 (𝑾 𝑑 −𝑾 (𝑡 ) )) | > − log | det𝑾 (𝑡 ) | + (𝛼/2) Tr(𝑾 −1

(𝑡 ) (𝑾 𝑑 −𝑾 (𝑡 ) )) do
𝛼 ← 𝛼/2

end while
𝑾 (𝑡+1) =𝑾 (𝑡 ) + 𝛼 (𝑾 𝑑 −𝑾 (𝑡 ) )

end for

Regarding the line search step, the backtracking line search (Armijo rule) (Bertsekas, 1999) is used to
guarantee sufficient decrease of the objective function. Since 𝑔 is convex, as long as𝑾 (𝑡 ) is feasible,
then𝑾 (𝑡+1) is also feasible since it is a convex combination of𝑾 (𝑡 ) and 𝑷𝑑 , which are by definition
feasible. Therefore, the only nontrivial part is to find a feasible initialization 𝑷 (0) . This can be done
by optimizing an arbitrary linear objective subject to 𝑔 (which means one should not apply line search
at this step).

Frank-Wolfe was proposed to solve an instance of (1) by Hu & Huang on SCA (2023a) and NCA/ACA
(2024).

The two proposed algorithms 2 and 1 shows striking similarities, especially considering they both
fundamentally solve linear programs in each iteration. For nonconvex optimization, both algorithms
guarantees that every limit point is a stationary point with some additional assumptions, which is
reassuring to know. The differences are as follows:

1. Block coordinate descent is guaranteed to monotonically improve the objective function
by design, so there is no need for line search as in Frank-Wolfe. This could save some
computation as calculating det𝑾 may not be cheap when 𝑘 is large.

2. On the other hand, each iteration of Frank-Wolfe only need to calculate𝑾 † once for the
update of all its 𝑘 rows, whereas BCD requires to recalculate 𝑾 −1 for each of its row
updates. Overall, the per-iteration complexity is almost identical.

A.3 NUMERICAL PERFORMANCES

We now provide some numerical experiments to demonstrate how our proposed L-ADMM performs
compared to the existing algorithms outlined in this section. The settings are exactly the same as in
§4, except that in the figures the horizontal axis shows time elapsed in seconds, not iterations—while
L-ADMM takes hundreds to thousands of iterations to converge, neither BCD nor FW takes more
than a few tens, but their per-iteration complexities are much higher as they require solving linear
programs as a sub-routine.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

time / seconds

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

o
p
ti
m

a
lit

y
 g

a
p L-ADMM

Frank-Wolfe

BCD

(a) Bounded component analysis
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(c) Nonnegative component analysis
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(d) Admixture component analysis

Figure 1: Convergence of L-ADMM vs. BCD and FW for various latent component analyses models
on 10 random trials.
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The convergence behavior of 10 random trials of L-ADMM, BCD, and FW are shown for BCA,
SCA, and NCA in Figure 1. For ACA, we find that BCD proposed by Chan et al. (2009) takes too
long to converge in all cases due to the fact that the constraints are not separable over the rows,
so BCD is not included; instead, we include another augmented Lagrangian method called SISAL
designed specifically for ACA as comparison. As we can see, L-ADMM works significantly better
than BCD and FW in all cases. In some cases, BCD or FW may not even solve the problem, such as
FW for BCA or BCD for NCA, which is in fact reasonable as we are trying to solve a nonconvex
problem—what is incredible is that L-ADMM always works within a very short amount of time,
which motivates this works. L-ADMM is overall comparable to the highly efficient SISAL, which is
a dedicated algorithm for ACA, while L-ADMM is also highly flexible for other problems.

B PROOF OF LEMMA 3.2

Recall the proposed L-ADMM is
𝑾 𝑡+1 ← (𝑺𝑡 +𝑼 𝑡 +𝛾𝑺†⊤𝑡 )𝑿 †
𝑺𝑡+1 ← Prox𝛾𝑔 (𝑾 𝑡+1𝑿 −𝑼 𝑡 )
𝑼 𝑡+1 ←𝑼 𝑡 + 𝑺𝑡+1 −𝑾 𝑡+1𝑿

. (2)

and Lemma 3.2 is
Lemma B.1. When running the L-ADMM iterations, if 𝑺𝑡 satisfies

log | det𝑺𝑡𝑺
†
♮
| ≤ Tr𝑺𝑡𝑺

†
♮
− 𝑘 , (3)

then 𝑺𝑡+1 also satisfies
log | det𝑺𝑡+1𝑺

†
♮
| ≤ Tr𝑺𝑡+1𝑺

†
♮
− 𝑘 ,

Figure 2: If all the eigenvalues of 𝑺𝑡𝑺
†
♮

fall in the shaded region on the complex
plane, then the inequality (3) is satisfied.

It is well known that Tr(𝑺𝑡𝑺
†
♮
) equals to the sum of its

eigenvalues, and det(𝑺𝑡𝑺
†
♮
) equals to the product of its

eigenvalues. Since we do not restrict 𝑺𝑡𝑺
†
♮

to be symmetric,
its eigenvalues may be complex. However, we do restrict
𝑺𝑡𝑺

†
♮

to be real, so its complex eigenvalues always come
in conjugate pairs. This means if a complex eigenvalue
takes the form 𝜌 + 𝑖𝜂 , then 𝜌 − 𝑖𝜂 is also an eigenvalue.

A sufficient condition for (3) is that all eigenvalues satisfy

𝜌 − 1 ≥ 1
2

log(𝜌2 +𝜂2). (4)

This inequality obviously holds if 𝜂 = 0 (i.e., this eigen-
value is real) when 𝜌 > 0 as per the famous inequality
𝜌 − 1 ≥ log 𝜌 . What is somewhat less obvious is that
this inequality also holds when 𝜌 > |𝜂 | when 𝜂 ≠ 0. It
is easy to verify that for a fixed 𝜂 , the second derivative
of −(1/2) log(𝜌2 +𝜂2) with respect to 𝜌 is positive when
𝜌 > |𝜂 |. Thus invoking the first-order condition for a
convex function at point 1, we obtain the inequality (4).

The resulting conditionℜ(𝜆) > |ℑ(𝜆) | for every eigenvalue 𝜆 of the matrix 𝑺𝑡𝑺
†
♮

defines a region on
the complex plane in which it can reside in order for (3) to hold. This region is illustrated in Figure 2.
Note that if (4) is true for 𝑺𝑡𝑺

†
♮
, it is trivially true for its inverse (𝑺𝑡𝑺

†
♮
)−1 as well.

Proof of Lemma 3.2. Replacing 𝑿 = 𝑨♮𝑺 ♮ in (2), we first obtain from the𝑾 update that

𝑾 𝑡+1𝑨♮ = (𝑺𝑡 +𝑼 𝑡 )𝑺†♮ +𝛾 (𝑺𝑡𝑺
⊤
♮
)−⊤,

and the 𝑼 update gives
𝑼 𝑡+1𝑺

†
♮
= (𝑼 𝑡 + 𝑺𝑡+1)𝑺†♮ −𝑾 𝑡+1𝑨♮.
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Canceling𝑾 𝑡+1𝑨♮ gives us

(𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ = 𝑺𝑡𝑺
†
♮
+𝛾 (𝑺𝑡𝑺

⊤
♮
)−⊤. (5)

Since we assume 𝑺𝑡𝑺
†
♮
, so is (𝑺𝑡𝑺⊤♮)

−⊤, and noticing that they share the same eigen basis, all eigenval-
ues of (5) satisfies (4), therefore we have

log | det(𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ | ≤ Tr(𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ − 𝑘 . (6)

Notice that
𝑺𝑡+1 −𝑼 𝑡+1 =𝑾 𝑡+1𝑿 −𝑼 𝑡 ,

while
𝑺𝑡+1 = Prox𝛾𝑔 (𝑾 𝑡+1𝑿 −𝑼 𝑡 ),

so we equivalently have
𝑺𝑡+1 = Prox𝛾𝑔 (𝑺𝑡+1 −𝑼 𝑡+1).

Since we have (6), by using the property of proximal operator, we have

log | det Prox𝛾𝑔 (𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ | ≤ Tr Prox𝛾𝑔 (𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ − 𝑘 .

This completes the proof. □

C PCA EQUIVALENCE

Consider the main formulation with 𝑔 (·) = (1/2)∥ · ∥2F:

minimize
𝑾

−1
2

log det𝑾𝑾⊤+ 1
2
∥𝑾𝑿 ∥2F. (7)

Taking the gradient with respect to𝑾 and setting it equal to zero at optimum𝑾 ★, we have

𝑾 †⊤
★ =𝑾 ★𝑿 𝑿⊤.

We assume that 𝑾 ★ is a wide matrix with linearly independent rows, so 𝑾 ★𝑾
†
★ = 𝑰 , therefore

multiplying both sides by𝑾⊤★ on the right gets

𝑰 =𝑾 ★𝑿 𝑿⊤𝑾⊤★

This shows two things:

1. The symmetric matrix 𝑿 𝑿⊤ can be diagonalized by𝑾 ★. This can happen if rows of𝑾 ★ are
eigenvectors of 𝑿 𝑿⊤ and their Euclidean norms equal to one over the square root of their
corresponding eigenvalue.

2. At optimum, the second term in (7) exactly equals to (1/2)∥𝑾 ★𝑿 ∥2F = 𝑘/2, meaning that
we only need to worry about the first term when picking the eigenvectors of 𝑿 𝑿⊤ to construct
𝑾 ★.

As a result, it is easy to conclude that an optimal solution is𝑾 ★ = 𝜮−1
𝑘
𝑼⊤

𝑘
, where 𝜮 is a diagonal

matrix with the 𝑘 largest singular values of 𝑿 on the diagonal, and columns of 𝑼 𝑘 are their corre-
sponding left singular vectors. Note that 𝑸𝑾 ★ would also be optimal for any orthogonal matrix 𝑸 ,
showing that this model is not identifiable.

This indeed provides yet another interpretation of the famous PCA problem.
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