
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROVABLY CONVERGENT NONCONVEX ALGORITHM
FOR VOLUME OPTIMIZATION-BASED
LATENT COMPONENT ANALYSES
SUPPLEMENTAL MATERIAL

Anonymous authors
Paper under double-blind review

A RELATED WORKS

In this section we introduce some existing algorithms that directly tackles the formulation, repeated
here:

minimize
𝑾

−1
2

log det𝑾𝑾⊤+ 𝑔 (𝑾𝑿). (1)

More specifically, we introduce two algorithms that rely on existing off-the-shelf toolboxes to solve
linear programming problems as a sub-routine in each iteration. There exists an early work based on
augmented Lagrangian method specifically designed for ACA (Bioucas-Dias, 2009). We will include
it in the experiment comparing all these algorithms, but the description is omitted as it is somewhat
similar in the spirit of our proposed L-ADMM.

A.1 BLOCK COORDINATE DESCENT (BCD)

This method only works when𝑾 is square, so det𝑾𝑾⊤ = | det𝑾 |2. Using the Laplace’s formula,
we know that det𝑾 is a linear function with respect to the 𝑖 th row of𝑾 using the co-factor expansion

det𝑾 =

𝑘∑︁
𝑗=1

(−1)𝑖+𝑗𝑊𝑖 𝑗 det𝑾 𝑖 𝑗 ,

where the matrix𝑾 𝑖 𝑗 is obtained by deleting the 𝑖 th row and 𝑗 th column of𝑾 . Then to apply the
block coordinate descent algorithm (Bertsekas, 1999), one would minimize −|𝒇⊤𝑖𝒘 𝑖 | + 𝑔𝑖 (𝒘⊤𝑖𝑿),
where 𝒇 𝑖 ∈ R𝑘 is a vector defined according to the co-factor expansion formula, and 𝑔𝑖 is a function
in 𝑹𝑘 by fixing all except the 𝑖 th row of𝑾 .

It looks as if we need to solve two linear programs for each row update, one to maximize 𝒇⊤𝑖𝒘 𝑖 and
one to minimize 𝒇⊤𝑖𝒘 𝑖 , but it turns out one only needs to maximize 𝒇⊤𝑖𝒘 𝑖 . For BCA and SCA where
there is a sign ambiguity in each component, either solution is a sign flip of the other and equally
good; for NCA and ACA, due to the nonnegativity constraint, the sign of 𝒇⊤𝑖𝒘 𝑖 should equal to that
of det𝑾 . Furthermore, recall that the Cramer’s rule shows that[

𝑷 −1]
𝑗 𝑖
= (−1)𝑖+𝑗 det𝑷 𝑖 𝑗

/
det𝑷 ,

meaning we can simply define 𝒇 𝑖 as the 𝑖 th column of 𝑷 −1, and it would not affect the row updates.

The idea was first proposed to solve ACA by Chan et al. (2009). Several follow-up works have been
proposed to solve related problems, such as NCA (Huang et al., 2016), ACA (Huang & Fu, 2019),
BCA (Hu & Huang, 2023b), and SCA (Hu & Huang, 2023a). Notice that BCD works the best when
the constraints are all separable over the blocks (Bertsekas, 1999); this makes BCD works fairly good
on BCA, SCA, and NCA, but not particularly well on ACA (even though it was first proposed on this
problem).

A.2 FRANK-WOLFE (FW)

The Frank-Wolfe algorithm, also known as the conditional gradient method for constrained opti-
mization (Bertsekas, 1999), iteratively minimizes a linear objective, defined by the gradient at the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 Solving (1) with BCD

initialize𝑾 (0)
repeat

for 𝑖 = 1, . . . , 𝑘 do
𝒇 =𝑾 −1𝒆 𝑖
𝒘 = arg min

𝒘
−𝒇⊤𝒘 + 𝑔𝑖 (𝒘⊤𝑖𝑿)

replace 𝑖 th row of𝑾 with 𝒘⊤

end for
until convergence

current iterate, under the same constraint set to determine the search direction and obtain the next
iterate via some line search approach along the search direction. For the log-determinant objective in
(1), we have that the gradient is −(𝑷 †)⊤. As a result, the Frank-Wolfe algorithm for (1) is given in
Algorithm 2.

Algorithm 2 Solving (1) with Frank-Wolfe

initialize 𝑷 (0)
for 𝑡 = 0, 1, 2, . . . until convergence do
𝑾 𝑑 = arg min

𝑾
−Tr(𝑾 †

(𝑡)𝑾) + 𝑔 (𝑾𝑿)
𝛼 ← 1
while − log | det(𝑾 (𝑡) +𝛼𝑡 (𝑾 𝑑 −𝑾 (𝑡))) | > − log | det𝑾 (𝑡) | + (𝛼/2) Tr(𝑾 −1

(𝑡) (𝑾 𝑑 −𝑾 (𝑡))) do
𝛼 ← 𝛼/2

end while
𝑾 (𝑡+1) =𝑾 (𝑡) + 𝛼 (𝑾 𝑑 −𝑾 (𝑡))

end for

Regarding the line search step, the backtracking line search (Armijo rule) (Bertsekas, 1999) is used to
guarantee sufficient decrease of the objective function. Since 𝑔 is convex, as long as𝑾 (𝑡) is feasible,
then𝑾 (𝑡+1) is also feasible since it is a convex combination of𝑾 (𝑡) and 𝑷𝑑 , which are by definition
feasible. Therefore, the only nontrivial part is to find a feasible initialization 𝑷 (0) . This can be done
by optimizing an arbitrary linear objective subject to 𝑔 (which means one should not apply line search
at this step).

Frank-Wolfe was proposed to solve an instance of (1) by Hu & Huang on SCA (2023a) and NCA/ACA
(2024).

The two proposed algorithms 2 and 1 shows striking similarities, especially considering they both
fundamentally solve linear programs in each iteration. For nonconvex optimization, both algorithms
guarantees that every limit point is a stationary point with some additional assumptions, which is
reassuring to know. The differences are as follows:

1. Block coordinate descent is guaranteed to monotonically improve the objective function
by design, so there is no need for line search as in Frank-Wolfe. This could save some
computation as calculating det𝑾 may not be cheap when 𝑘 is large.

2. On the other hand, each iteration of Frank-Wolfe only need to calculate𝑾 † once for the
update of all its 𝑘 rows, whereas BCD requires to recalculate 𝑾 −1 for each of its row
updates. Overall, the per-iteration complexity is almost identical.

A.3 NUMERICAL PERFORMANCES

We now provide some numerical experiments to demonstrate how our proposed L-ADMM performs
compared to the existing algorithms outlined in this section. The settings are exactly the same as in
§4, except that in the figures the horizontal axis shows time elapsed in seconds, not iterations—while
L-ADMM takes hundreds to thousands of iterations to converge, neither BCD nor FW takes more
than a few tens, but their per-iteration complexities are much higher as they require solving linear
programs as a sub-routine.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

time / seconds

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

o
p
ti
m

a
lit

y
 g

a
p L-ADMM

Frank-Wolfe

BCD

(a) Bounded component analysis

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

time / seconds

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

o
p
ti
m

a
lit

y
 g

a
p

L-ADMM

Frank-Wolfe

BCD

(b) Sparse component analysis

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

time / seconds

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

o
p
ti
m

a
lit

y
 g

a
p

L-ADMM

Frank-Wolfe

BCD

(c) Nonnegative component analysis
10

-3
10

-2
10

-1
10

0
10

1

time/seconds

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

o
p
ti
m

a
lit

y
 g

a
p

L-ADMM

Frank-Wolfe

SISAL

(d) Admixture component analysis

Figure 1: Convergence of L-ADMM vs. BCD and FW for various latent component analyses models
on 10 random trials.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The convergence behavior of 10 random trials of L-ADMM, BCD, and FW are shown for BCA,
SCA, and NCA in Figure 1. For ACA, we find that BCD proposed by Chan et al. (2009) takes too
long to converge in all cases due to the fact that the constraints are not separable over the rows,
so BCD is not included; instead, we include another augmented Lagrangian method called SISAL
designed specifically for ACA as comparison. As we can see, L-ADMM works significantly better
than BCD and FW in all cases. In some cases, BCD or FW may not even solve the problem, such as
FW for BCA or BCD for NCA, which is in fact reasonable as we are trying to solve a nonconvex
problem—what is incredible is that L-ADMM always works within a very short amount of time,
which motivates this works. L-ADMM is overall comparable to the highly efficient SISAL, which is
a dedicated algorithm for ACA, while L-ADMM is also highly flexible for other problems.

B PROOF OF LEMMA 3.2

Recall the proposed L-ADMM is
𝑾 𝑡+1 ← (𝑺𝑡 +𝑼 𝑡 +𝛾𝑺†⊤𝑡)𝑿 †
𝑺𝑡+1 ← Prox𝛾𝑔 (𝑾 𝑡+1𝑿 −𝑼 𝑡)
𝑼 𝑡+1 ←𝑼 𝑡 + 𝑺𝑡+1 −𝑾 𝑡+1𝑿

. (2)

and Lemma 3.2 is
Lemma B.1. When running the L-ADMM iterations, if 𝑺𝑡 satisfies

log | det𝑺𝑡𝑺
†
♮
| ≤ Tr𝑺𝑡𝑺

†
♮
− 𝑘 , (3)

then 𝑺𝑡+1 also satisfies
log | det𝑺𝑡+1𝑺

†
♮
| ≤ Tr𝑺𝑡+1𝑺

†
♮
− 𝑘 ,

Figure 2: If all the eigenvalues of 𝑺𝑡𝑺
†
♮

fall in the shaded region on the complex
plane, then the inequality (3) is satisfied.

It is well known that Tr(𝑺𝑡𝑺
†
♮
) equals to the sum of its

eigenvalues, and det(𝑺𝑡𝑺
†
♮
) equals to the product of its

eigenvalues. Since we do not restrict 𝑺𝑡𝑺
†
♮

to be symmetric,
its eigenvalues may be complex. However, we do restrict
𝑺𝑡𝑺

†
♮

to be real, so its complex eigenvalues always come
in conjugate pairs. This means if a complex eigenvalue
takes the form 𝜌 + 𝑖𝜂 , then 𝜌 − 𝑖𝜂 is also an eigenvalue.

A sufficient condition for (3) is that all eigenvalues satisfy

𝜌 − 1 ≥ 1
2

log(𝜌2 +𝜂2). (4)

This inequality obviously holds if 𝜂 = 0 (i.e., this eigen-
value is real) when 𝜌 > 0 as per the famous inequality
𝜌 − 1 ≥ log 𝜌 . What is somewhat less obvious is that
this inequality also holds when 𝜌 > |𝜂 | when 𝜂 ≠ 0. It
is easy to verify that for a fixed 𝜂 , the second derivative
of −(1/2) log(𝜌2 +𝜂2) with respect to 𝜌 is positive when
𝜌 > |𝜂 |. Thus invoking the first-order condition for a
convex function at point 1, we obtain the inequality (4).

The resulting conditionℜ(𝜆) > |ℑ(𝜆) | for every eigenvalue 𝜆 of the matrix 𝑺𝑡𝑺
†
♮

defines a region on
the complex plane in which it can reside in order for (3) to hold. This region is illustrated in Figure 2.
Note that if (4) is true for 𝑺𝑡𝑺

†
♮
, it is trivially true for its inverse (𝑺𝑡𝑺

†
♮
)−1 as well.

Proof of Lemma 3.2. Replacing 𝑿 = 𝑨♮𝑺 ♮ in (2), we first obtain from the𝑾 update that

𝑾 𝑡+1𝑨♮ = (𝑺𝑡 +𝑼 𝑡)𝑺†♮ +𝛾 (𝑺𝑡𝑺
⊤
♮
)−⊤,

and the 𝑼 update gives
𝑼 𝑡+1𝑺

†
♮
= (𝑼 𝑡 + 𝑺𝑡+1)𝑺†♮ −𝑾 𝑡+1𝑨♮.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Canceling𝑾 𝑡+1𝑨♮ gives us

(𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ = 𝑺𝑡𝑺
†
♮
+𝛾 (𝑺𝑡𝑺

⊤
♮
)−⊤. (5)

Since we assume 𝑺𝑡𝑺
†
♮
, so is (𝑺𝑡𝑺⊤♮)

−⊤, and noticing that they share the same eigen basis, all eigenval-
ues of (5) satisfies (4), therefore we have

log | det(𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ | ≤ Tr(𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ − 𝑘 . (6)

Notice that
𝑺𝑡+1 −𝑼 𝑡+1 =𝑾 𝑡+1𝑿 −𝑼 𝑡 ,

while
𝑺𝑡+1 = Prox𝛾𝑔 (𝑾 𝑡+1𝑿 −𝑼 𝑡),

so we equivalently have
𝑺𝑡+1 = Prox𝛾𝑔 (𝑺𝑡+1 −𝑼 𝑡+1).

Since we have (6), by using the property of proximal operator, we have

log | det Prox𝛾𝑔 (𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ | ≤ Tr Prox𝛾𝑔 (𝑺𝑡+1 −𝑼 𝑡+1)𝑺†♮ − 𝑘 .

This completes the proof. □

C PCA EQUIVALENCE

Consider the main formulation with 𝑔 (·) = (1/2)∥ · ∥2F:

minimize
𝑾

−1
2

log det𝑾𝑾⊤+ 1
2
∥𝑾𝑿 ∥2F. (7)

Taking the gradient with respect to𝑾 and setting it equal to zero at optimum𝑾 ★, we have

𝑾 †⊤
★ =𝑾 ★𝑿 𝑿⊤.

We assume that 𝑾 ★ is a wide matrix with linearly independent rows, so 𝑾 ★𝑾
†
★ = 𝑰 , therefore

multiplying both sides by𝑾⊤★ on the right gets

𝑰 =𝑾 ★𝑿 𝑿⊤𝑾⊤★

This shows two things:

1. The symmetric matrix 𝑿 𝑿⊤ can be diagonalized by𝑾 ★. This can happen if rows of𝑾 ★ are
eigenvectors of 𝑿 𝑿⊤ and their Euclidean norms equal to one over the square root of their
corresponding eigenvalue.

2. At optimum, the second term in (7) exactly equals to (1/2)∥𝑾 ★𝑿 ∥2F = 𝑘/2, meaning that
we only need to worry about the first term when picking the eigenvectors of 𝑿 𝑿⊤ to construct
𝑾 ★.

As a result, it is easy to conclude that an optimal solution is𝑾 ★ = 𝜮−1
𝑘
𝑼⊤

𝑘
, where 𝜮 is a diagonal

matrix with the 𝑘 largest singular values of 𝑿 on the diagonal, and columns of 𝑼 𝑘 are their corre-
sponding left singular vectors. Note that 𝑸𝑾 ★ would also be optimal for any orthogonal matrix 𝑸 ,
showing that this model is not identifiable.

This indeed provides yet another interpretation of the famous PCA problem.

REFERENCES

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2 edition, 1999.

José M Bioucas-Dias. A variable splitting augmented lagrangian approach to linear spectral unmixing.
In 2009 First workshop on hyperspectral image and signal processing: Evolution in remote sensing,
pp. 1–4. IEEE, 2009.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Tsung-Han Chan, Chong-Yung Chi, Yu-Min Huang, and Wing-Kin Ma. A convex analysis-based
minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Transactions on
Signal Processing, 57(11):4418–4432, 2009.

Jingzhou Hu and Kejun Huang. Global identifiability of ℓ1-based dictionary learning via matrix
volume optimization. In Advances in Neural Information Processing Systems (NeurIPS), volume 36,
2023a.

Jingzhou Hu and Kejun Huang. Identifiable bounded component analysis via minimum volume
enclosing parallelotope. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2023b.

Jingzhou Hu and Kejun Huang. Frank-wolfe algorithm for simplicial and nonnegative component
analysis. In 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM),
pp. 1–5. IEEE, 2024.

Kejun Huang and Xiao Fu. Detecting overlapping and correlated communities without pure nodes:
Identifiability and algorithm. In International Conference on Machine Learning, pp. 2859–2868,
2019.

Kejun Huang, Xiao Fu, and Nikolaos D Sidiropoulos. Anchor-free correlated topic modeling:
Identifiability and algorithm. Advances in Neural Information Processing Systems, 29, 2016.

6

