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Abstract

Riemannian space forms, such as the Euclidean space, sphere and hyperbolic space,
are popular and powerful representation spaces in machine learning. For instance,
hyperbolic geometry is appropriate to represent graphs without cycles and has been
used to extend Graph Neural Networks. Recently, some pseudo-Riemannian space
forms that generalize both hyperbolic and spherical geometries have been exploited
to learn a specific type of nonparametric embedding called ultrahyperbolic. The
lack of geodesic between every pair of ultrahyperbolic points makes the task of
learning parametric models (e.g., neural networks) difficult. This paper introduces
a method to learn parametric models in ultrahyperbolic space. We experimentally
show the relevance of our approach in the tasks of graph and node classification.

1 Introduction

Riemannian manifolds of constant curvature are the most common representation spaces in machine
learning. They include the Euclidean space (of constant zero curvature), the d-sphere (of constant
positive curvature) and the hyperbolic space (of constant negative curvature). The choice of a
geometry to represent data mainly depends on the kind of relationship that needs to be described. For
instance, Gromov [10] showed the relevance of hyperbolic geometry to represent trees (i.e., graphs
without cycles). Since many hierarchies can be described as trees, hyperbolic representations have
been used to represent hierarchical relationships (e.g., hypernymy between words [19]). Nonetheless,
in many domains (e.g., social networks or protein structures), hierarchical graphs contain cycles.

In hyperbolic geometry, the considered manifold is not a vector space and is not equipped with the
standard dot product. Therefore, most hyperbolic neural networks [5 8} [18},27] represent the weights
of their last layer in the tangent space of some reference point. That tangent space is equipped with a
positive definite metric tensor and the learned model can then be optimized with Riemannian gradient
descent [} 14]. In particular, since there exists a geodesic between any pair of points, the parameters
are often optimized by using parallel transport (also called parallel translation) or the logarithm map.
The Riemannian gradients are then parallel translated to the reference tangent space in which the
model parameters lie. We refer the reader to [23]] for a recent survey on hyperbolic neural networks.

Recently, Law & Stam [[15] proposed ultrahyperbolic embeddings. They are a type of embedding that
lies on a pseudo-Riemannian manifold of constant nonzero curvature [2}21,130]. Pseudo-Riemannian
manifolds (also called semi-Riemannian manifolds) are generalizations of Riemannian manifolds
where the nondegenerate metric tensor is not constrained to be positive definite [[L6]. In particular,
when the metric tensor is not positive definite (e.g., when it is indefinite), the negative of the (pseudo-
Riemannian) gradient is not a descent direction [9)]. Law & Stam [[15] proposed an efficient method
to calculate a descent direction and learn ultrahyperbolic (nonparametric) embeddings. The main
motivation of representing data on an ultrahyperbolic manifold is that it contains hyperbolic and
spherical parts (see Fig. |I|and supp. material for details). It can then describe relationships specific
to hyperbolic and spherical geometries (e.g., to represent parts of a graph that are trees or cycles) and
is more flexible. Ultrahyperbolic embeddings were experimentally shown to be more appropriate
than hyperbolic embeddings to represent hierarchical graphs with cycles on several datasets [[15].
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Figure 1: Geodesics of the pseudo-Riemannian quotient manifold
Pt = 8!/ £ 1 embedded in R2!. The point [x] of P;*" is
R Time-like geodesic the pair {x, —x}. Any pair of points of 7311 ! can be joined by a
geodesic of 7711 "' On the other hand, x and —z cannot be joined
by an (unbroken) geodesic of 811 ! The length of the minimizing
geodesic of P}" joining [x] and [y] is the length of the minimizing
Null geodesic ggpdesic of 811’1 joining x and —y (in blue). The length of the
geodesic of P! joining [x] and [z] is the length of the geodesic
of 811 1 joining x and z (in red). See details in the supp. material.

Space-like geodesic

However, since there exist pairs of points on the ultrahyperbolic manifold considered in [15]] that
cannot be joined by an (unbroken) geodesic, gradients might not be parallel translated via a geodesic
and the logarithm map joining two given points might not be defined. Directly extending hyperbolic
neural networks [5, 18] [18},[27]] to ultrahyperbolic space is then problematic.

In this paper, we propose a method to learn ultrahyperbolic representations with neural networks.
Unlike [15], we consider the pseudo-Riemannian quotient manifold defined such that every point
x = (zo, . .. ,xd)T is equivalent to its antipodal point —x = (—zy, .. ., —xd)T. In this way, for any
other point y, there always exists at least one geodesic joining (x,y) or (—x,y). We provide sufficient
conditions to minimize a function defined on our quotient manifold. Since tangent vectors (hence
gradients) of quotient manifolds are abstract objects, we explain how the function can be optimized
with the horizontal lift operator. Our optimization framework is general, so we also introduce an
extension to Graph Neural Networks (GNNs) [18]] such that the activation representations at each
layer of our GNN lie in ultrahyperbolic space. We then obtain a deep ultrahyperbolic model to
represent graphs given as input. We evaluate our approach in different graph classification tasks.

2 Pseudo-sphere and Quotient Manifold

We extend the ultrahyperbolic manifold described in [[15] (denoted by S?:?) to a quotient manifold
denoted by PP-? where (p, q) is the metric signature (see page 343 of [16]) of the pseudo-Riemannian
manifold and 1/72 is its curvature. The motivation is that any pair of points of P+? can be joined
by at least one geodesic, which allows us to optimize parametric models. We consider three pseudo-
Riemannian manifolds P79 C 8P4 C RPT1:4 that we define below. We explain how PP?:¢ generalizes
elliptic and hyperbolic geometries in the special cases where ¢ = 0 and p = 0, respectively.

Notation. We denote points on a smooth manifold M [16] by boldface Roman characters x € M.
[x] := {x,—x} is a pair of antipodal points. T%.M is the tangent space of M at x and we write
tangent vectors & € Ty M in boldface Greek fonts. R is the d-dimensional Euclidean space equipped
with the (positive definite) dot product (-, -) defined as (x,y) := x "y. I is the identity matrix. The
inverse function of the cosine (resp. hyperbolic cosine) is denoted by cos ™! (resp. cosh™h).

Ambient space RPT14, Our ambient space RPT1+9 is a vector space of dimensionality d + 1 =

p+ g+ 1 € N called pseudo-Euclidean space [21]]. It is equipped with the following scalar product
(i.e., nondegenerate symmetric bilinear form) of signature (p + 1, q):
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where the signature matrix G = G~ = L, , is the (d 4 1) x (d 4 1) diagonal matrix with the first
p + 1 diagonal elements equal to 1 and the remaining g equal to —1. Following general relativity
literature and spacetime terminology [7]], RP* %9 has p + 1 space dimensions and ¢ time dimensions.
Since it is a vector space, we can identify its tangent space to the space itself by means of the natural
isomorphism T, RPT14 ~ RP*1.4, Finally, the Euclidean space R?*! is the special case of R*+1:0
which contains zero time dimension, and where G =I5 = L.

Total space SP»9. Our total space SP*Y is a pseudo-sphere of radius r > 0 embedded in RP*1:4. Tt is
the following hypersurface:

St i= {x € RFFM: (x,x)g =17}, )



It is equivalent to work with the pseudo-hyperboloid Q47 := {x € R¥PT! : (x,x),11 = —r?} and
the pseudo-sphere SP»¢ as they are anti-isometric to each other (see supp. material). Moreover, the
radius r > 0 plays a role of scaling factor so we consider it to be 1 although it can be learned [5, [14].
Finally, both x € S?'? and its antipodal point —x lie on S¥9 since (x,X)q = (—X, —X)q.

Quotient manifold P?-7. We consider as equivalence relation the two-element group {£1} consist-
ing of the identity map x — x and the antipodal map x — —x. This means that two points x € S¥¢
and y € SP9 are equivalent iff y = x or y = —x. We define the following projective space:

Pra =8P/ +1=8P1/+1={{x,—x}:x € SP}. 3)
Every point of P?»? is an unordered pair that we denote by [x] := {x, —x}. Since P?"? is a projective
space, every point [x] € PP can be interpreted as the intersection of the pseudo-sphere SP+? with a
line passing through the origin of RP*1:4. In some cases, it might be easier to interpret points of P?4
as lines through the origin, and to study their properties when they intersect the pseudo-sphere. Each
point [x] € P9 is also a submanifold of S?'7 and a discrete space.

In the following, we explain how P27 extends spherical geometry to elliptic geometry (i.e., when
g = 0), or naturally describes the hyperboloid model of hyperbolic geometry (i.e., when p = 0).

Elliptic geometry (¢ = 0). In spherical geometry, points lie on the unit d-sphere S¢ := Sf 0 =
{x € R : (x,x) = 1}. The geometry of the projective d-space P¢ := S/ + 1 is called elliptic
geometry [24]30]. Geodesic distances of 7% naturally account for the fact that they compare sets. Let
d=: 8% x 8% — R be the geodesic distance of S¢ (i.e., spherical distance). The geodesic distance
between [x] € P and [y] € P?is d,([x], [y]) = minacx) befy] d5(a, b). We then have:

dV([X]’ [Y]) = min{d?(xa Y>7 dV(_X7 Y)} = COS_1(|<Xa Y>|) = COS_l(‘ <X’ y>q|)7 “4)
which is a distance metric. The fact that the spherical geometry is antipodally symmetric (i.e., every
point can be inverted w.r.t. the origin) leads to a duplication of geometric information [24]]. Identifying
each pair of antipodal points to one point eliminates the antipodal duplication in spherical geometry.

The hyperboloid model of hyperbolic geometry is similar to the geometry of Pf I (p =0). The
g-dimensional manifold S? " c RY contains two separate sheets (i.e., two connected components)
and is anti-isometric to the hyperboloid of two sheets Q‘f"o. Pairs of antipodal points lying on different
sheets of )7 are considered as a single point of P*?. Let x € S}"? and z € S}"? be two points
lying on the same sheet of S(l) "4 there exists no geodesic joining x and —z. Their geodesic distance
with respect to Sy"¢ can then be considered to be d~(x, —z) = +0o0, and we have:

d,([x], [z]) := min{d=(x,2), +00} = dx(x,2) = cosh™ ' ((x,2),) = cosh™ ' (|(x,2),]), (5)
which is similar to the hyperbolic distance metric of the hyperboloid model studied in [20]].

Ultrahyperbolic geometry (or indefinite elliptic geometry). In this paper, we propose a parametric
model that learns representations lying on the quotient manifold P2>¢. When both p and g are positive,
the metric tensor of P?-4 is nondegenerate (see page 343 of [[16]) and indefinite. This means that the
manifold is pseudo-Riemannian but not Riemannian due to the lack of positive definiteness of the
metric tensor. P2 ¢ is also called an indefinite elliptic space [30] in the literature. We refer the reader
to Chapters 11 and 12 of [30] or Chapter 7 of [21] for details. As an example, Fig. E]illustrates the
manifold 7311 ! Our main motivation for considering P?+4 is that it is more flexible than hyperbolic
and elliptic geometries since it contains hyperbolic and elliptic parts (i.e., time-like and space-like
geodesics in Fig. [T). This flexibility allows us to better represent graphs that are not entirely trees or
cycles, but that contain tree-like or cycle subgraphs. We experimentally verify our intuition.

3 Optimization on Ultrahyperbolic Quotient Manifolds

Our ultrahyperbolic representations lie on the quotient manifold P?'9. In this section, we provide
differential geometry tools to optimize some differentiable function f : P?*9 — R. To this end, we
need the formulation of geodesics of P?»9. In Section [3.1f we explain how to formulate tangent
vectors of PP as a function of tangent vectors of SP*7 via the horizontal lift operator. This operator
allows us to formulate geodesics of P2+? as a function of geodesics of S?»¢ in Section[3.2] In
Section we state the properties that the function f has to satisfy due to the quotient nature of
Pr4. In Section[3.4] we illustrate how to optimize a standard neural network. Our deep GNN that
maps activation representations in ultrahyperbolic space at each layer is introduced in Section



3.1 Representing tangent vectors of 72+ only by horizontal tangent vectors of S?-¢

It can be difficult to work numerically with the tangent space T, P?*? of PP'? at [x] since [x] =
{x, —x} is an equivalence class. We now present some differential geometry tools to define tangent
vectors of SP'7 as a function of tangent vectors of P29, and vice versa. Their general definitions can
be found in Chapter 7 of [21]]. We also refer the reader to [4]] for details on optimization on quotient
manifolds. Our contribution in this subsection is that we give their formulation for P?'9. We first
give the formulation of tangent spaces of S?¢ and then provide tools to identify tangent vectors of
Pr-4. These tools will be essential to construct geodesics of P?*¢ and represent them via SP+9.

The tangent space 7 SP? of SP*7 at x can be defined as: 7xSP? := {€ € RPT17: (€ x), = 0}.

The canonical map (or natural map [21]) 7 : S?7 — PP is defined as: Vx € S, 7(x) :=
[x] = {x, —x}. Its differential at x is denoted by dmy : T5SP'? — Ti» PP

The horizontal space H, and the vertical space Vy at x € SZ'? are subspaces of T, SP*? defined
such that T5SP9 = Hx @ Vx is a direct sum of linear spaces, and Vx is the following kernel:
Vy := ker(dmx ). From Proposition 5.38 of [16], we find ker(dmx) = Tx([x]) = 0 because [x] is a
discrete space so [x] and its tangent spaces are O-dimensional. We then have Hy = T%SP>?. Elements
of Hy are called horizontal vectors, and all the tangent vectors of SP+¢ are horizontal.

The horizontal lift (see §29 of [29]) at x € 87 of the tangent vector & € T}, P? is the unique

horizontal vector denoted by &, = lift(&€) € Hyx such that dmg(&€,) = €. Since Hyx = TSP,
the lifty operator is bijective so tangent vectors in T, P?>? can be equivalently represented by
horizontal vectors in Hy. During optimization, we will exploit this bijection and consider only some
specific horizontal space to represent and update the weights of our neural network. The fact that
Hx = TxSP? is convenient since it implies that any tangent vector in 7% SP°? can be represented in
Tix PP, We can then construct a geodesic of P+ from any geodesic of S7»? as discussed below.

3.2 Geodesic of P?-9, exponential map and parallel transport

To optimize over SP9 and Q2P Gao et al. [9] and Law & Stam [[15] define tools such as the geodesic,
parallel transport, exponential map, logarithm map and the geodesic distance d : S2'9 x SP9 — R
(see formulations in the supp. material). Our contribution in this subsection is that we extend all of
the above differential geometry tools to P?-4. Their details can be found in the supp. material.

The geodesic 7 : R — SP? of SP? is the curve defined such that its initial pointis 7, g (0) =

x—E€,

x € 8P4, its initial velocity is W;HE (0) = &, € TSP and its acceleration is zero. When the

initial conditions are clear from the context, we denote the geodesic by 7 and ignore its indices.
Since every geodesic 7 of SP+9 satisfies V¢, 7' (t) € Hsy), it is called horizontal and y := 70 7 :
R — PP is a geodesic of PP+7. By the chain rule, we have V¢, ' (t) = dms ;) (7' (t)), which implies
Vi, lifts ) (7' (t)) = 7'(t). We then have Vt € R, yx¢(t) = {Vxse, (0,7 _xg (1)}, and we

find €, = —&_,, to preserve the equivalence between antipodal points: 7, L M) =T .z ().

Exponential and logarithm map. The exponential map of PP at [x] is the differentiable mapping
expiy) 1 TjxPP? — PP? defined such that exppy (§) := Y -e(1) = {Wx_@x(l)ﬁ_x_,;x(l)}.

We denote the exponential map of SP'9 at x by exp,, : TxSP'? — SP9. It is defined as €xp, (£, ) =

Vx_z, (1), and we have expj,)(§) = [eXDy(€)]- In practice, we select some reference point x
and only work with the exponential map exp,.. The logarithm map is the inverse function of the
exponential map (i.e., log, = exp[_x]l). Their exact formulation can be found in the supp. material.

Parallel transport on S?°¢. Given the minimizing (unbroken) geodesic 7 (i.e., minimizing the
arc length) from x = %(0) to y = (1), the parallel transport P) ., : TxSP? — T,5P7 is a

XNy

linear isometry such that V€, C, (€x,Cx)q = (Piy(€x), Pi,(Cy))q (see page 66 of [21]). The

XNy y L xvy
parallel transport along 7 from x to y (where x and y satisfy (x,y), > —r?)is:

<ya Ex>q

ijy(gx) = Ex - W

(y +x) (6)
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Minimizing geodesic of P29, Our parallel transport on P2'? depends on a minimizing geodesic vy
whose arc length (that we call geodesic distance d) from [x] = v(0) to [y] = (1) is:

shL(| (x¥)q ) if | (x:¥)q |>1
V[x] € PP, [y] € PP, d ([x], [y]) = ¢ ¢ o2 7
) € P2, y] (Bl ) { o (1Bul)  otheraise g
and we have d~(x,y) < ds(—x,y) iff (x,y), > 0. See details in the supp. material.
The parallel transport P[l]m[y] on P24 can be horizontally lifted on #, as discussed above:
. Py (&) if (x,y)q >0
V€ € T PP, lifty (P = XY X, I 8
3 b Pr s Tifty ( [X]f\v[y}(é)) { ijmy(ﬁfx) if (x,y), <O. ®)

If (x,y), = 0, we have d~(x,y) = ds(—x,y) and there exist two minimizing geodesics joining [x]
and [y]. In practice, we arbitrarily choose one of these two geodesics when (x,y), = 0.

3.3 Optimized function f : P»? — R

Our goal is to minimize some differentiable function f : P29 — R. We now describe the two
properties that f has to satisfy. We first recall that every [x] € P?? is a set of equivalent elements
that should preserve invariance. To simplify explanations, we consider the function f : S?¢ — R
defined such that f := f o 7. We then have Vx € SP?, f(x) = f([x]).

Property 1. Since x and —x are equivalent, the first property that f has to satisfy is f(x) = f(—x).

Property 2. Let V f(x) := (f(x)/dxo, ..., 0f(x)/0x4)" be the Buclidean gradient of f at x =
(zo,...,24)". The pseudo-Riemannian gradient of f at x € S?%is Df(x) := I, (G~ 'V f(x)) =

4 (GV f(x)) € T SP? where Il (z) := z — %x is the orthogonal projection of z onto T SP*2.

Let Df([x]) € Tjx P ? be the pseudo-Riemannian gradient of f at [x] € P2»9. By applying the
chain rule, the second property that f has to satisfy is lift, (D f([x])) = Df(x) = —Df(—x).

3.4 Optimization of parametric models

We now explain how to minimize some function f : PP — R that takes as input the ultrahyperbolic
representation returned by some parametric model ¢y (e.g., a neural network with parameters 6)
that we want to learn. We exploit the fact that, due to the properties of the (affine) Levi-Civita
connection [6, [17]] of PP-4, the metric of the manifold PF-9 is preserved when we work with its
tangent spaces via the exponential map (see page 61 of [21]]).

Forward pass. Let us consider the positive pole p = (7,0,...,0)" € 8P defined such that
only its first element > 0 is nonzero. The horizontal space of p can be defined as the following
vector space Hp = TpSP? = {0} x RP?. The mapping ¢y : X — 7, maps any input data
x € X to Hp and the resulting horizontal vector is mapped to S?'¢ with the exponential map as
follows: x := exp,, (pg(x)) € SP*?. As mentioned above, working with the vector space H, greatly
simplifies computations and preserves the metric thanks to the Levi-Civita connection of P29,

Note that for standard neural networks that map to R?, the tangent space is identified to the space
itself by the natural isomorphism 7% R¢ =~ R¢ so the network weights also implicitly lie in the tangent
space. Our approach extends Euclidean neural networks to P29.

Backward pass. We assume that the function f : S? — R satisfies the properties mentioned in
Section[3.3] By exploiting Eq. (8), the horizontal lift of the parallel translate of the gradient D f([x])
can be formulated as follows:

. Pi\vp Df(x if (x,p)q >
At = lifty (P oy (DF () ) = { P ((fg)})(x)) ot1<1ervf/)i>se.> 0

—XN\p

©))

Descent direction. When the metric tensor of the manifold is not positive definite, the manifold
is not Riemannian and the negative of A, is not a descent direction [9]. We show in the supp.
material that the negative of GA[y) , € Hp is a descent direction that can be used to optimize the
parameters of g with standard descent algorithms. We illustrate one such example in Section[5.1]



Complexity. Our optimizer exploits efficient closed-form expressions on S?*¢ by considering x
or its antipodal point —x depending on its “geodesic distance” with the positive pole p. This
geodesic distance depends only on the sign of (x, p),, which is also the sign of the first element of
x = (zg,...,2q) " (e, dv(x,p) < d=(—x,p) < (x,p)q > 0 <= z¢ > 0). Our operators
generalize tools used in hyperbolic space and are then as efficient as hyperbolic approaches.

4 Ultrahyperbolic Graph Convolutional Network (GCN)

We now extend the hyperbolic graph neural networks introduced in [18] to P?9.

Graph Neural Networks. We first provide some background on Graph Neural Networks (GNNs)
which can be interpreted as parametric models performing message passing between nodes of a graph.
We recall the formulation of Graph Convolutional Networks (GCNs) [[13] and rewrite them in our
formalism with quotient manifolds. Let G = (V, E)) be a undirected graph containing n = |V| nodes
and m = |E| edges. Its adjacency matrix is denoted by A € R™*". To account for self-loops, Liu
et al. [18] consider the matrix A = D~ Y/2(A 4+ I)D~ /2 where D is the diagonal degree matrix
defined such that D;; = > i (A;j +1,;). The vector representation of node v at step k is denoted

by h* € R?, and h? is given. W* is a matrix whose elements are the trainable parameters of the
k-th layer. The information in the Euclidean GCN propagates as: ht+! = & (Zvel(u) Auvwkhlj)
where Z(u) is the set of in-neighbors of w € V (i.e., u and v are joined by an edge) and o is a
nonlinear activation function such as the element-wise Rectified Linear Unit (ReLU) or its variants.

Ultrahyperbolic GNN. Let us now consider that Vv, k, h® € PP+4. Since PP+ is not a vector space,
the operation thﬁ is not defined, and the activation function ¢ has to be adapted. As in Section
we exploit properties of the Levi-Civita connection to work with the tangent spaces of P2*¢ via the
exponential map and its inverse (i.e., logarithm map). The propagation is then extended to P24 by:

hit =0 | |&p, ( > AL WEft, ( log ) (hﬁ))) € pra, (10)
vEZL(u)
where p = (7,0,...,0) T is the positive pole and we exploit the logarithm map to map points of PP+

to a single tangent space. As explained in Section[3] in practice, we use the horizontal lift operator so
that the exponential and logarithm maps only consider the horizontal space Hp, during optimization
(see supp. material for details). The hyperbolic GNN [[18] corresponds to the special case where

Pra = Pi)’q (i.e., p = 0). We now give the formulation of the activation function o.

Activation function via stereographic projection. For simplicity of exposition, we now consider
that the radius of SP¢ is r = 1. To enforce nonlinearity between the different layers of the
hyperbolic graph neural network, Liu et al. [[18] formulate their activation function as the result of a
steoreographic projection onto the negative pole —p from the hyperboloid model to the Poincaré ball,
followed by a ReLU activation (in the Poincaré ball) and an inverse steoreographic projection from
the Poincaré ball to the hyperboloid. We explain below how to generalize o to pseudo-spheres.

Letus note ¢ € {—1,1}. The pole ep = (&,0,...,0) " is positive if ¢ = 1, and negative if ¢ = —1.

Let us consider a point x = (29, 21,...,24) € SP'? with 75 > 0 (i.e., lying on the positive
hemisphere). The stereographic projection of x onto ep is a = w.(x) := ﬁ(zl, Toy ..., xq) . If
xo < 0, we equivalently consider that a = w.(—x) = —w_.(x) instead of w.(x) due to the quotient
nature of P2+ and to account for the fact that [x] is projected onto the pole of different hemisphere if
¢ = —1, or same hemisphere if ¢ = 1. The inverse projection of a = (a1, ...,aq)’ € RP?is:
1 B P d
wol(a) = T @a), <5(<a, 3;‘1 1)) € SP'? where (a,a), = ;af - j;l a?. (11

We formulate o ([x]) = [w!(ReLU(w.(x)))] if 2o > 0, and o([x]) := [w}(ReLU(w:(—x)))]
otherwise, where ReLLU (or one of its variants such as LeakyRelu) is applied element-wise only on
the ¢ time dimensions of the input vector, which avoids having a zero denominator in Eq. (TT). As
in [18], we consider ¢ = —1. It is worth noting that Liu et al. [18]] work with the upper sheet of the
hyperboloid Q?’O which is anti-isometric to 810 '?, Their stereographic projection then contains only
space dimensions. Their space dimensions correspond to our time dimensions due to anti-isometry.
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Figure 2: (left) Loss values of Eq. (I2)) as a function of the number of iterations for different values
of p when P24 is 4-dimensional. (right) Stereographic projection onto —p of representations lying on

7311 ! and learned from Zachary’s karate club. Node colors define the faction joined by the members.

Table 1: Evaluation scores for the different learned representations (mean =+ standard deviation)

Evaluation metric R* PE’A 73; 3 ”15’12‘2 'Pf”l 731;,0
(Euclidean) (Hyperbolic) (Elliptic)
Rank of first leader 4.6 +1.0 2.5£0.7 1.2+ 04 1.3+ 0.7 1.2+ 04 2.54+0.8
Rank of second leader 6.9 £0.7 3.8+ 1.0 2.7 +£0.7 3.1+£1.0 4.4+ 3.0 3.6 £0.7
top 5 Spearman’s p 0.06 £0.45 0.36 £0.22 0.62+£0.23 0.61+£0.28 0.63 + 0.35 0.46 £ 0.29
top 10 Spearman’s p 0.04 £0.19 0.38 £0.18 0.73 £+ 0.12 0.72+0.07 0.63+0.16 0.38+0.26
Training time (seconds) 340 + 4 424 + 1 429 + 1 430 £+ 2 429 + 1 402 + 1

5 Experiments

We now evaluate our approach on different classification tasks on graphs. We first show that
our optimization framework introduced in Section [3.4]learns meaningful representations on a toy
hierarchical graph with cycles. We then apply our framework in standard classification tasks.

5.1 Last layer optimization on a toy dataset

We evaluate our optimization framework by training a multi-layer perceptron (MLP) g : X — Hp
whose set of parameters is called §. As in [15]], we test our approach on Zachary’s karate club
dataset [33]]. However, instead of learning embeddings, we train a parametric model.

Zachary’s dataset is a social network graph that represents a karate club split in two factions due
to a conflict between two leaders (the instructor and the administrator). It is an undirected graph
G = (V, E) which has node-set V' = {v;}7_; and edge-set E = {e;}}", where n = 34 and
m = 78. Each node v; represents a karate member and an edge joins two nodes if the two members
are friends. The two leaders are v; and vs4. We consider that each node v; is represented as a distinct
n-dimensional one-hot vector x; € X.

Problem. Following [15]], our goal is to learn representations of nodes such that pairs of nodes
joined by an edge (i.e., in E) have smaller distance than pairs of nodes that are not joined by an edge
(i.e., not in E). Our problem is then to find the set of parameters # that minimizes the problem:

e—d(eo(xi),00(x;))/7

i —1
Hlaln Z 0g Z e—d(eo(@a),00(wv)) /T

(vi,vj)EE

where gg(x;) := [6XDp, (po(x:))]  (12)

(Ua ﬂ)b)e Wi]

and where W;; := {(v;,v;)} U{(va,vp) € E}, 7 = 1072 is a fixed temperature value, and d denotes
the geodesic distance of the manifold (e.g., Eq. (7)) for P?-7). The geodesic distance satisfies the two
properties defined in Section [3.3] with respect to each input and can then be used for optimization.

Model. Our MLP ¢y : X — H,, contains three hidden layers of 10* hidden units each, with standard
ReLU as nonlinear activation function. In this toy experiment, our MLP is standard, with the only



exception that its last layer maps to the horizontal space Hp = {0} x RP:? of the positive pole p.
The output representation is then mapped with the exponential map as explained in Section 3.4}

Optimizer. We use the optimizer introduced in Section[3.4]to update 6. By using the descent direction
—GA[x,),p for each sample [x;] = 0g(x;), all the parameters of our standard MLP lie in some space
equipped with a positive definite metric tensor. Standard backpropagation is then used to optimize
the parameters. As an illustration, we consider the 4-dimensional manifold P‘f 9 (.e,p+q=4)and
show in Fig. [2| (left) the loss values of Eq. as a function of the number of iterations for different
values of p € {0, ...,4}. The figure shows that the optimization framework in Section [3.4] decreases
the loss value. Moreover, it is worth noting that the algorithm does not converge if —Ay,] p is used
as a search direction (instead of —GA[x,) p) When the metric tensor is not positive definite since
—Ax,],p 18 not a descent direction [9]. More details can be found in the supp. material.

Hierarchy extraction. We now evaluate the quality of the learned representations in the task of
predicting the high-level nodes of the graph. Our evaluation protocol is similar to [15], the only
difference is that we train a neural network. We run 10 random initializations for each considered
4-dimensional manifold and report in Table [T] the mean and standard deviation of the different
evaluation metrics.

As in [15], following the idea that hyperbolic distances grow exponentially, we take the sum of
distances ¢; = Z?Zl d([x;], [x;]) of a node v; with all the other nodes as an indicator of importance.
We sort the different 01, . . ., d,, in ascending order and report the rank of the two leaders (instructor
and administrator, in no particular order) in the first two rows of Table E} The leaders tend to have
smaller §; score than low-level nodes with ultrahyperbolic distances, which means that high-level

nodes tend to be closer to the rest of the nodes in ultrahyperbolic space.

We also measure the Spearman’s rank correlation coefficient [28]] between the 5 (or 10) most important
nodes in the hierarchy and their corresponding d; score. Once again, the order of the §; scores is more
correlated with the hierarchy level in ultrahyperbolic space. Our experimental results are comparable
with [[15] although our nodes are represented on a quotient manifold and we learn a parametric model.

Fig. [2| (right) illustrates our learned representations when the manifold is 7311 1,

Products of Riemannian space forms. In Table[I| we compare the performance of models mapping
representations to pseudo-Riemannian space forms (i.e., manifolds of constant curvature [21} 30]).
Nonetheless, it was already noticed in the machine learning literature that products of Riemannian
space forms (called mixed-curvature representations) could outperform Riemannian space forms
when the structure of the dataset is not tree-like [3,[11]]. It is worth noting that products of space
forms are in general not space forms (except if they are all flat). For this reason, we do not compare
them to our manifold in the main article as we could similarly consider products of pseudo-spheres
PLr-av x PPz or even PP x RP2:92 for evaluation.

Nonetheless, since our space form P24 contains hyperbolic and elliptic parts, we provide a detailed
comparison with products of hyperbolic and spherical spaces in the supp. material. Such product
manifolds perform better than hyperbolic and spherical spaces but slightly worse than the pseudo-
Riemannian space form P29.

Training times. We report in Table[I| the training times of our Pytorch [22] implementation to train
25,000 iterations on a machine equipped with a 6-core Intel 17-7800X CPU and NVIDIA GeForce
RTX 3090 GPU. All the representations lying on a non-flat manifold have comparable training
times. Nonetheless, they are 25% slower than the Euclidean approach because they compute the
pseudo-Riemannian gradient (which requires an orthogonal projection) and parallel transport.

5.2 Classification with ultrahyperbolic graph convolutional networks

The previous subsection analyzed our framework. We now evaluate it in standard classification tasks.

Node classification. We now evaluate the generalization performance of our GCN in the semi-
supervised node classification task on three citation network datasets: Citeseer, Cora and Pubmed [26].
They contain sparse bag-of-words feature vectors for each document and a list of citation links between
documents. Each document is a node and has a class label. Each citation link is an undirected edge.
Dataset statistics are reported in Table[2] During training, all the nodes and edges are preserved, but
only 20 nodes per class are labeled, and 500 nodes are used for validation in total, the rest for test.
We follow the experimental protocol of Appendix A of [[18] and learn a GCN with 2 hidden layers.



Table 2: Statistics of the citation network datasets.
Name #Nodes #Edges #Classes # Features # training nodes per category

Citeseer 3,327 4,732 6 3,703 20
Cora 2,708 5,429 7 1,433 20
Pubmed 19,717 44,338 3 500 20

Table 3: Test node classification accuracy with 4-dimensional manifolds

Dataset R* Pf 4 7311 3 7312 )2 Pf’ - Pf 0
(standard GCN)  (Hyperbolic) (Elliptic)
Citeseer 44.5+5.9 46.7 £ 1.8 51.84+26 50.3+21 51.4+32 472426
Cora 53.5+4.3 56.2 £ 3.1 63.2+33 639+31 647+53 61.4+£15
Pubmed 66.9 + 2.3 71.5+2.9 7314+0.6 728+27 T71.2+27 T1.0+£2.7

Table 4: Statistics of the graph datasets used for the classification task

Name # graphs  #classes Avg. #nodes Avg. # edges Type of dataset

Collab 5,000 3 74.49 2457.78 Scientific collaboration dataset [32]]
D&D 1,178 2 284.32 715.66 Protein dataset [23]]
Enzymes 600 6 32.63 62.14 Protein dataset [25]]
Proteins 1,113 2 39.06 72.82 Protein dataset [23]]
Reddit-multi-12K 11,929 11 391.41 456.89 Social network dataset [32]]

Table 5: Graph classification accuracy in percents. d is the dimensionality of the manifold.

Method Collab (d = 64) D&D (d = 88) Enzymes (d = 256) Proteins (d = 100) Reddit (d = 100)
Euclidean (standard GCN) 81.88 +1.76 76.93 £ 7.21 43.83 +£10.3 75.46 £+ 3.88 45.65 + 1.76
Poincaré (hyperbolic) 80.92 + 1.99 75.89 4+ 8.53 44.15 + 8.43 73.64 + 4.64 45.84 + 1.42
Lorentz (hyperbolic) 81.32+1.21 77.10 + 6.65 44.83 + 8.14 74.16 £+ 3.25 45.39 + 1.53
Ultrahyperbolic 82.26 + 1.23 81.97 4+ 3.41 50.50 £ 6.71 76.56 £ 2.09 47.08 £ 1.26

When the dimensionality of each layer is d = 600, all the Euclidean (i.e., standard), Hyperbolic and
Ultrahyperbolic GCNs reach the same test accuracy because the model is overparameterized and
quickly attains 100% accuracy on the training set. See details and scores in the supp. material.

Due to the problem mentioned above, we trained GCNs whose dimensionality of each layer is d = 4
with 100 random initializations. The results reported in Table [3|show the superiority of ultrahyperbolic
representations in low-dimensional space for node classification of hierarchical graphs with cycles.
We also report results for d = 10 in the supp. material. The conclusion is similar.

Graph classification. We also evaluate our approach on commonly used graph kernel benchmark
datasets [12] whose statistics are reported in Table E} The evaluation is done via 10-fold cross
validation. We use the same protocol evaluation and splits as in Appendix E of [18]] and evaluate our
approach in the same settings including same number of GNN layers, optimizers, learning rate, and
manifold dimensionality d reported in Table|5| The only difference is that the data is represented
on P?¢ with p = 1 in our case. The comparative performances are reported in Table [5|and show
that ultrahyperbolic representations significantly improve performance on the D&D and Enzymes
datasets, which are protein datasets from [25]. The gain is less significant on the other datasets but our
approach is still competitive. It seems that the advantage of our approach over hyperbolic approaches
is more visible for protein structures than for social networks, at least in high-dimensional space.
More details can be found in the supp. material.

6 Conclusion, Limitations and Potential Societal Impacts

We have introduced neural networks that map data to a (quotient) pseudo-Riemannian manifold
of constant nonzero curvature. Our considered geometry generalizes both hyperbolic and elliptic
geometries. It is the first neural network that maps data to a non-Riemannian manifold to the best of
our knowledge. Our framework is general and can be applied to many parametric models and tasks.
We demonstrate this via graph convolutional networks and show improved performance compared to
Euclidean and hyperbolic approaches to represent hierarchical graphs in different tasks.



Concurrently with this work, Xiong et al. [31] proposed an extension of graph convolutional net-
works to the pseudo-hyperboloid Q%P which is a pseudo-Riemannian manifold of constant nonzero
curvature anti-isometric to the pseudo-sphere S?-9. One main difference is that, since there exist pairs
of points of Q%P that cannot be joined by an unbroken geodesic, the optimization framework in [31]]
does not exploit the intrinsic geometry of the manifold via its Levi-Civita connection. On the other
hand, our approach uses pseudo-Riemannian optimization tools that are intrinsic to P2-4. The ablation
study in [31] also suggests that graphs with more hierarchical structure are better represented when
the manifold becomes more hyperbolic, and graphs with cyclic relationships are better represented
when the manifold becomes more spherical.

Limitations. Our main contribution is a solid optimization framework that is well defined thanks to
the use of standard differential geometry tools (e.g., canonical map and horizontal bundle) that we
formulate for the quotient manifold P?-4. It only requires the properties of the optimized function
in Section [3.3to be satisfied. This is for instance the case if points of P?'¢ are compared with the
geodesic distance in Eq. (7). We applied our framework on nine different datasets with (at least 10)
different runs to validate our results. Our work lacks a theoretical analysis similar to Gromov’s work
[LO] in the case of graphs without cycles. However, the optimal geometry for graphs with cycles is
still an open problem, and hyperbolic geometry is used heuristically in this case. Our motivation is
that ultrahyperbolic manifolds are more general than hyperbolic and elliptic manifolds, they can then
combine the strengths of the two induced geometries. We experimentally validate our assumption in
different tasks and leave the theoretical analysis for future work.

Potential societal impacts. Our contributions are mainly methodological although we apply our
approach to hierarchical graphs that could represent social networks. Improving accuracy on these
datasets might facilitate the task of discovering leaders in social networks, which could have negative
impact if not monitored. Nonetheless, we also show improvement on protein structures, this could
have positive impacts on society and healthcare. We did not exploit any personally identifiable
information. We used datasets that have been publicly available to the machine learning community
for years. Our method to handle and process the data is standard in the graph community.
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A Supplementary Material

The supplementary material is structured as follows:

e In Section [B| we give the formulations of the differential geometry tools to work on the pseudo-
sphere S2+9 (Section B.T)), the indefinite elliptic space P2 (Section[B.2) and the pseudo-hyperboloid
Q2 (Section[B.3). The tools include the formulation of a geodesic, exponential map, logarithm map
and geodesic distance. In Section [B.4] we explain the anti-isometry between the pseudo-sphere and
the pseudo-hyperboloid. In Section [B.5 we give more details about Figure[I] In Section we
explain how the ultrahyperbolic manifold 7P2*¢ contains hyperbolic and spherical/elliptic parts.

e In Section [C} we explain how we optimize our neural networks. In particular, the pseudo-
Riemannian gradient is not always a descent direction so we exploit results in [9]] to find a descent
direction in an efficient way.

e In Section D] we provide experimental details and additional results.

B Differential Geometry Tools

We provide here the necessary differential geometry tools to work on the pseudo-sphere S?*¢ and the
quotient manifold P?'¢. Most of them are explained in [15]] for the case of the pseudo-hyperboloid
that is anti-isometric to the pseudo-sphere (see Sectionfor details). We recall that the radius r of
the pseudo-sphere is positive, and we consider that » = 1 in our experiments.

B.1 Pseudo-sphere SP+9

We give here the differential geometry tools specific to the pseudo-sphere which is defined as the
following set: SP4 := {x € RPT17 : (x,x), = r?}.

B.1.1 Geodesic, exponential map and distance

Geodesic. The geodesic 7, .z : R — SP'? satisfying 7, ¢ (0) = x and 7;_@ (0) =&, €
T, 8P4 is formulated for all ¢ € R: )

cos (t<5x5x>7) X +—" gin <t |<€x,€x>q|) g, i (€ ), >0
_ VIE&dl v S8
Wxﬁgx(t) = X+t£x _ _ if <€x7£x>q -0
cosh t<£"£")q) X + ——L——-sinh <t |<5x,£x>q> r if (€. E). <0
( " VIE &l v 3 (€x:€x)a
(13)

The nonconstant geodesic 7, E (i.e., &, # 0)is called:
o space-like if (£,,€,), > 0.
e nullif (£,,€,), =0.

o time-like if (€., £,), < 0.

Exponential map. The exponential map exp, : TxSP? — SP is defined such that VE, €
TSP, expy (€x) = Vx_z_(1). We then have:

o ( <sx,sx>q|) X 4 n <\/<sxvsx>q) €. f(E.E), >0
_ N7 VI &)l v e
@x(gx) = X + £x lf <£xa Ex>q = O
cosh <\/<ex,sx>q|> b ginh <\/|<sx,sx>q|> €, ifE.E), <0
r V€&l r

- (14)
Logarithm map. The logarithm map log, is defined as the inverse of the exponential map exp, on a
normal neighborhood of x € SP'9 denoted by Uy = {y € SP?: <x77)2'>“ —1}. Tt is then formulated:
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os (x, y)q x Lo (x
\/1 ((<x y)q ) ( ~ 4 ;32’>QX) 1f<;7}2,>{1 < (_1’ 1)

Vy € Ux, logy(y) =4 vy — y if £y — (15
cosh™ 1(%) (X,¥)q e (X,¥)q
\/( <x‘§2'>q ot (y — 2 X) if 2 >1

Geodesic ““distance”. As explained in [15] and Chapter 5 of [21]], when the logarithm map log exists
for some pseudo-Riemannian manifold M, the arc length of the tangent vector joining x € M and

¥y € M corresponds to the radius function: \/ |gx (log, (y), log, (y))| where gx : TxM x T M — R

is the metric tensor at x and log, is the logarithm map. In the case of the pseudo-sphere, we have
gx(+,+) = (-, -)q- The geodesic distance d5 : SP? x SP9 — R is then:

— — reosh™ (&P jf &¥)a >
X,y) = lo ,log, = 72 2= 16
Y) \/|< gx(y) g (y)>q| { rcos—! (<x;)2/>q) if <x;)2’>q c (_1,1) (16)

ds is not a “distance metric” but a symmetric premetric: it satisfies (i) d(x,y) = d(y,x) > 0 and
(i) d5(x,x) = 0.

In [21], the “minimizing geodesic” is defined by its arc length and then also corresponds to our
geodesic distance.

B.1.2 Parallel transport on S?+¢

The parallel transport formula is given in Eq. (6)) of the main paper. For completeness, we write it
here again. We also provide the proof that is inspired by [9] wherein the parallel transport on S}
along any geodesic is provided. We assume that x and y can be joined by an unbroken geodesic, the
minimizing geodesic can then be formulated as a function of the logarithm map.

Given the minimizing geodesic 7 connecting x to y, the parallel transport P,Zmy TSP — T, 8P4

is a linear isometry such that V€, ¢, (€., ¢y)q = (Piny(€x); Piy(Cy))q- The parallel transport
along 7 from x = 7(0) to y = (1) (where x and y satisfy (x,y), > —r?)is:

e <Yagx>q

Py &) 1= &= 5 6 4+ %) (17)

Proof. To prove the correctness of the above formula, we follow the general properties of parallel
transport mentioned in [9]. We briefly recall them here. We refer the reader to [9] for details.

We denote the semi-normal space of SP'? in RPT14 at x by SNy (8P4, RPT1:9), Tt is defined as:
SN, (8P4, RPTLT) = {y e RPYL .V, € TSP, (y, ¢ )g =0 = {Ax: A€ R}  (18)

A parallel translation of £, € T, SP+? along some geodesic TxosT, R — &P is a vector field.
For the purpose of notation, we write 7 instead 7, _¢_ When the indices are not necessary and this

vector field satisfies £, (0) = &, and Vt € R, &, (t) := D (£,(t)) € SN5(;)(SP4, RPFT19) where

D (£,(t)) is the covariant derivative of €, (t) along 7(¢) in the ambient space RP*1+4.

By definition of the parallel transport, we have V¢, €, (t) € T5()SP%, which implies:

W (1) 7(1))g = 0 = (€4(0),7(8))y = —(€(1).7'(1)), (obtained by differentiating) (19)

By definition, we have V¢ E (t) € SNx (1) (8P4, RPT1-9) and Vi, 5 (5(t),7(t))q = 1, which implies
Vi (€ (8), (D) g = 5 (Ex(£), () (7(2), 7(1)) and we have:
E, Elt) = 5 Exl0). TN () = 5 El). 7 (070 20)



Since parallel translation preserves the metric, we have Vi, (€,.(t),7 (1)), = (€4(0),7'(0)), =
t

(€4, Cx)q- By using the initial condition £, (0) = £, and integrating Zx(t) = — 5 (€, ) g7(t), the
parallel transport of £, along 7, L (t)is:

£x(t) = gx - T%<Ex7€x>q/0 7x—>fx (T)dT (21)

‘We have three cases to consider:
(1) If (¢, Cx)g = 0, we find (see Eq. (T3)):

Ex(t) = &x - r%@xf,&q(tx + %ti) (22)

By setting ¢ = 1 and ¢, = log, (y) (i.e.,, (X,¥)q = 7% since (Cy, (x)q = 0), we have:

E) =&~ 5oy =%y (x4 50 -0) ~Ee- gl (xty) @D
__ ¢ <y7€x>
=& — m(}""x) (24)

(2) If (€, Cx)g > 0, we find:

I3 I3 &G t/1{Cx: G r t1/1(Cx, Cx)q B
&x(t) = &~ M (Sin (M) X+ —— (1 — cos (<CTC>|>) Cx)
r |<Cxa¢x>q| |<Cxa¢x>q|

By setting ¢ 1 and {, = log,(y) Ge., , (x,¥)y € (—r%7?)), and using the fact that

sin(cos™'(x)) = v/1 — 22, we find:
z byl
ST i€<y<>>> (< - <<X;“§>q)2> - 11 - <<>> - wx})
(25)
=&, - r2(1<£"(’<‘\i§1)2) ((1 ~ (X Yoy o - Y <y - <X;,§>qx)> (26)
“h r2(1<£—:7<2:;>§‘)) <(1 + s (y ) <Xr';y>qx>) 7
by (28)

(3) If (., (i )g < 0, we find:

&l (Smh (t |<cx,cx>q|>x+ o (cosh (t|<cc>q|) 1) cx)
r |<Cx7<x>q| |<CxaCx>q| "

Tl
—
~
~—
Il
Tl

<



By setting t = 1 and ¢, = log, (y) (i.e.,, (X,¥)q > 72), and using the fact that sinh(cosh™'(z)) =

Va2 — 1, we find:

£ (%,¥)g _ <
e )z (&Y ( (<x,y>q)2_1>x+rzl<y_<,y>qx)
1 1

2/ (epaye o (Leghaye - "
(29)
— £ _ <EX’Y>Q <X7Y>q 2 _1)x <X7y>q _ _ <X’ Y>qx
¢ <Exv}’>q <X7Y>q x o <X>y>qx
=& —1"2(1 n (,(7“732%)) ((1 + )x+ (y 5 >> (31)

In all cases, we define P

(€,) = &€,(1) as formulated in Eq. (6). The parallel translation
P7_ (&) is then performed along the minimizing geodesic 7, _,¢_ defined such that 7,z (I)=y

XY

: w1 _ =~/ _ DY ra
(l'e" €XPx (Y) - Cx) and ’YX*EX (1) - P;(me (éx)
One can also verify that we have:

VE, € TSP, P) ., (Ply (&) = & if (x,¥)q > —1°. (33)

yx XNy

Nonexistence of (unbroken) geodesic joining pairs of points. x € S?'? and y € SP+9 are joined
by a geodesic iff (x,y), > —r? or y = —x. A proof can be found in Appendix C.2 of [13] for the
pseudo-hyperboloid Q%" that is anti-isometric to S?*¢ as explained in Section|[B.4]

B.2 Indefinite elliptic space PZ-¢

The differential geometry tools of 7P?:¢ depend on those of the pseudo-sphere described above. We
recall that the canonical map 7 : SP'? — PP is defined as Vx € SP9, 7(x) := [x] = {x, —x}.

B.2.1 Geodesic, exponential map and distance
Geodesic. By using the notation of the main paper, we recall that v = 7 o7 and:
Vx € 8P € € TigPP, €, = lifty(€) = —lift_y (&) = —€_, (34)
and we have for all ¢ € R, yx)¢(t) = {Veg_ (1), 75z (O}
Exponential map. The exponential map expiy) : TixPP'? — Pp? is defined such that
expiy (€) == Mpgoe(D) = Tone, (1), Tosne (1)} = [EDx(€0)]- (35)

Logarithm map. log, := eXp[;]l is the inverse function of the exponential map. We can write:

i (o) = { B RN 2o o

where log, is defined in Eq. (T3). In theory, log[,) is not defined if (x,y), = 0 because there exist
two minimizing geodesics. In practice, we consider that its lift equals log, (y) if (x,y), = 0.

Geodesic distance. As stated in the paper, the geodesic distance d., (-, -) is then formulated:

-1 <X,y>q 1 <x’Y>q >
Vix] € PP, [y] € PP, d%[x],[y]):{ reosh (53 A IEEEIZ1 g

rcos? (|<XT7’2'>‘7|) otherwise.

It satisfies d, ([x], [y]) = min{aq(x, y),aq(—x, y)}
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B.2.2 PP-9is a quotient manifold

We now explain why PP? := SP7/ +£ 1 = S§P9/ + 1 is a quotient manifold. The explanation is
based on the “Orbit manifolds” section of Chapter 7 of [21] (see also page 192 of [21]). We first
recall its Definition 6 and Proposition 7.

Definition B.2.1 (Definition 6 of Chapter 7 of [21]). A group I' of diffeomorphisms of a manifold
M is properly discontinuous (and acts freely) provided:

(PD1) Each point x € M has a neighborhood A such that if ¢(.A) meets A for ¢ € T then ¢ =id.

(PD2) Points x,z € M not in the same orbit have neighborhoods .A and B such that for every ¢ € T,
#(A) and B are disjoint.

Proposition B.2.1 (Proposition 7 of Chapter 7 of [21]). Let I" be a properly discontinuous group
of diffeomorphisms of a manifold M. There is a unique way to make M /T" a manifold so that the
natural map 7 : M — M /T is a covering map.

In our case, we have M = SP9, and I' = £1 = £1 is a group of diffeomorphisms of S+9. To be
more precise, I is composed of the identity map x — x and the antipodal map x — —x. For all
x € 8P4, the set {¢p(x) : ¢ € I'} = [x] = {—x, x} is called the orbit of x under I'. The collection
of all such orbits is our set PP? := SP7/ + 1.

(PD1) is satisfied when the neighborhood A of x € §?9 is defined as A = {y € SP7: (x,y), > 0}.

(PD2) is satisfied when z # +x by determining some neighborhood small enough for both z and +x
so that they are disjoint.

By definition, each point x € SP*? has a connected neighborhood A = {y € S : (x,y), > 0}
that is evenly covered by 7 since it maps each component of 7 ~!(.A) diffeomorphically onto V (see
Definition 7 of Chapter A of [21]]). It is then a covering map and PZ? is a quotient manifold.

It is worth noting that P29 is briefly mentioned in page 214 of [21]]. It is also called an indefinite
elliptic space and defined in Equation (12.2.2a) of [30], and the Riemannian case of elliptic geometry
is briefly explained in page 74 of [30].

B.3 Pseudo-hyperboloid Q¢?

We recall here the differential geometry tools (from [[15]) specific to the pseudo-hyperboloid which is
defined as the following set: Q77 := {x € RTPT!: (x,x), 11 = —1?}

Geodesic. The geodesic 7, g : R — QF satisfying 7, & (0) = x and 7/, —>Ex(0) =€, c
T Q%P is formulated for all t € R:

AVA LGRS PESY r ([l | £ o
COS xSx/p X + — sin xSx/p N if L&
( " ) VIE &l ( r )5 <f f )p
7x—>€x (t) = X + t&x if <£x7€x>p+1 _ 0
cosh (t (£x7£x)p+1|> x + r sinh <t|<§x’€x>1’+1) g if <E = )
" |(Exagx>p+1\ T x x7Sx

(38)

Exponential map. The exponential map exp, : TxQP — QI7 is defined such that VE, €
T Q7P , XDy (€x) = Vg, (1) We then have:

COS( <sx,rsx>p+1|>x b ein <\/|<sx,fx>p+1|>€x i EE )yt <0
_ \ x18Sx/p+1 o
xPx(€x) = | X+ if (€,
cosh ( : “"’f*”’“') x4 et sinh (V “*’f*””') & if Ebdpii >0
x’Sx/p+1

o 39)
Logarithm map. The logarithm map log, is defined as the inverse of the exponential map €Xp,

on a normal neighborhood of x € Q%P denoted by Uy = {y € QP . ¥)pr1 < 1}. It is then

r2
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formulated:

_ (x,¥)
cosh 1(—%) (y+ <x’};>2p+1 X) if (x,};)2p+1 <1

( <x,y>2p+1 21

Vy € Uy, log,(y) = vy —x if S¥jpes — g (40)
_ (x:¥)p
cos 1(_47,2 +1) (y i (x,);>2p+1x> if <X,)7'4>2p+1 c (_1’ 1)

(x,y)
1_(T72P+1)2

Geodesic “distance”. The geodesic distance d= : Q%P x Q%P — R is then:

-1/ (X¥)p+1 e (X Y)pt1 _
rcosh™ " ( o) i =t < @n

rcos ! (—<X7);>zp+l) if <x,{>2p+1 €(-1,1)

dy(x,y) = \/|{T08x () oz (¥)) 1| = {

Parallel transport on Q?'P. The parallel transport connecting x € Q2P toy € Q%P is formulated:

<yvgx>17+1

%, Y)pir — 12 (y +x) where (x,y)p+1 <1’ (42)
»Yip

ijy(gx) = Ex -

B.4 Anti-isometry between the pseudo-sphere and the pseudo-hyperboloid

We now explain why the pseudo-sphere SP7 := {x € RP*14 : (x,x), = r?} is anti-isometric to
the pseudo-hyperboloid Q%? := {x € R*P*1 : (x,x),+1 = —r?}. This can actually be generalized
to the anti-isometry between RP*1:4 and R%"P*+! that we describe below.

Let us note the vectors X = (2, T1,...,24-1,74) € RPTY%andy = (yo,v1,...,Ya—1,Ya) €
RP+1.4.  We can construct vectors in R%P*! that reverse the order of the elements of x
and y. We obtain the following vectors a = (24,24_1,...,21,70) € R¥P*l and b =
(Yd,Ya—1,---,Y1,Y0) | € RTPTL By definition of our scalar product in Eq. (1), the anti-isometry
between RP+1:9 and R%P*+! corresponds to:
(x,¥)g = —(a,b)pi1. (43)
For instance, for the hyperboloid, let us assume that x = (zg,21,...,Z4-1, :rd)T € Sf’q and we
note a = (x4, Tq_1,...,21,%0) € Q‘f’o. We find:
d
2 2
(a,a)) = —(x, %)y = =25+ Y _aj = —L (44)
j=1

B.5 Explanation of Figure]]

We give the definition of space-like and time-like geodesics in Appendix [B.T] We recall that 7 = 1 in
the figure.

Space-like geodesic. In Figure [I| x and y are connected by a space-like geodesic. Therefore,
according to Eq. (T6), the geodesic distance between x and y is d=(x,y) = 7 cos™! (<x7732'>q) and
the geodesic distance between [x] and [y] is d-,([x], [y]) = rcos™! (] <xr—}2'>"|) = d=(x, —y).

Time-like geodesic. In Figure|[l| x and z are connected by a time-like geodesic. Therefore, the
geodesic distance between x and z is d<(x,z) = rcosh™' (ﬁ#) and the geodesic distance

between [x] and [z] is d- ([x], [z]) = rcos™! (|<XT—§>‘1|) = d=(x,2).

Null geodesic. For completeness, the geodesic “distance” between two points joined by a null
geodesic is 0 even if the two points are distinct.

B.6 Hyperbolic and elliptic parts of the ultrahyperbolic manifold

In the main paper, we state that 7P?*9 contains hyperbolic and elliptic parts. Our explanation is similar
to the one in [[13]].
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o Elliptic parts. We first recall that if all the time dimensions of P27 are set to 0, then the considered
manifold can be written P?:° x {0} which corresponds to elliptic geometry.

Moreover, in spherical geometry, geodesics are all written in the following way:

ﬁx_%x (t) — cos t ‘<£x? €x>| x + T sin t |<€x7 £x>| Ex (45)

T * T
[(€x> x|
Their formulation is then very similar to the formulation of our space-like geodesics of Eq. (13))

except that a different scalar product is used. In fact, it corresponds to a special case of our scalar
product when the number of time dimensions is zero.

o Hyperbolic parts. We also recall that if all the space dimensions except one of P24 are set to 0,
then the considered manifold is diffeomorphic to {0} x P2 which corresponds to the hyperboloid
model of hyperbolic geometry.

Moreover, in the hyperboloid model of hyperbolic geometry, geodesics are all written:

t 3 77x t 7x37x —
VXHEX(t):COSh M X Jr;SiIlh M €x (46)

" ‘<Ex7€x>q‘ "

Their formulation is then similar to the formulation of our time-like geodesics of Eq. (T3) except that
a larger number of time dimensions is used in our case.

In conclusion, our proposed geometry is more general and manages to describe relationships consid-
ered in elliptic and hyperbolic geometries.

C Descent direction and optimization

C.1 Descent direction of Section 3.4

Proof. We provide here the detailed proof that the negative of GA[x) , € Hp, is a descent direction.
We recall that x := &Xp,, (pg(x)) € SP'? and Ay p = lifty (P[l]ﬂ[p] (Df([x]))) € TSP

o We first consider the case where (x, p), > 0.

Let us consider some tangent vector ¢, € TxSP? and some point y € SPd defined such that
f(¥y) = f o7,z (1). By exploiting Taylor’s first-order approximation, the function f o % can
be approximated at ¢ = 1 by:

T =Fodee ()= FoF, e (0)+(fo,,z ) (0) = f(x) +(Df(x),{x)g (47

where D f(x) € TSP+ is the pseudo-Riemannian gradient of f at x (see Section 4.2 of [15] for
details).

x—=Cy

Our goal is to determine some tangent vector [ € TSP 7 such that it is a descent direction. In other
words, we want ¢, € TSP to satisfy f(y) < f(x) (ie., (Df(x),{x)q < 0).

We also recall that our neural network g maps to TpSP+? but ¢, lies in TxSP+%, which is a different
tangent space if p # x. The parallel transport allows us to work with both tangent spaces. To simplify
the notation, we define the following tangent vector:

Xp = Np = liftp (PL ) (DF(X]))) = PRp(DF(x) € TpSP1. (48)

x]~[p
As explained in Section , the geodesic 7, .y satisfies the properties 7, Hjcp(0) = p,
Tpx, (0) = Xp and 7,5 (1) = D f(x). We then have PJ. (X,) = Df(x).

It is worth noting that we also have the following property: vép € TpSh1, Ggp € TpSP1. Letus

then define ¢, such that ¢, := PJ . (~GA,p) = PJ,(—GX,). From Eq. (33), we know that

PX PX

_GXp = ijp(Cx) and Xp = ijp(D?(X))
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Due to the linear isometry property of the parallel transport (see page 66 of [21]]), we have:
<D?(X)’Zx>q = <ij\,p(D7(X))v ijp(_GXp)>q = <Xp) _G2p>q = _||Xp||2 <0 (49)

where || - || denotes the standard Euclidean norm defined as Vx, ||x|| := /(x,x). Eq. @9) is zero
iff x, = 0, and negative otherwise. It is also worth noting that x, = 0 iff Df(x) =0(.e.,xisa
stationary point). This shows that the negative of GA[y,p, is a descent direction.

Due to the properties of the exponential map, the differential of the exponential map d(@p)o at the
origin 0 satisfies the following property:

<d(%p)0(2p)a _G2p>q = <Xp7 _GXp>q = _Hip”2 S 0 (50)
Eq. (50) implies that —G A p is a descent direction of the neural network @g : X — TSP,

o The case where (x, p), < 0 is similar to the case above except that we now have:

F) =Ffod oz ()= fl=x)+(foT oz )(0)=f(=x) + (Df(=x),{_x)g (5D
=fx)+(-Df(x),{_x)g  (52)
where _, == P (~GAp) € T-xSP7 and Df(—x) = —Df(x) € T_xSP*.

P—X

We also have X, = Apgp = liftp (Pl o (D f([x]))) = P7,__(~Df(x)) € TpSP4, which

[ —XN\Pp
implies <—Df(X), C—x)q = <)_<p’ _GA[X]7P>¢1 = <)_<p? _Gip>q = _||XpH2 S O
This completes the proof. O

C.2 Optimizing the MLP in the toy experiment

In the toy experiment, we define a new PyTorch autograd function to define the exponential map
€Xpp, as explained in Section The custom gradient of our autograd function is GA[x) p-

Naively using (the negative of) GA[x) p as descent direction and exploiting standard backpropagation
decreases the optimized function because all the hidden layers already lie in some space equipped
with a positive definite metric tensor [9].

C.3 Optimizing the Graph Convolutional Network

For the GCN introduced in Section El, the optimized parameters are the matrices WE. To be fair
with the baselines, we modified the code of Liu ef al. [18] that is available at the following address:
https://github.com/facebookresearch/hgnn

We added a Python class for our ultrahyperbolic manifold, it is very similar to the Lorentz manifold
Python class. Our code replaces the standard Lorentz inner product (that corresponds to our scalar
product in the special case where p = 0) used in [[18]] with our scalar product, its induced exponen-
tial/logarithm map and geodesic distance. We also modified the activation function as explained in
Section@ Standard backpropagation is used to train the parameters W that exploit operations over
the horizontal space of the positive pole p as explained in the paper. To have a fair comparison, we
used the optimizer of [18]] and did not use the optimizer introduced in Section @

D Experiments

D.1 Type of resources used and amount of compute

We ran all our experiments on Zachary’s karate club dataset and the node classification task on a
machine equipped with a 6-core Intel i7-7800X CPU and NVIDIA GeForce RTX 3090 GPU. The
machine was also used to run most of our graph classification experiments.

Since the Reddit-multi-12K dataset requires more than 24GB of VRAM, we ran each experiment of
the Reddit dataset on a single 32 GB NVIDIA Tesla V100 GPU of an NVIDIA DGX-1 server. Most
experiments take several minutes. Some graph classification experiments take several hours and the
longest experiment (one split of Reddit-multi-12k) takes one day.
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D.2 Zachary’s karate club dataset

Parameters and hyperparameters. We train our framework as explained in the main paper and
Section In practice, we define a new PyTorch autograd function to define the exponential
map exp,,. The custom gradient of our autograd function is GA[y],p- Concerning the choice of
hyperparameters (e.g., temperature 7, optimizer and learning rate) , we chose the same hyperparameter
values as Law & Stam [[15]. During training, we use a standard Stochastic Gradient Descent (SGD)
optimizer without momentum, with learning rate of 10~7. We run our experiments for 25,000
iterations (which are also epochs since the dataset is small). We chose a standard MLP with 3 hidden
layers to show that our optimizer can be used with neural networks. Other architectures can be used.

Figure 2] (right) and other illustrative two-dimensional plots. As a qualitative way to understand
the method, we plot two-dimensional representations that were learned for different runs. For all
the illustrative figures, we replace the geodesic distance used in Eq. by the squared geodesic
distance. It tends to give nicer illustrations.

e We plot two-dimensional projections of learned points lying on the non-Riemannian manifold 7911 1
in Fig. [2] (right) and Fig 3] (see caption of the figure for details). These projections lie in non-Euclidean
space so they should not be interpreted by using standard Euclidean distances. Instead, the figures on
the right correspond to spacetime diagrams. As explained in the caption of Fig. [3] points lying on an
oblique line have very small distance. Nonetheless, we can see a clear separation between nodes of
different factions.

e We plot the same kind of two-dimensional hyperbolic and elliptic representations in Fig.[5|and Fig[4]
respectively. Although the separation between factions is clear, the learned node representations do
not satisfy the standard structure of a tree or a cycle graph. For instance, high-level nodes of the
hierarchy (i.e., nodes v; and v34) do not lie closer to the origin than low-level nodes although this is
generally the case when hyperbolic representations are used to learn trees [19} 20].

Evaluation metrics. Following the evaluation protocol of [15], we take the capacity matrix C €
R™*" of [33] which defines the level of friendship between the different members. We then consider
instead its symmetrized version § = C + C . The score s; = Z;.Lzl S;; defines the importance of
the node v; in the hierarchy. The higher the score, the more important the node is in the hierarchy.

These s; scores are then used to calculate the Spearman’s rank correlation coefficient between the
selected s; scores (top 5 or top 10) and corresponding d; scores. As reported in Table[] ultrahyperbolic
representations are more correlated with the node importance in the hierarchy.

Other proxy to quantify importance in hyperbolic space. In machine learning, when hyperbolic
embeddings are used to represent hierarchies or trees, a standard way to determine the importance
of nodes is to compare the Euclidean norm of the embeddings in the Poincaré ball (or equivalently
on the hyperboloid) [[19] 20]. High-level nodes tend to have smaller Euclidean norm in hyperbolic
geometry. In the first column of Table[6] we report the different scores when the Euclidean norm
of the learned hyperbolic representations is used as a proxy of the importance. The second column
corresponds to the scores reported in Table 1| of the main paper (i.e., sum of the §; scores).

According to the results in Table[6] the ¢>-norm is a worse indicator of importance than d; scores for
this dataset due to the presence of cycles in the graph. This observation is also in accordance with the
qualitative two-dimensional results of Fig. f] where nodes v; and v34 do not lie closer to the origin
than other nodes.

Table 6: Evaluation scores for the different learned representations (mean =+ standard deviation)

Evaluation metric Hyperbolic with £ norm as proxy  Hyperbolic with §; score as proxy
Rank of first leader 22+£1.0 2.5+£0.7

Rank of second leader 73+24 3.8+1.0

top 5 Spearman’s p 0.30 +0.44 0.36 + 0.22

top 10 Spearman’s p 0.22+£0.21 0.38 +0.18
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Stereographic projections onto —p Tangent vector representstlons inHp ={0} xR

T T T T
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Figure 3: (left) Stereographic projection of learned node representations in 7711 ! for three different
initializations. (right) Tangent vector representations of node representations. For every node

representation [x;] € 7711 1 we plot the last two elements of its tangent vector representation: §; =
lift, (log[p] ([xl])) € Hp = {0} x R, Tangent vector representations are easier to interpret since

they lie in some space diffeomorphic to R':!. Let us consider two vectors a = (a1, as) € R and
b = (b1, bs) € RV, Their distance in RM is \/[(a — b,a — b)| = /[(a1 — b1)2 — (az — b2)?],
which explains why similar examples (i.e., connected by an edge) are joined by an oblique line.
Their distance in that space is very small and does not follow the intuition of the standard Euclidean

distance.
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Stereographic projections onto —p Tangent vector representations in Hp = {0} x R%2
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Figure 4: (left) Stereographic projection of learned hyperbolic node representations in 77(1) 2 In the
machine learning literature, they are also called Poincaré representations. (right) Tangent vector
representations of node representations. For every node representation [x;] € 7911 1 we plot the last
two elements of its tangent vector representation: &; = lift,, (log[p] ([xz])) € Hp={0} xRY2 It

is worth noting that, since the represented graph is not a tree, the high-level nodes (i.e., nodes v; and
vs4) do not have smaller Euclidean norm than other nodes in the hierarchy.

Tangent vector representations in Hp = {0} x R?

Figure 5: (left) Stereographic projection of learned elliptic node representations in 7312 0, (right)
Tangent vector representations of node representations. For every node representation [x;] € 7?12 9,

we plot the last two elements of its tangent vector representation: §; = lift,, (log[p] ([xz])> € Hp =
{0} x R2.
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Table 7: Test node classification accuracy with 10-dimensional manifolds

Dataset RO 73?’10 7311’9 7312’8 Pf’l 73110,0
(Euclidean)  (Hyperbolic) (Elliptic)

Citeseer 58.4 + 2.1 56.4+£2.9 622+21 609+28 604+34 61.3+2.7

Cora 67.8 4.8 72.6 £ 2.1 751 +1.6 73.7+23 73.3+£27 T71.9+1.9

Pubmed 73.1+2.5 753+ 1.6 749+19 750+10 751+£13 753+08

Table 8: Test node classification accuracy with 600-dimensional manifolds
Dataset RGOO P:?,GOO p;,599

Citeseer 709+£04 70.8+£0.4 70.6+0.5
Cora 81.6+0.4 81.9+03 82.0+04
Pubmed 79.0£0.5 79.0£0.8 78.9+0.8

D.3 Node and graph classification

We now give details about the experiments of Section[5.2] As explained in Section|C.3] for the node
and graph classification tasks, we simply adapted the code of Liu et al. [18]] to the ultrahyperbolic
case. We refer the reader to [[18] for more details since our experimental protocol is the same.

Data preprocessing and choice of splits. To download the datasets, we used the splits extracted
from Liu’s project page ( https://github.com/facebookresearch/hgnn ). The node clas-
sification extraction script is download_node.sh and the graph classification extraction script is
data_preprocess.py which provides 10 fixed splits per dataset to perform 10-fold cross validation.

Prototype-based classification. Following Section 3 of [18], the output of an ultrahyperbolic neural
network with K steps is a set of node representations in ultrahyperbolic space: {hi ..., h\l‘(/l}

where each hX lies on the manifold. A list of prototypes (called “centroids” in [18]) is created
C = {c1,...,¢|c|} where each c; lies on the same manifold as hX. All the prototypes are points,
they are learned jointly with the GNN using backpropagation.

A distance matrix D € RIVIXIC! defined such that D;; = d(h¥, c;) is created. In practice, d is the
geodesic distance. It satisfies the properties in Section [3.3]and our optimization framework can be
used.

o Node classification. Let us note C' the number of node classes and W € RI€/*¢ some matrix to
be learned. The posterior probability distribution to determine the category of each node is calculated
as follows: Y = softmax(DW) where the j-th element of the i-th row of Y corresponds to the
probability that the i-th node belongs to the j-th category. Cross-entropy is used for learning.

e Graph classification. For graph-level predictions, average pooling is first used to combine the
distances of different nodes into a single score per node. As done in [18]], a fully connected layer is
then used with standard cross-entropy to perform graph classification.

Choice of parameters and hyperparameters. In the same way as Section|[D.2]for Zachary’s karate
club dataset, our code is based on the code of Liu et al. [18] as explained in Section@} To be fair with
the baselines, we take the parameters available at https://github.com/facebookresearch/
hgnn/tree/master/params| that were used for the hyperbolic manifold. We only replace the
hyperboloid by P79, and we adapt the activation function as explained in Section [4]

For instance, for node classification, we use the following parameters: https://github.com/
facebookresearch/hgnn/blob/master/params/NodeClassificationHyperbolicParams.
py (i.e., same optimizer, learning rate, number of prototypes, number of layers etc). We do the same
thing for the graph classification task.

{1

Reported results. In the tables of results, the baselines “Euclidean”, “Poincaré ~ and “Lorentz
correspond to the implementations of [18]]. Liu e al. show that their implementation matches the
scores of the standard GCN. We did not manage to reproduce their results for the collab and reddit
datasets even when we tried different optimizers, learning rates, activation functions, number of
centroids. We then reran their code and reported the obtained results in the main paper. We report
results when the manifold is 10-dimensional (resp. 600-dimensional) in Table[/| (resp. Table .
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Table 9: Evaluation scores for the different learned representations on Zachary’s karate club dataset
(mean = standard deviation)

Manifold  Distance Rank of first leader Rank of second leader  top 5 Spearman’s p  top 10 Spearman’s p
Sh x H2, de, 1.840.5 3.4£0.7 0.47 £0.25 0.52 +0.13
Sy, x HZ, de, 1.9+0.8 3.4+0.9 0.47 £ 0.20 0.51+£0.18
St xH2,  dmin 3.0+£23 72434 0.23 £0.23 0.39 £0.15
S2, x HZ, de, 2.240.7 3.8+0.7 0.24 £ 0.29 0.48 £0.17
S2, x HZ, de, 2.0+0.7 3.6+ 1.5 0.48 £ 0.24 0.50 £ 0.23
SZ, xHZ,  dumin 3.6+£25 8.0+ 3.6 0.16 £ 0.30 0.48 £ 0.24
S8, x H, de, 1.840.7 3.4+08 0.48 £0.19 0.51 £0.17
S, x H, de, 1.84+0.7 3.6£0.9 0.314+0.21 0.52 4+ 0.16
SE xHy,  dumin 3.0+£23 7.843.2 0.13 £ 0.42 0.46 =+ 0.22

D.4 Comparison with products of Riemannian space forms

In the main paper, we do not compare P27 to products of spherical and hyperbolic manifolds [3| [11]]
because these product manifolds do not have constant curvature and we could similarly consider
products of pseudo-sphere of same dimension to add more complexity, which would have made the
paper hard to read. In this subsection, we report these comparisons.

Notation. S? := SP:* denotes the p-sphere of radius 71 (embedded in a (p + 1)-dimensional
Euclidean space). Similarly, H, denotes the g-dimensional hyperboloid of “radius” r2 and embedded
in a (¢ + 1)-dimensional space. Following [3L[11], the radii 7y > 0 and 7o > 0 are trained parameters
(both initialized at 1) and we define the following distance metrics for the product manifold SP x H{,
(see [[L1] for details):

e The geodesic £, distance: dg, ((x1,y1), (X2,¥2)) := \/d3(x1,X2) + d2(y1,¥2)
e The ¢; distance: dg, ((x1,¥1), (X2,¥2)) := d1(x1,%X2) + d2(y1,y2)
e The min distance: dpin ((X1,¥1), (X2,¥2)) := min(d;(x1,%2),d2(y1,y2))

where d; (x1,Xg) 1= 71 cos ' ((x1,X2)/7?) and da(y1,y2) := r2cosh ' (|(y1,y2)q/r3|) are the
geodesic distances of the p-sphere of radius 1 and g—hyperboloid of radius 72, respectively.

D.4.1 Zachary’s karate club dataset

We report the scores on Zachary’s karate club dataset in Table 0] by using the following evaluation
metrics: Rank of first leader, Rank of second leader, Spearman’s p for the top 5 nodes, Spearman’s p
for the top 10 nodes. These evaluation metrics quantify how much the chosen distance extracts the
hierarchy information in the graph.

All these product manifolds perform better than Riemannian space forms (see Table([T)) but worse than
the quotient manifold PY?. It is worth noting that the best performing distance metrics are dg, and
de,. They both add the spherical and hyperbolic distances and then explicitly enforce both a spherical
and hyperbolic structure when comparing pairs of samples. The fact that they perform worse than the
geodesic distance of P27 indicates that explicitly constructing hyperbolic and spherical parts to the
manifold by using products of Riemannian manifolds may not be optimal depending on the selected
pairs.

Interestingly, the distance metric d,;,, that selects some hyperbolic or spherical distance depending on
the pair of samples performs much worse. This is in contrast with our approach that also intrinsically
selects a elliptic or hyperbolic type of distance depending on the pair of compared samples (see
Eq. (7). However, the selection in Eq. is based on the (intrinsic) geodesic "distance" of the
manifold P29, Experimental results suggest that the fact that P24 intrinsically contains hyperbolic
and elliptic parts due to the indefiniteness of the metric tensor allows us to better describe hierarchical
relationships between samples when the hierarchical graph contains cycles.
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Table 10: Evaluation scores for the learned 4-dimensional representations in the node classification
task (mean =+ standard deviation)

Manifold  Distance Citeseer Cora Pubmed

Sy, x H2, de, 43.4+2.6 56.6+29 68.5+4.8
Sk x H2, de, 46.8+2.1 576424 7T1.5+2.1
Sk x H2, dmin ~ 40.7+3.9 475+25 63.0+14
S2 x HZ, de, 459+19 604+28 705+2.6
S2 x HZ, de, 472+21 605+32 T71.1+25
S2, x HZ, dmin 444423 552+49 70.1+2.1
SE x H, de, 473+2.0 56.5+24 T71.9+2.1
SE x H, de, 48.1+21 608+28 725418
SE x H, dmin ~ 43.6+£32 552+29 68.9+26

D.4.2 Results in node classification

We ran the same kind of experiment as above in the node classification task described in Section[5.2}
We report in Table (10| the results obtained with 4-dimensional manifolds and the same distance
metrics (see Table [3|for comparison).

Once again, d,,;, performs worse than the other distance metrics that perform slight better than
hyperbolic and elliptic distances but are still outperformed by our proposed distances on the Cora and
Citeseer datasets.

We ran similar experiments for 10-dimensional manifolds. The conclusion is similar.
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