
CEP3: Community Event Prediction with Neural Point Process
on Graph

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Many real world applications can be formulated as event forecasting on Continuous2

Time Dynamic Graphs (CTDGs) where the occurrence of a timed event between3

two entities is represented as an edge along with its occurrence timestamp. How-4

ever, many previous works handle the problem in compromised settings, either5

formulating it as a link prediction task on the graph given the event time, or a time6

prediction problem for event will happen next. In this paper, we propose a novel7

model combining Graph Neural Networks and Marked Temporal Point Process8

(MTPP) that jointly forecasts multiple link events and their timestamps on commu-9

nities over a CTDG. Moreover, to scale our model to large graphs, we factorize the10

jointly event prediction problem into three easier conditional probability modeling11

problems. To evaluate the effectiveness of our model and the rationale behind such12

a decomposition, we establish a set of benchmarks and evaluation metrics. The13

experimental results demonstrate the superiority of our model in terms of both14

accuracy and training efficiency. All the source codes and datasets are available at15

an anonymous repository and will be made publicly available.16

1 Introduction17

Modeling dynamic interactions of entities has become an important topic in different applications18

across many fields. In particular, studying the evolution of community social events can enable19

preemptive intervention for the pandemic (e.g., COVID-19) spreading [1]. Monitoring and forecasting20

the spreading of traffic congestion [2] can help to prevent congestion expanding to outside of the21

local area. The community needs more attention and help if there is a sudden change in the state22

of the economic [3] or political leanings [4]. In some cases, some entities, such as those with23

dense connections, or with similar characteristics, may form certain communities, and communities24

could also be defined by users based on their criteria. In reality, people may only be interested in25

a specific community of entities’ interactions in some practical applications, such as community26

behavior modeling [5], dynamic community discovery [6] and community outliers detection [7].27

Transformer Hawkes [8] is the first progress that incorporates the graph structure information into a28

temporal point process to jointly predict the incident nodes and timestamp. However, it only supports29

reasoning future events on the static graph with dynamic node properties, losing the flexibility to30

process structurally changing dynamic graphics. For better understanding and forecasting the events31

in a community, we suggest organizing event stream as a Continuous Time Dynamic Graphs (CTDG),32

and predicting a series of future events not only about which two entities will be involved but also33

when they will occur.34

CTDG [9] is a common representation paradigm for organizing dynamic interaction event stream over35

time, with edges and nodes denoting the events with timestamp and the pairwise involved entities,36

respectively. Formally, denote a CTDG as G = (V,ET), where ET = {εi : i = 1, · · · , T} is the37

set of edges, εi = (ui, vi, ti) with source node ui, destination node vi, and timestamp ti. The edges38

are ordered by timestamps, i.e., ti ≤ tj given 1 ≤ i ≤ j ≤ T . We further denote a CTDG within a39

temporal window as Gi:j = (V,Ei:j) where Ei:j = {εk : i ≤ k < j}. Given the queried community40

(or node candidates that people are interested in) Cq ⊂ V , predicting K future events within the41

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

community given n observed events requires to model the following conditional distribution:42

p(εn+1, · · · , εn+K | G1:n, Cq) (1)

where the distribution of each edge εn+i is further a triple joint probability distribution of its source43

and destination nodes as well as its timestamp. Community event forecasting task is illustrated44

using Fig. 5 in Appendix A. Compared with traditional time series prediction, event forecasting on a45

CTDG jointly consider the spatial information characterized by the graph and the temporal signal46

characterized by the event stream to make a more accurate prediction.47

There have been several lines of work to approach the problem but all in compromised settings. Tem-48

poral Graph Neural Networks (TGNNs) extends GNNs of static graphs to CTDGs by incorporating49

temporal signals into the message passing procedure. Most of TGNN progress [10–12] focuses on50

temporal link prediction task, i.e., modeling the conditional distribution p(vn+1 | G1:n, un+1, tn+1).51

Other parts of the progress uses Temporal Point Process (TPP) for event timestamp prediction which52

predicts the time of the next event but requires the entities to be known, i.e., modeling the conditional53

distribution p(tn+1 | G1:n, un+1, vn+1). All these models are not directly applicable to the event54

forecasting problem on CTDGs.55

Marked TPP (MTPP) and its variations such as Recurrent Marked Temporal Point Process56

(RMTPP) [13] associate each event with a marker and jointly predict the marker as well as the57

timestamp of future events. MTPP and RMTPP are capable of predicting CTDG events by treating58

the entity pair (ui, vi) as the event marker. However, these kinds of MTPP-based methods face three59

major drawbacks. To begin with, MTPP methods treat edges as individual makers, which are unable60

to utilize the community and relationship information, resulting in a suboptimal training solution.61

Besides, individual makers also bring an O(|V |2) marker distribution space, making the model less62

scalable to large graphs. The last difficulty is that RMTPP is further constrained by its recurrent63

structure, which must process each event sequentially for keeping events’ contextual correlation.64

Our contributions in this paper are:65

i) We handle the Community Event Predicting task with a graph Point Process model (CEP3), which66

is significantly harder than both standalone temporal link prediction and timestamp prediction tasks.67

Our model incorporates both spatial and temporal signals using GNNs and TPPs and can predict68

event entities and timestamps simultaneously.69

ii) To scale to large graphs, we factorize the mark distribution of MTPP and reduce the computational70

complexity from O(|V |2) of previous TPP attempts [13, 14] to O(|V |). Moreover, we employ a71

time-aware attention model to replace the TPP model’s recurrent structure, significantly shortening72

the sequence length of each training step and enabling mini-batches training.73

iii) We propose new benchmarks for the community event forecasting task on a CTDG. Specifically,74

we design new evaluation metrics measuring prediction quality of both entities and timestamps. For75

baselines, we collect and carefully adapt state-of-the-art models from time series prediction, temporal76

link prediction and timestamp prediction. Our evaluation shows that CEP3 is superior across all four77

real-world graph datasets. Source code has been already made publicly available.78

2 Related Work Analysis79

2.1 Temporal Graph Learning80

Temporal Graph Learning aims at learning node embeddings using both structural and temporal81

signals, which gives rise to a number of works. CTDNE [15] and CAWs [9] incorporate temporal82

random walks into skip-gram model for capturing temporal motif information in CTDGs. JODIE [10]83

and TigeCMN [16] adopt recurrent neural networks (RNNs) and attention-based memory module re-84

spectively to update node embedding dynamically. Temporal Graph Neural Networks like TGAT [12]85

and TGN [11] enhance the attention-based message passing process from Graph Neural Networks86

with Fourier time encoding kernel. These attempts focus on the temporal link prediction task. Besides87

that, other works [17, 18] focus on information diffusion task which aims at predicting whether a88

user will perform an action at time t. None of them is designed for event forecasting.89

RE-Net [19] and CoNN [5] study a similar event forecasting setting on Discrete Temporal Dynamic90

Graphs (DTDGs). However, continuous time prediction is much harder and their methods cannot be91

directly applied.92

2

2.2 Neural Temporal Point Process93

A temporal point process (TPP) [20] is a stochastic process modeling the distribution of a sequence94

of events associated with continuous timestamps t1, · · · , tn. The theoretical underpinnings and95

wide-ranging practical applications of the TPP methods are described in Appendix B. The majority96

of neural TPP approaches leverage recurrent neural network (RNN)[13, 21–23] based structure to97

parametrize the stochastic process function and forecast the future events. Such approach cannot be98

trained in parallel and cannot capture long-term dependencies. Transformer Hawkes [8] replace RNN99

module with temporal aware attention transformer to capture temporal dependencies.100

However, these methods cannot be directly applied to event forecasting on CTDGs due to the101

following reasons. First, a CTDG is essentially a single event sequence, whose length ranges from102

tens of thousands to hundreds of millions. RNNs (even LSTMs) are known to have trouble dealing103

with very long sequences. One may consider dividing the sequence into multiple shorter windows,104

which will make the events disconnected within the given window and discard all the data before105

it. This fails to explore the dependencies between events that are distant over time but topologically106

connected (i.e. sharing either of the incident nodes). One may also consider training an RMTPP with107

Truncated BPTT [24] on the long sequence as a whole. However, this is inefficient because parallel108

training is impossible due to its recurrent nature, which means that one has to unroll the sequence109

one event at a time. Second, although Transformer Hawkes [8] discards the RNN structure, it directly110

models the marker generation distribution with a unit softmax function will produce a vector with111

space complexity of O(|V |2), as the event markers will be essentially the events’ incident node pairs.112

This is not applicable to dynamic graphs with changing structure and undesirable for large graphs.113

2.3 Temporal Point Process on Dynamic Graph114

Previous works, such as [14, 25–27], use kinds of recurrent architecture to approximate temporal115

point process over graphs. However, recurrent architecture prevents the model from parallelized116

minibatch training, which is undesirable especially on large-scale graphs. This is because learning117

long-term dependencies using recurrent architecture requires the model to traverse the event sequence118

one by one instead of randomly mini-batch selection.119

MMDNE [28], HTNE [29] and DSPP [30] employ the attention mechanism to avoid the inefficiency of120

the recurrent structure in training with large CTDGs. However, these works are restrictively dedicated121

to link prediction or timestamp prediction task. Adapting the two models to event forecasting requires122

non-trivial changes since neither of them handles efficient joint forecasting of the event’s incident123

nodes.124

3 Model125

Our model is depicted in Fig. 1. To predict the next K events εn+1, · · · , εn+K given the history126

graph G1:n, we first obtain an initial representation h(0) for every node using an GNN Encoder, as127

well as an initial graph G̃(0). Then for the i-th step, we predict εn+i = (un+i, vn+i, tn+i), i.e. the128

source node, destination node, and timestamp for the next i-th event. The predicted event is then129

added into G̃(i−1) to form G̃(i), to keep track of what we have predicted so far. The hidden states130

h(i) are then updated from the new graph G̃(i) and h(i−1). This generally follows the framework of131

RMTPP [13], except that i) we initialize the beginning states of Auto-Regressive Message Passing132

Module with a time-aware GNN, which allows our recurrent module to traverse over a much shorter133

sequence without losing historical information; ii) we update the Auto-Regressive Message Passing134

network states with a GNN to model the topological dependencies between entities caused by new135

events; and iii) we forecast the nodes and the timestamp for an event by decomposing the joint136

probability distribution. We give specific details of each component as follows.137

3.1 Structural and Temporal GNN Encoder138

The Encoder GNN Layer should be capable of encoding relational dependencies, timestamps, and139

optionally edge features at the same time. The encoded node representations is used by the forecaster140

in next section to generate the predicted events. It has the following form:141

z(l)v = f enc
agg (z

(l−1)
v , {genc

msg(z
(l−1)
u , etuv, ϕ(tn − t)) : (u, t, etuv) ∈ N v}) (2)

3

Historical Graph

Encoder
GNN0

1

2

3
4

0

1

2

3
4

Forecasting
Module

Auto-
regressive
Message
Passing

Forecasting
Module

Auto-
regressive
Message
Passing

0

1

2

3
4

0

1

2

3
4

Figure 1: The overall architecture of proposed CEP3 model. Red arrows represent the predicted
events εn+i.

where N v is the brief formulation of N v[1 : n], which represents the subgraph induced by the 1-hop142

neighborhood of node i on the graph G1:n, and ϕ(t) are learnable time encodings used in [11, 12, 31].143

f enc
agg and genc

msg can be any aggregation and message functions of a GNN-based representation encoder.144

z(0)v could be either node v’s feature vector, and etuv means the edge feature between node u and v at145

time t.146

We use a GNN to initialize the recurrent network’s states because it takes the historical events within147

a topological local neighborhood, including the incident nodes, the timestamps, and the feature148

of events together as input, while enabling us to train on multiple history graphs in parallel. In149

particular, we use a neighborhood graph temporal attention based method for encoding, whose150

detailed formulation is as follows. Temporal Graph Attention Module is a self attention based node151

embedding method inspired by [12], the detailed formulation is as below:152

z(l)v =MLP(z(l−1)
v ||z̃(l)v)

z̃(l)v =MultiHeadAttn(l)(q(l)
v ,K(l)

v ,V(l)
v)

q(l)
v =[z(l−1)

v ||ϕ(0)]
K(l)

v =V(l)
v = C(l)

v

C(l)
v =[z(l−1)

u ||etuuv||ϕ(tv − tu), u ∈ N v]

(3)

The multi-head attention is computed as:153

z̃(l)v =

∀head∑
a

SoftMax

(
(W(l)

Q,aq(l)
v)(W(l)

K,aK(l)
v)√

dq

)(
W(l)

V,aV(l)
v

)
(4)

where W(l)
Q,a means one head of multi-head attention weight matrix and dq means the dimension of154

the vector q(l)
v . The temporal encoding module is the same as in [11, 12] original paper:155

ϕ(∆t) =
1√
dw

cos(w⃗∆t+ b⃗) (5)

where w⃗ and b⃗ are learnable parameters, dw is the dimension of weight vector w.156

Although a GNN cannot consider events outside the neighborhood, we argue that the impact is157

minimal. We empirically verify this argument by comparing against the variant that uses both158

attention and RNN based memory module in the training phase (named CEP3 w RNN), which can159

incorporate historical events and time-aware information by the view of topological locality and160

recursive impact, respectively. However, RNN takes drastically more memory and time in training161

because of the same reason in Section 2.3.162

4

1

Node Embedding

Sample

where
Or use ground truth when

trainingCompute
Probability

Distributions

Autoregressive
Message Passing
in Community Update Embedding Add edge to the community

Forecasting Module

.

.

.

20

4

3

Selected
Community

Future Events
in Community

Figure 2: The hierarchical probability-chain forecaster and its workflow relationship with the auto-
regressive message passing module. The node embeddings are learned from the GNN Encoder
described in Section 3.1. Note that the ‘selected community’ refers to an application-dependent
collection of candidate nodes for query.

3.2 Hierarchical Probability-Chain Forecaster163

Fig. 2 demonstrates the details of our event forecaster. We can see that the forecaster predicts future164

events only according to node embeddings and historical connections in the selected candidates (or165

communities). It means that we do not have to be concerned about a large number of communities166

which are likely to slow down the process, because CEP3 model can handle numerous communities167

simultaneously during training and inference.168

From the superposition property [32] of an MTPP described in Section 2.2, we forecast the next event169

εn+i = (un+i, vn+i, tn+i) by a triple probability-chain:170

p(un+i, vn+i, tn+i) = p(tn+i)p(un+i | tn+i)p(vn+i | tn+i, un+i) (6)

It means that we can predict first the timestamp, then the source node, and finally the destination171

node. We predict tn+i by modeling the distribution of the time difference as follows:172

η(i)v = Softplus(MLPt(h(i−1)
v))

λi =
∑
v∈V

η(i)v

∆tn+i ∼ Exponential(λi)

tn+i = tn +∆tn+i

(7)

where the h(0)
v is initialized using the node representation learned by z(L)

v , and Softplus ensures that173

η
(i)
v is above zero and the gradient still exists for negative η

(i)
v values. MLPt represents a multilayer174

perceptron to generate the intensity value of time. Since ∆tn+i obeys exponential distribution, we175

simply sample the mean value of time intensity distribution, 1
λi

, as the final ∆tn+i output during176

training. The conditional intensity of the next event occurring on one of the nodes in V is thus the177

sum of all η(i)v [32]. Other conditional intensity choices are also possible.178

We then generate the source node un+i of event εn+i from a categorical distribution conditioned on179

tn+i, parameterized by another MLP:180

p(un+i | tn+i) = Softmax(MLPsrc(h(i−1)
u ∥ϕ(∆tn+i))) (8)

where ∥ means the concatenation operation and ϕ has the same form as in Eq. 2. We then generate181

the destination node vn+i similarly, conditioned on tn+i and un+i:182

p(vn+i | tn+i, un+i) = Softmax(MLPdst(h(i−1)
v ∥h(i−1)

un+i
∥ϕ(∆tn+i))) (9)

Note that the formulation above will only generate two distributions that have |V | elements, instead183

of |V |2 as in RMTPP[13]. The implication is that during inference the strategy will be greedy: we184

first pick whatever source node that has the largest probability, then we pick the destination node185

conditioned on the picked source node. To verify the impact of this design choice, we also explore a186

5

variant of our method where we generate a joint distribution of the pair (un+i, vn+i) with O(|V |2)187

elements, which we name CEP3 w/o HRCHY (short for Hierarchy). Hierarchy is the noun form of188

the word ‘hierarchical’.189

The proposed CEP3 model obeys the probabilistic form of Eq. 6, while the ablation model CEP3190

w/o HRCHY decomposes p(un+i, vn+i, tn+i) into p(tn+i)× p(un+i, vn+i | tn+i). If a graph has a191

lot of nodes, evaluating p(un+i, vn+i) will incur a linear projection with O(|V |2) complexity. This192

is another obstacle to scaling up to larger datasets.193

3.3 Auto-Regressive Message Passing194

As shown in Fig. 2, we assume that an event’s occurrence will directly influence the hidden states195

of its incident nodes. Moreover, the influence will propagate to other nodes along the links created196

by historical interactions. Therefore, after generating the new event εn+i, we would like to update197

the nodes’ hidden states by message passing on the graph with the new events. We achieve that by198

maintaining another graph G̃(i) that keeps track of the graph with the historical interactions G1:n and199

the newly predicted events up to εn+i.200

Specifically, we initialize G̃(0) with the candidate node set C as its nodes. The resulting graph201

encompasses the dependency between candidate nodes during the encoding stage. Every time a new202

event εn+i is predicted, we add the event back in: G̃(i) = G̃(i−1) ∪ εn+i.203

Afterwards, we update the nodes’ hidden states using a message passing network such as GCN [33]204

for spatial propagation and a GRU [34] for temporal propagation:205

w(i,0)
v = h(i−1)

v

w(i,l)
v = f upd

agg ({gupd
msg(w

(i,l−1)
u ,w(i,l−1)

v) : u ∈ N v
G̃(i)})

h(i)
v = GRU(

[
w(i,L)

v ∥ϕ(∆tn+1)
]
,h(i−1)

v)

(10)

where N v
G̃(i) is the neighboring events of node v in G̃(i), f upd

agg can be any message aggregation206

function and gupd
msg can be any message function.207

To verify the necessity of updating the community using message passing after a event, we also208

explore a variant where we do not update all the node’s hidden states in the community, but only the209

incident nodes un+i and vn+i. We name this variant CEP3 w/o AR.210

3.4 Loss Function and Prediction211

The forecasting module outputs the next event’s timestamp tn+i and indicent nodes un+i and vn+i212

for all events εn+i, which are minimized via negative log likelihood. Specifically, the loss function213

goes as follows:214

Ltime =

K∑
i=1

[− log(λi) + ∆tn+iλi︸ ︷︷ ︸
time loss

− log p(un+i)− log p(vn+i)︸ ︷︷ ︸
entity loss

] (11)

where the first two terms within summation are log survival probability from Eq. 14 and the last215

two terms are log probabilities for source and destination node prediction. The time integration term216 ∫ t

tn
λ(τ)dτ in Eq. 14 is approximated using a first order integration method by λ(t)∆t for the ease217

of computation.218

4 Experiments219

In this section, we test the performance and efficiency of the proposed methods against several220

baselines on four public real-world temporal graph datasets: Wikipedia, MOOC [10], GitHub221

[14], and SocialEvo [35]. The detailed description about datasets is put in the Appendix C. To222

verify the effectiveness of our CEP3 model, we suggested three ablation models (CEP3 w RNN,223

CEP3 w/o HRCHY. and CEP3 w/o AR) and five advanced methods (GRU, Hawkes Process [36],224

Poisson Process, RMTPP [13] and Dyrep [14]) as our baseline approach. Almost all baseline225

6

methods have been briefly explained in section 2 and 3. In Appendix D we explain why we choose226

these baselines and provide implementation details for better reproducibility. We also provide227

the details of our network architecture and the hyper-parameters in Appendix E. The source code228

is based on PyTorch and Deep Graph Library [37], which is anonymously available at https:229

//anonymous.4open.science/r/CEP-2567/.230

4.1 Evaluation Metrics231

For evaluation on a specific dataset, we utilize the communities segmented by the conventional232

community detection algorithm Louvain [38] as the candidate node set, and we report the average233

result of all communities.234

For each community Cq , we measure the perplexity (PPCq
) of the ground truth source and destination235

node sequence for evaluating the node predicting performance, and evaluate the mean absolute error236

(MAECq
) of the predicted timestamps. Using our MAE to evaluate the quality of auto-regressive237

forecasting sequence over multiple timesteps can also be seen in traffic flow prediction [2].238

Perplexity (PP) [39] is a concept in information theory that assesses how closely a probability model’s239

projected outcome matches the real sample distribution. The less perplexity the situation, the higher240

the model’s prediction confidence. In the field of natural language processing, perplexity is also241

commonly used to evaluate a language model’s quality, i.e., to evaluate how closely the sentences242

generated by the language model match real human language samples. A language model predicts the243

next word from the word dictionary, whereas our event predicting model selects nodes from the node244

candidates (community). Therefore, it is reasonable to employ perplexity as a metric in our task.245

Specifically, suppose we have the communities’ ground truth event sequence (ui, vi, ti) and the246

prediction sequence (ûi, v̂i, t̂i) where i = 1, · · · ,K. For we compute per step PP as247

PP = exp

(
− 1

K

K∑
i=1

[log p(ui) + log p(vi | ui)]

)
(12)

For the distance between two sequences with difference lengths, we compute MAE [40]:248

MAE =
1

K(tK − t0)

K∑
i=1

[∣∣ti −min(tK , t̂i)
∣∣] (13)

To keep it comparable in diverse datasets, the MAE is divided by the max time span tK − t0 and the249

sequence length K. We report the average PPCq
of all communities as the PP of a certain dataset,250

and MAE is calculated in the same way. Smaller values of both metrics indicate better performance.251

4.2 Result Analysis252

From Table 1 we can see the notable superiority of CEP3 over other baselines in different datasets253

under both MAE and perplexity. The MAE difference between GRU and RMTPP show the effective-254

ness of temporal point process in predicting timestamps. Comparing CEP3 with sequence based TPP255

models RMTPP, we can see that using GNN to capture historical interaction information can improve256

the forecasting performance. Further more, when comparing DyRep w AR versus DyRep and CEP3257

w/o AR versus pure CEP3, we can conclude that auto-regressive updates can better capture the258

impact of newly predicted events.259

Our model performs better than DyRep w AR because in our CEP3, during the auto-regressive update,260

the newly predicted event not only influences the node involved in the event but also propagates261

to other nodes via message passing. It is worth mentioning that our CEP3 model is not only more262

effective than other baseline models in terms of performance, but it also allows parallel training and263

have faster training speed especially in large datasets. The training loss curve and analysis with264

different parallel sizes is shown in Appendix F.265

4.3 Forecasting Visualization266

From top to bottom, Fig. 3 visualizes the circle layout of a certain community within the graphs267

of the Github, Wikipedia and MOOC datasets, respectively. We plot the ground truth, our model’s268

prediction and DyRep’s prediction for comparison. The visualized graphs are generated as follows:269

7

https://anonymous.4open.science/r/CEP-2567/
https://anonymous.4open.science/r/CEP-2567/
https://anonymous.4open.science/r/CEP-2567/

(a) Ground Truth. (b) CEP3. (c) DyRep.

High
Frequency

Low
Frequency

Figure 3: Prediction visualizations of certain communities in the whole timespan of the test phase.
The sizes of plotted nodes indicate their degrees, whereas the colors of edges represent the connection
frequencies. Note that the edge colors and node sizes need be compared in the same row. The
communities are from Github, Wikipedia and MOOC datasets, respectively, from top to bottom.

Table 1: Comparison of the average and standard deviation of perplexity of incident node prediction
and mean absolute error of time prediction. The smaller the MAE and Perplexity, the better the
model. The best result is highlighted in bold and second best is highlighted with underline. The Rank
column shows the average ranking in each metric and dataset (the lower, the better).

Datasets Wikipedia Github MOOC SocialEvo Rank
Metric Perplexity MAE Perplexity MAE Perplexity MAE Perplexity MAE

GRU+Gaussian 131.06 ± 11.27 54.54 ± 1.19 68.53 ± 1.18 59.05 ± 1.72 457.40 ± 6.25 36.49 ± 2.01 33.85 ± 0.27 131.71 ± 7.09 8.00
Hawkes 108.00 ± 3.73 56.84 ± 0.31 74.40 ± 2.47 55.21 ± 0.12 502.31 ± 12.30 36.67 ± 0.29 45.33 ± 5.35 139.35 ± 0.17 9.50
Poisson 119.19 ± 1.11 56.70 ± 0.11 61.49 ± 0.96 55.21 ± 0.31 438.61 ± 7.05 36.61 ± 0.78 40.48 ± 1.99 139.3 ± 1.15 8.25
RMTPP w HRCHY 133.68 ± 2.31 34.15 ± 0.89 62.19 ± 0.88 55.05 ± 1.02 616.79 ± 25.74 32.29 ± 1.59 41.37 ± 6.55 140.02 ± 2.06 8.88
RMTPP 121.67 ± 1.01 32.91 ± 1.90 67.97 ± 1.02 54.79 ± 0.47 664.07 ± 11.05 32.83 ± 2.40 37.05 ± 0.77 138.9 ± 2.30 8.00
DyRep w AR 116.07 ± 4.98 28.74 ± 0.37 54.57 ± 1.82 28.46 ± 0.65 431.18 ± 1.18 29.92 ± 1.48 29.6 ± 1.93 99.96 ± 6.18 3.38
DyRep 119.13 ± 1.02 30.04 ± 0.14 64.05 ± 0.78 36.97 ± 1.74 438.61 ± 9.28 13.41 ± 1.42 36.59 ± 3.02 103.01 ± 3.49 4.75

CEP3 w RNN 104.87 ± 8.70 41.94 ± 1.89 60.18 ± 1.04 39.22 ± 2.93 374.77 ± 24.59 20.09 ± 0.33 30.37 ± 4.56 95.12 ± 2.25 3.88
CEP3 w/o HRCHY 98.98 ± 7.61 28.69 ± 0.70 52.04 ± 3.33 26.8 ± 0.89 365.68 ± 28.01 31.87 ± 0.18 28.66 ± 2.74 79.58 ± 5.39 1.75
CEP3 w/o AR 125.51 ± 7.64 39.31 ± 2.59 61.03 ± 1.03 34.03 ± 0.37 448.37 ± 4.34 21.4 ± 0.47 38.59 ± 1.02 95.21 ± 4.44 6.13
CEP3 118.82 ± 4.30 32.41 ± 0.58 50.42 ± 0.70 30.93 ± 1.67 401.64 ± 7.06 17.69 ± 2.68 36.8 ± 1.00 94.54 ± 7.31 3.25

We first apply the learned forecasting model to predict the edges using Monte Carlo sampling. This270

generation process is repeated for three times. We then discard generated edges that are not within271

the 33% highest prediction probabilities and obtain the final generated graph. Generating multiple272

times and then discarding the less possible edges is to reduce uncertainty in each one-time generated273

graphs.274

In the first row, both CEP3 and DyRep capture the triangle connection in this small community.275

However, the triangle is lighter in the ground truth, which means that DyRep over-reinforces this276

connection in its predictions. In the second row, the prediction result of CEP3 is more similar to the277

truth, whereas DyRep generates a high-frequency purple edge which does not exist in the original278

graph. In the third row, CEP3 successfully learns the two black edges in ground truth, but DyRep279

predicts more than two links in darker colors.280

We can see that our method successfully recognises the high-degree nodes capture many patterns of281

interactions as well as the evolution dynamics of the interactions graph, which includes the nodes with282

higher degrees. One pressing goal of community event prediction, rather than focusing on a single283

local node, is to anticipate if a certain high-frequency pattern will emerge in the community from a284

8

0 50 100 150 200 250 300
Nodes in Communites

1.0

1.5

2.0

2.5

3.0

3.5

In
fe

re
nc

e
Ti

m
e

(s
)

CEP3
CEP3 without Hierarchy

(a) Efficiency

10 25 50 100 200
Forecasting Steps

0

5

10

15

20

25

30

35

M
AE

CEP3 without AR
CEP3

(b) Forecasting Steps

Figure 4: (a) To demonstrate the efficiency of proposed CEP3 hierarchical probability chain, we show
1000 steps’ inference time cost against the node scale. In this scatter figure, each data point represents
a community in the Wikipedia dataset (b) The number of forecasting step is an important parameter
in almost all forecasting models. To further investigate the effect of the number of forecasting steps
and the AR module on the CEP3 model, we run experiments with different numbers of forecasting
steps. The small MAE, the better the model.

global perspective. Typical application cases include money laundering patterns [41] in finance and285

disease transmission patterns [42], etc.286

4.4 Ablation Study287

In Section 3 we have mentioned three variants: CEP3 w RNN to trade parallelized training for288

long-term dependency modeling with RNN based memory module, CEP3 w/o HRCHY to compare289

hierarchical (HRCHY) prediction versus joint prediction of incident nodes, and CEP3 w/o AR to290

compare using auto-regressive module versus not using.291

CEP3 w/o HRCHY. The formulation without hierarchy structure yields a slower training and infer-292

ence speed as shown in Fig. 4(a). We demonstrate that CEP3 is more efficient on large communities293

compared to CEP3 w/o HRCHY. As is shown in Fig. 4(a), computing intensity function of each294

possible node pair would take more time by orders of magnitude. We relax this issue by decomposing295

the node pair prediction problem into two node prediction sub-problems, which can be solved quicker296

especially in large scale communities.297

CEP3 w/o AR. The model performance dropped significantly and yielded similar result as DyRep w298

AR. From Fig. 4(b), we can see that the AR forecasting is not always useful in all varying numbers of299

prediction steps. When the number of “prediction steps” is small (such as 10), CEP3 could just use300

the node embeddings at time tn to predict the events. When the number of steps becomes larger, the301

systematic accumulated errors from AR gradually accumulate, leading to low MAE accuracy. And as302

the number of steps increases, the initial node embedding would have little effect in distant future303

events. This indicates that without AR, it may be difficult for the CEP3 model to accurately predict304

long-term occurrences.305

CEP3 w RNN. The results show that the memory module brings performance improvement over306

pure CEP3, except on the Github dataset. The reason is perhaps that the Github dataset is a small one307

with a limited number of nodes and edges, and meanwhile it has a significantly longer timespan than308

other datasets. It means that the interaction is low-frequency in this situation, causing the insufficient309

memory updating.310

5 Conclusion And Future Work311

In this paper, we have formulated the community event forecasting task on a continuous time dynamic312

graph and set up benchmarks using the adaptation of the previous work. We further propose a new313

model to tackle this problem utilizing graph structures. We also address the scalability problem314

when formulating the temporal point process on the graph and reduce complexity with a hierarchical315

formulation. Experimental results show the prediction accuracy and training efficiency of our models.316

9

However, this work remains two important limitations to solve. One is that we did not provide317

an experimental evaluation metric of the joint predictions because there are no widely accepted318

metrics that can be used directly now. We are already considering some metrics from the dynamic319

graph generation field [43] in future work. The other is that the evaluation is very dependent on320

the pre-defined communities detected by Louvain algorithm. Future work will contain comparisons321

utilizing different community detection algorithms (e.g. linkage algorithms [44], spectral clustering322

[45]).323

10

References324

[1] J Zhang and K Nawata. Multi-step prediction for influenza outbreak by an adjusted long325

short-term memory. Epidemiology & Infection, 146(7):809–816, 2018. 1326

[2] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-327

work: Data-driven traffic forecasting. In International Conference on Learning Representations,328

2018. 1, 7329

[3] Carlos Capistrán, Christian Constandse, and Manuel Ramos-Francia. Multi-horizon inflation330

forecasts using disaggregated data. Economic Modelling, 27(3):666–677, 2010. 1331

[4] Stepan S Sulakshin. A quantitative political spectrum and forecasting of social evolution.332

International Journal of Interdisciplinary Social Sciences, 5(4), 2010. 1333

[5] Yupeng Gu, Yizhou Sun, and Jianxi Gao. The co-evolution model for social network evolving334

and opinion migration. In KDD, pages 175–184. ACM, 2017. 1, 2335

[6] Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: A survey.336

ACM Comput. Surv., 51(2):35:1–35:37, 2018. 1337

[7] Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. On community outliers338

and their efficient detection in information networks. In KDD, pages 813–822. ACM, 2010. 1339

[8] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes340

process. In ICML, volume 119 of Proceedings of Machine Learning Research, pages 11692–341

11702. PMLR, 2020. 1, 3342

[9] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation343

learning in temporal networks via causal anonymous walks. In International Conference on344

Learning Representations, 2021. 1, 2345

[10] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in346

temporal interaction networks. In KDD, pages 1269–1278. ACM, 2019. 2, 6, 14, 15347

[11] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and348

Michael M. Bronstein. Temporal graph networks for deep learning on dynamic graphs. CoRR,349

abs/2006.10637, 2020. 2, 4350

[12] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. Inductive351

representation learning on temporal graphs. In ICLR. OpenReview.net, 2020. 2, 4352

[13] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and353

Le Song. Recurrent marked temporal point processes: Embedding event history to vector. In354

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and355

Data Mining, pages 1555–1564, 2016. 2, 3, 5, 6, 14, 16356

[14] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning357

representations over dynamic graphs. In ICLR (Poster). OpenReview.net, 2019. 2, 3, 6, 14, 15,358

16359

[15] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and360

Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings of361

the The Web Conference 2018, pages 969–976, 2018. 2362

[16] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhao Li, and Can Wang.363

Learning temporal interaction graph embedding via coupled memory networks. In WWW, pages364

3049–3055. ACM / IW3C2, 2020. 2365

[17] Dong Li, Shengping Zhang, Xin Sun, Huiyu Zhou, Sheng Li, and Xuelong Li. Modeling366

information diffusion over social networks for temporal dynamic prediction. IEEE Trans.367

Knowl. Data Eng., 29(9):1985–1997, 2017. 2368

[18] Qitian Wu, Yirui Gao, Xiaofeng Gao, Paul Weng, and Guihai Chen. Dual sequential prediction369

models linking sequential recommendation and information dissemination. In KDD, pages370

447–457. ACM, 2019. 2371

[19] Woojeong Jin, Changlin Zhang, Pedro A. Szekely, and Xiang Ren. Recurrent event network372

for reasoning over temporal knowledge graphs. CoRR, abs/1904.05530, 2019. URL http:373

//arxiv.org/abs/1904.05530. 2374

11

http://arxiv.org/abs/1904.05530
http://arxiv.org/abs/1904.05530
http://arxiv.org/abs/1904.05530

[20] Jeffrey D. Scargle. An introduction to the theory of point processes, vol. I: elementary theory375

and methods. Technometrics, 46(2):257, 2004. 3376

[21] Hongyuan Mei and Jason Eisner. The neural hawkes process: A neurally self-modulating377

multivariate point process. In NIPS, pages 6754–6764, 2017. 3, 14378

[22] Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point379

processes via reinforcement learning. Advances in neural information processing systems, 31,380

2018.381

[23] Hengguan Huang, Hao Wang, and Brian Mak. Recurrent poisson process unit for speech382

recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages383

6538–6545, 2019. 3384

[24] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and385

the" echo state network" approach, volume 5. GMD-Forschungszentrum Informationstechnik386

Bonn, 2002. 3387

[25] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal388

reasoning for dynamic knowledge graphs. In ICML, volume 70 of Proceedings of Machine389

Learning Research, pages 3462–3471. PMLR, 2017. 3390

[26] Weichang Wu, Huanxi Liu, Xiaohu Zhang, Yu Liu, and Hongyuan Zha. Modeling event391

propagation via graph biased temporal point process. IEEE Transactions on Neural Networks392

and Learning Systems, pages 1–11, 2020.393

[27] Eric C. Hall and Rebecca M. Willett. Tracking dynamic point processes on networks. IEEE394

Trans. Inf. Theory, 62(7):4327–4346, 2016. 3395

[28] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, and Yanfang Ye. Temporal network embedding396

with micro- and macro-dynamics. In CIKM, pages 469–478. ACM, 2019. 3397

[29] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. Embedding temporal398

network via neighborhood formation. In KDD, pages 2857–2866. ACM, 2018. 3399

[30] Jiangxia Cao, Xixun Lin, Xin Cong, Shu Guo, Hengzhu Tang, Tingwen Liu, and Bin Wang.400

Deep structural point process for learning temporal interaction networks. In ECML/PKDD,401

pages 447–457. Springer, 2021. 3402

[31] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural403

temporal point processes: A review. In IJCAI, pages 4585–4593. ijcai.org, 2021. 4404

[32] E. Çinlar and R. A. Agnew. On the superposition of point processes. Journal of the Royal405

Statistical Society: Series B (Methodological), 30(3):576–581, 1968. 5406

[33] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional407

networks. In ICLR (Poster). OpenReview.net, 2017. 6408

[34] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,409

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–410

decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical411

Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October412

2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. 6, 15, 16413

[35] Anmol Madan, Manuel Cebrian, Sai Moturu, Katayoun Farrahi, et al. Sensing the" health state"414

of a community. IEEE Pervasive Computing, 11(4):36–45, 2011. 6, 14, 15415

[36] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.416

Biometrika, 58(1):83–90, 1971. 6, 16417

[37] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,418

Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang419

Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable420

deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds,421

2019. 7422

[38] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast423

unfolding of communities in large networks. Journal of statistical mechanics: theory and424

experiment, 2008(10):P10008, 2008. 7425

[39] Clara Meister and Ryan Cotterell. Language model evaluation beyond perplexity. In426

ACL/IJCNLP (1), pages 5328–5339. Association for Computational Linguistics, 2021. 7427

12

[40] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha.428

Wasserstein learning of deep generative point process models. arXiv preprint arXiv:1705.08051,429

2017. 7430

[41] David Savage, Qingmai Wang, Xiuzhen Zhang, Pauline Chou, and Xinghuo Yu. Detection of431

money laundering groups: Supervised learning on small networks. In AAAI Workshops, volume432

WS-17 of AAAI Technical Report. AAAI Press, 2017. 9433

[42] Ashis Kumar Das, Shiba Mishra, and Saji Saraswathy Gopalan. Predicting covid-19 community434

mortality risk using machine learning and development of an online prognostic tool. PeerJ, 8:435

e10083, 2020. 9436

[43] M Yusuf Özkaya, Ali Pinar, and Ümit V Çatalyürek. Trigger: Temporal interaction graph437

generator. In submitted for conference publication, 2018. 10438

[44] Wei Zhang, Xiaogang Wang, Deli Zhao, and Xiaoou Tang. Graph degree linkage: Agglomerative439

clustering on a directed graph. In ECCV (1), volume 7572 of Lecture Notes in Computer Science,440

pages 428–441. Springer, 2012. 10441

[45] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph442

neural networks for graph pooling. In ICML, volume 119 of Proceedings of Machine Learning443

Research, pages 874–883. PMLR, 2020. 10444

[46] Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event history analysis: a process445

point of view. Springer Science & Business Media, 2008. 14446

[47] Yongqing Wang, Huawei Shen, Shenghua Liu, Jinhua Gao, and Xueqi Cheng. Cascade447

dynamics modeling with attention-based recurrent neural network. In Carles Sierra, editor,448

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI449

2017, Melbourne, Australia, August 19-25, 2017, pages 2985–2991. ijcai.org, 2017. doi:450

10.24963/ijcai.2017/416. 14451

[48] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M. Chu. Modeling the452

intensity function of point process via recurrent neural networks. In Satinder P. Singh and Shaul453

Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,454

February 4-9, 2017, San Francisco, California, USA, pages 1597–1603. AAAI Press, 2017. 14455

[49] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural456

temporal point processes: A review. In IJCAI, pages 4585–4593. ijcai.org, 2021. 14457

[50] Yichen Wang, Nan Du, Rakshit Trivedi, and Le Song. Coevolutionary latent feature processes458

for continuous-time user-item interactions. In NIPS, pages 4547–4555, 2016. 14459

[51] Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point460

processes via reinforcement learning. In NeurIPS, pages 10804–10814, 2018. 14461

[52] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha,462

and Le Song. Coevolve: A joint point process model for information diffusion and network463

evolution. The Journal of Machine Learning Research, 18(1):1305–1353, 2017. 14464

[53] Amanda Andrei, Alison Dingwall, Theresa Dillon, and Jennifer Mathieu. Developing a tagalog465

linguistic inquiry and word count (LIWC) ’disaster’ dictionary for understanding mixed language466

social media: A work-in-progress paper. In LaTeCH@EACL, pages 91–94. The Association for467

Computer Linguistics, 2014. 15468

[54] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural469

networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,470

editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates,471

Inc., 2014. 16472

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,473

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 5998–6008,474

2017. 17475

13

A The Illustration Figure of Community Event Forecasting Task476

𝑡!"#

𝑡!"$

𝑡!"%

𝑡# 𝑡&
𝑡!'#

𝑡(

𝑡)

𝑡$ 𝑡&
𝑡!'#

Figure 5: Community event forecasting on a CTDG: Given a community (nodes and edges with blue
strokes) in a historical CTDG, predict where and when the next interaction event (green arrows) will
happen. This process can be repeated to forecast to distant future.

B Preliminaries of Temporal Point Process477

A TPP is mostly characterized by a conditional intensity function λ(t), from which it computes the478

conditional probability of an event occurring between t and t+ dt given the history {ti : ti < t} as479

λ(t)dt. According to [46], the log conditional probability density of an event occurring at time t can480

be formulated as481

f(t) = log λ(t)−
∫ t

tn

λ(τ)dτ (14)

Additionally, a marked temporal point process (MTPP) associates each event with a marker yi which482

is often regarded as the type of the event. MTPP thus not only models when an event would occur,483

but also models what type of event it is. Event forecasting over CTDGs can also be modeled as a484

MTPP if treating the event’s incident node pair as its marker. The conditional intensity of the entire485

MTPP can be modeled as a sum of conditional intensities of each individual marker: λ =
∑

m λm.486

This allows it to first make the prediction of event time, and then predict the marker conditioned on487

time via sampling from a categorical distribution: m ∼ Categorical(λm). This avoids modeling time488

and marker jointly. Such idea has been widely used in follow-up works such as Recurrent Marked489

Temporal Point Process (RMTPP) [13]. RMTPP parametrizes the conditional intensity and the marker490

distribution with a recurrent neural network (RNN). RMTPP’s variants include CyanRNN [47] and491

ARTPP [48].492

We also demonstrate several other relevant works and applications related to TPPs [49]. CoEvolv-493

ing [50], a variant model of MTPP, uses Hawkes processes to model the user-item interaction,494

respectively. NeuralHakwes [21] relaxes the positive influence assumption of the Hawkes process495

by introducing a self-modulating model. DeepTPP [51] models the event generation problem as a496

stochastic policy and applied inverse reinforcement learning to efficiently learn the TPP. [52] models497

link and retweet generation on a social network with a TPP, and also provides a simulation algorithm498

that generates from the TPP model. It is very similar to our task except that it is focused on a specific499

social network setting, and the authors did not quantitatively evaluate the quality of the simulation500

model.501

C Datasets502

In this section, we test the performance and efficiency of the proposed method against multiple503

baselines on four public real-world temporal graph datasets: Wikipedia, MOOC [10], GitHub [14],504

and SocialEvo [35]. Table 2 shows summary statistics of the datasets used in our experiments. A505

detailed description is put in the below.506

14

Table 2: Statistics of the datasets used in our experiments.

Level Statistics Wikipedia MOOC Github SocialEvo

Graph
level

Edges 157,474 411,749 20,726 62,009
Nodes 9,227 7,145 282 83
Aver. Event 34 115 147 1,310
Aver. Unique Neighbors 1.98 24.98 14.65 9.02
Edge Feat. Dim. 172 4 10 10
Unique Edges in Graph 5.99% 19.95% 10.27% 0.62%
Is Bipartite True True False False
Timespan 31days 30days 1years 74days
Edges/hour 211.66 576.30 2.36 7.79
Data Spilt 70%-15%-15% by timestamp order

Community
level

Communities 142 25 17 10
Max Nodes 396 990 46 18
Aver. Nodes 50.27 264.96 15.94 7.7
Max Edges 4799 11686 3221 12199
Aver. Edges 778.28 2560.00 534.71 3420.90
Min Edges 77 16 34 863
Max Edges/hour 6.47 33.33 0.36 1.99
Aver. Edges/hour 1.11 5.36 0.06 0.56
Min Edges/hour 0.14 0.34 0.01 0.15

Wikipedia [10] dataset is widely used in temporal-graph-based recommendation systems. It is a507

bipartite graph consisting of user nodes, page nodes and edit events as interactions. We convert the508

text of each editing into a edge feature vector representing their LIWC categories [53].509

MOOC [10] dataset, collected from a Chinese MOOC learning platform XuetangX, consists of510

students’ actions on MOOC courses, e.g., viewing a video, submitting an answer, etc.511

Github [14] dataset is a social network built from GitHub user activities, where all nodes are real512

GitHub users and interactions represent user actions to the other’s repository such as Watch, Fork,513

etc. Note that we do not use the interaction types as we follow the same setting as [14].514

SocialEvo [14, 35] dataset is a small social network collected by MIT Human Dynamics Lab.515

Since the public dataset SocialEvo and Github have no edge feature, we generate a 10-dimensional516

edge feature using following attributes, including the current degrees of the two incident nodes of517

an edge, and the time differences between current timestamp and the last updated timestamps of the518

two incident nodes. "Percentage of unique edges" represents the likelihood that new events already519

happened, and "Average unique neighbors" measures the likelihood that entities on the graph will520

seek out connections with other entities that have never interacted with them. Note that the time521

differences are described in the numbers of days, hours, minutes and seconds, respectively.522

D Baselines523

Table 3: Comparison of model capabilities. Note that the usage of RNN prevents a model from
parallel training as is mentioned in Section 2.3. ∗Requires non-trivial adaptation.

Taxnomy GNN+TPP RNN+TPP GNN TPP

Methods CEP3 DyRep RMTPP TGAT Poisson Hawkes

Predicts Link (u,v)
√ √ √ √ √ √

Predicts Continuous Time t
√ √ √ √ √

Jointly Predicts Event (u,v,t)
√ √∗ √ √ √

Explicitly Models Topological Dependency
√ √ √

Complexity of Node Prediction O(|V |) O(|V |2) O(|V |2) O(|V |2) O(|V |2) O(|V |2)
Parallel Training

√ √ √

Captures Sequential Info with Attention RNN+Attention RNN Attention Poisson Process Hawkes Process

In addition to CEP3, CEP3 w RNN, CEP3 w/o HRCHYand CEP3 w/o AR mentioned in Section 3,524

we compare against the following baselines: a Seq2seq model with a GRU [34], a Poisson Process525

15

(TPP-Poisson), a Hawkes Process (TPP-Hawkes) [36], RMTPP [13] and its variant with the same526

two-level hierarchical factorization as in Eq. 8 and 9 (RMTPP w HRCHY), an adaptation of DyRep527

[14] and an auto-regressive variant (named DyRep and DyRep w AR). Notably, RMTPP and its528

variants are SOTA models for MTPPs in general, and DyRep is SOTA in temporal link prediction529

and time prediction on CTDG. Since our task is new, we made adaptations to the baselines above,530

with details of each baseline is as follows:531

Time series Methods: For baseline model of sequential prediction, we build an RNN model, Gated532

Recurrent Unit (GRU). Each source and destination cell has a hidden state, the output of the model533

will be predicted time mean and variance as well as probability for each class to interact, the time534

will be formulated as Gaussian distribution and source and destination node will be formulated as535

categorical distribution. This formulation forces GRU predicting timestamp of upcoming events only536

depending on the hidden state in RNN, whereas other baselines adapt TPP function as a stochastic537

probability process, obtaining a better modeling capability. We use a GRU [34] as a simple baseline538

without using TPP to model time distribution, treating event forecasting on CTDG as a sequential539

modeling task. It takes in the event sequence and outputs the next K event in a Seq2seq fashion [54].540

The loss term for time prediction is mean squared error and the loss term for source and destination541

prediction is the negative log likelihood. This formulation forces GRU to predict the timestamp of542

upcoming events only depending on the hidden state in RNN, whereas other baselines adapt TPP for543

better modeling capabilities.544

Temporal Point Process Methods: Following the benchmark setting of [13], we compared our545

model against other traditional TPP models and deep TPP models.546

• TPP-Poisson: We assume that the events occurring at each node pair (u, v) follows a Poisson547

Process with a constant intensity value λu,v , which are learnt from data via Maximum Likelihood548

Estimation (MLE).549

• TPP-Hawkes [36]: We assume that the events occurring at each node pair (u, v) follows a550

Hawkes Process with a base intensity value µu,v and an excite parameter αu,v , which are learnt551

from data via MLE.552

• RMTPP [13]: We directly consider each source and destination node pair as a unique marker.553

We note that this formulation will exhaust memory and time on graphs with more than a few554

thousand nodes, since RMTPP will assign a learnable embedding for each node pair, resulting555

in O(|V |2) (Here V is total number of nodes in the entire CTDG) parameters which is too556

expensive to update.557

• RMTPP w HRCHY: We consider a variant of RMTPP where we replace the source-destination558

node prediction with our hierarchical formulation: we first select the source node, then condition559

on the source node we select the destination node. The latter formulation can also serves as an560

ablation study to demonstrate the usage of considering the graph structure.561

• DyRep [14]: DyRep is a popular work that combine the temporal point process with graph562

learning techniques to model both temporal and spatial dependencies. Since the original DyRep563

formulation only handles temporal link prediction and time prediction, but not autoregressive564

forecasting, we compute an intensity value λu,v with DyRep for each node pair and assumed a565

Poisson Process afterwards.566

• DyRep w AR: We made a trivial adaptation to the original formulation of DyRep by updating567

the source and destination node involved once a new edge is added to the graph. The update568

function is identical to DyRep updating function during embedding. This benchmark is designed569

to demonstrate that the propagation from newly forecast event to local neighborhood is necessary570

in getting better performance.571

We also crave our proposed model for having the ability to implement minibatch training. As described572

in the beginning of Section 3, our CEP3 achieves large-scale and parallelized training by utilizing573

Hierarchical TPP and GNN based updating module, respectively. A summary of the mentioned574

baselines is shown in Table 3, the proposed model CEP3 satisfies all the desirable properties.575

E Configuration576

We provide the details of our network architecture, the hyper-parameters and the selected community577

detection method for better reproducibility. Table 4 summarizes other key parameters in our model.578

16

Table 4: Configurations for our CEP3 and all baselines.

Name Value

Hidden Dim in Encoder 100
Hidden Dim in Forecaster 50

Hidden Dim in Time Encoding 100
Layers in MLPs 2

K-hops 2
Sampled neighbors/Hop 15

Learning rate 0.0001
Optimizer Adam

of attn head 4
Recurrent Module GRU

Epochs 100
Forecasting Window 200 Steps

Community Detection Method Louvain

0 20 40 60 80 100
Epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 L
os

s

1 parallel size
2 parallel size
4 parallel size
8 parallel size
16 parallel size

Figure 6: Training loss curve with different parallel sizes.

For all the experiments we train our model and benchmark models on Intel(R) Xeon(R) Platinum579

8375C CPU @ 2.90GHz.580

F Parallel Training581

Inspired by the Transformer [55] models in NLP, we believe it is essential to use a pure attention-based582

model in temporal graph encoders. This is because using a pure attention-based GNN as an encoder583

enables us to train multiple time windows in minibatches as described in Section 3.1, whereas the584

model such as Dyrep and RMTPP cannot utilize parallel training due to their RNN structures. This585

property allows our model to benefit from mini-batch training such as gradient stabilization and faster586

convergence. Fig. 6 shows our experiment result on the Wikipedia dataset with different numbers of587

parallel processes, suggests that using parallel training can increase the speed significantly without588

losing accuracy.589

17

	1 Introduction
	2 Related Work Analysis
	2.1 Temporal Graph Learning
	2.2 Neural Temporal Point Process
	2.3 Temporal Point Process on Dynamic Graph

	3 Model
	3.1 Structural and Temporal GNN Encoder
	3.2 Hierarchical Probability-Chain Forecaster
	3.3 Auto-Regressive Message Passing
	3.4 Loss Function and Prediction

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Result Analysis
	4.3 Forecasting Visualization
	4.4 Ablation Study

	5 Conclusion And Future Work
	A The Illustration Figure of Community Event Forecasting Task
	B Preliminaries of Temporal Point Process
	C Datasets
	D Baselines
	E Configuration
	F Parallel Training

