APPENDIX

A DETAILED DESCRIPTIONS OF THE ALGORITHM FOR COMPUTING
DUAL-PERTURBATION EXAMPLES

We use the following steps to solve the optimization problem of dual-perturbation attacks:

1. Initialization. Start with a random initial starting point §(°). To do this, randomly sample
a data point 5;9) in £, ball A(er) and 6530) in A(ep). Then, §(°) can be obtained by using
60 = 6}0) oF(x)+ 6%3) o B(x). This ensures that the initial perturbation is feasible in
both foreground and background.

. Split. At the k-th iteration, split the perturbation §(*) into (5%’6) for foreground and égf) for
background:
6%6) =60 o F(x) 0
5% = 58 o B(a)
Then update the foreground and background perturbations seperately using the following
rules:
égchl) - 7)6(51@) +ap - gr) @
oyt =P8y + - gp)
where gr is the update that corresponds to the normalized steepest descent constrained in
the foreground, and gp for the background. Specifically,

{gp = G(F(z) o Vs {L(hg(z + W), y)) + - S (z + 60}

95 = G(B(x) o Vs {L(ho(x + 80),y)) + A S (a + 60))} )

where a is the stepsize for foreground, and a g is the stepsize for background.
. Merge. At the end of the k-th iteration, merge the perturbations obtained in the last step by
using

SR = gDy 5D, )

8% +1) js further used to derive the update for the normalized steepest descent at the next
iteration.

4. Return to step 2 or terminate after either a fixed number of iterations.

B DESCRIPTIONS OF DATASETS

B.1 SEGMENT-6

The statistics of the Segment-6 dataset are displayed in Table|[T]

Number of samples
Training [ Test
Train | 3,000 200
Bird | 3,000 200
Cat 3,000 200
Dog 3,000 200
Toilet | 3,000 200
Clock | 3,000 200

Total | 18,000 | 1,200 |

Class

Table 1: Number of samples in each class of the Segment-6 dataset.



Class Number of samples
Training | Test
Airplane | 500 10
Bird 500 10
Car 500 10
Cat 500 10
Deer 500 10
Dog 500 10
Horse 500 10
Monkey | 500 10
Ship 500 10
Truck 500 10

[Toal [ 5000 [100 |

Table 2: Number of samples in each class of the STL-10 dataset.

B.2 STL-10

The statistics of the STL-10 dataset are displayed in Table

B.3 IMAGENET-10

The labels and number of images per class in the ImageNet-10 dataset are listed in Table 3]

Class Number of samples
Training [ Test
Airplane | 500 10
Car 500 10
Cat 500 10
Dog 500 10
Truck 500 10
Elephant | 500 10
Zebra 500 10
Bus 500 10
Bear 500 10
Bicycle | 500 10
| Total | 5,000 | 100 ]

Table 3: Number of samples in each class of the ImageNet-10 dataset.

C IMPLEMENTATIONS

We implemented all the attack model, as well as the defense approaches in PyTorc an open-source
library for neural network learning. We used the ResNet34 model (He et al.,|2016) and standard
transfer learning, as the datasets employed in our experiments do not have a sufficient amount of
data to achieve high accuracy. Specifically, we initialized the network with the model pre-trained
on ImageNet, reset the final fully connected layer, and added a normalization layer in front of
the ResNet34 model, which performs a channel-wise transformation of an input by subtracting
(0.485,0.456, 0.406) (the mean of ImageNet) and then being divided by (0.229, 0.224, 0.225) (the
standard deviation of ImageNet); E]then, we train the neural networks as usual.

! Available at https: //pytorch.org/.

>To fit the Segment-6 dataset which contains much smaller images compared to ImageNet, we also reset the
first convolutional layer of the pre-trained ResNet34 model by reducing the kernel size from 7 X 7 to 3 x 3,
stride from 2 to 1, and pad from 3 to 1.


https://pytorch.org/

Unless otherwise specified, we used 60 epochs with training batch size 128 for Segment-6. For
STL-10 and ImageNet-10. we trained the classifiers for 20 epochs by using a batch size of 64. We
used Adam Optimizer (Kingma & Bal,2014) with initial learning rate of 10~ for Clean, and 1073
for AT-PGD and AT-Dual, respectively. We dropped the learning rate by 0.1 every 20 epochs on
Segment-6, and similarly at the 8th and 15th epochs on STL-10 and ImageNet-10.

As mentioned above, we implemented PGD and dual-perturbation attacks, bounded by both ¢, and
{5 norms, to evaluate robustness of a classification model, as well as to build robust classifiers. For
£~ attacks, when they were used for evaluation, they are performed with 20 steps; for training robust
classifiers, these attacks were performed with 10 steps at each epoch of adversarial training. Similarly,
for ¢, attacks, they were performed with 100 steps for evaluation, and 50 steps for adversarial training.
We used the semantic segmentation masks on the Segment-6 dataset and used fixation prediction to
identify foreground and backround on STL-10 and ImageNet-10.

D ADVERSARIAL TRAINING USING ¢35 NORM ATTACKS ON IMAGENET-10

Transferability of Adversarial Examples. Here, we measure the transferability of adversarial
examples among different classification models. To do this, we first produced adversarial examples
by using ¢5 PGD attack or dual-perturbation attack on a source model. Then, we used these examples
to evaluate the performance of an independent target model, where a higher prediction accuracy
means weaker transferability. The results are presented in Figure[T} The first observation is that
dual-perturbation attacks exhibit significantly better transferability than the conventional PGD attacks
(transferability is up to 40% better for dual-perturbation attacks). Second, we can observe that when
AT-Dual is used as the target (i.e., defending by adversarial training with dual-perturbation examples),
these are typically resistant to adversarial examples generated against either the clean model, or
against AT-PGD. This observation obtains even when we use PGD to generate adversarial examples.
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Figure 1: Robustness against adversarial examples transferred from other models on ImageNet-10.
Left: {5 dual-perturbation attacks performed by using {ep,ep, A} = {2.0,20.0,1.0} on different
source models. Right: ¢35 PGD attacks with ¢ = 2.0 on different source models.



E ADVERSARILA TRAINING USING ¢, NORM ATTACKS ON STL-10

Here, we present experimental results of the robustness of classifiers that use adversarial training
with ¢5 norm attacks on STL-10. Specifically, we trained AT-PGD using /5 PGD attack with ¢ = 1.0,
and AT-Dual by using ¢5 dual-perturbation attack with {er, e, A} = {1.0,5.0,0.0}. The results are

shown in Figure 2] [3] [ and
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Figure 2: Saliency analysis. The ¢5 dual-perturbation attacks are performed by using {ep,ep} =
{1.0,5.0}, and a variety of A displayed in the figure. Left: foreground scores of dual-perturbation
examples in response to different classifiers. Right: accuracy of classifiers on dual-perturbation

examples with salience control.
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Figure 3: Robustness to white-box ¢4 attacks on STL-10. Left: /5 dual-perturbation attacks with
different foreground distortions. €p is fixed to be 5.0 and A = 0.1. Middle: ¢5 dual-perturbation
attacks with different background distortions. €p is fixed to be 1.0 and A = 0.1. Right: {5 PGD
attacks.
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Figure 4: Robustness against adversarial examples transferred from other models on STL-10. Left:
{5 dual-perturbation attacks performed by using {ep,ep, A} = {1.0,5.0,0.1} on different source
models. Right: /5 PGD attacks with ¢ = 1.0 on different source models.
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Figure 5: Robustness to additional white-box attacks on STL-10. Left: 20 steps of ¢, PGD attacks.
Middle left: 20 steps of ¢, dual-perturbation attacks with different foreground distortions. €p is
fixed to be 20/255 and A = 0.1. Middle right: 20 steps of ¢, dual-perturbation attacks with different
background distortions. e is fixed to be 4/255 and A = 0.1. Right: ¢, JISMA attacks.

F ADVERSARIAL TRAINING USING ¢ NORM ATTACKS ON SEGMENT-6

Now, we present experimental results of the robustness of classifiers that use adversarial training with
¢5 norm attacks on Segment-6. Since DeepGaze II only work on images with more than 35 x 35
pixels, we are unable to use DeepGaze Il to compute the foreground score (FS) for Segment-6. Hence,
in the following experiment on this dataset, we omit the salience term in the optimization problem
of Equation 3 and 4 in the main body of the paper. Specifically, we trained AT-PGD using {5 PGD
attack with e = 0.5, and AT-Dual by using /5 dual-perturbation attack with {ep,ep} = {0.5,2.5}.
The results are shown in Figure[6] [7] and [§]
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Figure 6: Robustness to white-box /5 attacks on Segment-6. Left: {5 dual-perturbation attacks with
different foreground and background distortions. Right: /5 PGD attacks.
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Figure 7: Robustness against adversarial examples transferred from other models on Segment-6.
Left: ¢ dual-perturbation attacks performed by using {er,ep} = {0.5,2.5} on different source
models. Right: /5 PGD attacks with € = 0.5 on different source models.
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Figure 8: Robustness to additional white-box attacks on Segment-6. Left: 20 steps of £, PGD
attacks. Middle: 20 steps of /., dual-perturbation attacks with different foreground and background
distortions. Right: ¢y JISMA attacks.

G ADVERSARIAL TRAINING USING /o, NORM ATTACKS ON IMAGENET-10

Next, we present experimental results of the robustness of classifiers that use adversarial training with
£+ norm attacks on ImageNet-10. Specifically, we trained AT-PGD using /., PGD attack with € =
4/255, and AT-Dual by using ¢, dual-perturbation attack with {er,ep, \} = {4/255,20/255,0.0}.
The results are shown in Figure[9] [I0} [I1] and [I2}
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Figure 9: Saliency analysis. The ., dual-perturbation attacks are performed by using {ep,ep} =
{4/255,20/255}, and a variety of X\ displayed in the figure. Left: foreground scores of dual-
perturbation examples in response to different classifiers. Right: accuracy of classifiers on dual-
perturbation examples with salience control.
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Figure 10: Robustness to white-box /., attacks on ImageNet-10. Left: ¢, dual-perturbation
attacks with different foreground distortions. ep is fixed to be 20/255 and A = 1.0. Middle: ¢,
dual-perturbation attacks with different background distortions. € is fixed to be 4/255 and A = 1.0.
Right: ¢, PGD attacks.
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Figure 11: Robustness against adversarial examples transferred from other models on ImageNet-10.
Left: /,, dual-perturbation attacks performed by using {ep,ep, A} = {4/255,20/255,1.0} on
different source models. Right: ¢, PGD attacks with ¢ = 4/255 on different source models.
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Figure 12: Robustness to additional white-box attacks on ImageNet-10. Left: 100 steps of £2 PGD
attacks. Middle left: 100 steps of /5 dual-perturbation attacks with different foreground distortions.
ep is fixed to be 2.0 and A = 1.0. Middle right: 100 steps of ¢5 dual-perturbation attacks with
different background distortions. € is fixed to be 20.0 and A = 1.0. Right: ¢, JSMA attacks.

H ADVERSARIAL TRAINING USING /., NORM ATTACKS ON STL-10

Now, we present experimental results of the robustness of classifiers that use adversarial training with
¢, norm attacks on STL-10. Specifically, we trained AT-PGD using ¢., PGD attack with e = 4/255,
and AT-Dual by using /., dual-perturbation attack with {er,ep, \} = {4/255,20/255,0.0}. The

results are shown in Figure[T3] [I4} [I3] and
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Figure 13: Saliency analysis. The ¢, dual-perturbation attacks are performed by using {ep,ep} =
{4/255,20/255}, and a variety of X\ displayed in the figure. Left: foreground scores of dual-
perturbation examples in response to different classifiers. Right: accuracy of classifiers on dual-
perturbation examples with salience control.
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Figure 14: Robustness to white-box ¢, attacks on STL-10. Left: ¢, dual-perturbation attacks with
different foreground distortions. €p is fixed to be 20/255 and A = 0.1. Middle: ¢, dual-perturbation
attacks with different background distortions. € is fixed to be 4/255 and A = 0.1. Right: ¢, PGD
attacks.
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Figure 15: Robustness against adversarial examples transferred from other models on STL-10. Left:
¢+, dual-perturbation attacks performed by using {er, eg, A} = {4/255,20/255,1.0} on different
source models. Right: /o, PGD attacks with ¢ = 4/255 on different source models.
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Figure 16: Robustness to additional white-box attacks on STL-10. Left: 100 steps of {2 PGD attacks.
Middle left: 100 steps of /5 dual-perturbation attacks with different foreground distortions. € is
fixed to be 5.0 and A\ = 0.1. Middle right: 100 steps of ¢, dual-perturbation attacks with different
background distortions. e is fixed to be 1.0 and A = 0.1. Right: £y JSMA attacks.

I ADVERSARIAL TRAINING USING /., NORM ATTACKS ON SEGMENT-6

Finally, we present experimental results of the robustness of classifiers that use adversarial training
with £, norm attacks on Segment-6. We trained AT-PGD using ¢, PGD attack with e = 8/255, and
AT-Dual by using ¢, dual-perturbation attack with {er, ep} = {8/255,40/255}. The results are

shown in Figure[T7] [I8] and [T9
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Figure 17: Robustness to white-box /., attacks on Segment-6. Left: /., dual-perturbation attacks
with different foreground and background distortions. Right: /., PGD attacks.
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Figure 18: Robustness against adversarial examples transferred from other models on Segment-6.
Left: ¢, dual-perturbation attacks performed by using {er,ep} = {8/255,40/255} on different
source models. Right: /o, PGD attacks with ¢ = 8/255 on different source models.
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Figure 19: Robustness to additional white-box attacks on Segment-6. Left: 100 steps of ¢, PGD
attacks. Middle: 100 steps of /5 dual-perturbation attacks with different foreground and background
distortions. Right: /o JSMA attacks.

J  ATTACKING RANDOMZIED CLASSIFIERS

In addition to deterministic classifiers that make a deterministic prediction for a test sample, our
proposed attack can be adapted to stochastic classifiers that apply randomization at training and
prediction time. For example, for classifiers using randomized smoothing, we can refine Equation 3
in the main body of the paper as follows:

ot Epono,02n[L (ho(x +d+m),y) + - S(x+ 6 +n)], (5)
(e} S€F,
l160B(2)| Iy <es

where o2 is the variance of the Gaussian data augmentation in randomized smoothing. El The
optimization problem in Equation [5] can be solved by the same approach used for deterministic

3Note that the Gaussian perturbations are only used to compute the expection of loss and are not in the
resulting adversarial examples.



classifiers, with the following modification on Equation [3at the second step in Section [A}

{gF = G(F(x) o Vo Eq[L(ho(z + 8% + 1), y) + XS (. + 65 + n)]) ©)
98 = G(B(@) 0 Vo En[L(ho(m + 6 + 1), y) + A+ S (2 + 6" + n)))

J.1 VARIANCE IN GAUSSIAN DATA AUGMENTATION

Table [] and [5] show the effectiveness of Randomized Smoothing (RS) against the proposed dual-
perturbation attack. Here, we use different variances in Gaussian data augmentation of RS, and
fix the number of noise-corrupted copies at prediction time, n to be 100. It can be seen that
RS is generally fragile to the dual-perturbation attacks that are adapted to randomized classifiers.
Moreover, increasing o, the variance used in Gaussian data augmentation can only marginally
improve adversarial robustness to dual-perturbation attacks while significantly decrease accuracy on
non-adversarial data.

Attack Strength (cg =5 X €p)
Dataset | Defense approach |- — o551 — 17955 [ ep = 8/255 | ep = 12/255 [ er =1
RS,0 =0.25 71.4% 9.6% 0.4% 0.1% 0.0%
Segment-6 | RS, 0 = 0.5 61.7% 13.7% 9% 0.6% 02%
RS,0 =1 477% 15.6% 238% 04% 02%

Table 4: Robustness of RS against ¢, dual-perturbation attacks.

Attack Strength (cg =5 X €p)

Defense approach |- 61 095 [ ¢, = 05 [ er =0.75 [er =1

RS, 0 =0.25 71.4% 29.7% 6.7% 0.9% 0.1%
RS,0=0.5 61.7% 31.6% 11.8% 3.1% 1.3%
RS, 0 =1 47.7% 28.2% 14.4% 6.0% 1.5%

Table 5: Robustness of RS against {5 dual-perturbation attacks on Segment-6.

J.2 NUMBER OF SAMPLES WITH GAUSSIAN NOISE AT PREDICTION TIME

It has been observed that Randomized Smoothing (RS) can be computationally inefficient at prediction
time as it uses a large number of noise-corrupted copies for each test sample at prediction time. It
is natural to ask whether the prediction time of RS can be reduced without significantly sacrificing
adversarial robustness in practice. We answer this question by studying the effectiveness of RS with
different n, the numbers of noise-corrupted copies at prediction time. Specifically, we fix o = 0.5
and set n to be 1, 25, and 100. Note that when n = 1, there is no two-sided hypothesis test for
prediction; thus, no abstentions are obtained.

Here we use /., dual-perturbation attacks on RS for demonstration purposes. The results are shown
in Table@ It can be seen that when n = 25, the accuracy on both adversarial and non-adversarial
data can drop by up to 10% compared to RS using n = 100. The reason is that under a small n, the
prediction appears more likely to abstain. Interestingly, when n = 1, the accuracy can be marginally
improved compared to n = 100, with the prediction time being reduced by 99%. This indicates that
in practice, we would not lose accuracy without using the two-sided hypothesis test at prediction
time.

Attack Strength (cg = 5 X €p)
Dataset | Defense approach |- —— o551 — 17955 [ ep = 8/255 | ep = 12/255 [ ep = 1
RS.n—1 66.0% 19.8% 32% 0.8% 03%
Segment-6 | RS,n =25 19.4% 9.1% 3% 0.5% 0.0%
RS, n = 100 61.7% 13.7% 1.9% 0.6% 0.2%

Table 6: Robustness of RS against ¢, dual-perturbation attacks under different numbers of noise-

corrupted copies at prediction time.
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K VISUALIZATION OF LOSS GRADIENT

Train Clock Cat Bird Dog Truck Airplane Truck Elephant

[ Kl

Input
Input
Input

Clean
Clean
Clean

AT-PGD

AT-PGD

AT-Dual

AT-Dual AT-PGD

AT-Dual

Segment-6 STL-10 ImageNet-10

Figure 20: Visualization of loss gradient of different classifiers with respect to pixels of non-
adversarial inputs. AT-PGD and AT-Dual were obtained using adversarial training with corresponding
£ norm attacks.

L EXAMPLES OF DUAL-PERTURBATION ATTACKS

Original ¢ Dual £« Dual Original ¢ Dual £ o Dual Original ¢ Dual £ o Dual
Sample  Perturbation Perturbation Sample  Perturbation Perturbation Sample  Perturbation Perturbation

Segment-6 STL-10 ImageNet-10

Figure 21: Dual-perturbation attacks. Adversarial examples are produced in response to the Clean
model for each dataset.
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