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1 EXPERIMENTS
1.1 Results and Discussions
1.1.1 Visual Feature Distributions. Figure 1 exhibits the feature dis-
tributions of the baseline model without UDA, existing MSMTDA
method [4] and our proposed MultiDAN on the adaptation from
multisource Paris, Berlin and Tokyo datasets to multitarget Zurich,
Chicago and Potsdam datasets. The 2-D space feature distributions
are acquired via the t-distributed stochastic neighbor embedding
(t-SNE) [3]. As shown in Figure 1, the features of different classes
are mixed and confused without UDA technique. Compared with
baseline model, the existing MSMTDA method [4] effectively re-
duce the feature confusion between various classes. By solving the
multiple domain shift (simultaneous inter-domain shift and intra-
domain shift) problems, the proposed MultiDAN achieve a better
and clearer feature transformation against the existing MSMTDA
method, showing the effectiveness and superiority of our proposed
MultiDAN.

Figure 1: Visual feature distributions of baseline (source-
only), MSMTDA method [4] and the proposed MultiDAN
shown through t-SNE [3] on the Adaptation From mul-
tisource Paris, Berlin and Tokyo datasets to multitarget
Zurich, Chicago and Potsdam datasets. Red, blue and purple
denotes categories background, building and road respec-
tively.

1.2 Ablation Study

1.2.1 Influence of Stage Number K . The stage number (subdomain
number of each target domain) K is a crucial factor for our Mul-
tiDAN. Hence, to probe the effect of stage number K , we attempt
MultiDAN trained with various stage number K . Figures 2 and 3
depict the visual predictions and entropy of MultiDAN trained with
various stage number K . From Figures 2 and 3, we can see that the
visual segmentation predictions and entropy maps firstly become
better and then turn slightly worse with the continuous increasing
of stage number K (from 5 to 8). This indicates our MultiDAN can
achieve top performance without too many training stages.

Figure 2: Visual segmentation prediction maps of the pro-
posed MultiDAN with various stage numbers (subdomain
number) K on the adaptation from Zurich and Chicago
Datasets to Paris and Berlin Datasets.

Figure 3: Visual entropy maps of the proposed MultiDAN
with various stage numbers (subdomain number) K on the
adaptation from Zurich and Chicago Datasets to Paris and
Berlin Datasets.

1.2.2 Analysis of Pseudo Label Update Strategy. In this section, we
explore the influence of the proposed PLUS by conducting numer-
ous comparison experiments on the AIS datasets. We discuss the
methods of determining the initial values of probability threshold
µ and entropy threshold υ, and probe the effect of initial values of
µ and υ.

To decide the initial values of probability threshold µ and entropy
threshold υ, we follow [2] and make a trade off between quality and
quantity of pseudo labels. Concretely, we apply pixel ratios ρu and
ρv , which corresponds to the ratio between the reserved pixels and
total pixels, to determine the initial values of probability threshold
µ and entropy threshold υ. In other words, we only reserve the
top ρu pixels whose probability values are higher than probability
threshold µ. Similarly, we only maintain the top ρv pixels whose
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entropy values are lower than entropy threshold υ. It’s notable that
too small or too large pixel ratios ρu and ρv will weaken the seg-
mentation performances. Thus, we draw the correlations between
prediction entropy threshold υ and pixel ratio ρv , prediction confi-
dence (softmax probability) threshold µ and pixel ratio ρu in the left
side and right side of Figure 4 respectively. From left side of Figure
4, we can see that the prediction entropy decreases approximately
linearly as pixel ratio drops from 95% to 65%. When pixel ratio
decreases from 65% to 40%, the prediction entropy drops rapidly.
On this basis, entropy threshold υ, which corresponds to inflection
point ρv=65%, is applied to reach the trade-off between quality
and quantity of pseudo labels. Similarly, probability threshold µ,
corresponding to inflection point ρu=75%, is selected as depicted
in right side of Figure 4.

Figure 4: Correlations between the pixel ratio and prediction
entropy (left), pixel ratio and prediction confidence (right).

Table 1: Influence (mIoU) of Initial Softmax Probability
Threshold µ0 of the Pseudo Label Update Strategy on the
Adaptation From Zurich and Chicago datasets to Paris and
Berlin datasets.

ρu 40% 50% 60% 70% 75% 80% 90% 100%

Paris 49.3 50.2 50.7 51.1 51.5 51.3 51.0 50.6
Berlin 51.2 51.9 52.4 52.9 53.2 53.0 52.6 52.1

To verify the effect of parameters ρu and ρv , we learn MultiDAN
with various ρu (corresponding to initial value of probability thresh-
olds µ) and ρv (corresponding to initial value of entropy thresholds
υ), and give the mIoU results in Tables 1 and 2. As illustrated in
Tables 1 and 2, the model reaches the best segmentation perfor-
mance on all the target datasets when ρu=75% and ρv=65%. The
too high and too low pixel ratio (ρu or ρv ) will highly influence
the segmentation performance of MultiDAN.

1.2.3 Analysis of Adaptive Weighting Strategy. In this section, we
validate the effectiveness of adaptive weighting strategy (AWS) for
our MSMTDA module, as well as comparing AWS with manual
tuning methods. The comparison results (mIoU) are reported in
Tables 3.

With respect to the MSMTDA module, we firstly train the model
with merely source-target segmentation loss Lsseд . As shown in
Table 3, the AWS outperforms the manual tuning by average 0.8%
mIoU, which shows adaptively weighting the multiple source do-
mains is better than applying uniform weights. Then, we add the

Table 2: Influence (mIoU) of Initial Entropy Threshold υ0 of
the Pseudo Label Update Strategy on the Adaptation From
Paris, Berlin, Tokyo datasets to Zurich, Chicago, Potsdam
datasets.

ρv 40% 50% 60% 65% 70% 80% 90% 100%

Potsdam 50.6 52.1 52.4 52.8 52.6 52.2 51.7 51.3
Zurich 51.2 53.1 53.7 54.1 53.8 53.4 52.9 52.4
Chicago 48.6 50.0 50.4 50.7 50.6 50.3 49.9 49.6

Table 3: Comparison (mIoU) Between Manual Hyperparam-
eter Tuning and Adaptive Weighting Strategy of the Pro-
posed MSMTDA Module on the Adaptation From Zurich
and Chicago datasets to Paris and Berlin datasets. "M" de-
notes Manual TuningMethod while "A" represents Adaptive
Weighting Method.

Loss Method λsseд λstadv λt tadv Paris Berlin

Lsseд
M 1 0 0 33.8 33.4
A - 34.6 34.1

Lstadv

M 1 0.1 0 44.8 45.1
M 1 0.05 0 46.2 46.6
M 1 0.02 0 45.5 46.1
M 1 0.01 0 45.1 45.3
A - 46.7 47.2

Lt tadv

M 1 0.05 0.1 47.1 47.9
M 1 0.05 0.05 47.8 48.5
M 1 0.05 0.02 47.9 48.8
M 1 0.01 0.01 47.5 48.1
A - 48.1 49.3

source-target adversarial loss Lsi tpadv to conduct multiple adversarial
training between multisource and multitarget domains. For the
manual tuning methods, the model reaches the best segmentation
performance when λ

si tp
adv is set to 0.05. In comparison, AWS im-

proves the segmentation performances by average 0.6% mIoU with-
out extensive tuning time and manual efforts. Finally, when adding
the target-target adversarial loss Ltp tqadv , manual tuning methods
perform the best when λ

tp tq
adv =0.02, while is average 0.4% mIoU

worse than our AWS. These results confirm the effectiveness and
superiority of adaptive weighting strategy (AWS).

1.2.4 Influence of Various Source and Target Domains. To study the
effect of different source and target domains on the model perfor-
mance, we test several UDA scenarios and report the mIoU results
in Table 4. From Table 4, we can see using different source domains
will obtain different cross-domain segmentation performance on
the target domains. The reason may be different source domains
have different data distributions, the source domains whose data
distributions are more similar to target domains can contribute
better adaptation performance. Moreover, the model performances
under MSDA setting and under MTDA setting are superior to the
model performance under SDA setting, showing that multisource



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: MultiDAN: Unsupervised, Multistage, Multisource and Multitarget Domain Adaptation for SS of RSI ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

or multitarget training data can improve the adaptation perfor-
mance over SDA, since the multisource and multitarget samples
can extend the generalization and robustness of feature represen-
tation by providing complete information. Furthermore, by fully
exploiting the complementary knowledge from multisource and
multitarget domains, MSMTDA can reach better adaptation per-
formance over MSDA and MTDA, with 51.5% mIoU on Paris and
53.2% mIoU on Berlin, highlighting the superiority of MSMTDA
against MSDA and MTDA. Furthermore, more source and target
domains can further improve the model performance. The above
results indicate when seeking the optimal domains for UDA, more
source and target domains are generally beneficial to improve the
adaptation performance when there are sufficient source and target
domains. If the labeled source domains are limited, using source
domains which are more similar to target domains can achieve
better adaptation performance.

Table 4: The mIoU Performance of Our Proposed MultiDAN
that Uses Various Source Domains and Target Domains for
Adaptation on the AIS Datasets. "/" denotes "Or". "+" denotes
"And"

Scenarios Sources Targets ParisBerlin

w/o DA
Chicago Berlin/Paris 25.9 27.3
Zurich Berlin/Paris 28.2 28.7

Zurich+Chicago Berlin/Paris 31.4 30.5

SDA Chicago Berlin/Paris 46.2 47.4
Zurich Berlin/Paris 47.4 48.8

MSDA Zurich+Chicago Berlin/Paris 49.8 50.6

MTDA Chicago Berlin+Paris 49.1 49.9
Zurich Berlin+Paris 49.6 50.7

MSMTDA Zurich+Chicago Berlin+Paris 51.5 53.2
Zurich+Chicago+PotsdamBerlin+Paris+Tokyo 52.7 54.9
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