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ABSTRACT

Diffusion-Based Purification (DBP) has emerged as an effective defense mech-
anism against adversarial attacks. The success of DBP is often attributed to the
forward diffusion process, which reduces the distribution gap between clean and
adversarial images by adding Gaussian noise. While this explanation is theoret-
ically sound, the exact role of this mechanism in enhancing robustness remains
unclear. In this paper, through empirical analysis, we propose that the intrinsic
stochasticity in the DBP process is the primary factor driving robustness. To test
this hypothesis, we introduce a novel Deterministic White-Box (DW-box) setting to
assess robustness in the absence of stochasticity, and we analyze attack trajectories
and loss landscapes. Our results suggest that DBP models primarily rely on stochas-
ticity to avoid effective attack directions, while their ability to purify adversarial
perturbations may be limited. To further enhance the robustness of DBP models,
we propose Adversarial Denoising Diffusion Training (ADDT), which incorpo-
rates classifier-guided adversarial perturbations into the diffusion training process,
thereby strengthening the models’ ability to purify adversarial perturbations. Ad-
ditionally, we propose Rank-Based Gaussian Mapping (RBGM) to improve the
compatibility of perturbations with diffusion models. Experimental results validate
the effectiveness of ADDT. In conclusion, our study suggests that future research
on DBP can benefit from a clearer distinction between stochasticity-driven and
purification-driven robustness.

1 INTRODUCTION
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Figure 1: Comparison of attack trajec-
tories under different evaluation set-
tings. The attack trajectory in the stan-
dard white-box setting significantly de-
viates from the DW-box trajectory and
demonstrates lower effectiveness.

Deep learning has achieved remarkable success across var-
ious domains, including computer vision (He et al., 2016),
natural language processing (OpenAI, 2023), and speech
recognition (Radford et al., 2023). However, within this
flourishing landscape, the persistent specter of adversarial
attacks casts a shadow over the reliability of these neural
models. For vision models, adversarial attacks typically
involve introducing imperceptible perturbations into input
images, tricking the models into producing incorrect outputs
with high confidence (Goodfellow et al., 2015; Szegedy et al.,
2014). This vulnerability has spurred substantial research
into adversarial defenses (Zhang et al., 2019; Samangouei
et al., 2018; Shafahi et al., 2019; Wang et al., 2023).

Recently, diffusion-based purification (DBP) (Nie et al.,
2022) has emerged as a promising defense against adver-
sarial attacks. Existing studies suggest that DBP robustness
primarily stems from the forward diffusion process, which reduces the distribution gap between clean
and adversarial images by applying Gaussian noise (Nie et al., 2022; Wang et al., 2022). While this
reduction is theoretically supported, its contribution to DBP robustness has not been sufficiently
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validated through empirical studies. Additionally, experimental results suggest that the stochastic
nature of DBP might also play a significant role in enhancing its robustness (Nie et al., 2022).

In this paper, we present a new perspective that emphasizes the role of stochasticity throughout the
DBP process as a key contributor to its robustness, challenging the traditional focus on the forward
diffusion process. To assess the impact of stochasticity, we propose a Deterministic White-box
(DW-box) attack setting, in which the attacker has complete knowledge of both the model parameters
and the stochastic elements. Our findings reveal that DBP models experience a significant loss of
robustness when the process is made entirely deterministic from the attacker’s perspective. Further
analysis of attack trajectories and the loss landscape shows that DBP models do not defend against
adversarial perturbations by relying on a flat loss landscape, as is common in adversarial training
(AT) (Madry et al., 2018); instead, they leverage stochasticity to bypass the most effective attack
directions, as illustrated in Figure 1.

Building on this new perspective of DBP robustness, we hypothesize that strengthening the diffusion
model’s ability to purify adversarial perturbations could further improve the robustness. To test this
hypothesis, we propose Adversarial Denoising Diffusion Training (ADDT) for DBP models. This
method follows an iterative two-step process: first, the Classifier-Guided Perturbation Optimization
(CGPO) step generates adversarial perturbations; then, the diffusion model training step updates the
parameters of the diffusion model using these perturbations. To better integrate these perturbations
into the diffusion framework, we propose Rank-Based Gaussian Mapping (RBGM), which adjusts
the adversarial perturbations to more closely resemble Gaussian noise, in line with the theoretical
foundation of diffusion models. Experiments confirm that ADDT consistently enhances the robustness
of DBP models. Through further empirical analysis and discussion, we argue that future research on
DBP should separate the robustness derived from stochasticity and that achieved through purification.
This distinction points to two complementary directions for improving DBP: (1) enhancing its ability
to purify adversarial perturbations through efficient training methods, and (2) defending against
Expectation over Transformation (EoT) attacks (Athalye et al., 2018b) by increasing the variance of
attack gradients.

Our main contributions are as follows:

• We offer a novel perspective on DBP robustness, highlighting the crucial role of stochasticity
while challenging the conventional, purification-based view that robustness primarily arises
from distribution gap reduction during the forward diffusion process.

• We introduce a new Deterministic White-box attack setting and demonstrate that DBP
models rely on stochastic attack gradients to evade the most effective attack directions,
revealing key differences from adversarially trained models.

• We show that DBP robustness can be further improved by enhancing the diffusion model’s
ability to purify adversarial perturbations through the proposed ADDT method.

2 RELATED WORK

Adversarial training (AT). First introduced by Madry et al. (2018), AT seeks to develop a robust
classifier by incorporating adversarial examples into the training process. It has nearly become the de
facto standard for improving the adversarial robustness of neural networks (Athalye et al., 2018a;
Gowal et al., 2020; Rebuffi et al., 2021). Recent advances in AT harness the generative power of
diffusion models to augment training data and prevent overfitting (Gowal et al., 2021; Wang et al.,
2023). However, the application of AT to DBP methods has not been thoroughly explored.

Adversarial purification. Adversarial purification utilizes generative models to remove adversarial
perturbation from inputs before they are processed by downstream models. Traditionally, generative
adversarial networks (GANs) (Samangouei et al., 2018) or autoregressive models (Song et al., 2018)
have been used as purification models. More recently, diffusion models have been introduced for
adversarial purification in a technique known as diffusion-based purification (DBP), which has shown
promising results (Nie et al., 2022; Wang et al., 2022; Wu et al., 2022; Xiao et al., 2022). The
robustness of DBP models is often attributed to the wash-out effect of Gaussian noise introduced
during the forward diffusion process. Nie et al. (2022) propose that the forward diffusion process
reduces the Kullback-Leibler (KL) divergence between the distributions of clean and adversarial
images. Gao et al. (2022) suggest that while the forward diffusion process improves robustness
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by reducing model invariance, the backward process restores this invariance, thereby undermining
robustness. However, these theoretical explanations lack strong experimental support.

3 PRELIMINARIES

Adversarial training. Adversarial training aims to build a robust model by including adversarial
samples during training (Madry et al., 2018). This approach can be formulated as a min-max problem,
where it first generates adversarial samples (the maximization step) and then adjusts the parameters
to resist these adversarial samples (the minimization step). Formally, this can be represented as:

θ∗ = argminθE(x,y)∼D [maxδ∈BL(f(θ,x+ δ), y)] , (1)

where L is the loss function, f is the classifier, (x, y) ∼ D denotes the sampling of training data
from the distribution D, and B defines the set of permissible perturbation δ.

Diffusion models. Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) and Denoising
Diffusion Implicit Models (DDIM) (Song et al., 2020) simulate a gradual transformation in which
noise is progressively added to an image and then removed to restore the original image. The forward
process can be represented as:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), (2)

where x0 is the original image and xt is the noisy image. αt is the cumulative noise level at step t
(1 < t ≤ T , where T is the number of diffusion training steps). The parameters θ are optimized by
minimizing the distance between the actual and estimated noise:

θ∗ = argminθEx0,t,ϵ

[
∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)∥22

]
, (3)

where θ∗ represents the optimized parameters, and ϵθ is the model’s predicted noise. Using ϵθ∗ , we
can estimate x̂0 in a single step:

x̂0 =
(
xt −

√
1− αtϵθ∗(xt, t)

)
/
√
αt, (4)

where x̂0 is the recovered image. DDPM typically takes an iterative approach to restore the image,
removing a small amount of Gaussian noise at a time:

x̂t−1 =

(
xt −

βt√
1− αt

ϵθ∗(xt, t)

)
/
√

1− βt +
√
βtϵ, (5)

where βt is the noise level at step t, x̂t−1 is the image recovered at step t− 1, and ϵ is sampled from
N (0, I). DDIM speeds up the denoising process by skipping certain intermediate steps. Recent
work suggests that DDPM could also benefit from a similar approach (Nichol & Dhariwal, 2021).
Score SDEs (Song et al., 2021a) provide a score function perspective on DDPM and further lead to
the derivations of DDPM++ (VPSDE) and EDM (Karras et al., 2022). In this diffusion process, the
noise terms ϵ in Equation (2) and Equation (5) represent the key stochastic elements that control the
randomness of the process. More discussion of stochastic elements is provided in Appendix C.1.

Diffusion-based purification (DBP). DBP uses diffusion models to remove adversarial perturbation
from images. Instead of using a complete diffusion process between the clean image and pure
Gaussian noise (between t = 0 and t = T ), they first diffuse x0 to a predefined timestep t = t∗(t∗ <
T ) via Equation (2), and recover the image x̂0 via the reverse diffusion process in Equation (5).

4 STOCHASTICITY-DRIVEN ROBUSTNESS OF DBP

4.1 STOCHASTICITY AS THE MAIN FACTOR OF DBP ROBUSTNESS

As discussed in Section 2, previous studies primarily attribute the robustness of DBP models to the
forward diffusion process, which perturbs inputs with Gaussian noise to reduce the distribution gap
between adversarial and clean images (Nie et al., 2022; Wang et al., 2022). As a result, adversarial
perturbations can be “washed out” by the Gaussian noise. However, it has also been observed
that the robustness of DiffPure diminishes when switching from Stochastic Differential Equation
(SDE) sampling to Ordinary Differential Equation (ODE) (Nie et al., 2022), which introduces less
stochasticity. This reduction in robustness cannot be fully explained by the “wash out” effect of
Gaussian noise, suggesting that stochasticity plays a role in DBP robustness.
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To assess the impact of stochasticity on DBP robustness, we implemented both DDPM and DDIM
within the DiffPure framework (Nie et al., 2022) and compared their performance (referred to
as DPDDPM and DPDDIM). Note that the original implementation of DiffPure adopts a DDPM
discretization form of DDPM++ (VPSDE), which differs only minimally from DDPM (Ho et al.,
2020). Thus, the primary difference between DiffPure and our DPDDPM is that DiffPure employs a
larger UNet. DDPM utilizes a stochastic SDE-based reverse process, which introduces Gaussian
noise in both the forward and reverse processes, making the entire process stochastic. In contrast,
DDIM uses a deterministic ODE-based reverse process and introduces Gaussian noise only in the
forward process. The results are shown in Figure 2 (labeled as Clean and White), where White refers
to ℓ∞ white-box PGD (Madry et al., 2018) + EoT (Athalye et al., 2018b) attacks (as detailed in
Section 6.1) Although DPDDPM achieves higher clean accuracy, it shows lower robust accuracy under
adaptive white-box attacks, consistent with the findings of Nie et al. (2022). This suggests that the
stochasticity in the reverse diffusion process may also play a crucial role in DBP robustness.
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Figure 2: DPDDPM and DPDDIM robust accu-
racy under different attack settings on CIFAR-
10. Both models lose most of their robustness
only when the attacker knows all stochas-
tic elements (highlighted in bold: DWBoth-
box for DPDDPM/DPDDIM and DWFwd-box for
DPDDIM).

To better control the stochasticity in both the forward
and reverse diffusion processes and to isolate its ef-
fect on DBP robustness, we introduce a novel attack
setting called the Deterministic White-Box (DW-
box) setting. In this setting, the attacker not only has
complete knowledge of the model parameters but also
of the exact values of the stochastic elements sampled
during evaluation, effectively making the diffusion
process deterministic from the attacker’s perspective.
This setting could be realistic if the attacker knows
the seed or the initial random state used for pseudo-
random number generation in the model. For our
evaluations, we define three levels of attacker knowl-
edge: (1) Conventional White-box setting, where the
attacker has access to the model parameters but not
the stochastic elements; (2) DWFwd-box/DWRev-box
setting, where the attacker knows the stochastic ele-
ments in the forward/reverse process in addition to the model parameters; (3) DWBoth-box setting,
where the attacker has complete knowledge of the model parameters and all stochastic elements in
both the forward and reverse processes. Details of these settings are provided in Appendix C.2.

With the Deterministic White-Box attack, we are able to compare traditional theories with our
proposed hypothesis. These explanations diverge in behavior when stochasticity is controlled.
Traditional theories emphasize the forward diffusion process as the primary defense mechanism,
suggesting that both DPDDPM and DPDDIM should behave similarly under the DWFwd-box setting. In
contrast, our hypothesis emphasizes the stochasticity throughout the diffusion process as the crucial
factor. We hypothesize that as DPDDIM becomes deterministic under the DWFwd-box setting, it should
experience a significant reduction in robustness—similar to DPDDPM under the DWBoth-box setting.
We evaluated adversarial robustness on CIFAR-10 using ℓ∞ attacks (see Section 6.1). The results
are shown in Figure 2. Under the DWFwd-box setting, DPDDPM maintains a significant portion of its
robustness, whereas DPDDIM loses almost all resistance to adversarial attacks. This phenomenon can
not be explained by the “wash out” theory. Furthermore, under the DWBoth-box setting, DPDDPM
shows a substantial drop similar to DPDDIM in the DWFwd setting. This suggests that stochasticity in
both the forward and reverse diffusion processes plays a critical role in maintaining robustness.

Our findings suggest that DBP models primarily rely on stochasticity to resist adversarial attacks,
rather than depending solely on the forward diffusion process, and it also reveals that DBP models
lack the ability to effectively purify adversarial perturbations.

4.2 EXPLAINING STOCHASTICITY-DRIVEN ROBUSTNESS

When attacking stochastic models, a commonly used technique is EoT (Athalye et al., 2018b). To
assess the influence of adaptive attacks, we compare the performance of white-box attacks with and
without using EoT. The results in Table 1 show that EoT-based adaptive attacks have only a modest
impact on robustness, which contrasts sharply with DW-box attacks. A more detailed discussion of
EoT steps is provided in Appendix A.
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Table 1: Evaluation of DBP methods under vari-
ous attack settings shows that EoT significantly
affects the model’s robustness accuracy (%).

Metric DiffPure GDMP (MSE) DPDDPM DPDDIM

Clean 89.26 91.80 85.94 88.38
PGD20 69.04 53.13 60.25 54.59

PGD20+EoT10 55.96 40.97 47.27 42.19

To compare different attacks, we visualize the at-
tack trajectories using t-SNE. These trajectories
are projected onto the xy-plane, with loss values
plotted on the z-axis. We compare three types of at-
tacks: white-box without EoT (White-box), white-
box with EoT (White-box-EoT), and Deterministic
White-box (DW-box). As shown in Figure 1, the
trajectories vary significantly across all settings, re-
flecting the stochasticity of DBP models. Notably, DW-box attacks lead to a significant increase in
loss values, whereas white-box attacks—even with EoT—result in only moderate increases. This
observation suggests that stochasticity prevents attackers from finding the optimal attack direction.
Even if the EoT estimate accurately captures the mean gradient direction, the high variance in attack
gradients may prevent alignment with the optimal attack direction (the direction of the DW-box
attack). This leads to reduced attack performance. Additional evidence is provided in Appendix B.

Figure 3: Visualisation of attack trajectories for
White-box-EoT attacks and DW-box attacks on the
loss landscape. The loss landscape is steep in the
direction of the DW-box attack. The plot is based
on the first 128 images of CIFAR-10.

To study how different attacks impact robust ac-
curacy, we compared the loss landscapes under
White-box-EoT and Deterministic White-box
attacks. We computed the average loss varia-
tion across a batch of images and present the
results in Figure 3. The trajectory of the White-
box-EoT attack deviates from that of the Deter-
ministic White-box attack, resulting in a flatter
loss landscape along its path, whereas the De-
terministic White-box attack produces a steep
increase in loss. This observation suggests that
the inherent stochasticity in DBP models pre-
vents White-box-EoT attacks from identifying
the optimal attack direction, and that removing
this stochasticity makes the model vulnerable to
adversarial perturbations. These findings con-
trast with adversarially trained models, where
the loss landscape remains flat even along adver-
sarial directions (Shafahi et al., 2019). Further details on the loss landscape visualization can be
found in Appendix F.

In conclusion, we propose that DBP models, instead of exhibiting a flat loss landscape, leverage
stochasticity to evade the most effective attack directions. Note that while certified defense methods
such as random smoothing also incorporate stochasticity (Xiao et al., 2022; Carlini et al., 2022), their
mechanisms and implications differ from those of DBP methods (see Appendix D).

5 TOWARDS IMPROVING THE PURIFICATION CAPABILITY OF DBP MODELS

Based on the analysis in Section 4, and considering the loss increase along the DW-box attack
direction, we propose that as an alternative to stochasticity-driven robustness, the performance of
DBP can be further improved by flattening the loss landscape. Achieving this requires incorporating
adversarial samples into the training of DBP models. From the perspective of adversarial purification,
this involves enhancing the diffusion model’s ability to purify adversarial perturbations.

To address this, we propose Adversarial Denoising Diffusion Training (ADDT), a method that
incorporates adversarial perturbations into the training of diffusion models in DBP. ADDT follows
an iterative two-step process: (1) Classifier-Guided Perturbation Optimization (CGPO), which
generates adversarial perturbations by maximizing the classification error of a pre-trained classifier;
(2) Diffusion Model Training, which trains the diffusion model on these perturbations to improve its
ability to purify adversarial perturbations.

Integrating adversarial perturbations into diffusion training is challenging due to the Gaussian noise
assumption inherent in diffusion models. To overcome this, we propose Rank-Based Gaussian
Mapping (RBGM), a technique that transforms adversarial perturbations into a form more consistent
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Figure 4: Overview of Adversarial Denoising Diffusion Training (ADDT). ADDT alternates between
a CGPO step (left grey box) to refine the perturbations with a frozen diffusion model and classifier,
and a training step (right grey box) to update the diffusion model with the refined perturbation.
Throughout the process, RBGM is used to make the perturbation more “Gaussian-like”.

with the Gaussian noise assumption, thereby facilitating their integration into the diffusion training
process.

Figure 4 provides an overview of ADDT, and pseudocode is available in Appendix G. The following
subsections detail the components of ADDT.

5.1 ADVERSARIAL DENOISING DIFFUSION TRAINING

Classifier-Guided Perturbation Optimization (CGPO) step. In this step, we refine the adversarial
perturbations δ to maximize the classification error of a pre-trained classifier C, as shown on the
left side of Figure 4. The process begins by reconstructing a clean image x̂0 from the perturbed
input x′

t using the diffusion model P . The perturbed input x′
t is generated from the original image

x0, Gaussian noise ϵ, and the RBGM-mapped perturbation ϵδ(δ), as detailed in Section 5.2. Here,
P (θ,x′

t, t) represents a one-step diffusion process based on the formulation in Equation (4). It
reconstructs the image x̂0 from the noisy input x′

t. The classifier C is then used to predict a label for
this reconstructed image x̂0. The optimization objective is to maximize the discrepancy between the
classifier’s prediction and the ground-truth label y. This can be formulated as:

δ∗ = argmaxδ Ex0,t,ϵ [L (C (P (θ,x′
t(x0, ϵ, ϵδ(δ)), t)) , y)] , (6)

where L(·, y) denotes the loss function measuring the discrepancy between the classifier’s prediction
and the ground-truth label y. The pre-trained classifier C provides semantic guidance and need
not be identical to the protected classifier, as detailed in Section 6.2. To optimize δ, we employ
the PGD attack (Madry et al., 2018). Since RBGM is non-differentiable, we apply the Backward
Pass Differentiable Approximation (BPDA) approach (Athalye et al., 2018a). By applying BPDA,
we employ RBGM during forward propagation but bypass it during backpropagation. Note that
BPDA/RBGM is only applied during training and does not affect the evaluation of DBP robustness.

Diffusion Model Training step. The objective of this step is to update the diffusion model’s
parameters so that it can reconstruct the original image x0 from its perturbed counterpart x′

t. As
illustrated on the right side of Figure 4, the model aims to remove both Gaussian noise and adversarial
perturbations, effectively denoising the input. The optimization objective is defined as:

θ∗ = argminθ Ex0,t,ϵ

[ √
αt√

1− αt
∥x0 − P (θ,x′

t(x0, ϵ, ϵδ(δ)), t)∥
2
2

]
, (7)

where the scaling factor
√
αt/

√
1− αt ensures consistency with the standard DDPM/DDIM loss

formulation.

5.2 RANK-BASED GAUSSIAN MAPPING

Traditional diffusion models assume that input images are corrupted by independent Gaussian noise
ϵ. To preserve Gaussian-like characteristics while encoding adversarial features, we introduce Rank-
Based Gaussian Mapping (RBGM), as shown in Figure 5. RBGM, denoted as ϵδ(δ), retains the
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ordering of the elements in the input tensor δ while replacing their original values with samples
drawn from a standard Gaussian distribution ϵs. Specifically, we first sample a Gaussian tensor
ϵs with dimensions matching δ. Next, we sort the elements of both δ and ϵs in ascending order.
By mapping the sorted elements of δ to the corresponding elements of ϵs, we obtain ϵδ(δ), which
approximates a Gaussian distribution while preserving the structural information in δ. To further
refine the perturbation towards Gaussianity, we blend the RBGM-mapped perturbation with additional
randomly sampled Gaussian noise. The adversarial input x′

t is then defined as follows:

x′
t(x0, ϵ, ϵδ(δ)) =

√
αtx0 +

√
1− λ2

t

√
1− αtϵ+ λt

√
1− αtϵδ(δ), (8)

where λt modulates the level of adversarial perturbation. This ensures that the overall perturbation
remains largely independent of x0, preventing the perturbations from overwhelming the denoising
model’s learning process. We determine λt using the following formulation:

λt = clip(γtλunit, λmin, λmax), γt =
√
αt/

√
1− αt, (9)

where the clip function constrains λt between λmin and λmax. Additional details and discussions
about RBGM can be found in Appendix K.

6 EXPERIMENTS AND DISCUSSIONS

6.1 EXPERIMENT SETUP
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Figure 5: Rank-Based Gaussian Mapping. RBGM trims the
input to follow Gaussian distribution. It samples a Gaussian
noise and then replaces elements in the input with corre-
sponding values from the noise, based on matching ranks.

Classifier. We train a WideResNet-28-
10 model for 200 epochs following the
methods in Yoon et al. (2021); Wang
et al. (2022), achieving an accuracy of
95.12% on CIFAR-10 and 76.66% on
CIFAR-100 dataset.

DBP timestep. For the diffusion
forward process, we adopt the same
timestep settings as DiffPure (Nie
et al., 2022). In continuous-time mod-
els, such as the VPSDE (DDPM++)
variant, with the forward time param-
eter 0 ≤ t ≤ 1, we set t∗ = 0.1, bal-
ancing noise introduction and compu-
tational efficiency. For discrete-time
models, such as DDPM and DDIM,
where t = 0, 1, ..., T , we similarly set
the timestep to t∗ = 0.1 × T . Addi-
tional settings and results for DPEDM are provided in Appendix I.

Table 2: Clean and robust accuracy (%) on CIFAR-10, obtained
by different classifiers. ADDT (WRN-28-10 guidance) improves
robustness in protecting different subsequent classifiers. (*: the
classifier used in ADDT fine-tuning).

DBP method Classifier Vanilla ADDT
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

DPDDPM

VGG-16 (Simonyan & Zisserman, 2014) 84.77 41.99 66.89 85.06 46.09 67.87
ResNet-50 (He et al., 2016) 83.11 44.04 67.58 83.84 48.14 67.87

WRN-28-10* (Zagoruyko & Komodakis, 2016) 85.94 47.27 69.34 85.64 51.46 70.12
WRN-70-16 (Zagoruyko & Komodakis, 2016) 88.43 48.93 70.31 87.84 52.54 70.70

ViT-B (Dosovitskiy et al., 2020) 85.45 45.61 69.53 85.25 48.63 69.92

DPDDIM

VGG-16 (Simonyan & Zisserman, 2014) 87.16 29.00 61.82 87.55 35.06 66.11
ResNet-50 (He et al., 2016) 86.04 31.74 62.11 86.57 38.77 65.82

WRN-28-10* (Zagoruyko & Komodakis, 2016) 88.96 43.16 67.58 88.18 47.85 70.61
WRN-70-16 (Zagoruyko & Komodakis, 2016) 84.40 39.16 68.36 84.96 47.66 69.14

ViT-B (Dosovitskiy et al., 2020) 88.77 34.38 65.72 88.48 41.02 68.65

DPEDM
WRN-28-10* (Zagoruyko & Komodakis, 2016) 86.43 62.50 76.86 86.33 66.41 79.16
WRN-70-16 (Zagoruyko & Komodakis, 2016) 86.62 65.62 76.46 86.43 69.63 78.91

Robustness evaluation. We as-
sess model robustness using the
PGD20+EoT10 attack (Athalye
et al., 2018b). For ℓ∞-norm at-
tacks, we set the step size α =
2/255 and the maximum per-
turbation ϵ = 8/255; for ℓ2-
norm attacks, we use α = 0.1
and ϵ = 0.5. Due to the high
computational cost of EoT at-
tacks, we evaluate the models
on the first 1024 images from
the CIFAR-10 and CIFAR-100
datasets. For comprehensive
evaluation settings, including an analysis of AutoAttack (Croce & Hein, 2020) performance on
DBP models, refer to Appendix E.
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Table 3: Clean and robust accuracy (%) on CIFAR-
10 obtained by different DBP methods. All meth-
ods show consistent improvement fine-tuned with
ADDT.

Diffusion model DBP method Clean ℓ∞ ℓ2

- - 95.12 0.00 1.46

DDIM DPDDIM 88.38 42.19 70.02
DPDDIM+ADDT 88.77 46.48 71.19

DDPM

GDMP (No Guided) (Wang et al., 2022) 91.41 40.82 69.63
GDMP (MSE) (Wang et al., 2022) 91.80 40.97 70.02
GDMP (SSIM) (Wang et al., 2022) 92.19 38.18 68.95

DPDDPM 85.94 47.27 69.34
DPDDPM+ADDT 85.64 51.46 70.12

DDPM++
COUP (Zhang et al., 2024) 90.33 50.78 71.19

DiffPure 89.26 55.96 75.78
DiffPure+ADDT 89.94 62.11 76.66

EDM DPEDM (Appendix I) 86.43 62.50 76.86
DPEDM+ADDT (Appendix I) 86.33 66.41 79.16

Table 4: Clean and robust accuracy (%)
on DPDDPM. ADDT improves robustness
across different NFEs, especially at lower
NFEs (*: default DDPM generation setting;
-: classifier only).

Dataset NFEs Vanilla ADDT
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

CIFAR-10

- 95.12 0.00 1.46 95.12 0.00 1.46
5 49.51 21.78 36.13 59.96 30.27 41.99
10 73.34 36.72 55.47 78.91 43.07 62.97
20 81.45 45.21 65.23 83.89 48.44 69.82
50 85.54 46.78 68.85 85.45 50.20 69.04

100* 85.94 47.27 69.34 85.64 51.46 70.12

CIFAR-100

- 76.66 0.00 2.44 76.66 0.00 2.44
5 17.29 3.71 9.28 21.78 6.25 13.77
10 34.08 10.55 19.24 40.62 14.55 27.25
20 48.05 17.68 30.66 53.32 18.65 36.13
50 55.57 20.02 37.70 59.47 22.75 40.72

100* 57.52 20.41 37.89 59.18 23.73 41.70

ADDT. ADDT fine-tuning is guided by the pre-trained WideResNet-28-10 classifier. For the CIFAR-
10 dataset, we utilize the pre-trained exponential moving average (EMA) diffusion model developed
by Ho et al. (2020) (converted to Huggingface Diffusers format by Fang et al. (2023)). For the
CIFAR-100 dataset, we fine-tune the CIFAR-10 diffusion model for 100 epochs. In CGPO, we set the
hyperparameters to λunit = 0.03, λmin = 0, and λmax = 0.3, and iteratively refine the perturbation
δ for 5 steps. Additional details regarding computational cost are provided in Appendix O.

6.2 DEFENSE PERFORMANCE UNDER DIFFERENT CONDITIONS

Performance across different DBP models. We evaluate the effectiveness of ADDT by applying
it to various diffusion models and comparing their performance with existing methods. The results
shown in Table 3 indicate that ADDT consistently enhances model robustness while maintaining
competitive accuracy on clean data.

Table 5: Clean and robust accuracy
(%) on CIFAR-10 fine-tuned with dif-
ferent training samples. (None: no fine-
tuning)

DBP method Training samples Clean ℓ∞ ℓ2

DPDDPM

None 85.94 47.27 69.34
Clean 85.25 47.27 68.26

MSE-guided 86.91 46.97 70.80
CGPO 85.64 51.46 70.12

DPDDIM

None 88.96 43.16 67.58
Clean 88.87 41.41 67.19

MSE-guided 89.36 40.92 67.68
CGPO 88.18 47.85 70.61

Performance across different downstream classifiers.
We evaluate ADDT’s cross-classifier protection perfor-
mance by applying a diffusion model specifically ADDT
fine-tuned with WRN-28-10 guidance, to protect a variety
of classifiers. The results in Table 2 show that these mod-
els effectively protect classifiers with diverse architectures.
Notably, employing a DPEDM model trained with WRN-
28-10 guidance achieves a 69.63% ℓ∞ robust accuracy on
a WRN-70-16 classifier. This ability to protect different
classifiers without classifier-specific fine-tuning highlights
the effectiveness and feasibility of ADDT.

Performance under acceleration. Speeding up the diffusion process by omitting intermediate steps
has become a common practice in diffusion models (Song et al., 2020; Nichol & Dhariwal, 2021).
In this context, we evaluate the robustness of accelerated DBP models. To quantify computational
cost, we utilize the number of Neural Function Evaluations (NFEs), which reflects the number of
evaluation steps executed during the DBP reverse process. For our experiments, we set t∗ = 0.1× T
and accelerate the process by excluding intermediate time steps. For example, with 5 NFEs, the
time steps for the DBP reverse process would be t = [100, 80, 60, 40, 20, 0]. The results in Table 4
validate the effectiveness of ADDT in improving the robustness of accelerated DPDDPM models. Note
that the performance of DPDDPM varies significantly with different NFE values. This may be because
DDPM introduces stochasticity (Gaussian noise) at each reverse step, and with fewer reverse steps,
the influence of this stochasticity diminishes. Additionally, the generative performance of DDPM
is sensitive to the omission of intermediate steps. We also evaluated DPDDIM models, as detailed in
Appendix H.

6.3 ABLATION STUDY AND ANALYSIS

RBGM. We compare the generative ability of diffusion models fine-tuned from the same pre-trained

8
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Table 6: FID score of DDPM fine-tuned on
CIFAR-10 with different perturbations (lower
is better). Fine-tuning with RBGM-mapped
perturbations results in lower FID scores com-
pared to ℓ∞ perturbations (without RBGM).

Vanilla Clean Fine-tuning ADDT ADDT w/o RBGM

FID 3.196 3.500 5.190 13.608

models, using two different perturbations: RBGM-
mapped perturbations and ℓ∞ perturbations. To quan-
tify generation quality, we use Fréchet Inception Dis-
tance (FID) scores (Heusel et al., 2017), as shown
in Table 6. The results demonstrate that diffusion
models fine-tuned with RBGM-mapped perturbations
maintain generation quality comparable to the vanilla
diffusion model, while models directly fine-tuned
with ℓ∞ perturbations without RBGM show degraded
performance. Additionally, we observe that training with RBGM-mapped perturbations generalizes
better to different types of attacks. Experimental details and further tests are provided in Appendix L.
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Figure 6: Revisiting robustness under Determinis-
tic White-box setting. ADDT improves robustness
under both White-box and Deterministic White-
box settings, implying that ADDT strengthens the
models’ ability to purify adversarial inputs.

CGPO. We analyze the impact of fine-tuning
with different training samples in Table 5.
Specifically, we compare the performance of
samples generated with classifier guidance in
the CGPO step, referred to as “CGPO”, against
those generated with Mean Squared Error (MSE)
loss, denoted as “MSE-guided”. The evalua-
tion results are presented for DDPM with 100
NFEs and DDIM with 10 NFEs. The results
demonstrate that samples generated by CGPO
significantly outperform MSE-guided samples
in terms of enhancing DBP robustness.

Revisiting DBP robustness. We re-examine
robustness under the Deterministic White-box
setting by comparing the performance of diffu-
sion models with and without ADDT fine-tuning, as shown in Figure 6. The fine-tuned models
show significantly higher robust accuracy under the DW-box setting, indicating that ADDT improves
non-stochasticity-based robustness. Further experiments across different models and NFEs, presented
in Appendix M, confirm these improvements in robustness. We also compare the loss landscapes
of ADDT fine-tuned models and vanilla diffusion models, as shown in Figure 3. This comparison
reveals that our method effectively smooths the loss landscape of DBP models, enhancing their ability
to resist adversarial perturbations.

Evaluation with stronger PGD+EoT attacks. To balance computational cost and attack strength,
we primarily employ the PGD20+EoT10 configuration in our evaluations. To further validate the
efficacy of ADDT under stronger attack settings, we assess its performance using the more challenging
PGD200+EoT20 setup. The results presented in Table 7 and Table 9 show that under these intensified
attacks, ADDT’s robust accuracy experiences a moderate 5% drop compared to the PGD20+EoT10
setting. Nevertheless, across various configurations and datasets, ADDT consistently outperforms the
baseline in terms of robust accuracy.

6.4 SCALING TO MORE COMPLEX AND HIGH-DIMENSIONAL DATA

Table 7: Robust accuracy (%) on CIFAR-10 under
stronger attacks.

DBP method PGD200+EoT20 PGD20+EoT10
Vanilla (ℓ∞) ADDT (ℓ∞) Vanilla (ℓ∞) ADDT (ℓ∞)

DPDDPM 41.02 46.19 47.27 51.46
DPDDIM 36.23 41.11 43.16 47.85
DiffPure 48.93 55.76 55.96 62.11

To assess the scalability of DBP and ADDT
on more complex datasets, we extend our
experiments to include Tiny-ImageNet (Le
& Yang, 2015) and ImageNet-1k (Deng
et al., 2009). For Tiny-ImageNet, we
trained the diffusion model from scratch
for 200 epochs and then fine-tuned it with
ADDT for 50 epochs, using a pretrained WRN-28-10 classifier for guidance. For ImageNet-1k, the
diffusion model was trained from scratch for 12 epochs, followed by 8 epochs of ADDT fine-tuning,
with guidance from a pretrained ResNet-101 classifier.

As shown in Table 8 and Table 9, ADDT improves the robustness of DBP on these complex datasets.
However, the additional robustness provided by ADDT appears relatively modest. This suggests
that, to scale ADDT more effectively, adequate model capacity and a sufficient volume of data are

9
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Table 8: Clean and robust accuracy (%) on Tiny-
ImageNet with WRN-28-10 classifier. ADDT
improves DBP robustness on Tiny-ImageNet (-:
classifier only).

DBP method Vanilla ADDT
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

- 71.37 0.00 0.00 - - -
DPDDPM 57.13 11.82 46.68 56.15 13.57 48.54
DPDDIM 60.35 4.79 39.75 60.45 5.86 40.82
DPEDM 57.03 19.14 46.00 56.45 20.61 47.95

Table 9: Clean and robust accuracy (%)
on ImageNet-1k with ResNet-101 clas-
sifier. Experiments are conducted under
ℓ∞ perturbation bound of ϵ = 4/255.

Metric Vanilla ADDT

Clean 80.31 80.20
PGD20+EoT10 46.92 48.02

PGD200+EoT20 35.31 35.83

essential. This is further supported by the results in Table 3, where the larger DiffPure+ADDT
model demonstrates greater robustness compared to the smaller DPDDPM+ADDT model, aligning
with findings from traditional AT (Wang et al., 2023; Huang et al., 2023).

It is also important to note that scaling to high-resolution images poses a significant challenge for
attackers, as performing strong EoT attacks on high-resolution images is computationally expensive.
For instance, our evaluation with PGD200+EoT20 on 224× 224 images at a resolution of 1024 takes
approximately 7 days of computation on 8 NVIDIA RTX 4090 GPUs.

6.5 DISCUSSIONS ON IMPROVING STOCHASTICITY-BASED DBP ROBUSTNESS

As discussed in Section 4.2, DBP robustness can be primarily attributed to the high variance of
the stochastic attack gradients. We argue that increasing the variance of attack gradients can
improve the stochasticity-based robustness of DBP models by reducing the effectiveness of EoT
attacks. Specifically, on one hand, higher variance leads to larger errors in estimating the expected
attack gradient direction. To reduce these errors, more EoT steps are required. On the other hand,
higher variance also means that the DW-box attack gradient (which indicates the most effective
attack direction) deviates more from the EoT attack gradient, even if the estimation of the mean
attack gradient is accurate. As discussed in Section 4.2, this deviation leads to a lower increase in
classification loss after one attack step, suggesting that a successful attack may not be achieved or
require more PGD steps.

To increase the variance of attack gradients, a natural approach is to introduce more stochasticity.
In an initial experiment, we augment the DBP framework’s stochasticity by integrating a Corrector
sampler. Specifically, Song et al. (2021b) propose a Predictor-Corrector (PC) sampler framework.
While standard VPSDE (DDPM++) implementations typically use only the predictor component, we
add a Corrector sampler to increase stochasticity in the reverse diffusion process, thereby enhancing
the overall variance of attack gradients. As detailed in Appendix J, our preliminary results indicate
that this modification improves the robustness of DBP models against adaptive White-box attacks.
However, there is a trade-off: the model’s clean accuracy decreases slightly. These observations align
with the findings of Nie et al. (2022), where randomizing the diffusion timesteps also improves robust-
ness at the expense of clean accuracy, as well as with previous research on stochastic preprocessing
defenses (Gao et al., 2022).

7 CONCLUSION

This study provides a new perspective on the robustness of Diffusion-Based Purification (DBP),
highlighting the critical role of stochasticity and challenging the traditional view that robustness
primarily arises from minimizing the distribution gap through the forward diffusion process. We
introduce a Deterministic white-box (DW-box) attack setting and demonstrate that DBP models rely
on stochastic elements to evade effective attack directions but lack the ability to purify adversarial
perturbations. This shows distinct differences compared to models trained with Adversarial Training.
To further improve the robustness of DBP models, we propose Adversarial Denoising Diffusion
Training (ADDT) and Rank-Based Gaussian Mapping (RBGM). ADDT integrates adversarial pertur-
bations into the training process, while RBGM trims perturbations to better approximate Gaussian
distributions. Experiments across various diffusion methods, attack settings, and datasets confirm the
effectiveness of ADDT in enhancing robustness. In conclusion, this study emphasizes the decoupling
of stochasticity-based and purification-based robustness of DBP models for deeper analysis, and
suggests that combining both approaches can lead to improved robustness in practice.
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A INFLUENCE OF EOT ITERATIONS ON DBP ROBUSTNESS EVALUATION

In this section, we examine how the number of EoT iterations influences the DBP robustness
evaluation. As previously discussed in Section 4.1, the Deterministic White-box attack could find
the most effective attack direction. To quantify the impact of EoT iterations, we compare the attack
direction of the standard White-box-EoT across various numbers of EoT iterations with that of the
Deterministic White-box.

See Figure 7 for a visual explanation, where the red line shows the classification accuracy, and the
blue line shows the similarity between the attack directions of the White-box-EoT and Deterministic
White-box. The results show a clear trend: increasing the EoT iterations raises the similarity between
the attack directions and reduces model accuracy.

Note that both the increase in similarity and the decline in accuracy converge as the number of
iterations increases. Balancing computational cost and evaluation accuracy, we adopted the PGD20-
EoT10 configuration for our robustness evaluation.
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Figure 7: Robust accuracy (%) and gradient similarity on DPDDPM for CIFAR-10, obtained by
different EoT iterations. As the number of EoT iterations increases, the gradient similarity between
the White-box-EoT attack direction and the Deterministic White-box attack direction increases and
the robust accuracy decreases.

B DBP MODELS WITH DIFFERENT STOCHASTIC ELEMENTS CANNOT BE
ATTACKED SIMULTANEOUSLY

Previous research has raised concerns about whether stochasticity enhances robustness, suggesting
it may create obfuscated gradients that provide a false sense of security (Athalye et al., 2018a). To
investigate this, we implement DWSemi-box, a semi-stochastic framework that restricts the available
stochastic elements to a limited set of options, in order to explore whether stochasticity can genuinely
improve robustness.

DWsemi-128 builds on the concept of Deterministic White-box. In contrast to the Deterministic
White-box approach, where the attacker exploits the exact stochastic noise used during evaluation,
DWsemi-128 limits the stochastic elements to a constrained set of possibilities. To mount an attack
across 128 distinct sets of stochastic noise, the attacker can employ the average adversarial direction
across these 128 noise settings (EoT-128) to perturb the DBP model. We evaluate the impact of
stochasticity by comparing the loss changes under DW-box and DWsemi-128 attacks. This is done by
adjusting a factor k to modify an image x with a perturbation σ, and evaluating the loss at x+ kσ
for k ranging from −16 to 16. Perturbations are generated using the ℓ∞ Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015) with a magnitude of 1/255. The experiment is conducted using
the WideResNet-28-10 with DPDDPM over the first 128 images from the CIFAR-10 dataset.

As shown in Figure 8, in the Deterministic White-box setting, perturbations lead to a significant
increase in loss, demonstrating their effectiveness. However, under DWsemi-128, the loss increase
is more moderate. This suggests that even when stochastic elements are limited to a small set of
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Figure 8: Impact of stochasticity on perturbation efficacy. Perturbations created under the DWsemi-
box setting are less effective compared to those under the DW-box setting. For non-adversarial
perturbations, each element is randomly assigned a value of either 1/255 or −1/255.

possibilities, and the attacker has fully considered all options, stochasticity still contributes to the
robustness of the DBP model. These results contradict the hypothesis that there might be a universally
vulnerable direction when DBP applies different stochastic elements, thereby challenging concerns
about potential insecurity.

C IMPACT OF ATTACKERS’ KNOWLEDGE ON ROBUSTNESS: COMPARISON OF
ATTACK SETTINGS

This section explores how the robustness of diffusion-based models is affected by the levels of
knowledge that attackers possess concerning stochastic components in diffusion processes. We
analyze how the knowledge of forward and reverse diffusion processes impacts model robustness in
various attack settings.

C.1 STOCHASTIC ELEMENTS IN THE DIFFUSION PROCESSES

Unlike deterministic models, where outputs are solely determined by the inputs, diffusion models
introduce stochastic elements that also influence the outcomes. To explain the attacker’s knowledge,
we first explain the stochastic components involved in diffusion processes.

In the forward diffusion process, Gaussian noise is incorporated into the input data to derive a noisy
version xt:

xt =
√
ᾱt x+

√
1− ᾱt ϵf , (10)

where ϵf ∼ N (0, I) is sampled once per input.

In the reverse diffusion process, the model progressively denoises xt through iterative steps. For the
Denoising Diffusion Probabilistic Model (DDPM), the reverse process is inherently stochastic:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtϵt, (11)

where ϵt ∼ N (0, I) is sampled at each reverse step. In contrast, for the Denoising Diffusion Implicit
Model (DDIM), the reverse process is deterministic, and no noise {ϵt}Tt=1 is added.

C.2 ATTACK SETTINGS AND ATTACKER KNOWLEDGE

We define four attack settings based on the information accessible to the attacker, particularly
regarding the Gaussian noise variables involved in the diffusion process. Table 10 provides a
summary of the attacker’s knowledge in each setting.

In the conventional white-box attack setting, the attacker possesses comprehensive knowledge of the
model architecture and parameters but lacks insight into the stochastic elements used during inference
(ϵf and {ϵt}Tt=1). The DWFwd setting grants the attacker knowledge of the Gaussian noise in the
forward diffusion process (ϵf ). Conversely, the DWRev setting provides the attacker with knowledge
of the Gaussian noise introduced during the reverse diffusion steps ({ϵt}Tt=1). The DWBoth setting
offers the attacker complete access to all stochastic elements, ϵf and {ϵt}Tt=1. By manipulating the
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Table 10: Information accessible to the attacker in different attack settings. ϵf denotes the Gaussian
noise in the forward process, and {ϵt}Tt=1 represents the Gaussian noise in the reverse process.

Attacker’s Knowledge White-box DWFwd DWRev DWBoth

Model Architecture and Parameters ✓ ✓ ✓ ✓
Input Images and Class Labels ✓ ✓ ✓ ✓

Forward Process Noise ϵf × ✓ × ✓
Reverse Process Noise {ϵt}Tt=1 × × ✓ ✓

attacker’s knowledge in this manner, we isolate the individual effects of the forward and reverse
diffusion processes on model robustness.

C.3 IMPLICATIONS OF THE ATTACKER’S KNOWLEDGE OF STOCHASTIC ELEMENTS

The attacker’s capability to craft potent adversarial examples is significantly influenced by their
knowledge of the stochastic elements in diffusion processes. When these elements are unknown to
the attacker, they must independently sample noise variables, leading to discrepancies between their
approximations and the actual behavior of the victim model. Conversely, if the attacker has access to
the exact noise variables used during inference, they can accurately replicate the model’s behavior,
significantly enhancing the effectiveness of their attack.

Attacker Without Knowledge of Stochastic Elements. In scenarios where the attacker lacks
access to the specific noise variables ϵf and {ϵt}Tt=1, the model’s output becomes unpredictable from
the attacker’s perspective. Consequently, the attacker must optimize the expected value of the loss
function over the distribution of these stochastic elements. The optimization problem for generating
an adversarial example xadv is formulated as:

xadv = argmax∥xadv−x∥≤δ Eϵf ,{ϵt}T
t=1

[
L
(
f(xadv; ϵf , {ϵt}Tt=1), y

)]
, (12)

where δ specifies the permissible perturbation magnitude, L is the loss function, f represents the
model’s output given the input and stochastic elements, and y is the actual class label.

Attacker With Knowledge of Stochastic Elements. If the attacker possesses precise knowledge
of the noise variables ϵf and {ϵt}Tt=1 used during the model’s inference, they can accurately replicate
the behavior of the victim classifier. In this case, the stochastic processes become deterministic from
the attacker’s perspective, enabling the optimization problem to be formulated as:

xadv = argmax∥xadv−x∥≤δ L
(
f(xadv; ϵf , {ϵt}Tt=1), y

)
. (13)

This precise knowledge allows the attacker to adopt the exact noise that will be used during the target
evaluation, allowing effective evaluation.

C.4 EFFECT OF ATTACKER’S KNOWLEDGE ON MODEL ROBUSTNESS

We test the robustness of DDPM under these four settings, and Table 11 encapsulates the result.

Table 11: Robust accuracy (%) of DDPM under different attack settings.

Attack Setting Robust Accuracy (ℓ∞)

Conventional White-Box Attack 47.27
DWFwd 45.41
DWRev 35.25
DWBoth 16.80

Conventional White-Box Attack. In this setting, the attacker has full knowledge of the model’s
architecture and parameters but lacks access to the stochastic components (ϵf and {ϵt}Tt=1) involved
during inference. Hence, the model’s output is unpredictable due to the stochasticity of both diffusion
processes, making it challenging for the attacker to generate effective adversarial examples (reaching
robust accuracy of 47.27%).
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DWFwd. Here, the attacker is aware of the Gaussian noise ϵf used in the forward diffusion process
but does not have knowledge of the noise {ϵt}Tt=1 used in the reverse process. This partial information
enables the attacker to replicate the forward process, reducing uncertainty. However, the reverse
process remains unpredictable. The exposure of the forward process leads to a slight decrease in
robust accuracy to 45.41%.

DWRev. In this case, the attacker knows the noise variables {ϵt}Tt=1 used in the reverse diffusion
process but lacks knowledge of the forward process noise ϵf . This enables the attacker to align their
strategy more closely with the behavior of the model during the reverse diffusion phase, resulting in a
more substantial drop in robust accuracy to 35.25%. These findings suggest that the stochasticity of
the reverse process plays a more critical role in maintaining model robustness than that of the forward
process.

DWBoth. In this case, the attacker possesses full knowledge of the noise variables for both the
forward and reverse diffusion processes, allowing them to precisely replicate both processes and
eliminate stochasticity from their perspective. This complete predictability enables the attacker to
craft highly effective adversarial examples, leading to a significant reduction in robust accuracy to
16.80%. These results underscore the importance of the stochastic elements in preserving model
robustness; when fully exposed, the model’s defense mechanisms are substantially weakened.

D THE ROLE OF STOCHASTICITY IN DBP COMPARED TO CERTIFIED
DEFENSE METHODS

In this appendix section, we delve deeper into the role of stochasticity in Diffusion-Based Prediction
(DBP) models and contrast it with its role in certified defense methods such as randomized smooth-
ing (Cohen et al., 2019). While both approaches incorporate stochasticity, their mechanisms and
implications for adversarial robustness differ significantly.

• Conventionally, the classification models discussed in the studies of adversarial robustness
can be viewed as mappings from input space X to the label space Y . However, DBP
additionally involves a random variable ϵ ∈ E that determines the random sampling in the
forward and reverse processes (which can be the random seed in implementation). Hence, a
DBP model protected classifier f can be viewed as the mapping f : (X , E) → Y .

• Previous studies on randomized smoothing treat the randomized model f as a mapping
f : X → PY , where PY is the space of label distribution. Typically, the final prediction can
be formulated as F (x) = argmaxc[f(x)]c, i.e., the class c with the highest probability in
the output distribution ℧(x). Apparently, F deterministically maps X to Y , consistent with
the conventional models.

• Recent studies on DBP also regard the model as f : X → PY , without explicitly studying
the role of ϵ. The key difference between DBP and randomized smoothing is that the final
prediction for an input x is directly sampled from the distribution f(x) for once, instead of
sampling multiple times to approximate F (x) as in randomized smoothing.

• In this paper, we revisit DBP by treating the randomized model f as the mapping f :
X , E) → Y and studying the role of ϵ ∈ E as an input of f . From this perspective, the
conventional adversarial setting assuming full knowledge of the model parameters (but not
ϵ) is not a complete white box, which motivates us to study the DW-box setting.

• From our perspective, we can clearly point out the difference between DBP and randomized
smoothing in terms of the loss landscape. Given an input x0, the local loss landscape for
a DBP model f is not deterministic as it also depends on ϵ. Although the expected loss
landscape over ϵ ∈ E may be smooth, it does not suggest the robustness of DBP, as ϵ is
fixed during a single inference run of DBP. Indeed, our study suggests that given x0 and a
fixed ϵ0, the local landscape of DBP is likely not smooth. In contrast, the loss landscape of a
randomized smoothing model F may be smooth as it is the average landscape over multiple
ϵ. To conclude, we argue that the random noise itself may not smooth the loss landscape,
but the average over random noises may.
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E EVALUATION SETTINGS

Previous assessments of DBP robustness have often utilized potentially unreliable methods. In partic-
ular, due to the iterative denoising process in diffusion models, some studies resort to mathematical
approximations of gradients to reduce memory constraints (Nie et al., 2022) or to circumvent the
diffusion process during backpropagation (Wang et al., 2022). Furthermore, the reliability of AutoAt-
tack, a widely used evaluation method, in assessing the robustness of DBP models is questionable.
Although AutoAttack includes a Rand version designed for stochastic models, Nie et al. (2022) have
found instances where the Rand version is less effective than the Standard version in evaluating DBP
robustness.

To improve the robustness evaluation of diffusion-based purification (DBP) models, we implement
several modifications. First, to ensure the accuracy of the gradient computations, we compute the
exact gradient of the entire diffusion classification pipeline. To mitigate the high memory requirements
in diffusion iterative denoising steps, we use gradient checkpointing (Chen et al., 2016) techniques
to optimize memory usage. In addition, to deal with the stochastic nature of the DBP process, we
incorporate the Expectation over Transformation (EoT) method to average gradients across different
attacks. We adopt EoT with 10 iterations, and a detailed discussion of the choice of EoT iterations
can be found in Appendix A. We also use the Projected Gradient Descent (PGD) attack instead of
AutoAttack for our evaluations. We discover a bug in the Rand version of AutoAttack that causes it
to overestimate the robustness of DBP. After fixing this, AutoAttackFixed gives similar results to PGD
attacks, but at a much higher computational cost. Our revised robustness evaluation revealed that DBP
models, such as DiffPure and GDMP, perform worse than originally claimed. DiffPure’s accuracy
dropped from a claimed 70.64% to an actual 55.96%, and GDMP’s from 90.10% to 40.97%. These
results emphasize the urgent need for more accurate and reliable evaluation methods to properly
assess the robustness of DBP models. Similar evaluation protocols are also applied in Chen et al.
(2023); Kang et al. (2024).

E.1 EVALUATION WITH FIXED AUTOATTACK

AutoAttack (Croce & Hein, 2020), an ensemble of White-box and Black-box attacks, is a popular
benchmark for evaluating model robustness. It is used in RobustBench (Croce et al., 2020) to evaluate
over 120 models. However, Nie et al. (2022) finds that the Rand version of AutoAttack, designed
to evaluate stochastic defenses, sometimes yields higher accuracy than the Standard version that is
intended for deterministic methods. Our comparison of AutoAttack and PGD20-EoT10 in Table 12
also shows that the Rand version of AutoAttack gives higher accuracy than the PGD20-EoT10 attack.

We attribute this to the sample selection of AutoAttack. As an ensemble of attack methods, AutoAttack
selects the final adversarial sample from either the original input or the attack results. However, the
original implementation neglects stochasticity and considers an adversarial sample to be sufficiently
adversarial if it gives a false result in one evaluation. To fix this, we propose a 20-iteration evaluation
and select the adversarial example with the lowest accuracy. The flawed code is in the official GitHub
main branch, git version a39220048b3c9f2cca9a4d3a54604793c68eca7e, and specifically in lines
#125, #129, #133-136, #157, #221-225, #227-228, #231 of the file ’autoattack/autoattack.py’. We
will open-source our updated code and encourage future stochastic defense methods to be evaluated
against the fixed code. The code can now be found at: https://github.com/Buntender/auto-attack.

Following the fix, robust accuracy under AutoAttackFixed decreases by up to 10 points, producing
results comparable to our PGD20-EoT10 test outcomes. However, using AutoAttack on DPDDPM
took nearly 25 hours, five times longer than PGD20-EoT10. Therefore, we will use PGD20-EoT10
for most robustness evaluation.

F EXPERIMENTAL SETTING OF VISUALIZATION OF THE ATTACK TRAJECTORY

We visualize the attack by plotting the loss landscape and tracing the trajectories of EoT attack
under White-box setting and the Deterministic White-box setting in Figure 3. We run a vanilla
PGD20-EoT10 attack under White-box setting and a PGD20 attack under Deterministic White-box
setting. We then expand a 2D space using the final perturbations from these two attacks, draw the loss
landscape, and plot the attack trajectories on it. Note that the two adversarial perturbation directions
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Table 12: AutoAttack (Rand version) and PGD20-EoT10 performance on DBP methods for CIFAR-
10 (the lower the better). The original AutoAttack produces high accuracy (%), after fixing, it achieves
similar results to PGD20+EoT10 attack.

DBP method ℓ∞ ℓ2
AutoAttack AutoAttackFixed PGD20-EoT10 AutoAttack AutoAttackFixed PGD20-EoT10

DiffPure 62.11 56.25 55.96 81.84 76.37 75.78
DPDDPM 57.81 46.88 48.63 71.68 71.09 72.27
DPDDIM 50.20 40.62 44.73 77.15 70.70 71.68

Table 13: Clean and robust accuracy (%) on different DBP methods for CIFAR-10, evaluated with
AutoAttackFixed (Rand version). All methods show consistent improvement when fine-tuned with
ADDT.

DBP method Vanilla ADDT
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

DiffPure 89.26 56.25 76.37 89.94 58.20 77.34
DPDDPM 85.94 46.88 71.09 85.64 48.63 72.27
DPDDIM 88.38 40.62 70.70 88.77 44.73 71.68

are not strictly orthogonal. To extend this 2D space, we use the Deterministic White-box attack
direction and the orthogonal component of the EoT attack direction. Note that the endpoints of both
trajectories lie exactly on the loss landscape, while intermediate points are projected onto it. The plot
is evaluated using WideResNet-28-10 with DPDDPM over the first 128 images of CIFAR-10 dataset.

G PSEUDO-CODE OF ADDT

The pseudo-code for adopting ADDT within DDPM and DDIM framework is shown in Algorithm 1.

Algorithm 1 Adversarial Denoising Diffusion Training (ADDT)
Require: x0 is image from training dataset, y is the class label of the image, C is the classifier, P is one-step

diffusion reverse process and θ is it’s parameter, L is CrossEntropy Loss.
1: for x0, y in the training dataset do
2: t ∼ U({1, . . . , T})
3: λt = clip(γtλunit, λmin, λmax), where γt =

√
αt√

1−αt

4: Init δ to a small random vector.
5: for 1 to ADDTiterations do
6: ϵ ∼ N (0, I)
7: ϵ′ = RBGM(δ, ϵ)

8: xt =
√
αtx0 +

√
1− λ2

t

√
1− αtϵ+ λt

√
1− αtϵ

′

9: δ = δ +∇ϵ′L(C(P (θ,xt, t), y))
10: end for
11: ϵ ∼ N (0, I)
12: ϵ′ = RBGM(δ, ϵ)

13: xt =
√
αtx0 +

√
1− λ2

t

√
1− αtϵ+ λt

√
1− αtϵ

′

14: Take a gradient descent step on:
∇θ∥

√
αt√

1−αt
(x0 − P (θ,xt, t))∥22

15: end for
Diffusion model ϵθ predicts the Gaussian noise added to the image, adopting Equation (4) in the paper, we
have P (θ,xt, t) =

(
xt −

√
1− αtϵθ(xt, t)

)
/
√
αt

H ADDT RESULTS ON DPDDIM

As shown in Table 14, the performance of DPDDIM is less sensitive to the number of function
evaluations (NFEs). Additionally, ADDT consistently improved the robustness of DPDDIM.

19



Published as a conference paper at ICLR 2025

Table 14: Clean and robust accuracy (%) on DPDDIM. ADDT improve robustness across different
NFEs (*: default DDIM generation setting, -: classifier only ).

Dataset NFEs Vanilla ADDT
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

CIFAR-10

- 95.12 0.00 1.46 95.12 0.00 1.46
5 89.65 42.19 68.65 88.57 47.27 70.61

10* 88.96 43.16 67.58 88.18 47.85 70.61
20 87.89 41.70 69.24 88.67 48.63 69.73
50 88.96 42.48 68.85 88.57 46.68 69.24

100 88.38 42.19 70.02 88.77 46.48 71.19

CIFAR-100

- 76.66 0.00 2.44 76.66 0.00 2.44
5 62.11 15.43 35.74 62.79 17.58 38.87

10* 62.21 15.33 36.52 64.45 20.02 39.26
20 63.67 15.62 37.89 65.23 18.65 40.62
50 62.40 16.31 37.79 63.87 19.14 39.94

100 63.28 15.23 36.62 66.02 18.85 39.84

I ADOPTING VPSDE(DDPM++) AND EDM MODELS IN DBP

In the previous discussion of the robustness of DBP models, as detailed in Section 4.1, our focus
was primarily on the DDPM and DDIM models. We now extend our analysis to include VPSDE
(DDPM++) and EDM (Karras et al., 2022) models. VPSDE (DDPM++) is the diffusion model used
in DiffPure.

From a unified perspective, the diffusion process can be modeled by stochastic differential equations
(SDE) (Song et al., 2021b). The forward SDE, as described in Equation (14), converts a complex
initial data distribution into a simpler, predetermined prior distribution by progressively infusing
noise. This can also be done in a single step, as shown in Equation (15), mirroring the strategy of
DDPM described in Equation (2). Reverse SDE, as explained in Equation (16), reverses this process,
restoring the noise distribution to the original data distribution, thus completing the diffusion cycle.

dx = f(x, t)dt+ g(t)dw, (14)

p0t(x(t) | x(0)) =

N
(
x(t); e−

1
4 t

2(β̄max−β̄min)− 1
2 tβ̄minx(0), I − Ie−

1
2 t

2(β̄max−β̄min)−tβ̄min

)
, t ∈ [0, 1]

(15)

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t)dw̄. (16)

The reverse process of SDEs also derives equivalent ODEs Equation (17) for fast sampling and exact
likelihood computation, and these Score ODEs correspond to DDIM.

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (17)

By modulating the stochasticity, we can craft a spectrum of semi-stochastic models that bridge pure
SDEs and deterministic ODEs, offering a range of stochastic behaviors.

EDM provides a unified framework to synthesize the design principles of different diffusion models
(DDPM, DDIM,iDDPM (Nichol & Dhariwal, 2021), VPSDE, VESDE (Song et al., 2021b)). Within
this framework, EDM incorporates efficient sampling methods, such as the Heun sampler, and
introduces optimized scheduling functions σ(t) and s(t). This allows EDM to achieve state-of-the-art
performance in generative tasks.

EDM forward process could be presented as:

xt = x0 + σ(t∗)ϵ, ϵ ∼ N (0, I), (18)

where we choose σ(t∗) = 0.5 for clean and robust accuracy tradeoff. And for the reverse process,
EDM incorporates a parameter Schurn to modulate the stochastic noise infused during the reverse
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process. For our experiments, we choose 50 reverse steps (50 NFEs, NFEs is Function of Neural
Function Evaluations), configured the parameters with Smin = 0.01, Smax = 0.46, Snoise = 1.007,
and designate Schurn = 0 to represent EDM-ODE, Schurn = 6 to represent EDM-SDE.

As shown in Table 15, our ADDT could also increase the robustness of DPEDM.

Table 15: Clean and robust accuracy (%) on DPEDM for CIFAR-10. ADDT improves robustness in
both DPEDM-SDE and DPEDM-ODE.

Metric Vanilla ADDT
DPEDM-SDE DPEDM-ODE DPEDM-SDE DPEDM-ODE

Clean 86.43 87.99 86.33 87.99
ℓ∞ 62.50 60.45 66.41 64.16
ℓ2 76.86 75.49 79.16 77.15

J STRENGTHENING DBP VIA AUGMENTED STOCHASTICITY

(Song et al., 2021b) present a Predictor-Corrector sampler for SDEs reverse process for VPSDE
(DDPM++), as detailed in Appendix I. However, standard implementations of VPSDE (DDPM++)
typically use only the Predictor. Given our hypothesis that stochasticity contributes to robustness, we
expect that integrating the Corrector sampler into VPSDE (DDPM++) would further enhance the
robustness of DBP models. Our empirical results, as shown in Table 16, confirm that the inclusion of
a Corrector to VPSDE (DDPM++) indeed improves the model’s defense ability against adversarial
attacks with ℓ∞ norm constraints. This finding supports our claim that the increased stochasticity can
further strengthen DBP robustness. Adding Corrector is also consistent with ADDT. Note that the
robustness against ℓ2 norm attacks does not show a significant improvement with the integration of
the Extra Corrector. A plausible explanation for this could be that the robustness under ℓ2 attacks is
already quite strong, and the compromised performance on clean data counteracts the increase in
robustness.

Table 16: Clean and robust accuracy (%) on DPDDPM++ for CIFAR-10. Both extra Corrector and
ADDT fine-tuning improved robustness.

Metric Vanilla Extra Corrector ADDT ADDT+Extra Corrector

Clean 89.26 85.25 89.94 85.55
ℓ∞ 55.96 59.77 62.11 65.23
ℓ2 75.78 74.22 76.66 76.66

K DISCUSSION ABOUT RBGM-MAPPED PERTURBATIONS

K.1 MOTIVATION AND ADVANTAGES OF RBGM

To elaborate, a conventional diffusion forward process is based on the equation:

xt =
√
αt x0 +

√
1− αt ϵ, (19)

where xt represents the noisy image at time t, x0 is the initial input, αt is a time-dependent scaling
factor, and ϵ is random Gaussian noise. Our proposed method, ADDT, modifies this equation to
include an adversarial component:

xt =
√
αt x0 +

√
1− λ2

t

√
1− αt ϵ+ λt

√
1− αt ϵδ(δ). (20)

In this revised formulation, ϵδ(δ) represents the adversarial perturbation, and λt is a parameter that
controls the blend between traditional and adversarial noise. The core objective of ADDT training is
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Figure 9: Raw perturbation values exhibit diverse distributions across images and time steps. RBGM
maps these perturbations to a uniform Gaussian distribution.

to generate perturbations that emulate the characteristics of Gaussian noise in conventional diffusion
training while incorporating adversarial disturbances. This leads to our Rank-Based Gaussian
Mapping (RBGM) technique, which preserves the relative ordering of perturbation magnitudes while
adjusting their values to more closely resemble a Gaussian distribution. The advantages of RBGM
are twofold:

Enhancing statistical consistency. Raw adversarial perturbation values often exhibit non-standard
distributions, and RBGM serves to recalibrate these perturbations, aligning them more closely with a
Gaussian distribution. To elaborate, rather than enforcing a multivariate Gaussian distribution for the
entire perturbation, RBGM ensures that the distribution of individual perturbation values adheres to
Gaussian characteristics.

The benefit of this transformation can be illustrated in Figure 9 and Figure 10. For a fair comparison,
the perturbation values have been normalized. In Figure 9, the original perturbation values display
a wide array of distributions across different images and time steps. After the mapping of RBGM,
these values are transformed to exhibit a uniform Gaussian distribution.

In Figure 10, the raw perturbations show irregular and inconsistent behavior when mixed with Gaus-
sian noise at varying ratios. However, after RBGM mapping, the perturbations and the mixture exhibit
consistent statistics with the pure Gaussian noise. The statistical consistency of the perturbation
values may ease the training of the diffusion model and avoid significant deviation from the normal
diffusion process.

Reducing image-specific dependence. In the training of diffusion models, the Gaussian noise
is independent of specific images or time steps. This characteristic contrasts with adversarial
perturbations, which are typically tailored to each input. RBGM addresses this issue by introducing
stochasticity into the construction of perturbations while preserving the ranks of the values of
the image-dependent adversarial perturbations. This approach effectively reduces image-specific
dependence. Consequently, RBGM enhances ADDT’s ability to better mimic the diffusion training
process and potentially mitigates the overfitting of training images.

K.2 RBGM-MAPPED PERTURBATIONS PRESERVE ADVERSARIAL CHARACTERISTICS

While RBGM-mapped perturbations are “selected from a Gaussian distribution”, their actual dis-
tribution deviates from a pure Gaussian distribution and is adversarial for models. To substantiate
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Figure 10: RBGM ensures that mixing perturbations with Gaussian noise at any ratio yields a
consistent value distribution.

this claim, we compare the influence of RBGM-mapped perturbations and Gaussian noise on model
performance. In our experiments, we perturb clean images by adding RBGM-mapped perturbations
and Gaussian noise, each scaled by a factor of 0.03. The results present in Table 17 demonstrate that
RBGM-mapped perturbations effectively act as adversarial inputs to the model. These perturbations
drastically reduce the accuracy of a pre-trained clean WRN-28-10 from 95.12% to 4.47%.

Table 17: Comparison of model accuracy % under different conditions. RBGM-mapped perturbations
lead to a significant reduction in accuracy compared to Gaussian noise.

Classifier Clean Gaussian noise RBGM-mapped perturbation

WRN-28-10 95.12 81.54 4.47

K.3 BLENDING ADVERSARIAL PERTURBATIONS INTO DIFFUSION MODEL TRAINING

In conventional adversarial attacks, perturbations are directly applied to the image, resulting in an
adversarial image:

xadv = x0 + δ, (21)

where x0 is the original input image, and δ is the adversarial perturbation. In ADDT, we incorporate
this concept into the diffusion process, redefining the noisy image at time step t as:

xt =
√
αt(x0 + δ) +

√
1− αtϵ, (22)

To enable the diffusion model to effectively purify adversarial perturbations during training, we
reformulate the above equation by merging the perturbation δ with the noise ϵ. This results in:

xt =
√
αt x0 +

√
1− αt (ϵ+ γt δ) , (23)

where γt is a scaling factor defined as:

γt =

√
αt√

1− αt
. (24)

Since αt is a time-dependent parameter that monotonically decreases from 1 to 0 during the diffusion
process, γt spans the range from 0 to ∞. To ensure the adversarial perturbation remains within a
manageable intensity, we constrain its value to the range between λmin and λmax.
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K.4 RBGM ENHANCES PERTURBATION COMPATIBILITY WITH DIFFUSION MODEL TRAINING

To illustrate how RBGM enhances the compatibility of perturbations with diffusion model training,
we conduct comparative analyses in two scenarios. First, we assess the impact of RBGM on statistical
consistency by comparing Gaussian noise with adversarial perturbations reordered based on Gaussian
noise ranks. Second, we evaluate the effectiveness of RBGM-mapped perturbations in improving
model robustness while maintaining generative performance by comparing them with ℓ2-normalized
perturbations.

Gaussian noise vs. adversarial perturbations ordered by Gaussian noise We begin by examining
RBGM’s influence on statistical consistency through two training methodologies:

1. Vanilla: Trained with standard Gaussian noise.

2. ADDTGaussian reordered: Trained with adversarial perturbations reordered according to Gaus-
sian noise ranks. To ensure a fair comparison, the perturbations are normalized to have
a mean of 0 and a variance of 1, as their original magnitudes (derived from accumulated
gradients) are significantly smaller than those of standard Gaussian noise. Note that this
approach—reordering adversarial perturbations based on Gaussian noise ranks—is distinct
from RBGM, where Gaussian noise is reordered based on adversarial perturbation ranks.

The results presented in Table 18 reveal that models trained with Gaussian noise reordering using
adversarial perturbation values exhibit lower accuracy on both clean and adversarial samples compared
to vanilla models. This decline in performance underscores RBGM’s ability to enhance perturbation
compatibility with diffusion model training by improving statistical consistency.

Table 18: Comparison of DPDDPM accuracy under different conditions and perturbation types. Train-
ing with perturbations reordered by Gaussian noise and adversarial perturbation values degrades
performance.

NFEs Vanilla ADDTGaussian reordered
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

5 49.51 21.78 36.13 48.40 21.10 33.40
10 73.34 36.72 55.47 71.78 34.07 52.98
20 81.45 45.21 65.23 79.99 42.43 64.21
50 85.54 46.78 68.85 83.90 46.73 68.17

100* 85.94 47.27 69.34 84.54 46.98 69.33

RBGM-mapped perturbations vs. ℓ2-normalized perturbations To further investigate RBGM’s
effectiveness in making adversarial perturbations compatible with diffusion model training, we
compare:

1. ADDT: Trained with RBGM-mapped perturbations.

2. ADDTℓ2-normalized: Trained with raw adversarial perturbations, scaled to match the ℓ2 norm
of standard Gaussian noise. This scaling ensures that the perturbations share the same ℓ2
norm as those mapped by RBGM, which we refer to as ℓ2-normalized perturbations.

As shown in Table 19, models trained with ℓ2-normalized perturbations tend to perform better under
ℓ2 attacks in some scenarios (possibly because these perturbations are more similar to those generated
by ℓ2 attack during testing). ADDT generally achieves better results. This advantage is particularly
pronounced under ℓ∞ attacks and in scenarios with higher NFEs. Furthermore, as shown in Table 20,
ADDT yields a lower FID value, reflecting better preservation of generative capabilities.

As discussed in Appendix K.1, the goal of utilizing RGBM to generate perturbations is to mimic the
characteristic of Gaussian noise, hence aligning ADDT closer to traditional diffusion model training.
In this context, both RBGM and ℓ2 normalization serve as approximations of Gaussian noise. Yet,
RBGM provides a more precise approximation, enhancing robustness and maintaining the generative
performance more effectively than ℓ2 normalization.
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Table 19: Comparison of DPDDPM accuracy under different perturbation conditions. Training with
ADDT generally achieves better results. This advantage is particularly pronounced under ℓ∞ attacks
and in scenarios with higher NFEs.

NFEs ADDT ADDTℓ2-normalized
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

5 59.96 30.27 41.99 60.40 28.47 44.58
10 78.91 43.07 62.97 79.29 41.90 63.72
20 83.89 48.44 69.82 83.59 47.85 67.68
50 85.45 50.20 69.04 84.83 49.12 69.24

100* 85.64 51.46 70.12 84.97 49.95 69.29

Table 20: FID score of DDPM for CIFAR-10 fine-tuned under different conditions. Fine-tuning with
ADDT results in a lower FID score compared to ℓ2 normalization.

Clean fine-tuning ADDT ADDTℓ2-normalized

FID 3.50 5.190 5.678

L COMPARING RBGM-MAPPED PERTURBATIONS WITH ℓ∞ PERTURBATIONS

In Section 6.3, we briefly explore the generation capabilities of diffusion models trained with RBGM-
mapped and ℓ∞ perturbations. Here, we provide further experiments and delve deeper into their
robustness comparison. To train with ℓ∞ perturbations, we adjust ADDT, replacing RBGM-mapped
perturbations with ℓ∞ perturbations. Here, instead of converting accumulated gradients to Gaussian-
like perturbations, we use a 5-step projected gradient descent (PGD-5) approach. For fair comparison,
we also set λunit = 1, λmin = 0, λmax = 10 and refer to this modified training protocol as ADDTℓ∞ .

We evaluate the clean and robust accuracy of ADDT and ADDTℓ∞ fine-tuned models. These
models exhibit different behaviors. As shown in Table 21, while Gaussian-mapped perturbations can
simultaneously improve clean accuracy and robustness against both ℓ2 and ℓ∞ attacks, training with
ℓ∞ perturbations primarily improves performance against ℓ∞ attacks.

Table 21: Clean and robust accuracy (%) on DBP models trained with different perturbations for
CIFAR-10. While ADDT simultaneously improves clean accuracy and robustness against both ℓ2
and ℓ∞ attacks. ADDTℓ∞ primarily improves performance against ℓ∞ attacks.

DBP method Dataset Vanilla ADDT ADDTℓ∞
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

DPDDPM
CIFAR-10 85.94 47.27 69.34 85.64 51.46 70.12 84.47 52.64 68.55

CIFAR-100 57.52 20.41 37.89 59.18 23.73 41.70 57.81 23.24 40.04

DPDDIM
CIFAR-10 88.38 42.19 70.02 88.77 46.48 71.19 88.48 50.49 70.31

CIFAR-100 63.28 15.23 36.62 66.02 18.85 39.84 64.84 20.31 39.36

M ADDITIONAL EXPERIMENTS UNDER DETERMINISTIC WHITE-BOX
SETTING

Evaluation across different NFEs We also investigate the robustness under the Deterministic
White-box Setting across varying NFEs. The comparison of performance between vanilla models and
ADDT fine-tuned models, shown in Figure 11, highlights that ADDT consistently enhances model
performance at different NFEs. This improvement is particularly pronounced at lower NFEs, further
confirming that ADDT enables diffusion models to more effectively counter adversarial perturbations.
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Table 22: DW-box accuracy (%) under ℓ∞ perturbations for various models. ADDT consistently
improves robustness across all models.

DBP method Vanilla ADDT

DPDDPM 16.80 39.16
DPDDIM 4.98 17.09
DiffPure 22.76 51.63
DPEDM 13.33 32.94
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Figure 11: Revisiting Deterministic White-box Robustness. ADDT consistently improves robustness
under both White-box and Deterministic White-box settings, implying that ADDT strengthens the
models’ ability to handle adversarial inputs.

N SENSITIVITY ANALYSIS OF λunit

In Section 6.1 we choose λunit=0.03 as the magnitude of such noise is similar to the adversarial
perturbation of common adversarial attack setting. We also provide an ablation study here, which
shows that the performance of ADDT is insensitive to λunit and gets a consistent improvement.

Table 23: The performance of ADDT fine-tuned DPDDPM with varying λunit values. ADDT shows
insensitivity to λunit and consistently improves robust accuracy (%).

NFEs ℓ∞ ℓ2
Vanilla 0.02 0.03 0.04 Vanilla 0.02 0.03 0.04

5 21.78 24.02 30.27 31.25 36.13 41.99 41.99 49.02
10 36.72 40.92 43.07 44.92 55.47 61.72 62.97 64.45
20 45.21 48.14 48.44 50.68 65.23 67.48 69.82 69.24
50 46.78 48.83 50.20 51.07 68.85 69.82 69.04 69.53

100* 47.27 48.93 51.46 50.88 69.34 70.31 70.12 69.92

O COMPUTATIONAL COST ANALYSIS FOR TRAINING AND INFERENCE

Fine-tuning DDPM and DDIM models using ADDT to achieve near-optimal performance requires
50 epochs and approximately 12 hours of training on 4 NVIDIA GeForce RTX 2080 Ti GPUs. This
efficiency matches that of traditional adversarial training approaches and is notably faster than recent
adversarial training techniques that utilize diffusion models for dataset augmentation (Wang et al.,
2023). However, testing DPDDPM and DPDDIM involves significant computational expense due to
the use of Expectation over Transformation (EoT). For instance, validating 1,024 images on the
CIFAR10/CIFAR100 datasets takes approximately 5 hours on the same GPU configuration.

One of the key advantages of ADDT is its “train-once” methodology. Once the initial training
is complete, ADDT can protect multiple classifiers without requiring additional fine-tuning, as
demonstrated in Table 2. This is in stark contrast to adversarial classifier training, where each
classifier demands individual training.
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During inference, models trained with ADDT have a similar complexity to standard DBP. However,
their performance gains in accelerated scenarios offer the potential for a reduction in computational
overhead. As shown in Table 4, DPDDPM + ADDT achieves comparable performance to DPDDPM
while requiring only 20 NFEs, resulting in up to an 80% reduction in computation time compared to
the 100 NFEs required for DPDDPM.

P CREDIBILITY OF OUR PAPER

The code was developed independently by two individuals and mutually verified, with consistent
results achieved through independent training and testing. The open-source code is available at
https://github.com/LYMDLUT/ADDT.

Q BROADER IMPACT AND LIMITATIONS

Our work holds significant potential for positive societal impact across a range of sectors, including
autonomous driving, facial recognition payment systems, and medical assistance. We are dedicated
to enhancing the safety and trustworthiness of global AI applications. However, we acknowledge
the potential negative societal impacts, particularly concerning privacy protection, due to adversarial
perturbations. Despite this, we believe that the overall positive impacts outweigh these risks.

In terms of limitations, our approach could benefit from incorporating insights from traditional
adversarial training methods (Zhang et al., 2019; Shafahi et al., 2019; Wang et al., 2023), such as
through more extensive data augmentation and a refined ADDT loss design. Nevertheless, these
limitations are relatively minor and do not diminish the overall contributions of this paper. We believe
these new findings and perspectives will have a sustained impact on future research in DBP, which
is a promising approach to adversarial defense and could prove even more valuable for real-world
applications, despite the early stage of existing studies on DBP.
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