Under review as a conference paper at ICLR 2022

A PRELIMINARIES ON STOCHASTIC PROCESSES

In this section we review a few basics of stochastic processes that will be useful for proving our
results, so that our paper will be self-contained. We refer the reader to classics like Karatzas & Shreve
(2014); Billingsley (2013); Pollard (2012) for more systematic derivations.

Throughout this section, let £ be a Banach space equipped with norm || - |, e.g., (R,| - |) and
(RP, ][+ [|2)-

A.1 CADLAG FUNCTION AND METRIC

Definition A.1 (Cadlag function). Let T € [0, 0]. A function g : [0,T) — E is cadlag if for all
t € [0,7T) it is right-continuous at ¢ and its left limit g(¢—) exists. Let Dg[0,T) be the set of all
cadlag function mapping [0,T) into £.

Definition A.2 (Continuity modulus). For any function f : [0,00) — £ and any interval I C [0, c0),
we define

w(f; 1) = sup [[f(s) = f(D)I]-

s,tel

For any N € Nand 6 > 0, we further define the continuity modulus of continuous f as

wn(f,0) = sup  {w(f;[t,t+06])}

0<t<t+<N

Moreover, the continuity modulus of cadlag f € Dg[0, 00) is defined as
wi (f,0) = inf {mgxw(f; [ti—1,ti):0<to<---<t.=N,inf(t; —t;-1) > 9} .
1<r 1<r

Definition A.3 (Jump). For any g € D¢[0,T'), we define the jump of g at ¢ to be
Ag(t) = g(t) — g(t-).
For any 0 > 0, we define h; : [0,00) — [0, 00) by
0 ifr <4
ha(r) = {1 —6/r ifr>6
We then further define Js5 : Dgn [0, 00) — Do |0, 00) (Katzenberger, 1991) as
Ts(9)(t) = D hs(llAg(s)])Ag(s). (19)
0<s<t

Definition A.4 (Skorohod metric on D¢[0, 0)). For each finite T' > 0 and each pair of functions
fyg € Dgl0,00), define dr(f, g) as the infimum of all those values of ¢ for which there exist grids
0<ty<ti < -+ <thand0 < 59 < 81 < -+ < +++ < 8§y, With Ty, s > T, such that
|t; —s;| < dfori=0,...,k, and

1f(&) =g <6 if (t,5) € [ti, tig1) X [si, 8i41)
fori =0,...,k — 1. The Skorohod metric on D¢|0, c0) is defined to be

d(f,9) =2 " min{1,dr(f,9)}.

T=1
A.2 STOCHASTIC PROCESSES AND STOCHASTIC INTEGRAL

Let (Q, F, {F: }1>0, P) be a filtered probability space.

Definition A.5 (Cross variation). Let X and Y be two {F; };>¢-adapted stochastic processes such
that X has sample paths in Dgpx[0,00) and Y has samples paths in Dg. [0, c0), then the cross
variation of X and Y on (0, ¢], denoted by [X, Y](#), is defined to be the limit of

m—1

(X (tiv1) = X)) (Y (tit1) — Y ()
1=0
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in probability as the mesh size of 0 =ty < t; < -+ < t,,, =t goes to 0, if it exists. Moreover, for Y’
itself, we write

e
MEDPENE
i=1
Definition A.6 (Martingale). Let {X (¢)};>0 be a {F;}:>o-adapted stochastic process. If for all
0 < s < t, it holds that
E[X(t) | Fs] = X(s),
then X is called a martingale.

Definition A.7 (Semimartingale). Let {X (¢)}:>0 be a {F; };+>(-adapted stochastic process. If there
exists a sequence of {F; },>¢-stopping time, {7y } x>0, such that

. P[Tk < Tk+1] =1, ]P’I:lilnk*)m T = OO} =1,
* and {X7* () }+>0 is a {F; }+>0-adapted martingale,

then X is called a semimartingale.

Lemma A.8 (Itd’s Lemma). Let {X (t)}1>0 be defined through the following Ité drift-diffusion
process:

AX (t) = p(t)dt + o (t)dW (t).

where {W (t) }1>¢ is the standard Brownian motion. Then for any twice differentiable function f, it
holds that

af(t X (1)) = (?; (Vo) T+ ;trwvzm) dt + (Vo) o (HAW (1),

A.3 WEAK CONVERGENCE FOR STOCHASTIC PROCESSES

Let (Dg[0, 00), A, d) be a metric space equipped with a o-algebra A and the Skorohod metric defined
in the previous subsection.

Let {X,}n,>0 be a sequence of stochastic processes on a sequence of probability spaces
{(Qn, Fn; Pr) }n>0 such that each X,, has sample paths in D¢[0, 00). Also, let X be a stochastic
process on (€2, F, P) with sample paths on D¢|0, 00).

Definition A.9 (Weak convergence). A sequence of stochastic process{ X, },>¢ is said to converge
in distribution or weakly converge to X (written as X,, = X) if and only if for all .A-measurable,
bounded, and continuous function f : D¢[0,00) — R, it holds that

Jim E[/(X,)] = B[/(X)]. 0)

Though we define weak convergence for a countable sequence of stochastic processes, but it is still
valid if we index the stochastic processes by real numbers, e.g., { X, },>0, and consider the weak
convergence of X, as n — 0. This is because the convergence in (20) is for a sequence of real
numbers, which is also well-defined if we replace lim,,_, o, by lim, 0.

Definition A.10 (6-Prohorov distance). Let § > 0. For any two probability measures P and () on a
metric space with metric d, let (X,Y") be a coupling such that P is the marginalized law of X and @
that of Y. We define

P’ (P,Q) = inf{e > 0:3(X,Y),Pld(X,Y) > ¢ <6}

Note this distance is not a metric because it does not satisfy triangle inequality.

Definition A.11 (Prohorov metric). For any two probability measures P and ) on a metric space
with metric d, let (X,Y") be a coupling such that P is the marginalized law of X and () that of Y.
Denote the marginal laws of X and Y by £(X) and L(Y") respectively. We define the Prohorov
metric as

p(P,Q) = inf{e > 0: IX,Y),L(X) = P,L(Y) = Q,Pld(X,Y) > ¢ < ¢}.
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It can be shown that X,, = X is equivalent to lim,, o, p(X,, X) = 0.

Theorem A.12 (Skorohod Representation Theorem). Suppose P,,n = 1,2,... and P are proba-
bility measures on & such that P,, = P. Then there is a probability space (2, F,P) on which are
defined &€-valued random variables X,,,n = 1,2, ... and X with distributions P,, and P respectively,
such that lim,, .o X,, = X a.s.

B LIMITING DIFFUSION OF SGD

In this section, we give a complete derivation of the limiting diffusion of SGD. Here we use = to
denote the convergence in distribution. For any U C RP, we denote by U its interior and U L its
orthogonal complement.

First, as mentioned in Assumption 3.2, we verify that the mapping ® is C2.
Lemma B.1 (Implication of Falconer (1983)). Under Assumption 3.2, ® is C? on U.

Proof of Lemma B.1. Applying Theorem 5.1 of Falconer (1983) with f(-) = ¢(-, 1) suffices. O

Then we check the necessary conditions for applying the results in Katzenberger (1991) in Ap-
pendix B.1 and recap the corresponding theorem for the asymptotically continuous case in Ap-
pendix B.2. Finally, we provide a user-friendly interface for Katzenberger’s theorem in Appendix B.3.

B.1 NECESSARY CONDITIONS
Below we collect the necessary conditions imposed on {Z,,},>1 and {A,},>1 in Katzenberger
(1991).

Condition B.2. The integrator sequence {A, },>1 is asymptotically continuous: sup |A,(t) —
>0
A (t—)] = 0 where A, (t—) = lims_,;— A, (s) is the left limit of A,, at ¢.

Condition B.3. The integrator sequence { A, },,>1 increases infinitely fast: Ve > 0, gg (An(t+e) —
An(t)) = oo. -
Condition B.4 (Eq.(5.1), Katzenberger 1991). For every T' > 0, as n — oo, it holds that

sup |AZ,(t)|]2 = 0.
0<t<T AN, (K)

Condition B.5 (Condition 4.2, Katzenberger 1991). For each n > 1, let Y, be a {F]'}-
semimartingale with sample paths in Dgo [0, 00). Assume that for some ¢ > 0 (allowing § = oo) and
every n > 1 there exist stopping times {77* | m > 1} and a decomposition of Y;, — Js(Y3,)
into a local martingale M, plus a finite variation process F,, such that P[r* < m] < 1/m,
{[MyL](t A7) + Tinrm (Fr) }n>1 is uniformly integrable for every ¢ > 0 and m > 1, and

lim limsupP | sup (T4~ (Fn) — Ti(Fy)) > €| =0,
70 nooo 0<t<T

for every e > 0 and T' > 0, where T;(-) denotes total variation on the interval [0, ¢].

Lemma B.6. For SGD iterates defined using the notation in Lemma 4.2, the sequences { Ay }n>1
and {Z,,},,>1 satisfy Condition B.2, B.3, B.4 and B.5.

Proof of Lemma B.6. Condition B.2 is obvious from the definition of {4, },>1.
Next, for any € > 0 and ¢ € [0, T, we have
t+e€ t t+e—n? t e—n2
An(t—i—e)—An(t):nn.{ J—nn-{Jzn_:ﬂ
77121 7)% n M Mn

which implies that info<;<7 (A, (t + €) — A, (t)) > €/(2n,,) for small enough 7,,. Then taking
n — oo yields the Condition B.3.
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For Condition B.4, note that

N (Le, — —]l) ift =k-n2,

AZ,(t) = .
0 otherwise.

Therefore, we have ||AZ, (t)||2 < 27, for all ¢ > 0. This implies that | AZ, (¢)|l2 — 0 uniformly

over t > 0 as n — oo, which verifies Condition B .4.

We proceed to verify Condition B.5. By the definition of Z,,, we know that {Z,,(¢)}:>0 is a
jump process with independent increments and thus is a martingale. Therefore, by decomposing
Z, = M, + F,, with M, being a local martingale and F,, a finite variation process, we must have
F, = 0and M, is Z, itself. It then suffices to show that [M,,](t A 7,7*) is uniformly integrable for
every t > 0 and m > 1. Since M, is a pure jump process, we have

MaEAT) = D IAM()IE < D [AMa(s)]3

0<s<tAT™ 0<s<t
Lt/n}] Lt/n2]
= Z nn]lﬁk - |r—~| < 4 Z 7771 S ‘“|t

k=1

This implies that [M,|(¢ A 7,*) is universally bounded by 4¢, and thus [M,](t A 7,") is uniformly
integrable. This completes the proof. O

Proof of Lemma 4.2. For any n > 1, it suffices to show that given X, (kn?2) = z,, (k), we further
have X, ((k 4+ 1)n2) = z,,, (k + 1). By the definition of X, (¢), we have

X ((k+ 1)n3) — X (kn,)

(k+1)n, (k+1)n;,

- / VL(X,(t)dA,(t) + / o (X, (t))dZn(t)
kn2 kn?

= — VL(X, (k1)) (An((k + 1)n2) = An(kni)) + o (Xn (knp)) (Zn((k + 1)n2) = Zn(knj))

= — I VL(Xn(kn2)) + e, (Xn (ki)

= — NV L(zy, (k) + mnee, (2, (k) = 2, (K + 1) — 20, (K)

where the second equality is because A,,(t) and Z,, (t) are constant on interval [kn2, (k + 1)n2). This
confirms the alignment between {X,,(kn2)}x>1 and {z,, (k)}r>1.

For the second claim, note that o(z)EZ,(t) = 0 for all z € RP ¢ > 0 (since the noise has zero-
expectation) and that {Z,,(t) — EZ,,(¢) }+>0 will converge in distribution to a Brownian motion by
the classic functional central limit theorem (see, for example, Theorem 4.3.5 in Whitt (2002)). Thus,
the limiting diffusion of X,, as n — oo can be obtained by substituting Z with the standard Brownian
motion W in (22). This completes the proof. O

B.2 KATZENBERGER’S THEOREM FOR ASYMPTOTICALLY CONTINUOUS CASE

The full Katzenberger’s theorem deals with a more general case, which only requires the sequence of
intergrators to be asymptotically continuous, thus including SDE (3) and SGD (1) with 1 goes to 0.

To describe the results in Katzenberger (1991), we first introduce some definitions. For eachn > 1, let
(Qm, F*, {F"}+>0, P) be a filtered probability space, Z,, an R®-valued cadlag { ;" }-semimartingale
with Z,,(0) = 0 and A,, a real-valued cadlag {7} }-adapted nondecreasing process with A,,(0) = 0.
Let 0, : U — M(D, ¢) be continuous with o,, — ¢ uniformly on compact subsets of U. Let X,, be
an R”-valued cadlag { F}* }-semimartingale satisfying, for all compact K C U,

Xo(t) = X(0) + /Ota(Xn)dZn + /Ot _VL(X,)dA, @1)

for all t < A, (K) where A, (K) = inf{t > 0| X,,(t—) ¢ K or X,,(t) ¢ K} is the stopping time
of X, leaving K.
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Theorem B.7 (Theorem 6.3, Katzenberger 1991). Suppose X (0) € U, Assumptions 3.1 and 3.2,
Condition B.2, B.3, B.4 and B.5 hold. For any compact K C U, define p,(K) = inf{t > 0 |
Y, (t—) ¢ K or Yy, (t) ¢ K}, then the sequence {(Y#”(K), Zn wn(K)} is relatively compact
in Dgrox.[0,00) x [0,00). If (Y, Z, ) is a limit point of this sequence, then (Y, Z) is a continuous
semimartingale, Y (t) € T for every t > 0 a.s., p > inf{t > 0| Y (¢t) ¢ K} a.s. and Y (t) admits

+% ) Z/O #am"I’(Y(S))G(Y(S))iko(Y(s))jld[Zk,Zl](s). (22)

i,j=1k,l=1

B.3 A USER-FRIENDLY INTERFACE FOR KATZENBERGER’S THEOREM

Based on the Lemma B.6, we can immediately apply Theorem B.7 to obtain the following limiting
diffusion of SGD.

Theorem B.8. Let the manifold " and its open neighborhood U be as defined in (15). Let K C U
be any compact set and fix some vo € K. Consider the SGD formulated in Lemma 4.2 where
X, (0) = zg. Define

and 11,(K) = min{t € N | Y,(t) ¢ K}. Then the sequence {(Y#”(K)7 Zny i (K)) yn>1 is
relatively compact in Dgp «gn [0, 00) X [0, 00]. Moreover, if (Y, Z, 11) is a limit point of this sequence,
it holds that Y (t) € T a.sforallt > 0, p > inf{t > 0| Y (t) ¢ K} and Y (t) admits

dY (t) = 00(Y (¢))o (Y (£))dW (t) + % Z 05 (Y () (oY ())o(Y(1)T)7dt  (23)

where {W (t) }1> is the standard Brownian motion and o (-) is as defined in Lemma 4.2.

However, the above theorem is hard to parse and cannot be directly applied if we want to fur-
ther study the implicit bias of SGD through this limiting diffusion. Therefore, we develop a
user-friendly interface to it in below. In particular, Theorem 4.6 is the a special case of Theo-

rem B.9. In Theorem 4.6, we replace 0P(Y (¢))o(Y (t)) to Eﬁ (Y(t)) to simplify the equation,

since (Y (£))a (Y (1)) (0B(Y () (Y (1)) = ¥ (Y'(t)) and thus this change doesn’t affect the
distribution of the sample paths of the solution.

Since o () is locally Lipschitz, when restricted on any compact K C U, the solution to (23) always
exists and is unique. Let u(K) = inf{t > 0| Y(t) ¢ K} be the escaping time of the limiting
diffusion Y.

Theorem B.9. Under the same setting as B.S, we change the integer index back to ) > 0 with a
slight abuse of notation. For any compact set K C U and T > 0, let 6 = P(u(K) < T). Then for
any € > 0, it holds for all sufficiently small LR 1) that:

pQS(Yr}un(K)/\T,Y;L(K)/\T) S €. (24)

Moreover, when Y is a global solution of limiting diffusion Equation (23) and Y never leaves U, i.e.
PVt > 0,Y(t) € U] = 1, it holds that YnT converges in distribution to Y as n — 0 for any fixed
T>0.

Proof of the first claim of Theorem B.9. Let Er be the event such that u(K) > T on Ep. Then
restricted on Ep, we have Y(T'A p) = V(T A p(K)) as o > p(K) holds a.s. We first prove the
claim for any convergent subsequence of 7.

Now, let {7, }m>1 be a sequence of LRs such that 7, — 0 and Y,."™ ) = yiasm — oco.

By applying the Skorohod representation theorem, we can put {Y,, },,>1 and Y under the same
(K)

m

— Y'# a.s. in the Skorohod metric, i.e.,

Ay ) ymy 0, a.s.,

probability space and Yn/ffm
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which further implies that for any € > 0, there exists some N > 0 such that for all m > N

Restricted on &7, we have d(Y;mm ST yunty — qy;tiom FONT 'y u(K)AT) “and it follows that
forallm > N

P (v FONT ynONT) > | < P [{a(vgr N yrUONT) >y ner| + LS

P
=P [{a(vg O, v T) > e 0 gr] + PLES)
P

By the definition of the Prohorov metric in Definition A.11, we then get p%° (Y mm (K), Yy H(E )’\T) <e
for all m > N. Therefore, we have

lim (¥ (), y#(FnT) — g,

m—r o0

Now we claim that it indeed holds that lim,_q p? (V") yuU)AT) = . We prove this
by contradiction. Suppose otherwise, then there exists some ¢ > 0 such that for all ny > 0,

n(K)’Yp,(K)/\T)

there exists some 7 < 19 with p?*(Y,)' > e. Consequently, there is a sequence

{Nm}m>1 satisfying lim,, oo 7m = 0 and p?° (Y,;f,’Z”L(K), YHEAT) > ¢ for all m. Since
{ (Y,;ffjm(K), Zyyps b (K)) }im>1 i relatively compact, there exists a subsequence (WLOG, as-
sume it is the original sequence itself) converging to (Y*"T, W, ;1) in distribution. However, repeat
the exactly same argument as above, we would have p% (Y, (K), Y HUIEATY < ¢ for all sufficiently

large m, which is a contradiction. This completes the proof. O

Proof of the second claim of Theorem B.9. We will first show there exists a sequence of compact
set { K, }m>1 such that USS_ K, = U and K,;, C K,,+1. For m € NT, we define H,, =
U\ (B1/m(0) +RP\U) and K,,, = H,, N B,,(0). By definition it holds that Vm < m/, H,, C H,,
and K,, C K,, . Moreover, since K, is bounded and closed, K, is compact for every m. Now
we claim US°_, K,,, = U. Note that US°_ K,,, = UX_,H,,, N B,,,(0) = U_,H,,,. Vx € U,
since U is open, we know d(z,RP \ U) > 0, thus there exists mo € N*, such that Vm > mo,
z ¢ (Bi/m(0) + RP \ U) and thus « € H,,, which implies z € U3S_, Hy,. On the other hand,
Vo € RP\ U, it holds that z € (B, (0) + RP \ U) forallm € N¥, thus « ¢ H,, C Ky,

Therefore, since Y € U and is continuous almost surely, random variables lim,,, o t(K;,) = 00
a.s., which implies 1(K,;,) converges to oo in distribution, i,e,, V6 > 0,7 > 0, Im € N7, such that
VK D K, itholds P[u(K) < T] <.

Now we will show VT' > 0,e > 0, there exists 7y such that p¢(Y'7, YnT) < eforall n < np.
For any fixed T, for all ¢ > 0, let § = i, from above we know exists compact set K, such
that P(u(K) < T) < 6. We further pick K/ = K + B/ (0), where € can be any real number
satisfying 0 < € < e and K’ C U. Such € exists since U is open. Note K C K’, we have
P(u(K') <T) <P(u(K) < T) < 4. Thus by the first claim of Theorem B.9, there exists g, such

that for all < 79, we have pQ‘S(Y#”(K,)/\T7 YH(K')AT) < €.

Note that po (Y#UFOAT 'y u(EDATY — (), we have for all 7 < 7,
pi’)(ﬁ(y—u(K)/\T7 Ynu,,,,(K')/\T) < e (25)

By the definition of J-Prohorov distance, we can assume Y#(FONT Y, n(KOAT are already the

coupling such that P[d(Y+#(FNT Yn“"(K/)AT) > ¢/] < 36. Note that for all t > 0, YN (1) € K,
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we know if i, (K') < T, then
d(Y/L(K)/\T, Y#”(K/)AT) > Hylt(K)/\T(Mn(K/)) _ YWH"(K/)AT(/JW(K/)

2

\Y
QU

(K,RY/K")

/
€.

(AVA!

Thus we conclude d(Y*UONT Y1) > 2¢ — d(YHIONT ykn(EOATY 5 9er which further
implies that

34 K)AT T
PP (YHUIONT y Ty < ¢ (26)

Note that pé(YT, Y“(K)AT) = 0, we have for all < 1y,
pe(YT,Y»,]T) — p45(YT YT) S p35(Y,u(K)/\T’YnT) +p5(YT’Y;L(K)/\T) S 6/

IN

’on €,

which completes the proof. O

C EXPLICIT FORMULA OF THE LIMITING DIFFUSION

In this section, we demonstrate how to compute the derivatives of ® by relating to those of the loss
function L, and then present the explicit formula of the limiting diffusion.

C.1 EXPLICIT EXPRESSION OF THE DERIVATIVES

For any * € T, we choose an orthonormal basis of T,(I') as {vi,...,vp_am}. Let
{vp—p41,- .., vp} be an orthonormal basis of T;-(T') so that {v; };¢(pj is an orthonormal basis of
RP.

Lemma C.1. Forany x € T and any v € T, (T'), it holds that V*L(x)v = 0.

Proof. For any x € T,(T'), let {x(¢) }+>0 be a parametrized smooth curve on I such that z(0) = =

and dfi(tt) +—o = v- Then VL(z;) = 0 for all t. Thus 0 = dvﬁt(wt) o = V2L(2)v. O

Lemma C.2. For any x € RP, it holds that 9®(z)V L(z) = 0 and
0*®(x)[VL(z), VL(x)] = —0®(x)V2L(2)V L(x).

Proof. Fixing any x € RP, let dz—?) = —VL(z(t)) be initialized at z(0) = x. Since ®(z(t)) =
O (z) forall t > 0, we have

%@(m(t)) = 0P (x(t))VL(z(t)) = 0.

Evaluating the above equation at ¢t = 0 yields 0®(x)V L(x) = 0. Moreover, take the second order
derivative and we have

2 . .
%fb(xt) = —0%®(a(t)) [ddf) : VL(x(t))} + 8<I>(x(t))V2L(x(t))ddit) = 0.
Evaluating at ¢ = 0 completes the proof. O

Now we can prove Lemma 4.3, restated in below.
Lemma 4.3. Forany x € T, 0®(z) € RP*P is the projection matrix onto tangent space T, (T).

Proof of Lemma 4.3. For any v € T,(I"), let {v(t),t > 0} be a parametrized smooth curve on I’

S}lllch that v(0) = x and dggf) .o = v- Since v(t) € T for all t > 0, we have ®(v(t)) = v(t), and
thus
do(t d do(t
L A I YR LU0l
dt |, dt t=0 LA P
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This implies that 0@ (z)v = v for all v € T,,(T).
Next, for any u € T;-(I') and ¢t > 0, consider expanding VL(z + tV2L(z)Tu) at t = 0:
VL (z+ tV2L(z) ') = V2L(2) - tV?L(z) u + o(t)
=tu+ o(t)

where the second equality follows from the assumption that V2 L(z) is full-rank when restricted on
T:;-(T). Then since O® is continuous, it follows that

lim 00 (x +tV2L(x) w)VL(x + tV2L(x)tu)
t—0 t

= lim 9@ (z + tV*L(z)")(u + o(1))
= 09(z)u.

By Lemma C.2, we have 09 (z + t(V2L(z))"u))VL(z 4+ t(V2L(z))Tu) = 0 for all ¢ > 0, which
then implies that 9@ (x)u = 0 for all u € T;-(T).

Therefore, under the basis {v;, ...,vy}, OP(z) is given by
0D() = (IDOM 8) € RPXD,

that is, the projection matrix onto 7., (T"). O

Lemma C.3. For any x € T, it holds that 0®(z)V?L(z) = 0.
Proof. 1t directly follows from Lemma C.1 and Lemma 4.3. O

Next, we proceed to compute the second-order derivatives.
Lemma C4. Foranyz € T, u € RP and v € T,(T"), it holds that

*®(2)[v,u] = —0®(2)0*(VL)(x)[v, V2L(x) u] — V2L(z)T0*(VL)(x)[v, 0®(z)u].
Proof of Lemma C.4. Consider a parametrized smooth curve {v(¢) };>0 on I" such that v(0) = = and

o] _ = v. Wedefine P(t) = 9®(uv(t)), P*(t) = Ip — P(t) and H(t) = V2L(u(t)) for all
t > 0. By Lemma C.1 and 4.3, we have

PL(t)H(t) = H(t)P*(t) = H(t), (27)

Denote the derivative of P(t), P~ (t) and H (t) with respect to t as P’(t), (P*)’(t) and H'(t). Then
differentiating with respect to ¢, we have

(PH) () H(t) = H'(t) — PH()H'(t) = P(t)H'(t). (28)
Then combining (27) and (28) and evaluating at ¢ = 0, we have
P'(0)H(0) = —(P1) (0)H(0) = —P(0)H'(0) (29)

We can decompose P’(0) and H(0) as follows

/ P/{(0) P[40 0 0
ro=(F6 &) 100 mo): 0

where Pj,(0) € R(P=M)X(D=M) and H,, is the hessian of L restricted on T;-(T'). Also note that
iy pLy — (Ip—am 0 (Hiy(0) Hiy(0)) (0 0
romoro= ("5 0) (76 HED) (0 o
_ (0 Hiy(0)
—\0 0 ’
and thus by (30) we have

, 0 Pl(0)Ha(0)\ (0 —Hly(0
romo = (3 o) -0 )
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This implies that we must have Pj,(0) = 0 and P{5(0)H22(0) = H{5(0). Similarly, by taking
transpose in (30), we also have H22(0) Py, (0) = —HJ,(0).

It then remains to determine the value of PJ;(0). Note that since P(¢t)P(t) = P(t), we have
P'(t)P(t) + P(t)P'(t) = P'(t), evaluating at t = 0 yields

2P};(0) = Pp1(0).
Therefore, we must have P/, (0) = 0. Combining the above results, we obtain

P'(0) = —P(0)H'(0)H (0)" — H(0)TH'(0)P(0).
Finally, recall that P(t) = 0®(v(t)), and thus

P'(0) = %8@(1}@)) = 0%®(z)[v].

t=0
Similarly, we have H'(0) = 92(V L)(x)[v], and it follows that
(

*®(2)[v] = —0®(x)0*(VL)(2)[v]V?L(z)" — V2L(2)T0*(VL)(z)[v]0® ().

Lemma C.5. Forany x € T and u € T;-(T), it holds that
0*®(x)[uu’ + V2L(z) uu " V2L(x)] = —0®(2)0*(VL)(x)[V2L(z) uu"].
Proof of Lemma C.5. For any u € T;-(T), we define u(t) = = + tV2L(z)Tu for t > 0. By Taylor
approximation, we have
VL(u(t)) = tV2L(x)V2L(z) u + o(t) = tu + o(t) (31)

and

V2L(u(t)) = V2L(z) + td*(VL)(2)[V2L(x) u] + o(t). (32)
Combine (31) and (32) and apply Lemma C.2, and it follows that

0= 0@ (u(t))[VL(u(t)), VL(u(t))] + 0P (u(t)) VL (u(t)) VL(u(t))
= 120%®(u(t))[u + o(1)](u + o(1)) + t20® (u(t))0* (VL) (x)[V2L(z) Tu](u + o(1))

)
222D G2 p 4 o(1))

t
~ %% ( <>>[u+o<1>]<u+o<1 ) + 20B(u(t))9 (VL) (2)[V*L() ul(u + o(1))
) -

)

where the last equality follows from Lemma C.3. Dividing both sides by ¢ and letting ¢ — 0, we get
0%®(x)[u]u + 0®(2)0*(VL)(z)[V2L(z) u]u + 9*®(2)[V2L(z) u] V2 L(x)u = 0.

Rearranging the above equation completes the proof. O

+t2

With the notion of Lyapunov Operator in Definition 4.4, Lemma C.5 can be further simplified into
Lemma C.6.

Lemma C.6. Foranyx € T'and ¥ € span{uu' | u € T(I")},

(0*®(2), B) = —09(2)0* (VL) (2)[LGz () (D)]- (33)
Proof of Lemma C.6. Let A = uu' + V?L(x T)Tuu—rsz yand B = V2L(z)TuuT. The key
observation is that A + AT = Lg» L(z)(B + B"). Therefore, by Lemma C.5, it holds that
O?0(2)[Lyv2r(x)(B+BT)] = 02®(2)[A+AT] = 209(2)9*(VL)(2)[B] = 0®(2)0*(VL)(z)[B+B"].

Since V2L (z)T is full-rank when restricted to T+ (T"), we have span{ V2 L(x)tuu " +uu" V2L(2)" |
u € T} =span{uu' | u € T;}(I')}. Thus by the linearity of above equation, we can replace
B+ BT byany ¥ € span{uu' | u € T;-(I')}, resulting in the desired equation. O
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Then Lemma 4.5 directly follows from Lemma C.4 and C.5.

Lemma C.7. For any x € T, suppose there exist a neighborhood U, of x and two loss func-
tions L and L' that define the same manifold T locally in Uy, i.e., T NU, = {x | VL(z) =
0} = {x | VL'(z) = 0}. Then for any v € T,(T), it holds that (V*L(x)) 0*(VL)(z) [v,v] =
(V2L (2))10*(VL') (@) [v, v].

Proof of Lemma C.7. Let {v(t)};>0 be a smooth curve on I" with v(0) = =z and dz(tt) =0

Since v(t) stays on T', we have VL(v(t)) = 0 for all ¢ > 0. Taking derivative for two times yields

9*(VL) (v(t))[d%gt), d%(tt)] + V2L(v(t)) degt) = 0. Evaluating it at ¢ = 0 and multiplying both

sides by V2L(z)T, we get

= .

d?uv(t)
de?

d?v(t)

V2L(2)'0*(VL)(z) [v,v] = —V2L(2) V2 L(x) P

= —0%(x)

t=0

t=0

Since 0®(x) is the projection matrix onto 7, (I') by Lemma 4.3, it does not depend on L, so
2

analogously we also have V2L/(z)70?(VL')(z) [v,v] = —0®(x) ddigt)

1o
thus completed. Note that 0@ (z) di;;gt) | 1o 1s indeed the second fundamental form for v at z, and

the value won’t change if we choose another parametric smooth curve with a different second-order
time derivative. (See Chapter 6 in Do Carmo (2013) for a reference.) O

as well. The proof is

C.2 PROOF OF RESULTS IN SECTION 5

Now we are ready to give the missing proofs in Section 5 which yield explicit formula of the limiting
diffusion for label noise and isotropic noise.

Corollary 5.1 (Limiting Diffusion for Isotropic Noise). If ¥ = Ip on ', SDE (10) is then

dY (t) = 0®(Y)dW + %VQL(Y)TGQ(VL)(Y) [0®(Y)] dt + %aé(y)van IVEL(Y)|4)dt (11)

Brownian Motion on Manifold Normal Regularization
2 T IV2L(Y)+alp| - . 9 9 .
where [V2L(Y) |4 = lima—o - 5—iszrmy i the pseudo-determinant of V2L(Y'). [VZL(Y)| 4 is
also equal to the sum of log of non-zero eigenvalue values of V>L(Y).

Proof of Corollary 5.1. Set¥ = 0®,%, = Ip —0®and ¥, | = ¥ 1 = 0 in the decomposition
of ¥ by Lemma 4.5, and we need to show 90V (In |2], ) = 9*(VL)[(VZL)T].

Holbrook (2018) shows that the gradient of pseudo-inverse determinant satisfies V| A|, = |A| AT

Thus we have for any vector v € RP, (v, VIn|VZL|) = <%,32(VL)[U]> =

(V2L,0*(VL)[]) = 0*(VL)[v, VL] = (v,8*(VL)[(V2L)']), which completes the proof. [

Corollary 5.2 (Limiting Flow for Label Noise). If ¥ = ctr[V2L] on T for some constant ¢ > 0,
SDE (10) can be simplified into (13) where the regularization is from the noise in normal space.

Ay () = —i(‘)fI)(Y(t))V tr[eV2L(Y (£))]dL. (13)

Proof of Corollary 5.2. Since ¥ = ¢V?L, here we have ¥ = ¥ and 225155y, = 0. Thus it

suffices to show that 202(V L) [EQ%L(EL)] = Vtr[V2L]. Note that for any v € R,

v Vr[V?L] = (Ip,9*(VL)[v]) = {Ip — 0®,0*(VL)[v]), (34)

where the second equality is because the the tangent space of symmetric rank-n matrices at V2L is
{AV?L + V2LAT | A € RP*P} and every element in this tangent space has zero inner-product
with 9@ by Lemma 4.3. Also note that £o3, (V2L) = 1(Ip — 0®), thus (Ip — 0®,0*(VL)[v]) =

V2L
2(Lo3, (V2L),0*(VL)[]) = 20" 8*(VL)[Los, (V2L)]. O

23



Under review as a conference paper at ICLR 2022

D PROOF OF RESULTS IN SECTION 6

In this section, we present the missing proofs in Section 6 regarding the overparametrized linear
model.

For convenience, for any p,r > 0 and u € RP, we denote by BP(u) the ¢, norm ball of radius 7
centered at u. We also denote v**/ = (vi,v**1, ... 09T fori,j € [D)].

D.1 PROOF OF THEOREM 6.1

In this subsection, we provide the proof of Theorem 6.1.

Theorem 6.1. In the setting of OLM, suppose the groundtruth is k-sparse and n > Q(x 1n d) training
data are sampled from either i.i.d. Gaussian or Boolean distribution. Then for any initialization x;
(except a zero-measure set) and any € > 0, there exist 19, T > 0 such that for any n < ng, OLM
trained with label noise SGD (12) with LR equal to ) for | T /n?| steps returns an e-optimal solution,
with probability of 1 — e=*(") over the randomness of the training dataset.

Proof of Theorem 6.1. First, by Lemma 6.6, it holds with probability at least 1 — e~*(") that the
solution to (18), x, is unique up to and satisfies |x,| = 1(w,). Then on this event, for any € > 0,
by Lemma 6.5, there exists some 7" > 0 such that 7 given by the Riemannian gradient flow (17)
satisfies that z is an ¢/2-optimal solution of the OLM. For this T, by Theorem 4.6, we know that
the |T'/n?|-th SGD iterate, x,,(|T/n?]), satisfies ||z, (|T/n?]) — xr|2 < €/2 with probability at
least 1 — e=(™) for all sufficiently small 5 > 0, and thus ,,(|T'/n?]) is an e-optimal solution of
the OLM. Finally, the validity of applying Theorem 4.6 is guaranteed by Lemma 6.2 and 6.3. This
completes the proof. O

In the following subsections, we provide the proofs of all the components used in the above proof.

D.2 PROOF OF LEMMA 6.2

Recall that for each i € [n] fi(z) = f(u,v) = 2] (u®? = v®?),V fi(z) = 2(37"), and K () =
(K; -(x))me[n] where each K ;(z) = (Vfi(z), Vf;(z)). Then

V2,(z) = (Q“ (zowT —(z0600)7T) + (filu,v) - y) - diag(z, 2).

So for any z € T, it holds that

V2L(x) = %Z (f;%“v) (ziouw)" —(zov)T). (35)

=1

Lemma D.1. For any fixed x € RP, suppose {V fi()};c(y) is linearly independent, then K (x) is
full-rank.

Proof of Lemma D.1. Suppose otherwise, then there exists some A € R"™ such that A # 0 and
AT K (x)\ = 0. However, note that

> NNK(x)
i,j=1

> NN (Vfi(x), V()

ij=1

MK (z)A

2
)
2

D NV fi(z)
i=1

which implies that Y7 | X'V f;(z) = 0. This is a contradiction since by assumption {V f; () };[n]
is linearly independent. N
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Lemma 6.2. Consider the loss function L defined in (14) and manifold T defined in (15). If data
is full rank, i.e., vank({z;}ic[n)) = n, then it holds that (a). T' is a smooth manifold of dimension
D —n; (b). rank(V?L(z)) = n for all x € T. In particular, it holds that rank({z; };c[n)) = n holds
with probability 1 for Gaussian distribution and with probability 1 — c¢® for Boolean distribution for
some constant ¢ € (0,1).

Proof of Lemma 6.2. (1) By preimage theorem (Banyaga & Hurtubise, 2013), it suffices to check the
jacobian [V fi(z),...,V fa(2)] = 2[(Z19%),..., (9" )] is full rank. Similarly, for the second

—z10v —zn, QU

claim, due to (35). it is also equivalent to show that {( ziOu

i) Yien) is of rank n.

Since (Z) € I' C U, each coordinate is non-zero, thus we only need to show that {2; } ;¢ is of rank

n. This happens with probability 1 in the Gaussian case, and probability at least 1 — ¢? for some
constant ¢ € (0,1) by Kahn et al. (1995). This completes the proof. O

D.3 PROOF OF LEMMA 6.3

We first establish some auxiliary results. The following lemma shows the PL condition along the
trajectory of gradient flow.

Lemma D.2. |[VL(z,)|* > Anin(Z27) mine g [udvl| L(y).

To prove Lemma D.2, we need the following invariance along the gradient flow.

Lemma D.3. Along the gradient flow generated by V L(zy), ug v{ stays constant for all j € [d].
Thus, sign(u; ) = sign(u})) and sign(v]) = sign(v}) for any j € [d.

Proof of Lemma D.3.
0, ;4 _oul ;. ; Ovl
E(“i”i) = aitt v +uy - aftt

= VUL(’U,t,’Ut)j . Ug + Uj . VUL(Ut,Ut)‘j
j n

1< o o
~ 1 Z(fi(utavt) — yi)z{ugvl — Zt Z(fi(uhvt) —yi)zjv = 0.
i=1

i=1

Therefore, any sign change of v/, v/ would enforce u] = 0 or v; = 0 for some ¢ > 0 since u, v] are
continuous in time ¢. This immediately leads to a contradiction to the invariance of u]v; . O

We then can prove Lemma D.2.

Proof of Lemma D.2. Note that

IVL()|; :i Z (filz) —yi) (fi () —y;) (V fi(2), V [;(2))
> 23 (i) — 9 Aouin (K ()
i=1

where K (x) is an x n p.s.d. matrix with K;(z) = (Vfi(z), V f;(z)). Below we lower bound
Amin(K (x)), the smallest eigenvalue of K (). Note that Ky;(x) = Y 2zl ((uf)? + (v")?),
and we have
K(z) = Zdiag(uf? +vP?) 2T = Zdiag(|uv|)Z T © Zdiag(Jugvo|)Z " = m%{% ugvpl 227
1€

where () is by Lemma D.3. Thus Amin(K) > mine(q) |ufvh|Amin(ZZ7), which completes the
proof. O
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We also need the following characterization of the manifold I'.
Lemma D.4. All the stationary points in U are global minimizers, i.e., I' = {x € U | VL(z) = 0}.

Proof of Lemma D.4. Since I is the set of local minimizers, each = in I" must satisfy V L(x) = 0. The
other direction is proved by noting that rank({2; };¢[n]) = 1, which implies rank({V fi(x) };e[n]) =
n.

Now, we are ready to prove Lemma 6.3 which is restated below.

Lemma 6.3. Consider the loss function L defined in (14), manifold I and its open neighborhood
defined in (15). For gradient flow < dx’ = —V L(x) starting at any x¢ € U, it holds that ®(xg) € T.

Proof of Lemma 6.3. 1t suffices to prove gradient flow dftﬁ = —VL(x;) converges when t — oo, as
long as z¢p € U. Whenever it converges, it must converge to a stationary point in U. The proof will

be completed by noting that all stationary point of L in U belongs to I' (Lemma D.4).

Below we prove lim;_, o, 2; exists. By Lemma D.16, denote C' = min;¢(q) |u6v8\)\min(ZZT), then
Amin (K (2¢)) > C for all t > 0. Thus,

’dn VLG < IVE@IE =S 1 dyE@)
dt - \/CL l't) \/L(It) 2\/5 dt .

Thus the total GF trajectory length is bounded by [~ || 92| dt < [~ 2\} d\/;i(t“)dt L(\%)

where the last inequality uses that L is non-negative over RD . Therefore, the GF must converge. [

D.4 PROOF OF RESULTS IN SECTION 6.2

To study the optimal solution to (18), we consider the corresponding d-dimensional convex program
in terms of w € RY, which has been studied in Tropp (2015):

minimize R(w Z (Z ) Jw], (36)

subjectto Zw = Zw*.

Here we slightly abuse the notation of 12 and the parameter dimension will be clear from the context.
We can relate the optimal solution to (18) to that of (36) via a canonical parametrization defined as
follows.

Definition D.5 (Canonical Parametrization). For any w € RY, we define () = v(w) =
(w732 o IS

w.

as the canonical parametrization of w. Clearly, it holds that u®? — v©2? =

Indeed, we can show that if (36) has a unique optimal solution, it immediately follows that the optimal
solution to (18) is also unique up to sign flips of each coordinate, as summarized in the lemma below.

Lemma D.6. Suppose the optimal solution to (36) is unique and equal to w.. Then the optimal
solution to (18) is also unique up to sign flips of each coordinate. In particular, one of them is given
by (s, 0s) = ¥(wy), that is, the canonical parametrization of w.

Proof of Lemma D.6. Let (i, 7) be any optimal solution of (18) and we define w = 4% — 92,
which is also feasible to (36). By the optimality of w., we have

i(i >|w]|<i<2n: )ijéid:@n) )(ﬂj>2+(ﬁj)2]. (37)

j=1 \i=1 Jj=1 \i=1 i=1
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On the other hand, (., 9.) = 1(w,) is feasible to (18). Thus, it follows from the optimality of (4, ©)
that

d n d n n
3 <z<zz>2) @+ () <3 (z<zzj>2> (@ + 5 =3 (z<zz>2) wil.

j=1 =1 i=1

Combining (37) and (38) yields

n n d n
2 (Z(zg)2> @+ @)= 2 <Z<Z§ >2> wll =3 <Z<z£'>2> (@2 — (7]

Jj=1 \i=1 Jj=1 \i=1 i=1
(39)

which implies that 72 — $©2 is also an optimal solution of (36). Since w, is the unique optimal
solution to (36), we have 4©? — 92 = w,. Moreover, by (39), we must have 4®? = [w,], and
19? = [w,]4, otherwise the equality would not hold. This completes the proof.

Therefore, the unique optimality of (18) can be reduced to that of (36). In the sequel, we show that the
latter holds for both Boolean and Gaussian random vectors. We divide Lemma 6.6 into to Lemma D.8
and D.7 for clarity.

Lemma D.7 (Boolean Case). Let z1,..., 2z, R Unif ({£1}%). There exist some constants C,c > 0
such that if the sample size n satisfies

n > ClkIn(d/k) + K]

. ) p— 2 . . ~ ~ . . . .
then with probability at least 1 — e~ """, the optimal solution of (18), (4, 0), is unique up to sign flips
of each coordinate and recovers the groundtruth, i.e., 1°% — 9©? = w,.

Proof of Lemma D.7. By the assumption that 21, .. ., z, =" Unif({£1}%), wehave 37", (/)2 = n
for all j € [d]. Then (36) is equivalent to the following optimization problem:
minimize g(w) = ||w]|1,

40
subjectto  Zw = Z(uP? — v?). “

This model exactly fits the Example 6.2 in Tropp (2015) with ¢ = 1 and o« = 1/+/2. Then applying
Equation (4.2) and Theorem 6.3 in Tropp (2015), (40) has a unique optimal solution equal to

u9? — v©? with probability at least 1 — e~°"* for some constant ¢ > 0, given that the sample size
satisfies

n > C(kIn(d/k) + k + h)

for some absolute constant C' > 0. Choosing i = 55 and then adjusting the choices of C,c

appropriately yield the desired result. Finally, applying Lemma D.6 finishes the proof. O

The Gaussian case requires more careful treatment.

. jid. .
Lemma D.8 (Gaussian Case). Let z1,...,2, ~ N(0,I;). There exist some constants C,c > 0
such that if the sample size satisfies

n > Cklnd,
then with probability at least 1 — (2d 4+ 1)e™“", the optimal solution of (18), (1, D), is unique up to

sign flips of each coordinate of 1 and ¥ and recovers the groundtruth, i.e., 1°% — 9©2 = w,.

Proof of Lemma D.S. Since z1,. ..,z Sy N(0, 1), we have

P zn:(z?)Q € [n/2,3n/2],vj € [d]| > 1 — 2de™"

i
i=1
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for some constant ¢ > 0, and we denote this event by &,. Therefore, on &,,, we have

n D . . 3n D ) .
5 Z[(uj)2 + ()] < R@) < 5 Dol + (7))

j=1
or equivalently,

3n

n
2 (1wl + 0% [h) < R(z) < ([0l + v2[|h).

Define w, = u9? — v92, and (36) is equivalent to the following convex optimization problem

d n

minimize g(w) = Z 2(23)2 Jw? + wi,

j=1 \i=1 (@41
subjectto  Zw = 0.

The point w = 0 is feasible for (41), and we claim that this is the unique optimal solution when n is

large enough. In detail, assume that there exists a non-zero feasible point w for (41) in the descent
cone (Tropp, 2015) D(g, w. ) of g, then

/\min(Z; D(g7 w*)) <

where the equality follows from that w is feasible. Therefore, we only need to show that
Amin(Z;D(g, x.)) is bounded from below for sufficiently large n.

On &, it holds that g belongs to the following function class

d
G={h:R" SR | h(w) =) &w'[(cZ ) withE={{cR?: ¢ €[0.5,1.5],V) € [d]}.

j=1

We identify g. € G with § € E, then D(g, ws) € Uge=D(ge, wy)) := D=, which further implies
that

)‘min(Z;D(g; w*)) Z Amin(Z;DE)-

Recall the definition of minimum conic singular value (Tropp, 2015):

Amin(Z;D=) = inf sup (g, Zp).

pED=NS4~L jegn-1
where 8”1 denotes the unit sphere in R™. Applying the same argument as in (Tropp, 2015) yields
P [Amin(Z;D=) > Vn— 1 —w(Dz) —h] > 1— e/,
Take the intersection of this event with &,,, and we obtain from a union bound that
Amin(Z; D(g,ws)) > Vn— 1 —w(Dz) — h (42)

with probability at least 1 — e~h*/2 _ 2de=°m_ It remains to determine w(Dz), which is defined as

=E.n0,12) [Sup sup (z,p)| . (43)
EEE peD(ge, x4 )NSI—1

w(DE) = IEZNN(O,IJ) [ sup <Zap>

pED=NSI—1

Without loss of generality, we assume that w, = (w},...,w?,0,...,0)T with w!,... ,w% > 0,

otherwise one only needs to specify the signs and the nonzero set of w, in the sequel. For any { € =
and any p € D(ge, ws) N SS9 there exists some 7 > 0 such that ge(wy +7-p) < ge(wy), Le.,

d d
oGl +rp| <Yl

j=1 j=1
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which further implies that

T Z £J|p|<Z§J wl| = |w] —7p’|) <7 Zgw

Jj=r+1

where the second inequality follows from the triangle inequality. Then since each &7 € [1/2,3/2], it
follows that

Z |p|<3Z\p]\

Jj=r+1
Note that this holds for all £ € = simultaneously. Now let us denote p'* = (p',...,p") € R*
and ptrtDd = (prtl . pd) € R?*, and similarly for other d-dimensional vectors. Then for all

p € D= N 891, by Cauchy-Schwartz inequality, we have
[PV < 3+ IpM 1 < 3V - [[p" o
Thus, for any z € R? and any p € D= N S% 1, it follows that
<Z,p> _ <len’p1:n> + <Z(/{+1):d’p(n+1):d>

< 1:k 1:k (k+1):dy| . . a )
< I allp o [ max s
< Zl:m 1:k 3k 1:k . ma. P
< I el o+ 3VRIP - max

< ||2%%]| 4+ 3% - max Z;
<[t vEe x|

where the last inequality follows from the fact that p € S%~1. Therefore, combine the above inequality
with (43), and we obtain that

D=) <E ke 3 . .
wlDs) < B |[anall + 3VE- | max 15

<VRHaVRE| x5l (44)
nJrl d

.....

where the second inequality follows from the fact that E[||z1.x[|2] < v/E[||21.x]/3] = v/~. To bound
the second term in (44), applying Lemma D.9, it follows from (44) that

w(Dz) < Vk + 3v/26In(2(d — k)). (45)
Therefore, combining (45) and (42), we obtain
Amin(Z;D(g,ws)) > Vn— 1 — vk —3y/26In(2(d — k) —

Therefore, choosing h = v/n — 1/2, as long as n satisfies that n > C(x1nd) for some constant
C > 0, we have A\yin(Z; D(g, w.)) > 0 with probability at least 1 — (2d + 1)e™“". Finally, the
uniqueness of the optimal solution to (18) in this case follows from Lemma D.6. ]

Lemma D.9. Let z ~ N (0, 1), then it holds that E [max;cq) |2°|] < \/21n(2d).

Proof of Lemma D.9. Denote M = max;c[q) |2*|. For any A > 0, by Jensen’s inequality, we have

d
AN EIM] <E [EAM] —-F [maxemw] < Z]E {equ] .
=1

1€[d]

Note that E[e*/=']] < 2.E[e**']. Thus, by the expression of the Gaussian moment generating function,
we further have
d

NEIM] < o ZE [ele} _ 2dek2/2,
i=1
from which it follows that
In(2d
E[M] < n(/\ ) 4 %
Choosing A = /2 1n(2d) yields the desired result. O
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D.5 PROOF OF LEMMA 6.5

Instead of studying the convergence of the Riemannian gradient flow directly, it is more convenient
to consider it in the ambient space RP. To do so, we define a Lagrange function £(x;\) =
R(z) 4+ Y1 N(fi(z) — ;) for A € R™. Based on this Lagrangian, we can continuously extend
0®(z)VR(z) to the whole space RP. In specific, we can find a continuous function F' : RP — RP
such that F'(-)|p = 0®(-)VR(-). Such an F' can be implicitly constructed via the following lemma.
Lemma D.10. The {5 norm has a unique minimizer among {V L(z;\) | A\ € R™} for any fixed
x € RP. Thus we can define F : RP — R by F(z) = argmingc (v £z rern} [19]ly: Moreover,
it holds that (F(x),V f;(x)) = 0 for all i € [n].

Proof of Lemma D.10. Fix any z € RP. Note that {V,L(z;\) | A € R"} is the subspace spanned
by {V fi(x)}ic[n shifted by VR(x), thus there is unique minimizer of the £, norm in this set. This
implies that F'(z) = argminge (v, £ (z0)aern} |9]2 is well-defined.

To show the second claim, denote h()\) = ||V, L(x; \)||3/2, which is a quadratic function of A € R™.
Then we have

(VR(2),V fi(z)) Yimi XV hi(2), V fi(x) (VR(z), Vfi(z))
Vh(X) = : + : = : + K (x)\
(VE(z), Vfn(z)) i NV (@), VSi(x)) (VE(z), V()

For any A such that V;£(x; \) = F(x), we must have Vh(A) = 0 by the definition of F'(x), which
by the above implies

(K(2)\)" = —(VR(z), V fi(x)) forall : € [n].

Therefore, we further have

(F(2), Vfi(@)) = (VR(2), Vi) + D N(V fi(2),Vfj(x)) = (VR(x), V fi(2)) + (K(2)A) =0

Jj=1

for all ¢ € [n]. This finishes the proof. O

Hence, with any initialization xy € T, the limiting flow (17) is equivalent to the following dynamics
da
dt

Thus Lemma 6.5 can be proved by showing that the above z; converges to =, as t — co. We first
present a series of auxiliary results in below.

Lemma D.11 (Implications for F(x) = 0). Let F : RP — RP be as defined in Lemma D.10. For
any z = () € RP such that F(x) = 0, it holds that for each j € [d], either u? = 0 or vi = 0.

= —F(a). (46)

Proof. Since F(z) = 0, it holds for all j € [d] that,

0= %(m) + Z)\(x)lgiz (z) = 2u’ - lZ( Z ?1 ;
=1 i=

n

)P+
0= 22 w) + DM@y Py = 20 [_Z(sz -y ]

1=

Az)'2]
= i=1 1

If there exists some j € [d] such that u? # 0 and v’ # 0, then it follows from the above two identities
that

n

S =0

i=1

which happens with probability 0 in both the Boolean and Gaussian case. Therefore, we must have
u! =0orv? =0forall j € [d]. O
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Lemma D.12. Let F : RP — RP be as defined in Lemma D.10. Then F is continuous on RP.

Proof. Case L. We first consider the simpler case of any fixed 7o € U = (R \ {0})?, assuming that
K () is full-rank. Lemma D.10 implies that for any A € R™ such that VL (zo; A) = F(xo), we
have

K(zo)A = (—(VR(0), Vfi(20)))ien)-

Thus such A is unique and given by
Awo) = K (20) " (=(VR(20), Vfi(20)))ie[n]-

Since K (z) is continuous, there exists a sufficiently small § > 0 such that for any € Bs(zg),
K (z) is full-rank, which further implies that K (x)~! is also continuous in Bj(z). Therefore,
by the above characterization of \, we see that A(z) is continuous for © € Bj(zg), and so is

F(x) = VR(x) + Y1y N@)'V f(x).

Case II. Next, we consider all general z € R”. Here for simplicity, we reorder the coordinates

asz = (u',v',u?,v2,...,u? v?) with a slight abuse of notation. Without loss of generality, fix

any x such that for some ¢ € [d], (uf)? + (v§)? > Oforalli = 1,...,q and uf = vy = 0 for
alli =q+1,...,d. Then VR(xo) and {V f;(0)};c[n) only depend on {2 };c(n),j[q)> and for all
i € [n], it holds that

VR(20) 20t DP = ¥ £, () 29+ DD = 0,

Note that if we replace {V f; () };¢[,) by any fixed and invertible linear transform of itself, it would
not affect the definition of F'(x). In specific, we can choose an invertible matrix @ € R™"*"
such that, for some ¢’ € [q], (21,...,2n) = (21,...,2,)Q satisfies that {ijq}ie[q/] is linearly
independent and 2} = 0 forall i = ¢’ + 1,...,n. We then consider (Vfi(z),...,Vfu(z)) =
(Vfi(z),...,Vf.(x))Q and the corresponding F'(x). For notational simplicity, we assume that Q
can be chosen as the identity matrix, so that (21, .. ., 2, ) itself satisfies the above property, and we
repeat it here for clarity

{zil:q}ie[q/] is linearly independent and Zilzq =0foralli=¢ +1,...,n. (47)
This further implies that

Vfi(z)¥?D =0, forallie {¢ +1,...,n} and z € R". (48)

In the sequel, we use \ for n-dimensional vectors and A for ¢’-dimensional vectors. Denote’

VR(z)+ Y ANVfi(z)

i=1

A(x) € argmin
AER™

)

2

q/
Mz) € argmin ||VR(z)¥?9 + Z NV £ ()1 (29)
XeR’ =1
2

Then due to (47) and (48), we have

VR(wo) + Y @)V fi(wo)

i=1

ql
VR(20)" D + > " Nao) 'V fi(wo) "0 || =

=1

= [[F'(zo)]l2-

2
(49)

*We do not care about the specific choice of A(x) or A(x) when there are multiple candidates, and we only
need their properties according to Lemma D.10, so they can be arbitrary.
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On the other hand, for any 2 € R, by (48), we have

1 29 Z)\ 1 29| — {‘gi{i VR(z 1:(2q) 4 Z/\lvf 1 (29)
2 i=1 2
< Y1Ca) Z/\ VECD = || F(2)5 9|,
2
<||F(@)]2 < )+ Z Ao)'V fi(=) (50)
=1 2

where the first and third inequalities follow from the definition of F'(x). Let x — 1z, by the continuity
of VR(z) and {V f;() }ic[n)» We have

VR(xg) + Z Az0)'V fi(o)

=1

lim
Tr—x0

(51

x) + Z Mzo)'V fi(x)

2 2

Denote K () = (Kij(2))jelq)r = (Vi) D,V fi(2)"CD)) jyefq)z- By applying the
same argument as in Case I, since K () is full-rank, it also holds that lim,_,,, A(z) = A(zo), and
thus

. 1:(2q) 2)iCD || = 1:(2q) (YT £ (e \1:(20)

xlgra}o U+ Z)\ D = ([VR(zg) =Y + Z)\(xo) V fi(zg) =

2 =t 2

(52)
Combing (49), (50), (51) and (52) yields

lim ||F(z)"??|y = lim min
T—To Tr—To AER™

VR(z 2q+Z)\’Vf VRO = || F(z)]l2.  (53)

i=1 2
Moreover, since ||F ()21 1):P||y = /|| F(x)]|3 — || F(z):(29]3, we also have
lim ||F ()29, = 0. (54)
Tr—rTo
It then remains to show that lim, ., F(x)"%?9 = F(x)%(9), which directly follows from

limg po M) = A(o) V7 = A(ao).

Now, for any € > 0, due to the convergence of A(z) and that K () > 0, we can pick a sufficiently
small d; such that for some constant « > 0 and all z € Bs, (o), it holds that || A(z) — A(xo)|]2 < €/2
and

2 2
q

VR(x 2q>+2xvf LQo)| > || VR(z): (2 Z 2) "N ol A= A(=)]3.
i=1 2 i=1 2 (55)

for all A € R?, where the inequality follows from the strong convexity. Meanwhile, due to (48), we
have

1:(2q) L2 | — 7y ) (29) )b (29)
9 2
7 4
= ||VR(zo)" 9 + Z Mezo)'V fi (20) (20
i=1
2
— 1 1 (29) 1 (29)
Jm, |VREE Z e
2

32



Under review as a conference paper at ICLR 2022

where the second equality follows from (53) and the second equality is due to (52). Therefore, we
can pick a sufficiently small d, such that

Q.

2
YLi20) 4 Z Az L9 < Y20 4 Z |y aTe

2 2
(56)

for all z € Bs,(x0). Setting 6 = min(dy, d2), it follows from (55) and (56) that
IAz)5 = X@)|2 < % for all 7 € Bs(xo).
Recall that we already have || A\(z) — A\(zo)|| < €/2, and thus

@) = M) |2 = [IA(@)" = Azo) |2 < A @)" = A(@)|l2 + [A(z) — Awo)|l2 < €

for all 2 € Bj(x0). Therefore, we see that lim, ., A(z)"? = A(z0)¥7.

Finally, it follows from the triangle inequality that
IF(2) = F(z0)ll2 < [[F(2) 0 — F(a0) “CD |y + || F () 2P|y + || (2) 2Dy

A

IN

q/
> M@) Vi) = Mao) 'V fi(zo)|| + [VR(z) = VR(@o)||2 + | F () EHP |5
i=1 )
where, as x — x¢, the first term vanishes by the convergence of )\(x)lzq/ and the continuity of each

V fi(z), the second term converges to 0 by the continuity of VR(z) and the third term vanishes
by (54). Therefore, we conclude that

lim F(z) = F(xo),

Tr—rT0o
that is, F' is continuous.
O]

Lemma D.13. For any initialization xo € I, the Riemmanian Gradient Flow (17) (or equivalently,
(46)) is defined on [0, 00).

Proof of Lemma D.13. 1f the Riemannian gradient flow had stopped in finite time, we must have
ut = 0O or v = 0 for some j € [d] by Lemma D.11. Therefore, we only need to prove that all

s and vt ’s are bounded away from 0 in finite time. Now, fix some j € [d], and we assume that
Uo”o > 0 without loss of generality. It then suffices to show that u{ vf > 0 forall ¢t € (0,00). By the
definition of the projected gradient flow in (17), we have

d T (9.17t
(il = (“ € “teﬂ) ot

j
?
= (vfeJT uie})F(xt)

By the expression of F(z;) = VR(z¢) + >y M)V fi(+), we then have

24 Z/\ x)" ] utvt lz Z)\ ) ut”i

1=1 =1

d . .
&(uivg) [

-- (zw)

M:

i=1
Denote s; = Z?Zl(zf)z In either the Boolean or Gaussian case, we have s; € (0,00) with
probability 1. Therefore, it follows that ujv] = ulvle*i* > 0 for all ¢t € (0, 0c0). This finishes the
proof. O
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Before showing that F’ satisfies the PL condition, we need the following two intermediate results.
Given two points u and v in R?, we say u weakly dominate v (written as u < v) if and only if
ut < of, forall i € [d]. Given two subsets A and B of RP, we say A weakly dominates B if and
only if for any point v in B, there exists a point w € A such that u < v.

Lemma D.14. For some q € [D), let S be any q-dimensional subspace of RP and P = {u € RP |
u® > 0,Vi € [D]}. Let u, be an arbitrary point in P and Q = P N (u, + S). Then there exists a
radius v > 0, such that BL(0) N Q weakly dominates Q, where B}-(0) is the £1-norm ball of radius r
centered at (.

As a direct implication, for any continuous function f : P — R, which is coordinate-wise non-
decreasing, mingcy f(x) can always be achieved.

Proof of Lemma D.14. We will prove by induction on the environment dimension D. For the base
case of D = 1, either S = {0} or S = R, and it is straight-forward to verify the desired for both
scenarios.

Suppose the proposition holds for D — 1, below we show it holds for D. For each ¢ € [D], we apply
the proposition with D — 1to Q N {u € P | u’ = 0} (which can be seen as a subset of RP~1), and
let r; be the corresponding ¢; radius. Set r = max;¢(p) 7i, and we show that choosing the radius to
be r suffices.

For any v € @, we take a random direction in .S, denoted by w. If w > 0 or w < 0, we denote by y
the first intersection (i.e., choosing the smallest A) between the line {v — A|w|}r>¢ and the boundary
of U,ie., U2 {z € RP | 2t = 0}. Clearly y < v. By the induction hypothesis, there exists a
u € BL(0) N Q such that u < y. Thus u < v and meets our requirement.

If w has different signs across its coordinates, we take y1, 2 to be the first intersections of the line
{v — Mw|}rer and the boundary of U in directions of A > 0 and A < 0, respectively. Again by
the induction hypothesis, there exist uy, us € B}(O) N @ such that u; < y; and us < yo. Since v
lies in the line connecting u; and usz, there exists some h € [0, 1] such that v = (1 — h)uq + hus.
It then follows that (1 — h)uy + hus < (1 — h)y1 + hys = v. Now since @ is convex, we have
(1 — h)u1 + hug € @, and by the triangle inequality it also holds that || (1 — h)uq + hus||; <7, so
(1 — h)uy + huy € BL(0) N Q. Therefore, we conclude that B} (0) N Q weakly dominates @, and
thus the proposition holds for D. This completes the proof by induction. O

Lemma D.15. For some q € [D), let S be any q-dimensional subspace of RP and P = {u € RP |
u® > 0,Vi € [D]}. Let u, be an arbitrary point in P and Q = P N (uy + S). Then there exists
a constant ¢ € (0, 1] such that for any sufficiently small radius r > 0, ¢ - QQ weakly dominates
PN (uy + S+ B%(0)), where B2(0) is the £2-norm ball of radius r centered at 0.

Proof of Lemma D.15. We will prove by induction on the environment dimension D. For the base
case of D = 1, either S = {0} or S = R. S = R is straight-forward; for the case S = {0}, we just
need to ensure c|u,| < |u,| — r, and it suffices to pick 7 = |u| and ¢ = 0.5.

Suppose the proposition holds for D — 1, below we show it holds for D. For each i € [D], we
first consider the intersection between P N (u, + S + B2(0)) and H; := {u € R? | u; = 0}. Let
u; be an arbitrary pointin P N (uy + S) N H;, then PN (uy + S)NH; = PN (u; + S)NH; =
PN (u; + SN H;). Furthermore, there exists {; };c[p] which only depends on S and satisfies
PN (uy+S+B2(0))NH; € PN(ui+SNH;+B2 ,(0)NH;). Applying the induction hypothesis
to PN (u; +SNH; + B(QX“,(O) N H;), we know there exists a ¢ > 0 such that for sufficiently small 7,
(PN (ux+S)NH;) = (PN (u; +SNH;)) weakly dominates P N (u; +.S N H; + B2 .(0) N H;).

For any point v in ) and any z € B2(0), we take a random direction in S, denoted by w. If w > 0
or w < 0, we denote by y the first intersection between {v + z — Ajw|} x>0 and the boundary of U.
Clearly y < v. Since y € PN (u, + 5+ B2(0)) N H; C PN (u; + SN H; + B2 .(0) N H;), by
the induction hypothesis, there exists a u € ¢(P N (uy + S) N H;) such that u < y. Thus 2 < v + 2
and z € ¢(P N (ux + 5)) = cQ.

If w has different signs across its coordinates, we take y1, 2 to be the first intersections of the line
{v 4+ z — Mw]|}rer and the boundary of U in directions of A > 0 and A < 0, respectively. By the
induction hypothesis, there exist uy,us € ¢ - @ such that u; < y; and us < yo. Since v + z lies
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in the line connecting u; and us, there exists some h € [0, 1] such that v + z = (1 — h)y; + hys.
It then follows that (1 — h)u; + hus < (1 — h)y1 + hys = v + z. Since Q is convex, we have
(1—h)uy + hus € cQ. Therefore, we conclude that cQ N Q weakly dominates P N (u, + S + B2(0))
for all sufficiently small r, and thus the proposition holds for D. This completes the proof by
induction.

O

Lemma D.16. (Polyak-Eojasiewicz condition for F.) For any x, such that L(z,) = 0, i.e., v, € T,
there exist a neighbourhood U’ of . and a constant ¢ > 0, such that ||F(x)||§ > ¢ -max(R(z) —

R(x.),0) forall z € U’ NT. Note this requirement is only non-trivial when ||F(z.)||, = 0 since F'
is continuous.

Proof of Lemma D.16. 1t suffices to show the PL condition for {z | F'(z) = 0}. We need to show
for any z,. satisfying F'(z..) = 0, there exist some € > 0 and C' > 0, such that for all z € T N B2(z..)
with R(z) > R(x.), it holds that || F(z)||> > C(R(z) — R(x.)).

Case I. We first prove the case where z = (Z) itself is a canonical parametrization of w =
u®? —v®2 ie., ulv? = 0 forall j € [d]. Since z, satisfies VF (z,) = 0, by Lemma D.11, we have
x, = (w.) where w, = u®? — v®2, In this case, we can rewrite both R and F as functions of

*

w € RY. In detail, we define R'(w) = R(¢(w)) and F'(w) = F((w)) for all w € R%. For any w
in a sufficiently small neighbourhood of w,, it holds that sign(w?) = sign(w?) for all j € [q]. Below
we show that for each possible sign pattern of w(9T1):?, there exists some constant C' which admits
the PL condition in the corresponding orthant. Then we take the minimum of all C' from different

orthant and the proof is completed. W.L.O.G., we assume that w’ > 0, forall j = ¢+ 1...,d.
We temporarily reorder the coordinates as x = (u',v',u?,v2,... u?,v4)T. Recall that Z =

[21,...,2,] " is a n-by-d matrix, and we have

2 . .
IF"(w)ll; = min ((a — sign(w) © ZTN2 Jwl),

where a = % 21;1 ZZQQ € R%. Since F(x,) = 0, there must exist \, € R", such that the first 2¢
coordinates of VR(x.) + i ALV f;(x.) are equal to 0. As argued in the proof of Lemma D.12,
we can assume the first ¢’ rows of Z are linear independent on the first g coordinates for some ¢’ € [g].

In other words, Z can be written as {ZOA gﬁ } where Z 4 € RY X4 We further denote A= )\1:‘1/,

’ . . . .
Ao = A HTD7 g = 1 and wy 1= w41 for convenience, then we have

1E" ()5 = ,\Hel%@ ((ar + sign(w1) © Z3 M), |wi]) + ((a2 + ZEM + Zpre) % wa) . (57)

Since every w in T is a global minimizer, R’ (w) = R'(w) + > 1 Ai(z] w — y;) := ¢ w, where
g = sign(w) ® a + Z " \,. Similarly we define g; := g"*? and g, := ¢g(97D¢, It holds that g; = 0
and we assume Zpgs = 0 without loss of generality, because this can always be done by picking
suitable A% fori =¢ +1,...,n.

We denote A\; — .1 by A\, then since 0 = g1 = sign(wy) ® a1 + Z] A« 1, we further have
(a1 +sign(wi) © Z3 A1), Jun]) = ((a1 + sign(w1) © Z4 A1 +sign(wr) © Z1AN)?, Jw)
= <(blgn(w1) ® ZXAAl)QQ, |w1|> .

On the other hand, we have g2 = sign(ws) ® az + Z5 A1+ ZpAeo = as + ZE A1 + Z) A 2 by
the assumption that each coordinate of w, is non-negative. Combining this with the above identity,
we can rewrite Equation (57) as:

HF/(U’)H; = /\Ig%% <(ZXA)\1)®2’ lwil) + (g2 + ZEAM + Zg)\2)®2,w2> . (58)

Now suppose R’ (w) — R/ (w) = g5 wo = J for some sufficiently small § (which can be controlled
by €). We will proceed in the following two cases separately.
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e Case L1: |[A)\ |, = Q(V/§). Since Z4 has full row rank and every coordinate of wy is
non-zero, the first term of Equation (58) is 2(§) = Q(R'(w) — R'(w.)).
o CaseL2: [|[A) |, = O(V9). Letu = go+Z L AN +Z ) Ao, then we have u € S—l—Bg\/S(O)

for some constant ¢ > 0, where S = {ga + Z X2 | A2 € R”’ql}. By Lemma D.14, there
exists some constant ¢y > 1, such that % - S weakly dominates S + Bg \/3(0). Thus we

have ||F'(w)||? > inf 2 u®2, wy) > inf, . 1 g (592w ), where the last ste
2 ue€S+B? ,(0) ueL.s p
cVé €0
is because each coordinate of ws is non-negative.

Let A be the orthogonal complement of span(Zp, g2), we know ws €

5 .
ng + A, sice
2

Zpws = Zpws 2 = 0 and go wy = &. Therefore,

I (w)ll3 . : 5 Wo
el (e 2
w:R' (w)— R (wy)=6>0 R/(’lU) — R’(w*) - wZ:R’(w)jlll%’(w*):5>O ueHCiO.S b 1
1
>—2 inf < ®2,w2>. 59)

Cy wa € |2 go+Aw2>0,ueS

Note (u®?,ws) is a monotone non-decreasing function in the first joint orthant, i.e.,

{(u,w3) € R x R4 | 4 > 0,wy > 0}, thus by Lemma D.15 the infinimum can
be achieved by some finite (u, ws) in the joint first orthant. Applying the same argument to
each other orthant of u € R?, we conclude that the right-hand—side of (59) can be achieved.

T

On the other hand, we have v' ws = § > 0 for all wy € T ”2g2 + Aand u € S, by

Zpge = 0 and the definition of A. This implies there exists at least one i € [d — ¢/]
such that wéui > 0, which further implies <u®2, w2> > (0. Therefore, we conclude that

IF (w)ll3 = (R (w) — R (w)).

Case II.  Next, for any general z = (%), we define w = u®? — v®% and m = min{u®?,v®%},
where min is taken coordinate-wise. Then we can rewrite || F'(z)]|3 as

ST 2
2 . a A U
|F@)3 = min ( +[7] A)@M
- = - - @2
: a Z u®?
:,{Ielﬁ@ri (_a |y /\> ® U@2:|
P PARS m
— : ©2
=it | (] + [ o (o [3])
(G

P PARS
min (a + | 5 )\) O Y(w)®?

1

(B [%) oL

([+ 12 =l

v

AER™

1

2

+ min
AER™

= min <_Z + __ZZ_ )x) O P(w)

AcR™

2 2

IF(2)l5 > C(R(¥(w)) — R(¥(w.)) + min

Then applying the result for the previous case yields the following for some constant C' € (0, 1):
AER”

(- 1% - 1L
C(R($(w)) = R(x.) + 2 (a®,m)

C(R(Y(w)) — R(wy) + 2 nelhlﬁ a; {a, m)

2

C(R(y(w)) — R(z.) + fre% ai(R(z) — R($(w)))

c, mmaz} R(z) - R(x.)),
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where the first equality follows from the fact that . = ¢(w,) and the last inequality is due to the
fact that both R(¢)(w) — R(¢(w,)) and R(x) — R(y(w)) are non-negative. This completes the
proof. O

Now, based on the PL condition, we can show that (17) indeed converges.

Lemma D.17. The trajectory of the flow defined in (17) has finite length, i.e., ft 0 || 7 ll2dt < oo
Sor any xy € T. Moreover, x; converges to some ., whent — 0o with F(zs) = 0.

Proof of Lemma D.17. Note that along the Riemannian gradient flow, R(x;) is non-increasing, thus
||z¢]|, is bounded over time and {z; }+>¢ has at least one limit point, which we will call z,.. Therefore,
R(x,) is a limit point of R(z;), and again since R(z;) is non-increasing, it follows that R(z;) >
R(z,) and lim;_, o, R(z;) = R(z,). Below we will show lim;_, oo z; = ..

Note that deft) = (VR(z), % = —(VR(x:), F(zt)) = — ||F(:c,)||§ where the last inequality
applies Lemma D.10. By Lemma D.16, there exists a neighbourhood of ., U’, in which PL
condition holds of F'. Since z, is a limit point, there exists a time T}, such that z7, € U. Let 11 =
infy>7, {z(t) ¢ U'} (which is equal to oo if z:(t) € U’ for all ¢ > T). Since x; is continuous in ¢ and
U is open, we know T} > Ty and for all ¢ € [Ty, Ty), we have ||F(x)||, > ve(R(x:) — R(z.))'/2.

Thus it holds that for ¢ € [Ty, T1),

d(R(z) — R(z.))
dt

< —Ve(R(z:) — R(@.)? |F ()l
that is,

d(R(z¢) — R(z.))"/?
dt

Je

< 5 1 (2¢)]]5 -

Therefore, we have

T,
F(zy)|,dt < —=(R(z1,) — R(x4)). (60)
S, WF @l dt < 5 7 (RGn) - R)
Thus if we pick Tj such that R(xr,) — R(z.) is sufficiently small, R(7}) will remain in U, which
implies that 77 cannot be finite and has to be co. Therefore, Equation (60) shows that the trajectory

of x4 is of finite length, s0 xo, = lim;_, o, ; exists and is equal to z... As a by-product, F'(z,) must
be 0. O]

Finally, collecting all the above lemmas, we are able to prove Lemma 6.5.

Lemma 6.5. Let {z,};>0 C RP be generated by the flow defined in (17) with any initialization
xg € . Then xo, = limy_, oo x4 exists. Moreover, xo, = T is the optimal solution of (18).

Uoco
Voo

Proof of Lemma 6.5. We will prove by contradiction. Suppose zo, = (

the optimal solution to (18). Denote w; = U?Z 2 then was, = limy_, o w; is not the optimal

solution to (36). Thus we have R(wt) > R(wy). Wlthout loss of generallty, suppose there is some
q € [d] such that (u%_)*+ (v: )? > Oforalli =1,...,qand u’, = v’ =O0foralli =q+1,...,d.
Again, as argued in the proof of Lemma D.12, we can assume that, for some ¢’ € [q],

) = lim;_,oo ¢ 18 NOt

{zilzq}ie[q/] is linearly independent and z}:q =0foralli=¢ +1,...,n. (61)
Since both w, and w, satisfy the constraint that Zw., = Zw, =Y, we further have

0= (2, woo) = (zi,ws) = (21 W@V foralli=g' +1,....n. (62)

Consider a potential function ¢ : U — R defined as

d

o(z) = p(u,v) = 42 w! [In(w?)*1{w! > 0} — In(v?)*1{w! < 0}].

37



Under review as a conference paper at ICLR 2022

Clearly lim; o p(x¢) = —o00 if limy oo T = Zoo. Below we will show contradiction if z is
suboptimal. Consider the dynamics of ¢(z) along the Riemannian gradient flow:

) = (Vead, Gt ) = = (Velwn). Flan) (63)

where F' is defined previously in Lemma D.10. Recall the definition of F', and we have

n

(Ve(zy), F(x)) = <V80(33t)7 VR(z) + Z /\(xt)ivfi(xt)> + <V<P($t)7 > )\(xt)ivfi(ft)> :

i=q’'+1

Il I2
(64)

To show (Vp(x¢), F(z,)) < 0, we analyze Z; and T, separately. By the definition of (), we have

d j wi
V(z) = Z 2w?! l]l{w* > 0} ej — I{ws < 0y ~6D+J"|

u’ V7
Jj=q+1

where e; is the j-th canonical base of R?. Recall that V f;(z) = (9" ), and we further have

Zj,@’U 4
n d i i
i | {wl > 0} 1{wl < 0}
IQ = Z )\(l't) Z 21111 T<€j, 2; © U> + T<€j7 2; © ’U>
i=q/+1 j=q+1
- 1{w! 1{w! -
=Y A Z - l {w] >0} dui t {w j<0}z{1ﬂ1
i=q'+1 j=q+1 v
n d ) n
= 3 e Y wik = Ay (20D qplat iy — (65)
i=q'+1 Jj=q+1 1=q'+1

where the last equality follows from (62).

Next, we show that Z; < 0 by utilizing the fact that w, — wx is a descent direction of R’(w). For
w € RY, define f;(w) = 2, w and

R(w) = R(w) + Z Mzoo)' (fi(w) = yi).

Clearly, for any w € RP satisfying Zw = Y, it holds that fl( ) —y; = 0 for each i € [n], and
thus R(w) = R(w). In particular, we have R(ws) = R(w ) > R(w.) = R(w,). Since R(w) is a
convex function, it follows that R(wao + 5(w. — wao)) < R(ws) for all sufficiently small s > 0,

which implies ‘iff (Woo + $(wWx — Weo))|s=0 < —2¢ < 0 for some constant ¢ > 0. Note that, for

small enough s > 0, we have
d n
Rlweo + s(w, —wee)) = > (Z(»Zf >2> whe + s(wl —wl)|
=2 <Z<z2>2> sign(wl) (wh + s(wl — wl,))
d n ] 4
-3 (S st
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Therefore, we can compute the derivative with respect to s at s = 0 as

—2c > @(woo + s(wy — W)

q n d n
=2 (Z(ZW) sign(wh) (w] —wh) + 3 (Z(zg'ﬁ) jw?

dt s=0  j=1 \i=1 J=q+1 \i=1
q/
37 Mawo)'z] (ws — wl)
=1
q n ] ) ) d n . )
-3 (S0 sttt )+ 3 (300
j=1 \i=1 j=q+1 \i=1
q q o d q
DICELE) RUNEED WD RISE:
j=1 i=1 Jj=q+1 i=1
(66)
where the second equality follows from the fact that wé‘éﬂ):d = 0. Since x; converges to T, We
must have F'(z) = 0, which implies that for each j € {1,...,q},
= a—R(x )+ qZ)\(x )l%(l' ) =2ul_ - i(zj)2 + qZ)\(:v )iz
Oul i=1 T ow T ~ i=1 ' i=1 R
:a—R(:E )—i—qZ)\(:E )l%(x ) = 2v] i(z])z—i)\(x )2l
vl - i=1 ~ vl ~ ~ i=1 ' i=1 - '
Combining the above two equalities yields
n . . q’ . -
Z(zf)z = —sign(wl,) Z Mzoo)'z!, forall j € [q].
i=1 i=1
Apply the above identity together with (66), and we obtain
W MR R WUNERSD ol O Ela [
j=1 i=1 j=q+1 \i=1
q/ ‘ - d q/
+ D (wl —wl) D AMweo)'e] + Y wl Aweo)'4]
J=1 =1 J=q+1 =1
d no 4 d o .
SN CH I S5 S ENE @
Jj=gq+1 \i=1 Jj=q+1 i=1
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On the other hand, by directly evaluating VR (z;) and each V f;(x;), we can compute Z; as

d i i n

wil{wl >0
n-zy HHEZD Yy +2mzut
J=q+1 Ui i=1
d w*]l{w* <0} |, o i ;
2y WSO IS S ) ed

Jj=q+1 i=1 i=1

v}
d n
_22 (Z >|w]+22w32)\xt z
Jj=g+1 \i=1 j=q+1 i=1
d n
(o)
q+1

=1

d q _
[wl] + 2 Z w? Z Mzoo)'2]
J Jj=q+1 i=1

q

+2 Z wiz AMzoo)') 2.

Jj=q+1 =1

We already know that )\(x)lzq' is continuous at x, by the proof of Lemma D.12, so the third term
converges to 0 as z; tends to x~,. Now, applying (67), we immediately see that there exists some
d > O such that Z; < —c for 2; € Bs(%s). As we have shown in the above that Z, = 0, it then
follows from (63) and (64) that

dy
dt a®

Since lim;_, o, T = oo, there exists some 7' > 0 such that x; € Bs(z) for all ¢ > T. By the
proof ofLemma D.13, we know that p(z7) > —oo, then it follows from (68) that

¢) > ¢, forallz; € Bs(2oo). (68)

tim (o) = olor)+ [ Bt o)+ [ et =
t—o0 T dt T
which is a contradiction. This finishes the proof. O

D.6 PROOF OF THEOREM 6.7

Here we present the lower bound on the sample complexity of GD in the kernel regime.

Theorem 6.7. Assume z1,..., 2%, Hid N(0,1,) and y; = w, z;, for all i € [n]. Define the loss
with linearized model as L(x) = Y1, (fi(zo) + (V fi(wo),x — x0) — y;)% where x = (1) and

uo

To = (UU) = oz(il). Then for any ground truth w., any learning rate schedule {n; };>1, and any fixed

number of steps T, the expected {3 loss of xr is at least (1 — %) |lw. g where T is the T-th iterate

of GDon L, i.e., x411 = xy — 'V L(xy), forall t > 0.

Proof of Theorem 6.7. We first simplify the loss function by substituting ' = x — xg, so correspond-
ingly =, = 0 and we consider L'(2’) := L(z) = ((V fi(z0), ") — y;)?. We can think as if GD is
performed on L’ (2’). For simplicity, we still use the 2z and L(x) notation in below.

In order to show test loss lower bound against a single fixed target function, we must take the
properties of the algorithm into account. The proof is based on the observation that GD is rotationally
equivariant (Ng, 2004; Li et al., 2020c) as an iterative algorithm, i.e., if one rotates the entire data
distribution (including both the training and test data), the expected loss of the learned function
remains the same. Since the data distribution and initialization are invariant under any rotation, it
means the expected loss of x7 with ground truth being w. is the same as the case where the ground
truth is uniformly randomly sampled from all vectors of £5-norm ||w,||,.

Thus the test loss of x7 is

E. [(V£(20) o7) = (z:w)?] = E. (w2 = (ur = vr))’] = llw. = (ur = vr)l3. (©9)
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Note zr € span{V f,(zo)}, which is at most an n-dimensional space spanned by the gradients
of model output at x, so is uyr — vy. We denote the corresponding space for up — vy by S, so
dim(S) < n and it holds that ||w, — (ur — UT)H; > ||(Ip — Ps)w*H;, where Pg is projection
matrix onto space S.

The expected test loss is lower bounded by
Eu. [Ex, [llw. = (ur = vr)l3]| = B, [Ew. [llws = (ur = vr)I3]]

> minE,, [[[(Ip — Psyur|2]

n 2
> (1= 2) flw i3
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