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A PRELIMINARIES ON STOCHASTIC PROCESSES

In this section we review a few basics of stochastic processes that will be useful for proving our
results, so that our paper will be self-contained. We refer the reader to classics like Karatzas & Shreve
(2014); Billingsley (2013); Pollard (2012) for more systematic derivations.

Throughout this section, let E be a Banach space equipped with norm ‖ · ‖, e.g., (R, | · |) and
(RD, ‖ · ‖2).

A.1 CADLAG FUNCTION AND METRIC

Definition A.1 (Cadlag function). Let T ∈ [0,∞]. A function g : [0, T ) → E is cadlag if for all
t ∈ [0, T ) it is right-continuous at t and its left limit g(t−) exists. Let DE [0, T ) be the set of all
cadlag function mapping [0, T ) into E .
Definition A.2 (Continuity modulus). For any function f : [0,∞)→ E and any interval I ⊆ [0,∞),
we define

ω(f ; I) = sup
s,t∈I

‖f(s)− f(t)‖.

For any N ∈ N and θ > 0, we further define the continuity modulus of continuous f as

ωN (f, θ) = sup
0≤t≤t+θ≤N

{ω(f ; [t, t+ θ])}.

Moreover, the continuity modulus of cadlag f ∈ DE [0,∞) is defined as

ω′N (f, θ) = inf

{
max
i≤r

ω(f ; [ti−1, ti) : 0 ≤ t0 < · · · < tr = N, inf
i<r

(ti − ti−1) ≥ θ
}
.

Definition A.3 (Jump). For any g ∈ DE [0, T ), we define the jump of g at t to be

∆g(t) = g(t)− g(t−).

For any δ > 0, we define hδ : [0,∞)→ [0,∞) by

hδ(r) =

{
0 if r ≤ δ
1− δ/r if r ≥ δ .

We then further define Jδ : DRD [0,∞)→ DRD [0,∞) (Katzenberger, 1991) as

Jδ(g)(t) =
∑

0<s≤t

hδ(‖∆g(s)‖)∆g(s). (19)

Definition A.4 (Skorohod metric on DE [0,∞)). For each finite T > 0 and each pair of functions
f, g ∈ DE [0,∞), define dT (f, g) as the infimum of all those values of δ for which there exist grids
0 ≤ t0 < t1 < · · · < tm and 0 < s0 < s1 < · · · < · · · < sm, with tk, sk ≥ T , such that
|ti − si| ≤ δ for i = 0, . . . , k, and

‖f(t)− g(s)‖ ≤ δ if (t, s) ∈ [ti, ti+1)× [si, si+1)

for i = 0, . . . , k − 1. The Skorohod metric on DE [0,∞) is defined to be

d(f, g) =

∞∑
T=1

2−T min{1, dT (f, g)}.

A.2 STOCHASTIC PROCESSES AND STOCHASTIC INTEGRAL

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space.
Definition A.5 (Cross variation). Let X and Y be two {Ft}t≥0-adapted stochastic processes such
that X has sample paths in DRD×e [0,∞) and Y has samples paths in DRe [0,∞), then the cross
variation of X and Y on (0, t], denoted by [X,Y ](t), is defined to be the limit of

m−1∑
i=0

(X(ti+1)−X(ti))(Y (ti+1)− Y (ti))
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in probability as the mesh size of 0 = t0 < t1 < · · · < tm = t goes to 0, if it exists. Moreover, for Y
itself, we write

[Y ] =

e∑
i=1

[Y i, Y i]

Definition A.6 (Martingale). Let {X(t)}t≥0 be a {Ft}t≥0-adapted stochastic process. If for all
0 ≤ s ≤ t, it holds that

E[X(t) | Fs] = X(s),

then X is called a martingale.
Definition A.7 (Semimartingale). Let {X(t)}t≥0 be a {Ft}t≥0-adapted stochastic process. If there
exists a sequence of {Ft}t≥0-stopping time, {τk}k≥0, such that

• P[τk < τk+1] = 1, P[limk→∞ τk =∞] = 1,

• and {Xτk(t)}t≥0 is a {Ft}t≥0-adapted martingale,

then X is called a semimartingale.
Lemma A.8 (Itô’s Lemma). Let {X(t)}t≥0 be defined through the following Itô drift-diffusion
process:

dX(t) = µ(t)dt+ σ(t)dW (t).

where {W (t)}t≥0 is the standard Brownian motion. Then for any twice differentiable function f , it
holds that

df(t,X(t)) =

(
∂f

∂t
+ (∇xf)>µt +

1

2
tr[σ>∇2

xfσ]

)
dt+ (∇xf)>σ(t)dW (t).

A.3 WEAK CONVERGENCE FOR STOCHASTIC PROCESSES

Let (DE [0,∞),A, d) be a metric space equipped with a σ-algebraA and the Skorohod metric defined
in the previous subsection.

Let {Xn}n≥0 be a sequence of stochastic processes on a sequence of probability spaces
{(Ωn,Fn,Pn)}n≥0 such that each Xn has sample paths in DE [0,∞). Also, let X be a stochastic
process on (Ω,F ,P) with sample paths on DE [0,∞).
Definition A.9 (Weak convergence). A sequence of stochastic process{Xn}n≥0 is said to converge
in distribution or weakly converge to X (written as Xn ⇒ X) if and only if for all A-measurable,
bounded, and continuous function f : DE [0,∞)→ R, it holds that

lim
n→∞

E [f(Xn)] = E [f(X)] . (20)

Though we define weak convergence for a countable sequence of stochastic processes, but it is still
valid if we index the stochastic processes by real numbers, e.g., {Xη}η≥0, and consider the weak
convergence of Xη as η → 0. This is because the convergence in (20) is for a sequence of real
numbers, which is also well-defined if we replace limn→∞ by limη→0.
Definition A.10 (δ-Prohorov distance). Let δ > 0. For any two probability measures P and Q on a
metric space with metric d, let (X,Y ) be a coupling such that P is the marginalized law of X and Q
that of Y . We define

ρδ(P,Q) = inf{ε > 0 : ∃(X,Y ),P[d(X,Y ) ≥ ε] ≤ δ}.

Note this distance is not a metric because it does not satisfy triangle inequality.
Definition A.11 (Prohorov metric). For any two probability measures P and Q on a metric space
with metric d, let (X,Y ) be a coupling such that P is the marginalized law of X and Q that of Y .
Denote the marginal laws of X and Y by L(X) and L(Y ) respectively. We define the Prohorov
metric as

ρ(P,Q) = inf{ε > 0 : ∃(X,Y ),L(X) = P,L(Y ) = Q,P[d(X,Y ) ≥ ε] ≤ ε}.
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It can be shown that Xn ⇒ X is equivalent to limn→∞ ρ(Xn, X) = 0.

Theorem A.12 (Skorohod Representation Theorem). Suppose Pn, n = 1, 2, . . . and P are proba-
bility measures on E such that Pn ⇒ P . Then there is a probability space (Ω,F ,P) on which are
defined E-valued random variables Xn, n = 1, 2, . . . and X with distributions Pn and P respectively,
such that limn→∞Xn = X a.s.

B LIMITING DIFFUSION OF SGD

In this section, we give a complete derivation of the limiting diffusion of SGD. Here we use⇒ to
denote the convergence in distribution. For any U ⊆ RD, we denote by Ů its interior and U⊥ its
orthogonal complement.

First, as mentioned in Assumption 3.2, we verify that the mapping Φ is C2.

Lemma B.1 (Implication of Falconer (1983)). Under Assumption 3.2, Φ is C2 on U .

Proof of Lemma B.1. Applying Theorem 5.1 of Falconer (1983) with f(·) = φ(·, 1) suffices.

Then we check the necessary conditions for applying the results in Katzenberger (1991) in Ap-
pendix B.1 and recap the corresponding theorem for the asymptotically continuous case in Ap-
pendix B.2. Finally, we provide a user-friendly interface for Katzenberger’s theorem in Appendix B.3.

B.1 NECESSARY CONDITIONS

Below we collect the necessary conditions imposed on {Zn}n≥1 and {An}n≥1 in Katzenberger
(1991).

Condition B.2. The integrator sequence {An}n≥1 is asymptotically continuous: sup
t>0
|An(t) −

An(t−)| ⇒ 0 where An(t−) = lims→t−An(s) is the left limit of An at t.

Condition B.3. The integrator sequence {An}n≥1 increases infinitely fast: ∀ε > 0, inf
t≥0

(An(t+ ε)−

An(t))⇒∞.

Condition B.4 (Eq.(5.1), Katzenberger 1991). For every T > 0, as n→∞, it holds that

sup
0<t≤T∧λn(K)

‖∆Zn(t)‖2 ⇒ 0.

Condition B.5 (Condition 4.2, Katzenberger 1991). For each n ≥ 1, let Yn be a {Fnt }-
semimartingale with sample paths in DRD [0,∞). Assume that for some δ > 0 (allowing δ =∞) and
every n ≥ 1 there exist stopping times {τmn | m ≥ 1} and a decomposition of Yn − Jδ(Yn)
into a local martingale Mn plus a finite variation process Fn such that P[τmn ≤ m] ≤ 1/m,
{[Mn](t ∧ τmn ) + Tt∧τmn (Fn)}n≥1 is uniformly integrable for every t ≥ 0 and m ≥ 1, and

lim
γ→0

lim sup
n→∞

P
[

sup
0≤t≤T

(Tt+γ(Fn)− Tt(Fn)) > ε

]
= 0,

for every ε > 0 and T > 0, where Tt(·) denotes total variation on the interval [0, t].

Lemma B.6. For SGD iterates defined using the notation in Lemma 4.2, the sequences {An}n≥1

and {Zn}n≥1 satisfy Condition B.2, B.3, B.4 and B.5.

Proof of Lemma B.6. Condition B.2 is obvious from the definition of {An}n≥1.

Next, for any ε > 0 and t ∈ [0, T ], we have

An(t+ ε)−An(t) = ηn ·
⌊
t+ ε

η2
n

⌋
− ηn ·

⌊
t

η2
n

⌋
≥ t+ ε− η2

n

ηn
− t

ηn
=
ε− η2

n

ηn
,

which implies that inf0≤t≤T (An(t + ε) − An(t)) > ε/(2ηn) for small enough ηn. Then taking
n→∞ yields the Condition B.3.
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For Condition B.4, note that

∆Zn(t) =

{
ηn(1ξk − 1

|Ξ|1) if t = k · η2
n,

0 otherwise.

Therefore, we have ‖∆Zn(t)‖2 ≤ 2ηn for all t > 0. This implies that ‖∆Zn(t)‖2 → 0 uniformly
over t > 0 as n→∞, which verifies Condition B.4.

We proceed to verify Condition B.5. By the definition of Zn, we know that {Zn(t)}t≥0 is a
jump process with independent increments and thus is a martingale. Therefore, by decomposing
Zn = Mn + Fn with Mn being a local martingale and Fn a finite variation process, we must have
Fn = 0 and Mn is Zn itself. It then suffices to show that [Mn](t ∧ τmn ) is uniformly integrable for
every t ≥ 0 and m ≥ 1. Since Mn is a pure jump process, we have

[Mn](t ∧ τmn ) =
∑

0<s≤t∧τmn

‖∆Mn(s)‖22 ≤
∑

0<s≤t

‖∆Mn(s)‖22

=

bt/η2
nc∑

k=1

∥∥∥∥ηn1ξk − ηn
|Ξ|

1

∥∥∥∥2

2

≤ 4

bt/η2
nc∑

k=1

η2
n ≤ |Ξ|t.

This implies that [Mη](t ∧ τmη ) is universally bounded by 4t, and thus [Mη](t ∧ τmη ) is uniformly
integrable. This completes the proof.

Proof of Lemma 4.2. For any n ≥ 1, it suffices to show that given Xn(kη2
n) = xηn(k), we further

have Xn((k + 1)η2
n) = xηn(k + 1). By the definition of Xn(t), we have

Xn((k + 1)η2
n)−Xn(kη2

n)

=−
∫ (k+1)η2

n

kη2
n

∇L(Xn(t))dAn(t) +

∫ (k+1)η2
n

kη2
n

σ(Xn(t))dZn(t)

=−∇L(Xn(kη2
n))(An((k + 1)η2

n)−An(kη2
n)) + σ(Xn(kη2

n))(Zn((k + 1)η2
n)− Zn(kη2

n))

=− ηn∇L(Xn(kη2
n)) + ηnεξk(Xn(kη2

n))

=− ηn∇L(xηn(k)) + ηnεξk(xηn(k)) = xηn(k + 1)− xηn(k)

where the second equality is because An(t) and Zn(t) are constant on interval [kη2
n, (k+ 1)η2

n). This
confirms the alignment between {Xn(kη2

n)}k≥1 and {xηn(k)}k≥1.

For the second claim, note that σ(x)EZn(t) ≡ 0 for all x ∈ RD, t ≥ 0 (since the noise has zero-
expectation) and that {Zn(t)− EZn(t)}t≥0 will converge in distribution to a Brownian motion by
the classic functional central limit theorem (see, for example, Theorem 4.3.5 in Whitt (2002)). Thus,
the limiting diffusion of Xn as n→∞ can be obtained by substituting Z with the standard Brownian
motion W in (22). This completes the proof.

B.2 KATZENBERGER’S THEOREM FOR ASYMPTOTICALLY CONTINUOUS CASE

The full Katzenberger’s theorem deals with a more general case, which only requires the sequence of
intergrators to be asymptotically continuous, thus including SDE (3) and SGD (1) with η goes to 0.

To describe the results in Katzenberger (1991), we first introduce some definitions. For each n ≥ 1, let
(Ωn,Fn, {Fnt }t≥0,P) be a filtered probability space, Zn an Re-valued cadlag {Fnt }-semimartingale
with Zn(0) = 0 and An a real-valued cadlag {Fnt }-adapted nondecreasing process with An(0) = 0.
Let σn : U →M(D, e) be continuous with σn → σ uniformly on compact subsets of U . Let Xn be
an RD-valued cadlag {Fnt }-semimartingale satisfying, for all compact K ⊂ U ,

Xn(t) = X(0) +

∫ t

0

σ(Xn)dZn +

∫ t

0

−∇L(Xn)dAn (21)

for all t ≤ λn(K) where λn(K) = inf{t ≥ 0 | Xn(t−) /∈ K̊ or Xn(t) /∈ K̊} is the stopping time
of Xn leaving K.
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Theorem B.7 (Theorem 6.3, Katzenberger 1991). Suppose X(0) ∈ U , Assumptions 3.1 and 3.2,
Condition B.2, B.3, B.4 and B.5 hold. For any compact K ⊂ U , define µn(K) = inf{t ≥ 0 |
Yn(t−) /∈ K̊ or Yn(t) /∈ K̊}, then the sequence {(Y µn(K)

n , Z
µn(K)
n , µn(K)} is relatively compact

in DRD×e [0,∞)× [0,∞). If (Y,Z, µ) is a limit point of this sequence, then (Y, Z) is a continuous
semimartingale, Y (t) ∈ Γ for every t ≥ 0 a.s., µ ≥ inf{t ≥ 0 | Y (t) /∈ K̊} a.s. and Y (t) admits

Y (t) = Y (0) +

∫ t∧µ

0

∂Φ(Y (s))σ(Y (s))dZ(s)

+
1

2

D∑
i,j=1

e∑
k,l=1

∫ t∧µ

0

∂i,jΦ(Y (s))σ(Y (s))ikσ(Y (s))jld[Zk, Zl](s). (22)

B.3 A USER-FRIENDLY INTERFACE FOR KATZENBERGER’S THEOREM

Based on the Lemma B.6, we can immediately apply Theorem B.7 to obtain the following limiting
diffusion of SGD.
Theorem B.8. Let the manifold Γ and its open neighborhood U be as defined in (15). Let K ⊂ U
be any compact set and fix some x0 ∈ K. Consider the SGD formulated in Lemma 4.2 where
Xn(0) ≡ x0. Define

Yn(t) = Xn(t)− φ(Xn(0), An(t)) + Φ(Xn(0))

and µn(K) = min{t ∈ N | Yn(t) /∈ K̊}. Then the sequence {(Y µn(K)
n , Zn, µn(K))}n≥1 is

relatively compact in DRD×Rn [0,∞)× [0,∞]. Moreover, if (Y,Z, µ) is a limit point of this sequence,
it holds that Y (t) ∈ Γ a.s for all t ≥ 0, µ ≥ inf{t ≥ 0 | Y (t) /∈ K̊} and Y (t) admits

dY (t) = ∂Φ(Y (t))σ(Y (t))dW (t) +
1

2

∑
i,j

∂ijΦ(Y (t))(σ(Y (t))σ(Y (t))>)ijdt (23)

where {W (t)}t≥0 is the standard Brownian motion and σ(·) is as defined in Lemma 4.2.

However, the above theorem is hard to parse and cannot be directly applied if we want to fur-
ther study the implicit bias of SGD through this limiting diffusion. Therefore, we develop a
user-friendly interface to it in below. In particular, Theorem 4.6 is the a special case of Theo-
rem B.9. In Theorem 4.6, we replace ∂Φ(Y (t))σ(Y (t)) to Σ

1
2

‖ (Y (t)) to simplify the equation,

since ∂Φ(Y (t))σ(Y (t)) (∂Φ(Y (t))σ(Y (t)))
>

= Σ‖(Y (t)) and thus this change doesn’t affect the
distribution of the sample paths of the solution.

Since σ(·) is locally Lipschitz, when restricted on any compact K ⊂ U , the solution to (23) always
exists and is unique. Let µ(K) = inf{t ≥ 0 | Y (t) /∈ K̊} be the escaping time of the limiting
diffusion Y .
Theorem B.9. Under the same setting as B.8, we change the integer index back to η > 0 with a
slight abuse of notation. For any compact set K ⊆ U and T > 0, let δ = P(µ(K) ≤ T ). Then for
any ε > 0, it holds for all sufficiently small LR η that:

ρ2δ(Y µη(K)∧T
η , Y µ(K)∧T ) ≤ ε. (24)

Moreover, when Y is a global solution of limiting diffusion Equation (23) and Y never leaves U , i.e.
P[∀t ≥ 0, Y (t) ∈ U ] = 1, it holds that Y Tη converges in distribution to Y T as η → 0 for any fixed
T > 0.

Proof of the first claim of Theorem B.9. Let ET be the event such that µ(K) > T on ET . Then
restricted on ET , we have Y (T ∧ µ) = Y (T ∧ µ(K)) as µ ≥ µ(K) holds a.s. We first prove the
claim for any convergent subsequence of η.

Now, let {ηm}m≥1 be a sequence of LRs such that ηm → 0 and Y µηm (K)
ηm ⇒ Y µ as m → ∞.

By applying the Skorohod representation theorem, we can put {Yηm}m≥1 and Y under the same
probability space and Y µηm (K)

ηm → Y µ a.s. in the Skorohod metric, i.e.,

d(Y
µηm (K)
ηm , Y µ)→ 0, a.s.,
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which further implies that for any ε > 0, there exists some N > 0 such that for all m > N

P
[
d(Y

µηm (K)∧T
ηm , Y µ∧T ) ≥ ε

]
≤ δ.

Restricted on ET , we have d(Y
µηm (K)∧T
ηm , Y µ∧T ) = d(Y

µηm (K)∧T
ηm , Y µ(K)∧T ), and it follows that

for all m > N

P
[
d(Y

µηm (K)∧T
ηm , Y µ(K)∧T ) ≥ ε

]
≤ P

[
{d(Y

µηm (K)∧T
ηm , Y µ(K)∧T ) ≥ ε} ∩ ET

]
+ P [EcT ]

= P
[
{d(Y

µηm (K)∧T
ηm , Y µ∧T ) ≥ ε} ∩ ET

]
+ P[EcT ]

≤ P
[
d(Y

µηm (K)∧T
ηm , Y µ∧T ) ≥ ε

]
+ P[EcT ]

≤ 2δ

By the definition of the Prohorov metric in Definition A.11, we then get ρ2δ(Y
µηm (K)
ηm , Y µ(K)∧T ) ≤ ε

for all m > N . Therefore, we have

lim
m→∞

ρ2δ(Y
µηm (K)
ηm , Y µ(K)∧T ) = 0.

Now we claim that it indeed holds that limη→0 ρ
2δ(Y

µη(K)
η , Y µ(K)∧T ) = 0. We prove this

by contradiction. Suppose otherwise, then there exists some ε > 0 such that for all η0 > 0,
there exists some η < η0 with ρ2δ(Y

µη(K)
η , Y µ(K)∧T ) > ε. Consequently, there is a sequence

{ηm}m≥1 satisfying limm→∞ ηm = 0 and ρ2δ(Y
µηm (K)
ηm , Y µ(K)∧T ) > ε for all m. Since

{(Y µηm (K)
ηm , Zηm , µηm(K))}m≥1 is relatively compact, there exists a subsequence (WLOG, as-

sume it is the original sequence itself) converging to (Y µ∧T ,W, µ) in distribution. However, repeat
the exactly same argument as above, we would have ρ2δ(Y

µηm (K)
ηm , Y µ(K)∧T ) ≤ ε for all sufficiently

large m, which is a contradiction. This completes the proof.

Proof of the second claim of Theorem B.9. We will first show there exists a sequence of compact
set {Km}m≥1 such that ∪∞m=1Km = U and Km ⊆ Km+1. For m ∈ N+, we define Hm =

U \(B1/m(0)+RD \U) andKm = Hm∩Bm(0). By definition it holds that ∀m < m′, Hm ⊆ Hm′

and Km ⊆ Km′ . Moreover, since Km is bounded and closed, Km is compact for every m. Now
we claim ∪∞m=1Km = U . Note that ∪∞m=1Km = ∪∞m=1Hm ∩ Bm(0) = ∪∞m=1Hm. ∀x ∈ U ,
since U is open, we know d(x,RD \ U) > 0, thus there exists m0 ∈ N+, such that ∀m ≥ m0,
x /∈ (B1/m(0) + RD \ U) and thus x ∈ Hm, which implies x ∈ ∪∞m=1Hm. On the other hand,
∀x ∈ RD \ U , it holds that x ∈ (B1/m(0) + RD \ U) for all m ∈ N+, thus x /∈ Hm ⊂ Km.

Therefore, since Y ∈ U and is continuous almost surely, random variables limm→∞ µ(Km) =∞
a.s., which implies µ(Km) converges to∞ in distribution, i,e,, ∀δ > 0, T > 0, ∃m ∈ N+, such that
∀K ⊇ Km, it holds P[µ(K) ≤ T ] ≤ δ.

Now we will show ∀T > 0, ε > 0, there exists η0 such that ρε(Y T , Y Tη ) ≤ ε for all η ≤ η0.
For any fixed T , for all ε > 0, let δ = ε

4 , from above we know exists compact set K, such
that P(µ(K) ≤ T ) ≤ δ. We further pick K ′ = K + B2ε′(0), where ε′ can be any real number
satisfying 0 < ε′ < ε and K ′ ⊆ U . Such ε′ exists since U is open. Note K ⊆ K ′, we have
P(µ(K ′) ≤ T ) ≤ P(µ(K) ≤ T ) ≤ δ. Thus by the first claim of Theorem B.9, there exists η0, such
that for all η ≤ η0, we have ρ2δ(Y

µη(K′)∧T
η , Y µ(K′)∧T ) ≤ ε′.

Note that ρδ(Y µ(K)∧T , Y µ(K′)∧T ) = 0, we have for all η ≤ η0,

ρ3δ(Y µ(K)∧T , Y µη(K′)∧T
η ) ≤ ε′. (25)

By the definition of δ-Prohorov distance, we can assume Y µ(K)∧T , Y
µη(K′)∧T
η are already the

coupling such that P[d(Y µ(K)∧T , Y
µη(K′)∧T
η ) ≥ ε′] ≤ 3δ. Note that for all t ≥ 0, Y µ(K)∧T (t) ∈ K,
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we know if µη(K ′) ≤ T , then

d(Y µ(K)∧T , Y µη(K′)∧T
η ) ≥

∥∥∥Y µ(K)∧T (µη(K ′))− Y µη(K′)∧T
η (µη(K ′)

∥∥∥
2

≥ d(K,Rd/K ′)
≥ ε′.

Thus we conclude d(Y µ(K)∧T , Y Tη ) ≥ 2ε′ =⇒ d(Y µ(K)∧T , Y
µη(K′)∧T
η ) ≥ 2ε′, which further

implies that

ρ3δ(Y µ(K)∧T , Y Tη ) ≤ ε′. (26)

Note that ρδ(Y T , Y µ(K)∧T ) = 0, we have for all η ≤ η0,

ρε(Y T , Y Tη ) = ρ4δ(Y T , Y Tη ) ≤ ρ3δ(Y µ(K)∧T , Y Tη ) + ρδ(Y T , Y µ(K)∧T ) ≤ ε′ ≤ ε,
which completes the proof.

C EXPLICIT FORMULA OF THE LIMITING DIFFUSION

In this section, we demonstrate how to compute the derivatives of Φ by relating to those of the loss
function L, and then present the explicit formula of the limiting diffusion.

C.1 EXPLICIT EXPRESSION OF THE DERIVATIVES

For any x ∈ Γ, we choose an orthonormal basis of Tx(Γ) as {v1, . . . , vD−M}. Let
{vD−M+1, . . . , vD} be an orthonormal basis of T⊥x (Γ) so that {vi}i∈[D] is an orthonormal basis of
RD.
Lemma C.1. For any x ∈ Γ and any v ∈ Tx(Γ), it holds that∇2L(x)v = 0.

Proof. For any x ∈ Tx(Γ), let {x(t)}t≥0 be a parametrized smooth curve on Γ such that x(0) = x

and dx(t)
dt

∣∣
t=0

= v. Then ∇L(xt) = 0 for all t. Thus 0 = d∇L(xt)
dt

∣∣
t=0

= ∇2L(x)v.

Lemma C.2. For any x ∈ RD, it holds that ∂Φ(x)∇L(x) = 0 and

∂2Φ(x)[∇L(x),∇L(x)] = −∂Φ(x)∇2L(x)∇L(x).

Proof. Fixing any x ∈ RD, let dx(t)
dt = −∇L(x(t)) be initialized at x(0) = x. Since Φ(x(t)) =

Φ(x) for all t ≥ 0, we have

d

dt
Φ(x(t)) = −∂Φ(x(t))∇L(x(t)) = 0.

Evaluating the above equation at t = 0 yields ∂Φ(x)∇L(x) = 0. Moreover, take the second order
derivative and we have

d2

dt2
Φ(xt) = −∂2Φ(x(t))

[
dx(t)

dt
,∇L(x(t))

]
+ ∂Φ(x(t))∇2L(x(t))

dx(t)

dt
= 0.

Evaluating at t = 0 completes the proof.

Now we can prove Lemma 4.3, restated in below.
Lemma 4.3. For any x ∈ Γ, ∂Φ(x) ∈ RD×D is the projection matrix onto tangent space Tx(Γ).

Proof of Lemma 4.3. For any v ∈ Tx(Γ), let {v(t), t ≥ 0} be a parametrized smooth curve on Γ

such that v(0) = x and dv(t)
dt

∣∣
t=0

= v. Since v(t) ∈ Γ for all t ≥ 0, we have Φ(v(t)) = v(t), and
thus

dv(t)

dt

∣∣∣∣
t=0

=
d

dt
Φ(v(t))

∣∣∣∣
t=0

= ∂Φ(x)
dv(t)

dt

∣∣∣∣
t=0

.
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This implies that ∂Φ(x)v = v for all v ∈ Tx(Γ).

Next, for any u ∈ T⊥x (Γ) and t ≥ 0, consider expanding∇L(x+ t∇2L(x)†u) at t = 0:

∇L
(
x+ t∇2L(x)†u

)
= ∇2L(x) · t∇2L(x)†u+ o(t)

= tu+ o(t)

where the second equality follows from the assumption that∇2L(x) is full-rank when restricted on
T⊥x (Γ). Then since ∂Φ is continuous, it follows that

lim
t→0

∂Φ(x+ t∇2L(x)†u)∇L(x+ t∇2L(x)†u)

t
= lim
t→0

∂Φ(x+ t∇2L(x)†)(u+ o(1))

= ∂Φ(x)u.

By Lemma C.2, we have ∂Φ(x+ t(∇2L(x))†u))∇L(x+ t(∇2L(x))†u) = 0 for all t > 0, which
then implies that ∂Φ(x)u = 0 for all u ∈ T⊥x (Γ).

Therefore, under the basis {vi, . . . , vN}, ∂Φ(x) is given by

∂Φ(x) =

(
ID−M 0

0 0

)
∈ RD×D,

that is, the projection matrix onto Tx(Γ).

Lemma C.3. For any x ∈ Γ, it holds that ∂Φ(x)∇2L(x) = 0.

Proof. It directly follows from Lemma C.1 and Lemma 4.3.

Next, we proceed to compute the second-order derivatives.
Lemma C.4. For any x ∈ Γ, u ∈ RD and v ∈ Tx(Γ), it holds that

∂2Φ(x)[v, u] = −∂Φ(x)∂2(∇L)(x)[v,∇2L(x)†u]−∇2L(x)†∂2(∇L)(x)[v, ∂Φ(x)u].

Proof of Lemma C.4. Consider a parametrized smooth curve {v(t)}t≥0 on Γ such that v(0) = x and
dv(t)

dt

∣∣
t=0

= v. We define P (t) = ∂Φ(v(t)), P⊥(t) = ID − P (t) and H(t) = ∇2L(v(t)) for all
t ≥ 0. By Lemma C.1 and 4.3, we have

P⊥(t)H(t) = H(t)P⊥(t) = H(t), (27)

Denote the derivative of P (t), P⊥(t) and H(t) with respect to t as P ′(t), (P⊥)′(t) and H ′(t). Then
differentiating with respect to t, we have

(P⊥)′(t)H(t) = H ′(t)− P⊥(t)H ′(t) = P (t)H ′(t). (28)

Then combining (27) and (28) and evaluating at t = 0, we have

P ′(0)H(0) = −(P⊥)′(0)H(0) = −P (0)H ′(0) (29)

We can decompose P ′(0) and H(0) as follows

P ′(0) =

(
P ′11(0) P ′12(0)
P ′21(0) P ′22(0)

)
, H(0) =

(
0 0
0 H22(0)

)
, (30)

where P ′11(0) ∈ R(D−M)×(D−M) and H22 is the hessian of L restricted on T⊥x (Γ). Also note that

P (0)H ′(0)P⊥(0) =

(
ID−M 0

0 0

)(
H ′11(0) H ′12(0)
H ′21(0) H ′22(0)

)(
0 0
0 IM

)
=

(
0 H ′12(0)
0 0

)
,

and thus by (30) we have

P ′(0)H(0) =

(
0 P ′12(0)H22(0)
0 P ′22(0)H22(0)

)
=

(
0 −H ′12(0)
0 0

)
.
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This implies that we must have P ′22(0) = 0 and P ′12(0)H22(0) = H ′12(0). Similarly, by taking
transpose in (30), we also have H22(0)P ′21(0) = −H ′21(0).

It then remains to determine the value of P ′11(0). Note that since P (t)P (t) = P (t), we have
P ′(t)P (t) + P (t)P ′(t) = P ′(t), evaluating at t = 0 yields

2P ′11(0) = P ′11(0).

Therefore, we must have P ′11(0) = 0. Combining the above results, we obtain

P ′(0) = −P (0)H ′(0)H(0)† −H(0)†H ′(0)P (0).

Finally, recall that P (t) = ∂Φ(v(t)), and thus

P ′(0) =
d

dt
∂Φ(v(t))

∣∣∣∣
t=0

= ∂2Φ(x)[v].

Similarly, we have H ′(0) = ∂2(∇L)(x)[v], and it follows that

∂2Φ(x)[v] = −∂Φ(x)∂2(∇L)(x)[v]∇2L(x)† −∇2L(x)†∂2(∇L)(x)[v]∂Φ(x).

Lemma C.5. For any x ∈ Γ and u ∈ T⊥x (Γ), it holds that

∂2Φ(x)[uu> +∇2L(x)†uu>∇2L(x)] = −∂Φ(x)∂2(∇L)(x)[∇2L(x)†uu>].

Proof of Lemma C.5. For any u ∈ T⊥x (Γ), we define u(t) = x+ t∇2L(x)†u for t ≥ 0. By Taylor
approximation, we have

∇L(u(t)) = t∇2L(x)∇2L(x)†u+ o(t) = tu+ o(t) (31)

and

∇2L(u(t)) = ∇2L(x) + t∂2(∇L)(x)[∇2L(x)†u] + o(t). (32)

Combine (31) and (32) and apply Lemma C.2, and it follows that

0 = ∂2Φ(u(t))[∇L(u(t)),∇L(u(t))] + ∂Φ(u(t))∇2L(u(t))∇L(u(t))

= t2∂2Φ(u(t))[u+ o(1)](u+ o(1)) + t2∂Φ(u(t))∂2(∇L)(x)[∇2L(x)†u](u+ o(1))

+ t2
∂Φ(u(t))

t
∇2L(x)(u+ o(1))

= t2∂2Φ(u(t))[u+ o(1)](u+ o(1)) + t2∂Φ(u(t))∂2(∇L)(x)[∇2L(x)†u](u+ o(1))

+ t2
∂Φ(u(t))− ∂Φ(x)

t
∇2L(x)(u+ o(1))

where the last equality follows from Lemma C.3. Dividing both sides by t2 and letting t→ 0, we get

∂2Φ(x)[u]u+ ∂Φ(x)∂2(∇L)(x)[∇2L(x)†u]u+ ∂2Φ(x)[∇2L(x)†u]∇2L(x)u = 0.

Rearranging the above equation completes the proof.

With the notion of Lyapunov Operator in Definition 4.4, Lemma C.5 can be further simplified into
Lemma C.6.
Lemma C.6. For any x ∈ Γ and Σ ∈ span{uu> | u ∈ T⊥x (Γ)},

〈∂2Φ(x),Σ〉 = −∂Φ(x)∂2(∇L)(x)[L−1
∇2L(x)(Σ)]. (33)

Proof of Lemma C.6. Let A = uu> + ∇2L(x)†uu>∇2L(x) and B = ∇2L(x)†uu>. The key
observation is that A+A> = L∇2L(x)(B +B>). Therefore, by Lemma C.5, it holds that

∂2Φ(x)[L∇2L(x)(B+B>)] = ∂2Φ(x)[A+A>] = 2∂Φ(x)∂2(∇L)(x)[B] = ∂Φ(x)∂2(∇L)(x)[B+B>].

Since∇2L(x)† is full-rank when restricted to T⊥x (Γ), we have span{∇2L(x)†uu>+uu>∇2L(x)† |
u ∈ T⊥x (Γ)} = span{uu> | u ∈ T⊥x (Γ)}. Thus by the linearity of above equation, we can replace
B +B> by any Σ ∈ span{uu> | u ∈ T⊥x (Γ)}, resulting in the desired equation.
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Then Lemma 4.5 directly follows from Lemma C.4 and C.5.

Lemma C.7. For any x ∈ Γ, suppose there exist a neighborhood Ux of x and two loss func-
tions L and L′ that define the same manifold Γ locally in Ux, i.e., Γ ∩ Ux = {x | ∇L(x) =
0} = {x | ∇L′(x) = 0}. Then for any v ∈ Tx(Γ), it holds that (∇2L(x))†∂2(∇L)(x) [v, v] =
(∇2L′(x))†∂2(∇L′)(x) [v, v].

Proof of Lemma C.7. Let {v(t)}t≥0 be a smooth curve on Γ with v(0) = x and dv(t)
dt

∣∣
t=0

= v.
Since v(t) stays on Γ, we have ∇L(v(t)) = 0 for all t ≥ 0. Taking derivative for two times yields
∂2(∇L)(v(t))[dv(t)

dt , dv(t)
dt ] + ∇2L(v(t))d2v(t)

dt2 = 0. Evaluating it at t = 0 and multiplying both
sides by ∇2L(x)†, we get

∇2L(x)†∂2(∇L)(x) [v, v] = −∇2L(x)†∇2L(x)
d2v(t)

dt2

∣∣∣∣
t=0

= −∂Φ(x)
d2v(t)

dt2

∣∣∣∣
t=0

.

Since ∂Φ(x) is the projection matrix onto Tx(Γ) by Lemma 4.3, it does not depend on L, so
analogously we also have ∇2L′(x)†∂2(∇L′)(x) [v, v] = −∂Φ(x)d2v(t)

dt2

∣∣
t=0

as well. The proof is

thus completed. Note that ∂Φ(x)d2v(t)
dt2

∣∣
t=0

is indeed the second fundamental form for v at x, and
the value won’t change if we choose another parametric smooth curve with a different second-order
time derivative. (See Chapter 6 in Do Carmo (2013) for a reference.)

C.2 PROOF OF RESULTS IN SECTION 5

Now we are ready to give the missing proofs in Section 5 which yield explicit formula of the limiting
diffusion for label noise and isotropic noise.

Corollary 5.1 (Limiting Diffusion for Isotropic Noise). If Σ ≡ ID on Γ, SDE (10) is then

dY (t) = ∂Φ(Y )dW +
1

2
∇2L(Y )†∂2(∇L)(Y ) [∂Φ(Y )] dt︸ ︷︷ ︸

Brownian Motion on Manifold

+
1

2
∂Φ(Y )∇(ln |∇2L(Y )|+)dt︸ ︷︷ ︸

Normal Regularization

(11)

where |∇2L(Y )|+ = limα→0
|∇2L(Y )+αID|
αD−rank(∇2L(Y ))

is the pseudo-determinant of∇2L(Y ). |∇2L(Y )|+ is
also equal to the sum of log of non-zero eigenvalue values of∇2L(Y ).

Proof of Corollary 5.1. Set Σ‖ = ∂Φ, Σ⊥ = ID − ∂Φ and Σ⊥,‖ = Σ‖,⊥ = 0 in the decomposition
of Σ by Lemma 4.5, and we need to show ∂Φ∇(ln |Σ|+) = ∂2(∇L)[(∇2L)†].

Holbrook (2018) shows that the gradient of pseudo-inverse determinant satisfies ∇|A|+ = |A|+A†.
Thus we have for any vector v ∈ RD,

〈
v,∇ ln |∇2L|+

〉
=
〈
|∇2L|+∇2L
|∇2L|+ , ∂2(∇L)[v]

〉
=〈

∇2L, ∂2(∇L)[v]
〉

= ∂2(∇L)[v,∇2L] =
〈
v, ∂2(∇L)[(∇2L)†]

〉
, which completes the proof.

Corollary 5.2 (Limiting Flow for Label Noise). If Σ ≡ c tr[∇2L] on Γ for some constant c > 0,
SDE (10) can be simplified into (13) where the regularization is from the noise in normal space.

dY (t) = −1

4
∂Φ(Y (t))∇ tr[c∇2L(Y (t))]dt. (13)

Proof of Corollary 5.2. Since Σ = c∇2L, here we have Σ⊥ = Σ and Σ‖,Σ⊥,‖,Σ‖,⊥ = 0. Thus it
suffices to show that 2∂2(∇L)

[
L−1
∇2L(Σ⊥)

]
= ∇ tr[∇2L]. Note that for any v ∈ RD,

v>∇ tr[∇2L] =
〈
ID, ∂

2(∇L)[v]
〉

=
〈
ID − ∂Φ, ∂2(∇L)[v]

〉
, (34)

where the second equality is because the the tangent space of symmetric rank-n matrices at ∇2L is
{A∇2L+∇2LA> | A ∈ RD×D}, and every element in this tangent space has zero inner-product
with ∂Φ by Lemma 4.3. Also note that L−1

∇2L(∇2L) = 1
2 (ID − ∂Φ), thus

〈
ID − ∂Φ, ∂2(∇L)[v]

〉
=

2
〈
L−1
∇2L(∇2L), ∂2(∇L)[v]

〉
= 2v>∂2(∇L)[L−1

∇2L(∇2L)].
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D PROOF OF RESULTS IN SECTION 6

In this section, we present the missing proofs in Section 6 regarding the overparametrized linear
model.

For convenience, for any p, r ≥ 0 and u ∈ RD, we denote by Bpr (u) the `p norm ball of radius r
centered at u. We also denote vi:j = (vi, vi+1, . . . , vj)> for i, j ∈ [D].

D.1 PROOF OF THEOREM 6.1

In this subsection, we provide the proof of Theorem 6.1.
Theorem 6.1. In the setting of OLM, suppose the groundtruth is κ-sparse and n ≥ Ω(κ ln d) training
data are sampled from either i.i.d. Gaussian or Boolean distribution. Then for any initialization xinit
(except a zero-measure set) and any ε > 0, there exist η0, T > 0 such that for any η < η0, OLM
trained with label noise SGD (12) with LR equal to η for bT/η2c steps returns an ε-optimal solution,
with probability of 1− e−Ω(n) over the randomness of the training dataset.

Proof of Theorem 6.1. First, by Lemma 6.6, it holds with probability at least 1 − e−Ω(n) that the
solution to (18), x∗, is unique up to and satisfies |x∗| = ψ(w∗). Then on this event, for any ε > 0,
by Lemma 6.5, there exists some T > 0 such that xT given by the Riemannian gradient flow (17)
satisfies that xT is an ε/2-optimal solution of the OLM. For this T , by Theorem 4.6, we know that
the bT/η2c-th SGD iterate, xη(bT/η2c), satisfies ‖xη(bT/η2c) − xT ‖2 ≤ ε/2 with probability at
least 1 − e−Ω(n) for all sufficiently small η > 0, and thus xη(bT/η2c) is an ε-optimal solution of
the OLM. Finally, the validity of applying Theorem 4.6 is guaranteed by Lemma 6.2 and 6.3. This
completes the proof.

In the following subsections, we provide the proofs of all the components used in the above proof.

D.2 PROOF OF LEMMA 6.2

Recall that for each i ∈ [n] fi(x) = f(u, v) = z>i (u�2 − v�2),∇fi(x) = 2
(
zi�u
zi�v

)
, and K(x) =

(Kij(x))i,j∈[n] where each Kij(x) = 〈∇fi(x),∇fj(x)〉. Then

∇2`i(x) = 2

(
zi � u
−zi � v

)(
(zi � u)> −(zi � v)>

)
+ (fi(u, v)− yi) · diag(zi, zi).

So for any x ∈ Γ, it holds that

∇2L(x) =
2

n

n∑
i=1

(
zi � u
−zi � v

)(
(zi � u)> −(zi � v)>

)
. (35)

Lemma D.1. For any fixed x ∈ RD, suppose {∇fi(x)}i∈[n] is linearly independent, then K(x) is
full-rank.

Proof of Lemma D.1. Suppose otherwise, then there exists some λ ∈ Rn such that λ 6= 0 and
λ>K(x)λ = 0. However, note that

λ>K(x)λ =

n∑
i,j=1

λiλjKij(x)

=

n∑
i,j=1

λiλj〈∇fi(x),∇fj(x)〉

=

∥∥∥∥∥
n∑
i=1

λi∇fi(x)

∥∥∥∥∥
2

2

,

which implies that
∑n
i=1 λ

i∇fi(x) = 0. This is a contradiction since by assumption {∇fi(x)}i∈[n]

is linearly independent.

24



Under review as a conference paper at ICLR 2022

Lemma 6.2. Consider the loss function L defined in (14) and manifold Γ defined in (15). If data
is full rank, i.e., rank({zi}i∈[n]) = n, then it holds that (a). Γ is a smooth manifold of dimension
D− n; (b). rank(∇2L(x)) = n for all x ∈ Γ. In particular, it holds that rank({zi}i∈[n]) = n holds
with probability 1 for Gaussian distribution and with probability 1− cd for Boolean distribution for
some constant c ∈ (0, 1).

Proof of Lemma 6.2. (1) By preimage theorem (Banyaga & Hurtubise, 2013), it suffices to check the
jacobian [∇f1(x), . . . ,∇fn(x)] = 2[

(
z1�u
−z1�v

)
, . . . ,

(
zn�u
−zn�v

)
] is full rank. Similarly, for the second

claim, due to (35). it is also equivalent to show that {
(
zi�u
−zi�v

)
}i∈[n] is of rank n.

Since
(
u
v

)
∈ Γ ⊂ U , each coordinate is non-zero, thus we only need to show that {zi}i∈[n] is of rank

n. This happens with probability 1 in the Gaussian case, and probability at least 1 − cd for some
constant c ∈ (0, 1) by Kahn et al. (1995). This completes the proof.

D.3 PROOF OF LEMMA 6.3

We first establish some auxiliary results. The following lemma shows the PL condition along the
trajectory of gradient flow.

Lemma D.2. ‖∇L(xt)‖2 ≥ λmin(ZZ>) mini∈[d] |ui0vi0|L(xt).

To prove Lemma D.2, we need the following invariance along the gradient flow.

Lemma D.3. Along the gradient flow generated by ∇L(xt), ujtv
j
t stays constant for all j ∈ [d].

Thus, sign(ujt ) = sign(uj0) and sign(vjt ) = sign(vj0) for any j ∈ [d].

Proof of Lemma D.3.

∂

∂t
(ujtv

j
t ) =

∂ujt
∂t
· vjt + ujt ·

∂vjt
∂t

= ∇uL(ut, vt)
j · vjt + ujt · ∇vL(ut, vt)

j

=
1

4

n∑
i=1

(fi(ut, vt)− yi)zji u
j
tv
j
t −

ujt
4

n∑
i=1

(fi(ut, vt)− yi)zji v
j
t = 0.

Therefore, any sign change of uj , vj would enforce ujt = 0 or vjt = 0 for some t > 0 since ujt , v
j
t are

continuous in time t. This immediately leads to a contradiction to the invariance of ujtv
j
t .

We then can prove Lemma D.2.

Proof of Lemma D.2. Note that

‖∇L(x)‖22 =
1

4

n∑
i,j=1

(fi(x)− yi)(fj(x)− yj) 〈∇fi(x),∇fj(x)〉

≥1

4

n∑
i=1

(fi(x)− yi)2λmin(K(x))

=L(x)λmin(K(x)),

where K(x) is a n × n p.s.d. matrix with Kij(x) = 〈∇fi(x),∇fj(x)〉. Below we lower bound
λmin(K(x)), the smallest eigenvalue of K(x). Note that Kij(x) =

∑n
h=1 z

h
i z

h
j ((uht )2 + (vht )2),

and we have

K(x) = Zdiag(u�2
t + v�2

t )Z> � Zdiag(|utvt|)Z>
(∗)
= Zdiag(|u0v0|)Z> � min

i∈[d]
|ui0vi0|ZZT .

where (∗) is by Lemma D.3. Thus λmin(K) ≥ mini∈[d] |ui0vi0|λmin(ZZT ), which completes the
proof.
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We also need the following characterization of the manifold Γ.

Lemma D.4. All the stationary points in U are global minimizers, i.e., Γ = {x ∈ U | ∇L(x) = 0}.

Proof of Lemma D.4. Since Γ is the set of local minimizers, each x in Γ must satisfy∇L(x) = 0. The
other direction is proved by noting that rank({zi}i∈[n]) = n, which implies rank({∇fi(x)}i∈[n]) =
n.

Now, we are ready to prove Lemma 6.3 which is restated below.

Lemma 6.3. Consider the loss function L defined in (14), manifold Γ and its open neighborhood
defined in (15). For gradient flow dxt

dt = −∇L(xt) starting at any x0 ∈ U , it holds that Φ(x0) ∈ Γ.

Proof of Lemma 6.3. It suffices to prove gradient flow dxt
dt = −∇L(xt) converges when t→∞, as

long as x0 ∈ U . Whenever it converges, it must converge to a stationary point in U . The proof will
be completed by noting that all stationary point of L in U belongs to Γ (Lemma D.4).

Below we prove limt→∞ xt exists. By Lemma D.16, denote C = mini∈[d] |ui0vi0|λmin(ZZ>), then
λmin(K(xt)) ≥ C for all t ≥ 0. Thus,∥∥∥∥dxt

dt

∥∥∥∥ = ‖∇L(xt)‖ ≤
‖∇L(xt)‖22√
CL(xt)

=
−dL(xt)

dt√
L(xt)

= − 1

2
√
C

d
√
L(xt)

dt
.

Thus the total GF trajectory length is bounded by
∫∞
t=0

∥∥dxt
dt

∥∥dt ≤
∫∞
t=0
− 1

2
√
C

d
√
L(xt)
ddt dt ≤ L(x0)

2
√
C

,
where the last inequality uses that L is non-negative over RD. Therefore, the GF must converge.

D.4 PROOF OF RESULTS IN SECTION 6.2

To study the optimal solution to (18), we consider the corresponding d-dimensional convex program
in terms of w ∈ Rd, which has been studied in Tropp (2015):

minimize R(w) =
1

4n

d∑
j=1

(
n∑
i=1

(zji )
2

)
|wj |,

subject to Zw = Zw∗.

(36)

Here we slightly abuse the notation of R and the parameter dimension will be clear from the context.
We can relate the optimal solution to (18) to that of (36) via a canonical parametrization defined as
follows.

Definition D.5 (Canonical Parametrization). For any w ∈ Rd, we define
(
u
v

)
= ψ(w) =

([w>]
�1/2
+ , [−w>]

�1/2
+ )> as the canonical parametrization of w. Clearly, it holds that u�2 − v�2 =

w.

Indeed, we can show that if (36) has a unique optimal solution, it immediately follows that the optimal
solution to (18) is also unique up to sign flips of each coordinate, as summarized in the lemma below.

Lemma D.6. Suppose the optimal solution to (36) is unique and equal to w∗. Then the optimal
solution to (18) is also unique up to sign flips of each coordinate. In particular, one of them is given
by (ũ∗, ṽ∗) = ψ(w∗), that is, the canonical parametrization of w∗.

Proof of Lemma D.6. Let (û, v̂) be any optimal solution of (18) and we define ŵ = û�2 − v̂�2,
which is also feasible to (36). By the optimality of w∗, we have

d∑
j=1

(
n∑
i=1

(zji )
2

)
|wj∗| ≤

d∑
j=1

(
n∑
i=1

(zji )
2

)
|ŵj | ≤

d∑
j=1

(
n∑
i=1

(zji )
2

)
[(ûj)2 + (v̂j)2]. (37)
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On the other hand, (ũ∗, ṽ∗) = ψ(w∗) is feasible to (18). Thus, it follows from the optimality of (û, v̂)
that

d∑
j=1

(
n∑
i=1

(zji )
2

)
[(ûj)2 + (v̂j)2] ≤

d∑
j=1

(
n∑
i=1

(zji )
2

)
[(ũj∗)

2 + (ṽj∗)
2] =

d∑
j=1

(
n∑
i=1

(zji )
2

)
|wj∗|.

(38)

Combining (37) and (38) yields

d∑
j=1

(
n∑
i=1

(zji )
2

)
[(ûj)2 + (v̂j)2] =

d∑
j=1

(
n∑
i=1

(zji )
2

)
|wj∗| =

d∑
j=1

(
n∑
i=1

(zji )
2

)
|(ûj)2 − (v̂j)2|

(39)

which implies that û�2 − v̂�2 is also an optimal solution of (36). Since w∗ is the unique optimal
solution to (36), we have û�2 − v̂�2 = w∗. Moreover, by (39), we must have û�2 = [w∗]+ and
û�2 = [w∗]+, otherwise the equality would not hold. This completes the proof.

Therefore, the unique optimality of (18) can be reduced to that of (36). In the sequel, we show that the
latter holds for both Boolean and Gaussian random vectors. We divide Lemma 6.6 into to Lemma D.8
and D.7 for clarity.

Lemma D.7 (Boolean Case). Let z1, . . . , zn
i.i.d.∼ Unif({±1}d). There exist some constants C, c > 0

such that if the sample size n satisfies

n ≥ C[κ ln(d/κ) + κ]

then with probability at least 1− e−cn2

, the optimal solution of (18), (û, v̂), is unique up to sign flips
of each coordinate and recovers the groundtruth, i.e., û�2 − v̂�2 = w∗.

Proof of Lemma D.7. By the assumption that z1, . . . , zn
i.i.d.∼ Unif({±1}d), we have

∑n
i=1(zji )

2 = n
for all j ∈ [d]. Then (36) is equivalent to the following optimization problem:

minimize g(w) = ‖w‖1,
subject to Zw = Z(u�2

∗ − v�2
∗ ).

(40)

This model exactly fits the Example 6.2 in Tropp (2015) with σ = 1 and α = 1/
√

2. Then applying
Equation (4.2) and Theorem 6.3 in Tropp (2015), (40) has a unique optimal solution equal to
u�2
∗ − v�2

∗ with probability at least 1− e−ch2

for some constant c > 0, given that the sample size
satisfies

n ≥ C(κ ln(d/κ) + κ+ h)

for some absolute constant C > 0. Choosing h = n
2C and then adjusting the choices of C, c

appropriately yield the desired result. Finally, applying Lemma D.6 finishes the proof.

The Gaussian case requires more careful treatment.

Lemma D.8 (Gaussian Case). Let z1, . . . , zn
i.i.d.∼ N (0, Id). There exist some constants C, c > 0

such that if the sample size satisfies

n ≥ Cκ ln d,

then with probability at least 1− (2d+ 1)e−cn, the optimal solution of (18), (û, v̂), is unique up to
sign flips of each coordinate of û and v̂ and recovers the groundtruth, i.e., û�2 − v̂�2 = w∗.

Proof of Lemma D.8. Since z1, . . . , zn
i.i.d.∼ N (0, Id), we have

P

[
n∑
i=1

(zji )
2 ∈ [n/2, 3n/2],∀j ∈ [d]

]
≥ 1− 2de−cn
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for some constant c > 0, and we denote this event by En. Therefore, on En, we have

n

2

D∑
j=1

[(uj)2 + (vj)2] ≤ R(x) ≤ 3n

2

D∑
j=1

[(uj)2 + (vj)2]

or equivalently,

n

2
(‖u�2‖1 + ‖v�2‖1) ≤ R(x) ≤ 3n

2
(‖u�2‖1 + v�2‖1).

Define w∗ = u�2
∗ − v�2

∗ , and (36) is equivalent to the following convex optimization problem

minimize g(w) =

d∑
j=1

(
n∑
i=1

(zji )
2

)
· |wj + wj∗|,

subject to Zw = 0.

(41)

The point w = 0 is feasible for (41), and we claim that this is the unique optimal solution when n is
large enough. In detail, assume that there exists a non-zero feasible point w for (41) in the descent
cone (Tropp, 2015) D(g, w∗) of g, then

λmin(Z;D(g, w∗)) ≤
‖Zw‖2
‖w‖2

= 0

where the equality follows from that w is feasible. Therefore, we only need to show that
λmin(Z;D(g, x∗)) is bounded from below for sufficiently large n.

On En, it holds that g belongs to the following function class

G =

h : Rd → R | h(w) =

d∑
j=1

ξi|wi|, ξ ∈ Ξ

 with Ξ = {ξ ∈ Rd : ξj ∈ [0.5, 1.5],∀j ∈ [d]}.

We identify gξ ∈ G with ξ ∈ Ξ, then D(g, w∗) ⊆ ∪ξ∈ΞD(gξ, w∗)) := DΞ, which further implies
that

λmin(Z;D(g, w∗)) ≥ λmin(Z;DΞ).

Recall the definition of minimum conic singular value (Tropp, 2015):

λmin(Z;DΞ) = inf
p∈DΞ∩Sd−1

sup
q∈Sn−1

〈q, Zp〉.

where Sn−1 denotes the unit sphere in Rn. Applying the same argument as in (Tropp, 2015) yields

P
[
λmin(Z;DΞ) ≥

√
n− 1− w(DΞ)− h

]
≥ 1− e−h

2/2.

Take the intersection of this event with En, and we obtain from a union bound that

λmin(Z;D(g, w∗)) ≥
√
n− 1− w(DΞ)− h (42)

with probability at least 1− e−h2/2 − 2de−cn. It remains to determine w(DΞ), which is defined as

w(DΞ) = Ez∼N (0,Id)

[
sup

p∈DΞ∩Sd−1

〈z, p〉

]
= Ez∼N (0,Id)

[
sup
ξ∈Ξ

sup
p∈D(gξ,x∗)∩Sd−1

〈z, p〉

]
. (43)

Without loss of generality, we assume that w∗ = (w1
∗, . . . , w

κ
∗ , 0, . . . , 0)> with w1

∗, . . . , w
κ
∗ > 0,

otherwise one only needs to specify the signs and the nonzero set of w∗ in the sequel. For any ξ ∈ Ξ
and any p ∈ D(gξ, w∗) ∩ Sd−1, there exists some τ > 0 such that gξ(w∗ + τ · p) ≤ gξ(w∗), i.e.,

d∑
j=1

ξj |wj∗ + τpj | ≤
d∑
j=1

ξj |wj∗|
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which further implies that

τ

d∑
j=κ+1

ξj |pj | ≤
κ∑
j=1

ξj(|wj∗| − |wj∗ − τpj |) ≤ τ ·
κ∑
j=1

ξj |pj |

where the second inequality follows from the triangle inequality. Then since each ξj ∈ [1/2, 3/2], it
follows that

d∑
j=κ+1

|pj | ≤ 3

κ∑
j=1

|pj |.

Note that this holds for all ξ ∈ Ξ simultaneously. Now let us denote p1:κ = (p1, . . . , pκ) ∈ Rκ
and p(κ+1):d = (pκ+1, . . . , pd) ∈ Rd−κ, and similarly for other d-dimensional vectors. Then for all
p ∈ DΞ ∩ Sd−1, by Cauchy-Schwartz inequality, we have

‖p(κ+1):d‖1 ≤ 3 · ‖p1:κ‖1 ≤ 3
√
κ · ‖p1:κ‖2.

Thus, for any z ∈ Rd and any p ∈ DΞ ∩ Sd−1, it follows that

〈z, p〉 = 〈z1:κ, p1:κ〉+ 〈z(κ+1):d, p(κ+1):d〉
≤ ‖z1:κ‖2‖p1:κ‖2 + ‖p(κ+1):d‖1 · max

j∈{κ+1,...,d}
|zj |

≤ ‖z1:κ‖2‖p1:κ‖2 + 3
√
κ‖p1:κ‖2 · max

j∈{κ+1,...,d}
|zj |

≤ ‖z1:κ‖2 + 3
√
κ · max

j∈{κ+1,...,d}
|zj |

where the last inequality follows from the fact that p ∈ Sd−1. Therefore, combine the above inequality
with (43), and we obtain that

w(DΞ) ≤ E
[
‖z1:κ‖2 + 3

√
κ · max

j∈{κ+1,...,d}
|zj |
]

≤
√
κ+ 3

√
κ · E

[
max

j∈{κ+1,...,d}
|zj |
]
. (44)

where the second inequality follows from the fact that E[‖z1:κ‖2] ≤
√

E[‖z1:κ‖22] =
√
κ. To bound

the second term in (44), applying Lemma D.9, it follows from (44) that

w(DΞ) ≤
√
κ+ 3

√
2κ ln(2(d− κ)). (45)

Therefore, combining (45) and (42), we obtain

λmin(Z;D(g, w∗)) ≥
√
n− 1−

√
κ− 3

√
2κ ln(2(d− κ))− h.

Therefore, choosing h =
√
n− 1/2, as long as n satisfies that n ≥ C(κ ln d) for some constant

C > 0, we have λmin(Z;D(g, w∗)) > 0 with probability at least 1 − (2d + 1)e−cn. Finally, the
uniqueness of the optimal solution to (18) in this case follows from Lemma D.6.

Lemma D.9. Let z ∼ N (0, Id), then it holds that E
[
maxi∈[d] |zi|

]
≤
√

2 ln(2d).

Proof of Lemma D.9. Denote M = maxi∈[d] |zi|. For any λ > 0, by Jensen’s inequality, we have

eλ·E[M ] ≤ E
[
eλM

]
= E

[
max
i∈[d]

eλ|z
i|
]
≤

d∑
i=1

E
[
eλ|z

i|
]
.

Note that E[eλ|z
i|] ≤ 2·E[eλz

i

]. Thus, by the expression of the Gaussian moment generating function,
we further have

eλ·E[M ] ≤ 2

d∑
i=1

E
[
eλz

i
]

= 2deλ
2/2,

from which it follows that

E[M ] ≤ ln(2d)

λ
+
λ

2
.

Choosing λ =
√

2 ln(2d) yields the desired result.
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D.5 PROOF OF LEMMA 6.5

Instead of studying the convergence of the Riemannian gradient flow directly, it is more convenient
to consider it in the ambient space RD. To do so, we define a Lagrange function L(x;λ) =
R(x) +

∑n
i=1 λ

i(fi(x) − yi) for λ ∈ Rn. Based on this Lagrangian, we can continuously extend
∂Φ(x)∇R(x) to the whole space RD. In specific, we can find a continuous function F : RD → RD
such that F (·)|Γ = ∂Φ(·)∇R(·). Such an F can be implicitly constructed via the following lemma.
Lemma D.10. The `2 norm has a unique minimizer among {∇xL(x;λ) | λ ∈ Rn} for any fixed
x ∈ RD. Thus we can define F : RD → RD by F (x) = argming∈{∇xL(x;λ)|λ∈Rn} ‖g‖2. Moreover,
it holds that 〈F (x),∇fi(x)〉 = 0 for all i ∈ [n].

Proof of Lemma D.10. Fix any x ∈ RD. Note that {∇xL(x;λ) | λ ∈ Rn} is the subspace spanned
by {∇fi(x)}i∈[n] shifted by ∇R(x), thus there is unique minimizer of the `2 norm in this set. This
implies that F (x) = argming∈{∇xL(x;λ)|λ∈Rn} ‖g‖2 is well-defined.

To show the second claim, denote h(λ) = ‖∇xL(x;λ)‖22/2, which is a quadratic function of λ ∈ Rn.
Then we have

∇h(λ) =

〈∇R(x),∇f1(x)〉
...

〈∇R(x),∇fn(x)〉

+


∑n
i=1 λ

i〈∇f1(x),∇fi(x)〉
...∑n

i=1 λ
i〈∇fn(x),∇fi(x)〉

 =

〈∇R(x),∇f1(x)〉
...

〈∇R(x),∇fn(x)〉

+K(x)λ.

For any λ such that∇xL(x;λ) = F (x), we must have ∇h(λ) = 0 by the definition of F (x), which
by the above implies

(K(x)λ)i = −〈∇R(x),∇fi(x)〉 for all i ∈ [n].

Therefore, we further have

〈F (x),∇fi(x)〉 = 〈∇R(x),∇fi(x)〉+

n∑
j=1

λj〈∇fi(x),∇fj(x)〉 = 〈∇R(x),∇fi(x)〉+ (K(x)λ)i = 0

for all i ∈ [n]. This finishes the proof.

Hence, with any initialization x0 ∈ Γ, the limiting flow (17) is equivalent to the following dynamics

dxt
dt

= −F (xt). (46)

Thus Lemma 6.5 can be proved by showing that the above xt converges to x∗ as t→∞. We first
present a series of auxiliary results in below.
Lemma D.11 (Implications for F (x) = 0). Let F : RD → RD be as defined in Lemma D.10. For
any x =

(
u
v

)
∈ RD such that F (x) = 0, it holds that for each j ∈ [d], either uj = 0 or vj = 0.

Proof. Since F (x) = 0, it holds for all j ∈ [d] that,

0 =
∂R

∂uj
(x) +

n∑
i=1

λ(x)i
∂fi
∂uj

(x) = 2uj ·

[
n∑
i=1

(zji )
2 +

n∑
i=1

λ(x)izji

]
,

0 =
∂R

∂vj
(x) +

n∑
i=1

λ(x)i
∂fi
∂vj

(x) = 2vj ·

[
n∑
i=1

(zji )
2 −

n∑
i=1

λ(x)izji

]
.

If there exists some j ∈ [d] such that uj 6= 0 and vj 6= 0, then it follows from the above two identities
that

n∑
i=1

(zji )
2 = 0

which happens with probability 0 in both the Boolean and Gaussian case. Therefore, we must have
uj = 0 or vj = 0 for all j ∈ [d].
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Lemma D.12. Let F : RD → RD be as defined in Lemma D.10. Then F is continuous on RD.

Proof. Case I. We first consider the simpler case of any fixed x0 ∈ U = (R \ {0})D, assuming that
K(x0) is full-rank. Lemma D.10 implies that for any λ ∈ Rn such that ∇xL(x0;λ) = F (x0), we
have

K(x0)λ = (−〈∇R(x0),∇fi(x0)〉)i∈[n].

Thus such λ is unique and given by

λ(x0) = K(x0)−1(−〈∇R(x0),∇fi(x0)〉)i∈[n].

Since K(x) is continuous, there exists a sufficiently small δ > 0 such that for any x ∈ Bδ(x0),
K(x) is full-rank, which further implies that K(x)−1 is also continuous in Bδ(x). Therefore,
by the above characterization of λ, we see that λ(x) is continuous for x ∈ Bδ(x0), and so is
F (x) = ∇R(x) +

∑n
i=1 λ(x)i∇fi(x).

Case II. Next, we consider all general x ∈ RD. Here for simplicity, we reorder the coordinates
as x = (u1, v1, u2, v2, . . . , ud, vd) with a slight abuse of notation. Without loss of generality, fix
any x0 such that for some q ∈ [d], (ui0)2 + (vi0)2 > 0 for all i = 1, . . . , q and ui0 = vi0 = 0 for
all i = q + 1, . . . , d. Then ∇R(x0) and {∇fi(x0)}i∈[n] only depend on {zji }i∈[n],j∈[q], and for all
i ∈ [n], it holds that

∇R(x0)(2q+1):D = ∇fi(x0)(2q+1):D = 0.

Note that if we replace {∇fi(x)}i∈[n] by any fixed and invertible linear transform of itself, it would
not affect the definition of F (x). In specific, we can choose an invertible matrix Q ∈ Rn×n
such that, for some q′ ∈ [q], (z̃1, . . . , z̃n) = (z1, . . . , zn)Q satisfies that {z̃1:q

i }i∈[q′] is linearly
independent and z̃1:q

i = 0 for all i = q′ + 1, . . . , n. We then consider (∇f̃1(x), . . . ,∇f̃n(x)) =
(∇f1(x), . . . ,∇fn(x))Q and the corresponding F (x). For notational simplicity, we assume that Q
can be chosen as the identity matrix, so that (z1, . . . , zn) itself satisfies the above property, and we
repeat it here for clarity

{z1:q
i }i∈[q′] is linearly independent and z̃1:q

i = 0 for all i = q′ + 1, . . . , n. (47)

This further implies that

∇fi(x)1:(2q) = 0, for all i ∈ {q′ + 1, . . . , n} and x ∈ RD. (48)

In the sequel, we use λ for n-dimensional vectors and λ̄ for q′-dimensional vectors. Denote2

λ(x) ∈ argmin
λ∈Rn

∥∥∥∥∥∇R(x) +

n∑
i=1

λi∇fi(x)

∥∥∥∥∥
2

,

λ̄(x) ∈ argmin
λ̄∈Rq′

∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ̄i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

.

Then due to (47) and (48), we have∥∥∥∥∥∥∇R(x0)1:(2q) +

q′∑
i=1

λ̄(x0)i∇fi(x0)1:(2q)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∇R(x0) +

n∑
i=1

λ(x)i∇fi(x0)

∥∥∥∥∥
2

= ‖F (x0)‖2.

(49)

2We do not care about the specific choice of λ(x) or λ̄(x) when there are multiple candidates, and we only
need their properties according to Lemma D.10, so they can be arbitrary.
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On the other hand, for any x ∈ RD, by (48), we have∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ̄(x)i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

= min
λ∈Rn

∥∥∥∥∥∇R(x)1:(2q) +

n∑
i=1

λi∇fi(x)1:(2q)

∥∥∥∥∥
2

≤

∥∥∥∥∥∇R(x)1:(2q) +

n∑
i=1

λ(x)i∇fi(x)1:(2q)

∥∥∥∥∥
2

= ‖F (x)1:(2q)‖2

≤ ‖F (x)‖2 ≤

∥∥∥∥∥∇R(x) +

n∑
i=1

λ(x0)i∇fi(x)

∥∥∥∥∥
2

(50)

where the first and third inequalities follow from the definition of F (x). Let x→ x0, by the continuity
of∇R(x) and {∇fi(x)}i∈[n], we have

lim
x→x0

∥∥∥∥∥∇R(x) +

n∑
i=1

λ(x0)i∇fi(x)

∥∥∥∥∥
2

=

∥∥∥∥∥∇R(x0) +

n∑
i=1

λ(x0)i∇fi(x0)

∥∥∥∥∥
2

(51)

Denote K̃(x) = (K̃ij(x))(i,j)∈[q′]2 = (〈∇fi(x)1:(2q),∇fi(x)1:(2q)〉)(i,j)∈[q′]2 . By applying the
same argument as in Case I, since K̃(x0) is full-rank, it also holds that limx→x0

λ̄(x) = λ̄(x0), and
thus

lim
x→x0

∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ̄(x)i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∇R(x0)1:(2q) +

q′∑
i=1

λ̄(x0)i∇fi(x0)1:(2q)

∥∥∥∥∥∥
2

.

(52)

Combing (49), (50), (51) and (52) yields

lim
x→x0

‖F (x)1:(2q)‖2 = lim
x→x0

min
λ∈Rn

∥∥∥∥∥∇R(x)1:(2q) +

n∑
i=1

λi∇fi(x)1:(2q)

∥∥∥∥∥
2

= ‖F (x0)‖2. (53)

Moreover, since ‖F (x)(2q+1):D‖2 =
√
‖F (x)‖22 − ‖F (x)1:(2q)‖22, we also have

lim
x→x0

‖F (x)(2q+1):D‖2 = 0. (54)

It then remains to show that limx→x0
F (x)1:(2q) = F (x0)1:(2q), which directly follows from

limx→x0
λ(x)1:q′ = λ(x0)1:q′ = λ̄(x0).

Now, for any ε > 0, due to the convergence of λ̄(x) and that K̃(x0) � 0, we can pick a sufficiently
small δ1 such that for some constant α > 0 and all x ∈ Bδ1(x0), it holds that ‖λ̄(x)− λ̄(x0)‖2 ≤ ε/2
and∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ̄i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

2

≥

∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ̄(x)i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

2

+ α‖λ̄− λ̄(x)‖22.

(55)

for all λ̄ ∈ Rp, where the inequality follows from the strong convexity. Meanwhile, due to (48), we
have

lim
x→x0

∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ(x)i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

= lim
x→x0

∥∥∥∥∥∇R(x)1:(2q) +

n∑
i=1

λ(x)i∇fi(x)1:(2q)

∥∥∥∥∥
2

=

∥∥∥∥∥∥∇R(x0)1:(2q) +

q′∑
i=1

λ̄(x0)i∇fi(x0)1:(2q)

∥∥∥∥∥∥
2

= lim
x→x0

∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ̄(x)i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

.
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where the second equality follows from (53) and the second equality is due to (52). Therefore, we
can pick a sufficiently small δ2 such that∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ(x)i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∇R(x)1:(2q) +

q′∑
i=1

λ̄(x)i∇fi(x)1:(2q)

∥∥∥∥∥∥
2

+
αε2

4

(56)

for all x ∈ Bδ2(x0). Setting δ = min(δ1, δ2), it follows from (55) and (56) that

‖λ(x)1:q′ − λ̄(x)‖2 ≤
ε

2
, for all x ∈ Bδ(x0).

Recall that we already have ‖λ̄(x)− λ̄(x0)‖ ≤ ε/2, and thus

‖λ(x)1:q′ − λ(x0)1:q′‖2 = ‖λ(x)1:q′ − λ̄(x0)‖2 ≤ ‖λ(x)1:q′ − λ̄(x)‖2 + ‖λ̄(x)− λ̄(x0)‖2 ≤ ε

for all x ∈ Bδ(x0). Therefore, we see that limx→x0
λ(x)1:q′ = λ(x0)1:q′ .

Finally, it follows from the triangle inequality that

‖F (x)− F (x0)‖2 ≤ ‖F (x)1:(2q) − F (x0)1:(2q)‖2 + ‖F (x)(2q+1):D‖2 + ‖F (x0)(2q+1):D‖2

≤

∥∥∥∥∥∥
q′∑
i=1

λ(x)i∇fi(x)− λ(x0)i∇fi(x0)

∥∥∥∥∥∥
2

+ ‖∇R(x)−∇R(x0)‖2 + ‖F (x)(2q+1):D‖2

where, as x→ x0, the first term vanishes by the convergence of λ(x)1:q′ and the continuity of each
∇fi(x), the second term converges to 0 by the continuity of ∇R(x) and the third term vanishes
by (54). Therefore, we conclude that

lim
x→x0

F (x) = F (x0),

that is, F is continuous.

Lemma D.13. For any initialization x0 ∈ Γ, the Riemmanian Gradient Flow (17) (or equivalently,
(46)) is defined on [0,∞).

Proof of Lemma D.13. If the Riemannian gradient flow had stopped in finite time, we must have
ujt = 0 or vjt = 0 for some j ∈ [d] by Lemma D.11. Therefore, we only need to prove that all
ujt ’s and vjt ’s are bounded away from 0 in finite time. Now, fix some j ∈ [d], and we assume that
uj0v

j
0 > 0 without loss of generality. It then suffices to show that ujtv

j
t > 0 for all t ∈ (0,∞). By the

definition of the projected gradient flow in (17), we have

d

dt
(ujtv

j
t ) =

(
vjt e
>
j ujte

>
j

) ∂xt
∂t

= −
(
vjt e
>
j ujte

>
j

)
F (xt).

By the expression of F (xt) = ∇R(xt) +
∑n
i=1 λ(xt)

i∇fi(xt), we then have

d

dt
(ujtv

j
t ) = −

[
n∑
i=1

(zji )
2 +

n∑
i=1

λ(xt)
izti

]
ujtv

j
t −

[
n∑
i=1

(zji )
2 −

n∑
i=1

λ(xt)
izti

]
ujtv

j
t

= −

(
n∑
i=1

(zji )
2

)
ujtv

j
t .

Denote sj =
∑n
i=1(zji )

2. In either the Boolean or Gaussian case, we have sj ∈ (0,∞) with
probability 1. Therefore, it follows that ujtv

j
t = uj0v

j
0e
−sjt > 0 for all t ∈ (0,∞). This finishes the

proof.
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Before showing that F satisfies the PL condition, we need the following two intermediate results.
Given two points u and v in Rd, we say u weakly dominate v (written as u ≤ v) if and only if
ui ≤ vi, for all i ∈ [d]. Given two subsets A and B of RD, we say A weakly dominates B if and
only if for any point v in B, there exists a point u ∈ A such that u ≤ v.

Lemma D.14. For some q ∈ [D], let S be any q-dimensional subspace of RD and P = {u ∈ RD |
ui ≥ 0,∀i ∈ [D]}. Let u? be an arbitrary point in P and Q = P ∩ (u? + S). Then there exists a
radius r > 0, such that B1

r (0) ∩Q weakly dominates Q, where B1
r (0) is the `1-norm ball of radius r

centered at 0.

As a direct implication, for any continuous function f : P → R, which is coordinate-wise non-
decreasing, minx∈U f(x) can always be achieved.

Proof of Lemma D.14. We will prove by induction on the environment dimension D. For the base
case of D = 1, either S = {0} or S = R, and it is straight-forward to verify the desired for both
scenarios.

Suppose the proposition holds for D − 1, below we show it holds for D. For each i ∈ [D], we apply
the proposition with D − 1 to Q ∩ {u ∈ P | ui = 0} (which can be seen as a subset of RD−1), and
let ri be the corresponding `1 radius. Set r = maxi∈[D] ri, and we show that choosing the radius to
be r suffices.

For any v ∈ Q, we take a random direction in S, denoted by ω. If ω ≥ 0 or ω ≤ 0, we denote by y
the first intersection (i.e., choosing the smallest λ) between the line {v − λ|ω|}λ≥0 and the boundary
of U , i.e., ∪Di=1{z ∈ RD | zi = 0}. Clearly y ≤ v. By the induction hypothesis, there exists a
u ∈ B1

r (0) ∩Q such that u ≤ y. Thus u ≤ v and meets our requirement.

If ω has different signs across its coordinates, we take y1, y2 to be the first intersections of the line
{v − λ|ω|}λ∈R and the boundary of U in directions of λ > 0 and λ < 0, respectively. Again by
the induction hypothesis, there exist u1, u2 ∈ B1

r (0) ∩Q such that u1 ≤ y1 and u2 ≤ y2. Since v
lies in the line connecting u1 and u2, there exists some h ∈ [0, 1] such that v = (1 − h)u1 + hu2.
It then follows that (1 − h)u1 + hu2 ≤ (1 − h)y1 + hy2 = v. Now since Q is convex, we have
(1− h)u1 + hu2 ∈ Q, and by the triangle inequality it also holds that ‖(1− h)u1 + hu2‖1 ≤ r, so
(1− h)u1 + hu2 ∈ B1

r (0) ∩Q. Therefore, we conclude that B1
r (0) ∩Q weakly dominates Q, and

thus the proposition holds for D. This completes the proof by induction.

Lemma D.15. For some q ∈ [D], let S be any q-dimensional subspace of RD and P = {u ∈ RD |
ui ≥ 0,∀i ∈ [D]}. Let u? be an arbitrary point in P and Q = P ∩ (u? + S). Then there exists
a constant c ∈ (0, 1] such that for any sufficiently small radius r > 0, c · Q weakly dominates
P ∩ (u? + S +B2

r (0)), where B2
r (0) is the `2-norm ball of radius r centered at 0.

Proof of Lemma D.15. We will prove by induction on the environment dimension D. For the base
case of D = 1, either S = {0} or S = R. S = R is straight-forward; for the case S = {0}, we just
need to ensure c|u?| ≤ |u?| − r, and it suffices to pick r = |u?| and c = 0.5.

Suppose the proposition holds for D − 1, below we show it holds for D. For each i ∈ [D], we
first consider the intersection between P ∩ (u? + S + B2

r (0)) and Hi := {u ∈ RD | ui = 0}. Let
ui be an arbitrary point in P ∩ (u? + S) ∩Hi, then P ∩ (u? + S) ∩Hi = P ∩ (ui + S) ∩Hi =
P ∩ (ui + S ∩ Hi). Furthermore, there exists {αi}i∈[D] which only depends on S and satisfies
P ∩ (u∗+S+B2

r (0))∩Hi ⊂ P ∩ (ui+S∩Hi+B2
αir(0)∩Hi). Applying the induction hypothesis

to P ∩ (ui +S ∩Hi +B2
αir(0)∩Hi), we know there exists a c > 0 such that for sufficiently small r,

c(P ∩ (u?+S)∩Hi) = c(P ∩ (ui+S∩Hi)) weakly dominates P ∩ (ui+S∩Hi+B2
αir(0)∩Hi).

For any point v in Q and any z ∈ B2
r (0), we take a random direction in S, denoted by ω. If ω ≥ 0

or ω ≤ 0, we denote by y the first intersection between {v + z − λ|ω|}λ≥0 and the boundary of U .
Clearly y ≤ v. Since y ∈ P ∩ (u? + S + B2

r (0)) ∩Hi ⊂ P ∩ (ui + S ∩Hi + B2
αir(0) ∩Hi), by

the induction hypothesis, there exists a u ∈ c(P ∩ (u? + S) ∩Hi) such that u ≤ y. Thus z ≤ v + z
and z ∈ c(P ∩ (u? + S)) = cQ.

If ω has different signs across its coordinates, we take y1, y2 to be the first intersections of the line
{v + z − λ|ω|}λ∈R and the boundary of U in directions of λ > 0 and λ < 0, respectively. By the
induction hypothesis, there exist u1, u2 ∈ c · Q such that u1 ≤ y1 and u2 ≤ y2. Since v + z lies
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in the line connecting u1 and u2, there exists some h ∈ [0, 1] such that v + z = (1 − h)y1 + hy2.
It then follows that (1 − h)u1 + hu2 ≤ (1 − h)y1 + hy2 = v + z. Since Q is convex, we have
(1−h)u1 +hu2 ∈ cQ. Therefore, we conclude that cQ∩Q weakly dominates P ∩ (u?+S+B2

r (0))
for all sufficiently small r, and thus the proposition holds for D. This completes the proof by
induction.

Lemma D.16. (Polyak-Łojasiewicz condition for F .) For any x∗ such that L(x∗) = 0, i.e., x∗ ∈ Γ,
there exist a neighbourhood U ′ of x∗ and a constant c > 0, such that ‖F (x)‖22 ≥ c ·max(R(x)−
R(x∗), 0) for all x ∈ U ′ ∩ Γ. Note this requirement is only non-trivial when ‖F (x∗)‖2 = 0 since F
is continuous.

Proof of Lemma D.16. It suffices to show the PL condition for {x | F (x) = 0}. We need to show
for any x∗ satisfying F (x∗) = 0, there exist some ε > 0 and C > 0, such that for all x ∈ Γ∩B2

ε (x∗)

with R(x) > R(x∗), it holds that ‖F (x)‖22 ≥ C(R(x)−R(x∗)).

Case I. We first prove the case where x =
(
u
v

)
itself is a canonical parametrization of w =

u�2 − v�2, i.e., ujvj = 0 for all j ∈ [d]. Since x∗ satisfies∇F (x∗) = 0, by Lemma D.11, we have
x∗ = ψ(w∗) where w∗ = u�2

∗ − v�2
∗ . In this case, we can rewrite both R and F as functions of

w ∈ Rd. In detail, we define R′(w) = R(ψ(w)) and F ′(w) = F (ψ(w)) for all w ∈ Rd. For any w
in a sufficiently small neighbourhood of w∗, it holds that sign(wj) = sign(wj∗) for all j ∈ [q]. Below
we show that for each possible sign pattern of w(q+1):d, there exists some constant C which admits
the PL condition in the corresponding orthant. Then we take the minimum of all C from different
orthant and the proof is completed. W.L.O.G., we assume that wj ≥ 0, for all j = q + 1 . . . , d.

We temporarily reorder the coordinates as x = (u1, v1, u2, v2, . . . , ud, vd)>. Recall that Z =
[z1, . . . , zn]> is a n-by-d matrix, and we have

‖F ′(w)‖22 = min
λ∈Rn

〈
(a− sign(w)� Z>λ)�2, |w|

〉
,

where a = 1
n

∑n
i=1 z

�2
i ∈ Rd. Since F (x∗) = 0, there must exist λ∗ ∈ Rn, such that the first 2q

coordinates of∇R(x∗) +
∑n
i=1 λ

i
∗∇fi(x∗) are equal to 0. As argued in the proof of Lemma D.12,

we can assume the first q′ rows of Z are linear independent on the first q coordinates for some q′ ∈ [q].

In other words, Z can be written as
[
ZA ZB
0 ZD

]
where ZA ∈ Rq′×q . We further denote λ1 := λ1:q′ ,

λ2 := λ(q′+1):n, w1 := w1:q and w2 := w(q+1):d for convenience, then we have

‖F ′(w)‖22 = min
λ∈Rn

〈
(a1 + sign(w1)� Z>Aλ1)�2, |w1|

〉
+
〈
(a2 + Z>Bλ1 + Z>Dλ2)�2, w2

〉
. (57)

Since every w in Γ is a global minimizer, R′(w) = R′(w) +
∑n
i=1 λ

i
∗(z
>
i w − yi) := g>w, where

g = sign(w)� a+ Z>λ∗. Similarly we define g1 := g1:q and g2 := g(q+1):d. It holds that g1 = 0
and we assume ZDg2 = 0 without loss of generality, because this can always be done by picking
suitable λi∗ for i = q′ + 1, . . . , n.

We denote λ1 − λ∗,1 by ∆λ1, then since 0 = g1 = sign(w1)� a1 + Z>Aλ∗,1, we further have〈
(a1 + sign(w1)� Z>Aλ1)�2, |w1|

〉
=
〈
(a1 + sign(w1)� Z>Aλ∗,1 + sign(w1)� Z>A∆λ1)�2, |w1|

〉
=
〈
(sign(w1)� Z>A∆λ1)�2, |w1|

〉
.

On the other hand, we have g2 = sign(w2)� a2 +Z>Bλ∗,1 +Z>Dλ∗,2 = a2 +Z>Bλ∗,1 +Z>Dλ∗,2 by
the assumption that each coordinate of w2 is non-negative. Combining this with the above identity,
we can rewrite Equation (57) as:

‖F ′(w)‖22 = min
λ∈RD

〈
(Z>A∆λ1)�2, |w1|

〉
+
〈
(g2 + Z>B∆λ1 + Z>Dλ2)�2, w2

〉
. (58)

Now suppose R′(w)−R′(w∗) = g>2 w2 = δ for some sufficiently small δ (which can be controlled
by ε). We will proceed in the following two cases separately.
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• Case I.1: ‖∆λ1‖2 = Ω(
√
δ). Since ZA has full row rank and every coordinate of w1 is

non-zero, the first term of Equation (58) is Ω(δ) = Ω(R′(w)−R′(w∗)).

• Case I.2: ‖∆λ1‖2 = O(
√
δ). Let u = g2+Z>B∆λ1+Z>Dλ2, then we have u ∈ S+B2

c
√
δ
(0)

for some constant c > 0, where S = {g2 + Z>Dλ2 | λ2 ∈ Rn−q′}. By Lemma D.14, there
exists some constant c0 ≥ 1, such that 1

c0
· S weakly dominates S + B2

c
√
δ
(0). Thus we

have ‖F ′(w)‖22 ≥ infu∈S+B2
c
√
δ
(0)

〈
u�2, w2

〉
≥ infu∈ 1

c0
·S
〈
s�2, w2

〉
, where the last step

is because each coordinate of w2 is non-negative.

Let A be the orthogonal complement of span(ZD, g2), we know w2 ∈ δ
‖g2‖22

g2 +A, since

ZDw2 = ZDw∗,2 = 0 and g>2 w2 = δ. Therefore,

inf
w:R′(w)−R′(w∗)=δ>0

‖F ′(w)‖22
R′(w)−R′(w∗)

≥ inf
w2:R′(w)−R′(w∗)=δ>0

inf
u∈ 1

c0
·S

〈
u�2,

w2

δ

〉
≥ 1

c20
inf

w2∈ δ

‖g2‖22
g2+A,w2≥0,u∈S

〈
u�2, w2

〉
. (59)

Note
〈
u�2, w2

〉
is a monotone non-decreasing function in the first joint orthant, i.e.,

{(u,w2) ∈ Rd × Rd−q′ | u ≥ 0, w2 ≥ 0}, thus by Lemma D.15 the infinimum can
be achieved by some finite (u,w2) in the joint first orthant. Applying the same argument to
each other orthant of u ∈ Rd, we conclude that the right-hand-side of (59) can be achieved.

On the other hand, we have u>w2 = δ > 0 for all w2 ∈ δ
‖g2‖22

g2 + A and u ∈ S, by
ZDg2 = 0 and the definition of A. This implies there exists at least one i ∈ [d − q′]
such that wi2u

i > 0, which further implies
〈
u�2, w2

〉
> 0. Therefore, we conclude that

‖F ′(w)‖22 = Ω(R′(w)−R′(w0)).

Case II. Next, for any general x =
(
u
v

)
, we define w = u�2 − v�2 and m = min{u�2, v�2},

where min is taken coordinate-wise. Then we can rewrite ‖F (x)‖22 as

‖F (x)‖22 = min
λ∈Rn

∥∥∥∥([aa
]

+

[
Z
−Z

]
λ

)
�
[
u
v

]∥∥∥∥2

2

= min
λ∈Rn

∥∥∥∥∥
([
a
a

]
+

[
Z
−Z

]
λ

)�2

�
[
u�2

v�2

]∥∥∥∥∥
1

= min
λ∈Rn

∥∥∥∥∥
([
a
a

]
+

[
Z
−Z

]
λ

)�2

�
(
ψ(w)�2 +

[
m
m

])∥∥∥∥∥
1

≥ min
λ∈Rn

∥∥∥∥∥
([
a
a

]
+

[
Z
−Z

]
λ

)�2

� ψ(w)�2

∥∥∥∥∥
1

+ min
λ∈Rn

∥∥∥∥∥
([
a
a

]
+

[
Z
−Z

]
λ

)�2

�
[
m
m

]∥∥∥∥∥
1

= min
λ∈Rn

∥∥∥∥([aa
]

+

[
Z
−Z

]
λ

)
� ψ(w)

∥∥∥∥2

2

+ min
λ∈Rn

∥∥∥∥([aa
]

+

[
Z
−Z

]
λ

)
�
[√

m√
m

]∥∥∥∥2

2

.

Then applying the result for the previous case yields the following for some constant C ∈ (0, 1):

‖F (x)‖22 ≥ C(R(ψ(w))−R(ψ(w∗)) + min
λ∈Rn

∥∥∥∥([aa
]

+

[
Z
−Z

]
λ

)
�
[√

m√
m

]∥∥∥∥2

2

= C(R(ψ(w))−R(x∗) + 2
〈
a�2,m

〉
≥ C(R(ψ(w))−R(x∗) + 2 min

i∈[d]
ai 〈a,m〉

= C(R(ψ(w))−R(x∗) + min
i∈[d]

ai(R(x)−R(ψ(w)))

≥ min

{
C,min

i∈[d]
ai

}
(R(x)−R(x∗)),
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where the first equality follows from the fact that x∗ = ψ(w∗) and the last inequality is due to the
fact that both R(ψ(w) − R(ψ(w∗)) and R(x) − R(ψ(w)) are non-negative. This completes the
proof.

Now, based on the PL condition, we can show that (17) indeed converges.

Lemma D.17. The trajectory of the flow defined in (17) has finite length, i.e.,
∫∞
t=0
‖dx

dt ‖2dt < ∞
for any x0 ∈ Γ. Moreover, xt converges to some x∞ when t→∞ with F (x∞) = 0.

Proof of Lemma D.17. Note that along the Riemannian gradient flow, R(xt) is non-increasing, thus
‖xt‖2 is bounded over time and {xt}t≥0 has at least one limit point, which we will call x∗. Therefore,
R(x∗) is a limit point of R(xt), and again since R(xt) is non-increasing, it follows that R(xt) ≥
R(x∗) and limt→∞R(xt) = R(x∗). Below we will show limt→∞ xt = x∗.

Note that dR(xt)
dt =

〈
∇R(xt),

dxt
dt

〉
= −〈∇R(xt), F (xt)〉 = −‖F (xt)‖22 where the last inequality

applies Lemma D.10. By Lemma D.16, there exists a neighbourhood of x∗, U ′, in which PL
condition holds of F . Since x∗ is a limit point, there exists a time T0, such that xT0

∈ U . Let T1 =
inft≥T0

{x(t) /∈ U ′} (which is equal to∞ if x(t) ∈ U ′ for all t ≥ T0). Since xt is continuous in t and
U is open, we know T1 > T0 and for all t ∈ [T0, T1), we have ‖F (xt)‖2 ≥

√
c(R(xt)−R(x∗))

1/2.

Thus it holds that for t ∈ [T0, T1),

d(R(xt)−R(x∗))

dt
≤ −
√
c(R(xt)−R(x∗))

1/2 ‖F (xt)‖2 ,

that is,

d(R(xt)−R(x∗))
1/2

dt
≤ −
√
c

2
‖F (xt)‖2 .

Therefore, we have ∫ T1

t=T0

‖F (xt)‖2 dt ≤ 1

2
√
c
(R(xT0

)−R(x∗)). (60)

Thus if we pick T0 such that R(xT0
)−R(x∗) is sufficiently small, R(T1) will remain in U , which

implies that T1 cannot be finite and has to be∞. Therefore, Equation (60) shows that the trajectory
of xt is of finite length, so x∞ = limt→∞ xt exists and is equal to x∗. As a by-product, F (x∗) must
be 0.

Finally, collecting all the above lemmas, we are able to prove Lemma 6.5.

Lemma 6.5. Let {xt}t≥0 ⊆ RD be generated by the flow defined in (17) with any initialization
x0 ∈ Γ. Then x∞ = limt→∞ xt exists. Moreover, x∞ = x∗ is the optimal solution of (18).

Proof of Lemma 6.5. We will prove by contradiction. Suppose x∞ =
(
u∞
v∞

)
= limt→∞ xt is not

the optimal solution to (18). Denote wt = u�2
t − v�2

t , then w∞ = limt→∞ wt is not the optimal
solution to (36). Thus we have R(wt) > R(w∗). Without loss of generality, suppose there is some
q ∈ [d] such that (ui∞)2 + (vi∞)2 > 0 for all i = 1, . . . , q and ui∞ = vi∞ = 0 for all i = q+ 1, . . . , d.
Again, as argued in the proof of Lemma D.12, we can assume that, for some q′ ∈ [q],

{z1:q
i }i∈[q′] is linearly independent and z1:q

i = 0 for all i = q′ + 1, . . . , n. (61)

Since both w∞ and w∗ satisfy the constraint that Zw∞ = Zw∗ = Y , we further have

0 = 〈zi, w∞〉 = 〈zi, w∗〉 = 〈z(q+1):d
i , w

(q+1):d
∗ 〉, for all i = q′ + 1, . . . , n. (62)

Consider a potential function ϕ : U → R defined as

ϕ(x) = ϕ(u, v) =

d∑
j=q+1

wj∗
[
ln(uj)21{wj∗ > 0} − ln(vj)21{wj∗ < 0}

]
.
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Clearly limt→∞ ϕ(xt) = −∞ if limt→∞ xt = x∞. Below we will show contradiction if x∞ is
suboptimal. Consider the dynamics of ϕ(x) along the Riemannian gradient flow:

dϕ

dt
(xt) =

〈
∇ϕ(xt),

dxt
dt

〉
= −〈∇ϕ(xt), F (xt)〉 (63)

where F is defined previously in Lemma D.10. Recall the definition of F , and we have

〈∇ϕ(xt), F (xt)〉 =

〈
∇ϕ(xt),∇R(xt) +

q′∑
i=1

λ(xt)
i∇fi(xt)

〉
︸ ︷︷ ︸

I1

+

〈
∇ϕ(xt),

n∑
i=q′+1

λ(xt)
i∇fi(xt)

〉
︸ ︷︷ ︸

I2

.

(64)

To show 〈∇ϕ(xt), F (xt)〉 < 0, we analyze I1 and I2 separately. By the definition of ϕ(x), we have

∇ϕ(x) =

d∑
j=q+1

2wj∗

[
1{wj∗ > 0}

uj
· ej −

1{wj∗ < 0}
vj

· eD+j

]

where ej is the j-th canonical base of Rd. Recall that∇fi(x) =
(
zi�u
−zi�v

)
, and we further have

I2 =

n∑
i=q′+1

λ(xt)
i

d∑
j=q+1

2wj∗

[
1{wj∗ > 0}

uj
〈ej , zi � u〉+

1{wj∗ < 0}
vj

〈ej , zi � v〉

]

=

n∑
i=q′+1

λ(xt)
i

d∑
j=q+1

2wj∗

[
1{wj∗ > 0}

uj
zji u

j +
1{wj∗ < 0}

vj
zji v

j

]

=

n∑
i=q′+1

λ(xt)
i

d∑
j=q+1

wj∗z
j
i =

n∑
i=q′+1

λ(xt)
i〈z(q+1):d

i , w
(q+1):d
∗ 〉 = 0 (65)

where the last equality follows from (62).

Next, we show that I1 < 0 by utilizing the fact that w∗ − w∞ is a descent direction of R′(w). For
w ∈ Rd, define f̃i(w) = z>i w and

R̃(w) = R(w) +

q′∑
i=1

λ(x∞)i(f̃i(w)− yi).

Clearly, for any w ∈ RD satisfying Zw = Y , it holds that f̃i(w) − yi = 0 for each i ∈ [n], and
thus R(w) = R̃(w). In particular, we have R̃(w∞) = R(w∞) > R(w∗) = R̃(w∗). Since R̃(w) is a
convex function, it follows that R̃(w∞ + s(w∗ − w∞)) < R̃(w∞) for all sufficiently small s > 0,
which implies dR̃

dt (w∞ + s(w∗ − w∞))|s=0 < −2c < 0 for some constant c > 0. Note that, for
small enough s > 0, we have

R(w∞ + s(w∗ − w∞)) =

d∑
j=1

(
n∑
i=1

(zji )
2

)
|wj∞ + s(wj∗ − wj∞)|

=

q∑
j=1

(
n∑
i=1

(zji )
2

)
sign(wj∞)(wj∞ + s(wj∗ − wj∞))

+

d∑
j=q+1

(
n∑
i=1

(zji )
2

)
s|wj∗|.
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Therefore, we can compute the derivative with respect to s at s = 0 as

−2c >
dR̃

dt
(w∞ + s(w∗ − w∞))

∣∣∣∣
s=0

=

q∑
j=1

(
n∑
i=1

(zji )
2

)
sign(wj∞)(wj∗ − wj∞) +

d∑
j=q+1

(
n∑
i=1

(zji )
2

)
|wj∗|

+

q′∑
i=1

λ(x∞)iz>i (w∗ − wj∞)

=

q∑
j=1

(
n∑
i=1

(zji )
2

)
sign(wj∞)(wj∗ − w∞) +

d∑
j=q+1

(
n∑
i=1

(zji )
2

)
|wj∗|

+

q∑
j=1

(wj∗ − wj∞)

q′∑
i=1

λ(x∞)izji +

d∑
j=q+1

wj∗

q′∑
i=1

λ(x∞)izji

(66)

where the second equality follows from the fact that w(q+1):d
∞ = 0. Since xt converges to x∞, we

must have F (x∞) = 0, which implies that for each j ∈ {1, . . . , q},

0 =
∂R

∂uj
(x∞) +

q′∑
i=1

λ(x∞)i
∂fi
∂uj

(x∞) = 2uj∞ ·

 n∑
i=1

(zji )
2 +

q′∑
i=1

λ(x∞)izji

 ,
0 =

∂R

∂vj
(x∞) +

q′∑
i=1

λ(x∞)i
∂fi
∂vj

(x∞) = 2vj∞ ·

 n∑
i=1

(zji )
2 −

q′∑
i=1

λ(x∞)izji

 .

Combining the above two equalities yields

n∑
i=1

(zji )
2 = − sign(wj∞)

q′∑
i=1

λ(x∞)izji , for all j ∈ [q].

Apply the above identity together with (66), and we obtain

−2c >

q∑
j=1

− sign(wj∞)2(wj∗ − w∞)

q′∑
i=1

λ(x∞)izji +

d∑
j=q+1

(
n∑
i=1

(zji )
2

)
|wj∗|

+

q∑
j=1

(wj∗ − wj∞)

q′∑
i=1

λ(x∞)izji +

d∑
j=q+1

wj∗

q′∑
i=1

λ(x∞)izji

=

d∑
j=q+1

(
n∑
i=1

(zji )
2

)
|wj∗|+

d∑
j=q+1

wj∗

q′∑
i=1

λ(x∞)izji (67)
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On the other hand, by directly evaluating∇R(xt) and each∇fi(xt), we can compute I1 as

I1 = 2

d∑
j=q+1

wj∗1{wj∗ > 0}
ujt

 n∑
i=1

(zji )
2ujt +

q′∑
i=1

λ(xt)
izji u

j
t


− 2

d∑
j=q+1

wj∗1{wj∗ < 0}
vjt

 n∑
i=1

(zji )
2vjt −

q′∑
i=1

λ(xt)
izji v

j
t


= 2

d∑
j=q+1

(
n∑
i=1

(zji )
2

)
|wj∗|+ 2

d∑
j=q+1

wj∗

q′∑
i=1

λ(xt)
izji

= 2

d∑
j=q+1

(
n∑
i=1

(zji )
2

)
|wj∗|+ 2

d∑
j=q+1

wj∗

q′∑
i=1

λ(x∞)izji

+ 2

d∑
j=q+1

wj∗

q′∑
i=1

(
λ(xt)

i − λ(x∞)i
)
zji .

We already know that λ(x)1:q′ is continuous at x∞ by the proof of Lemma D.12, so the third term
converges to 0 as xt tends to x∞. Now, applying (67), we immediately see that there exists some
δ > 0 such that I1 < −c for xt ∈ Bδ(x∞). As we have shown in the above that I2 = 0, it then
follows from (63) and (64) that

dϕ

dt
(xt) > c, for all xt ∈ Bδ(x∞). (68)

Since limt→∞ xt = x∞, there exists some T > 0 such that xt ∈ Bδ(x∞) for all t > T . By the
proof ofLemma D.13, we know that ϕ(xT ) > −∞, then it follows from (68) that

lim
t→∞

ϕ(xt) = ϕ(xT ) +

∫ ∞
T

dϕ(xt)

dt
dt > ϕ(xT ) +

∫ ∞
T

cdt =∞

which is a contradiction. This finishes the proof.

D.6 PROOF OF THEOREM 6.7

Here we present the lower bound on the sample complexity of GD in the kernel regime.

Theorem 6.7. Assume z1, . . . , zn
i.i.d.∼ N (0, Id) and yi = w>∗ zi, for all i ∈ [n]. Define the loss

with linearized model as L(x) =
∑n
i=1(fi(x0) + 〈∇fi(x0), x− x0〉 − yi)2, where x =

(
u
v

)
and

x0 =
(
u0

v0

)
= α

(
1
1

)
. Then for any ground truth w∗, any learning rate schedule {ηt}t≥1, and any fixed

number of steps T , the expected `2 loss of xT is at least (1− n
d ) ‖w∗‖22, where xT is the T -th iterate

of GD on L, i.e., xt+1 = xt − ηt∇L(xt), for all t ≥ 0.

Proof of Theorem 6.7. We first simplify the loss function by substituting x′ = x−x0, so correspond-
ingly x′0 = 0 and we consider L′(x′) := L(x) = (〈∇fi(x0), x′〉 − yi)2. We can think as if GD is
performed on L′(x′). For simplicity, we still use the x and L(x) notation in below.

In order to show test loss lower bound against a single fixed target function, we must take the
properties of the algorithm into account. The proof is based on the observation that GD is rotationally
equivariant (Ng, 2004; Li et al., 2020c) as an iterative algorithm, i.e., if one rotates the entire data
distribution (including both the training and test data), the expected loss of the learned function
remains the same. Since the data distribution and initialization are invariant under any rotation, it
means the expected loss of xT with ground truth being w∗ is the same as the case where the ground
truth is uniformly randomly sampled from all vectors of `2-norm ‖w∗‖2.

Thus the test loss of xT is

Ez
[
(〈∇fz(x0), xT 〉 − 〈z, w∗〉)2

]
= Ez

[
(〈z, w∗ − (uT − vT )〉)2

]
= ‖w∗ − (uT − vT )‖22 . (69)
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Note xT ∈ span{∇fx(x0)}, which is at most an n-dimensional space spanned by the gradients
of model output at x0, so is uT − vT . We denote the corresponding space for uT − vT by S, so
dim(S) ≤ n and it holds that ‖w∗ − (uT − vT )‖22 ≥ ‖(ID − PS)w∗‖22, where PS is projection
matrix onto space S.

The expected test loss is lower bounded by

Ew∗
[
Ezi
[
‖w∗ − (uT − vT )‖22

]]
= Ezi

[
Ew∗

[
‖w∗ − (uT − vT )‖22

]]
≥ min

zi
Ew∗

[
‖(ID − PS)w∗‖22

]
≥
(

1− n

d

)
‖w∗‖22 .
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