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Abstract001

While deep learning models have shown strong002
performance in clinical disease classification,003
their black-box nature limits adoption in high-004
stakes healthcare settings. We present Diag-005
noLLM, a novel framework that combines006
Bayesian deconvolution with Large Language007
Model (LLM)-driven interpretability to bridge008
this gap. First, DiagnoLLM applies GP-009
unmix, a Gaussian Process-based hierarchical010
model, to infer cell-type-specific gene expres-011
sion profiles from bulk RNA-seq and single-012
cell data. A deep learning model trained on013
these features achieves high predictive per-014
formance in Alzheimer’s Disease (AD) clas-015
sification (88.0% accuracy). To enhance016
transparency, we introduce an LLM-based in-017
terpretability plug-in that generates faithful,018
audience-specific diagnostic reports grounded019
in model outputs, eQTL signals, and domain020
knowledge. The resulting reports align with021
clinical reasoning while maintaining fidelity to022
underlying predictions. DiagnoLLM demon-023
strates that LLMs, when used as structured024
narrative generators rather than classifiers, can025
play a critical role in building trust in biomed-026
ical AI. Code and data are available at: Diag-027
noLLM.028

1 Introduction029

Accurate disease diagnosis from transcriptomic030

data remains a central challenge in biomedical AI,031

particularly due to the limitations of bulk RNA-032

seq in capturing cell-type-specific (CTS) expres-033

sion (Blumenfeld et al., 2024; Natri et al., 2024).034

Bulk measurements reflect an average over hetero-035

geneous cell populations, masking critical disease036

signals that are localized to specific cell types. For037

instance, in Alzheimer’s Disease (AD), dysregula-038

tion in microglia or astrocytes may be lost when039

averaged with expression from neurons or other040

brain cells (Brendel et al., 2022). While single-041

cell RNA sequencing (scRNA-seq) improves res-042

olution (Tasic et al., 2018; Paik et al., 2020), it043

remains expensive, technically challenging, and 044

sparsely available in clinical datasets. To address 045

this, deconvolution methods have emerged to esti- 046

mate CTS profiles from bulk data (Xu et al., 2025). 047

Yet, existing approaches are often sensitive to clus- 048

tering noise and lack principled uncertainty mod- 049

eling (Torroja and Sanchez-Cabo, 2019). Further- 050

more, most prediction pipelines based on gene ex- 051

pression overlook valuable prior knowledge from 052

regulatory genomics. 053

To overcome the limitations of current disease 054

prediction pipelines, we introduce DiagnoLLM, a 055

unified framework for interpretable diagnosis that 056

integrates statistical deconvolution, genetic regula- 057

tory reasoning, and natural language explanation. 058

As illustrated in Figure 1, the framework proceeds 059

in two stages, each addressing a fundamental bot- 060

tleneck in existing biomedical AI workflows. In 061

the first stage, we propose GP-unmix, a novel 062

Gaussian Process-based Bayesian model that in- 063

fers cell-type-specific (CTS) gene expression from 064

bulk RNA-seq and single-cell RNA-seq data (Tasic 065

et al., 2018; Paik et al., 2020). Unlike traditional de- 066

convolution methods (Torroja and Sanchez-Cabo, 067

2019; Xu et al., 2025), GP-unmix introduces pos- 068

terior updates that explicitly model biological vari- 069

ability across samples. This allows the model to 070

reliably recover gene-cell-type expression profiles 071

even when reference data and target samples differ 072

by tissue type or species. The result is a high- 073

quality, uncertainty-aware CTS expression matrix 074

suitable for downstream disease modeling (Brendel 075

et al., 2022). In the second stage, we combine these 076

inferred CTS features with eQTL-derived signals, 077

genetic variants known to regulate gene expres- 078

sion in a cell-type-specific or disease-associated 079

manner (Nica and Dermitzakis, 2013; Natri et al., 080

2024). These regulatory features enhance biolog- 081

ical specificity and provide causal grounding, en- 082

abling a two-layer deep learning model to focus on 083

disease-relevant genes rather than spurious expres- 084
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Figure 1: Overview of the DIAGNOLLM framework.
Stage 1 (GP-Unmix) performs Bayesian deconvolution
of bulk RNA-seq into CTS expression using single-cell
references. Stage 2 combines eQTL-informed DL pre-
dictions with LLM-based reasoning to produce human-
readable diagnostic reports, linking model outputs with
clinical interpretability.

sion fluctuations (Blumenfeld et al., 2024). We find085

that incorporating eQTL information significantly086

boosts predictive accuracy in Alzheimer’s Disease087

classification.088

While recent studies have explored the use089

of large language models (LLMs) for numeri-090

cal reasoning and classification in biomedical do-091

mains (Yang et al., 2023; Gao et al., 2024; Hegsel-092

mann et al., 2023; Han et al., 2022), we observe093

that LLMs underperform compared to our deep094

learning model in direct disease classification tasks.095

Instead, we deploy the LLM as a structured inter-096

pretability plug-in. Given the DL model’s predicted097

probability and feature attributions (e.g., from In-098

tegrated Gradients), the LLM generates human-099

readable, domain-aware reports tailored for physi-100

cians and patients. These reports align with the101

underlying model output and leverage biomedical102

domain knowledge (Yu et al., 2025; Omar et al.,103

2024), thereby enhancing trust and transparency in104

clinical decision-making.105

Our key contributions are as follows:106

(1) GP-unmix for robust CTS inference: A107

Bayesian deconvolution method with posterior re-108

finement for accurate, uncertainty-aware CTS ex-109

pression estimation.110

(2) eQTL-informed disease prediction: A deep111

learning classifier trained on CTS and regulatory112

features, demonstrating improved disease classifi-113

cation performance.114

(3) LLM-based interpretability plug-in: A115

prompting framework that generates clinically116

meaningful reports aligned with model outputs and117

domain knowledge.118

By combining mechanistic modeling, biologi- 119

cally informed prediction, and natural language 120

explanation, DiagnoLLM offers a comprehensive 121

solution for interpretable AI in clinical genomics. 122

2 Related Work 123

LLMs have recently been adapted for numerical 124

and structured data tasks, with methods such as 125

LIFT (Dinh et al., 2022) and TabLLM (Hegsel- 126

mann et al., 2023) demonstrating few-shot perfor- 127

mance on classification and regression by serializ- 128

ing tabular inputs for models like GPT-3 (Brown 129

et al., 2020), GPT-J (Wang and Komatsuzaki, 130

2021), and T0 (Sanh et al., 2021). Techniques like 131

LUNA (Han et al., 2022) further improve numeri- 132

cal reasoning in transformer models by introducing 133

numerical embeddings into BERT (Devlin et al., 134

2018) and RoBERTa (Liu et al., 2019). LLMs have 135

also been applied in biomedical (Yang et al., 2023; 136

Gao et al., 2024), financial (Ma et al., 2025; Zhu 137

et al., 2024), and mathematical domains (Schwartz 138

et al., 2024; Lee et al., 2023). In disease analy- 139

sis, LLMs have supported cell-type-specific (CTS) 140

annotation and biomarker discovery (Omar et al., 141

2024; Giuffrè et al., 2024; Jagadeesh et al., 2022), 142

with tools like scInterpreter (Li et al., 2024) and 143

Single-Cell Omics Arena (Liu et al., 2024) leverag- 144

ing pretrained models to annotate scRNA-seq data. 145

Others have proposed explainable LLM frame- 146

works for tracking transcriptional changes (Els- 147

borg and Salvatore, 2023). While prior work uses 148

LLMs for either raw prediction or annotation, our 149

approach uniquely combines a Bayesian CTS de- 150

convolution model (GP-unmix), regulatory priors 151

(eQTLs (Nica and Dermitzakis, 2013)), and LLMs 152

as faithful interpretability modules grounded in 153

deep learning outputs, addressing both prediction 154

accuracy and clinical transparency. 155

3 GP-unmix: Bayesian Deconvolution for 156

CTS Expression 157

Estimating gene-level cell-type-specific (CTS) ex- 158

pression from bulk RNA-seq is vital for discov- 159

ering disease-relevant regulatory signals. Tradi- 160

tional methods such as TCA and bMIND (Xu et al., 161

2025; Torroja and Sanchez-Cabo, 2019) primarily 162

estimate cell type proportions and fail to model 163

gene-level uncertainty or cross-sample biological 164

variability. In contrast, our goal is to recover full 165

CTS expression matrices across samples, enabling 166

both interpretability and predictive utility. 167
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3.1 Model Overview168

We introduce GP-unmix, a novel Bayesian frame-169

work for cell-type-specific (CTS) gene expression170

deconvolution from bulk RNA-seq data. Unlike171

prior methods that focus solely on cell type pro-172

portions, GP-unmix recovers full gene-level CTS173

profiles using single-cell references and operates174

without ground-truth supervision. Its key innova-175

tions include a two-stage posterior refinement pro-176

cess that adapts reference-derived priors to target177

datasets, and a pretraining strategy that identifies re-178

liably inferable gene–cell-type pairs. Additionally,179

GP-unmix incorporates a tripartite gene selection180

mechanism to improve identifiability and down-181

stream biological resolution. This strategy com-182

bines (i) literature-curated markers (e.g., SLC6A12183

for microglia), (ii) cross-modal consensus between184

sc/snRNA-seq and pseudobulk datasets (pFDR <185

0.01, | log2 FC| > 1), and (iii) Seurat-based filter-186

ing of the top 200 differentially expressed genes187

(p < 0.05, ranked by log2 FC). Integrated into188

both stages of the generative model, it guides the189

initialization of priors in the reference-informed190

phase and supports the refinement of reliably infer-191

able gene–cell-type pairs during posterior updating.192

This selection strategy improves deconvolution ac-193

curacy by 37–54% compared to unfiltered gene sets.194

Collectively, these design choices yield significant195

gains over existing methods, enabling robust CTS196

recovery across tissues, species, and applications.197

The generative model consists of two stages:198

Reference-Informed Inference: In the first phase,199

single-cell/nuclei RNA-seq (sc/snRNA-seq) ref-200

erence data provide CTS expression priors mod-201

eled as multivariate normal distributions: Zij ∼202

N (µj ,Σj), where µj represents the mean expres-203

sion vector and Σj the gene-gene covariance matrix204

for cell type j. Bulk RNA-seq expression profiles205

Xij are decomposed as: Xij = w′
iZij + Γ′

jC
(1)
i +206

w′
iBjC

(2)
i + εij , εij ∼ N (0, σ2

j ) where wi de-207

notes cell-type proportions, C(1)
i adjusts for bulk-208

level technical confounders (e.g., batch effects),209

and C
(2)
i models CTS biases.210

Data-Adaptive Refinement: The second phase211

introduces dynamic Bayesian updating to ad-212

dress reference-target discrepancies. Priors213

are refined using posterior estimates from the214

first phase: µ
(2)
j ∼ N (µ̂

(1)
j , 0.5Ik),Σ

(2)
j ∼215

InvWishart(Σ̂(1)
j , v0 + v1) where µ̂

(1)
j and Σ̂

(1)
j216

are posterior means and covariances, respectively.217

Markov Chain Monte Carlo (MCMC) sampling via 218

the MCMCglmm package ensures robust param- 219

eter estimation, with convergence assessed using 220

Gelman-Rubin diagnostics (R̂ < 1.05). 221

3.2 Results: Benchmarking and Case Study 222

Figure 2: Pearson correlation (per gene) across meth-
ods on Yao dataset. GP-unmix outperforms TCA and
bMIND in gene-level CTS recovery.

On simulated mouse cortex data, GP-unmix out- 223

performs TCA and bMIND by up to 66.1% in 224

gene-level Pearson correlation with ground-truth 225

CTS expression. In the human brain (Yao dataset), 226

median PCC reaches 0.82 for microglia and 0.78 227

for astrocytes (Figure 3). Cross-species validation 228

shows robust performance (e.g., L5 PT neuron, 229

PCC = 0.78 vs. 0.67 for bMIND). In PBMCs, 230

natural killer cell estimates correlate strongly with 231

flow cytometry (r = 0.71), exceeding baselines 232

by 105.1%. Applied to the ROSMAP Alzheimer’s 233

dataset, the resulting CTS profiles enable down- 234

stream eQTL mapping and differential expression 235

analyses, revealing astrocyte-linked genes enriched 236

for UDP-glucosyltransferase activity—a pathway 237

implicated in neurodegeneration. These results un- 238

derscore the power of eQTL analysis for uncov- 239

ering disease-relevant mechanisms and generating 240

biologically grounded hypotheses. Additional re- 241

sults are presented in the Appendix A. 242

3.3 LLM-Based Classification and 243

Interpretation 244

We explore whether LLMs can support disease clas- 245

sification when provided with structured features 246

derived from GP-unmix and eQTL-informed repre- 247

sentations (Gusev et al., 2016). Unlike traditional 248

models, LLMs can incorporate biomedical knowl- 249

edge expressed in text, making them suitable for 250

settings where domain priors are critical. 251
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Prompting Strategies. We compare three252

prompting strategies of increasing structure and253

domain integration: Direct Reasoning: A few-shot254

prompt of raw examples followed by a test255

instance and direct class prediction. Step-by-Step256

Reasoning: The model first summarizes feature257

distributions by class and then reasons through258

classification. Step-by-Step + Domain Knowledge:259

We embed definitions and biological context for260

each feature into the prompt (Yu et al., 2025),261

aligning statistical signals with known disease262

mechanisms. Examples of these structured263

prompts are provided in Appendix B and D.264

Experimental Setup. We evaluate LLMs in bi-265

nary Alzheimer’s Disease (AD) classification using266

a clinical dataset with 28 features (biomarkers, vi-267

tals, and genetic markers). Two training regimes268

are considered: low-data (50 samples) and full-data269

(100 samples). For comparison, we use a two-layer270

MLP baseline trained on the same features. All271

models are evaluated on a stratified test set of 60272

held-out patients.273

Results. Table 1 summarizes the performance274

across prompting strategies. While the LLM275

underperforms the MLP in direct reasoning,276

the structured prompt with domain knowledge277

(LLM+Domain) achieves 90% accuracy in the278

low-data regime, surpassing the MLP. This demon-279

strates the value of scaffolded prompting in medical280

applications where training data is scarce.281

3.4 LLM as Interpretability Plug-in282

LLMs are effective at generating fluent, human-283

readable explanations, making them valuable tools284

for clinical interpretability. While LLMs can some-285

times outperform DL models in low-data settings,286

we retain the DL predictor for its efficiency, stabil-287

ity, and scalability. Instead of serving as classifiers,288

LLMs act as post-hoc plug-ins to verbalize model289

outputs in a faithful and accessible manner. To290

operationalize this interpretability framework, we291

condition the LLM on structured outputs from the292

DL model and design prompts that elicit consistent,293

audience-specific explanations.294

Each generation is conditioned on: (a) the DL-295

predicted probability p(AD), and (b) the top-5296

most influential features, identified via Integrated297

Gradients and annotated with values, attributions,298

and clinical reference ranges. The LLM outputs:299

(1) a binary decision aligned with p(AD), (2) a300

rationale grounded in feature-level evidence, and301

Method Train Size = 100 Train Size = 50
ACC F1 ACC F1

MLP (DL) 0.88 0.86 0.87 0.88
LLM-Direct 0.48 0.43 0.50 0.49
LLM-Step 0.70 0.62 0.77 0.75
LLM+Domain 0.74 0.69 0.90 0.89

Table 1: Accuracy and F1 across prompting variants and
a deep learning baseline under two training regimes.

(3) one or two recommended next steps with justi- 302

fication. To serve both clinicians and patients, we 303

generate two versions of each report: a clinician- 304

facing version using diagnostic terminology, and 305

a layperson-facing version prioritizing plain lan- 306

guage and actionable suggestions. This modular 307

plug-in design improves transparency and usability 308

without altering the model’s underlying behavior. 309

Prompt templates and output examples are pro- 310

vided in Appendix E. 311

3.5 Human Evaluation of Interpretability 312

Outputs 313

We evaluated 60 LLM-generated reports across five 314

criteria: correctness, rationale completeness, clarity 315

of recommendations, and stylistic appropriateness. 316

All outputs matched DL predictions and true labels 317

(100% alignment). Clinician-facing reports were 318

judged 100% actionable; 88% of layperson-facing 319

reports were similarly rated. Style was appropriate 320

in 88% of cases, with layperson versions consid- 321

ered more readable. Appendix F provides anno- 322

tated examples. These results confirm that LLMs, 323

when guided by structured and audience-specific 324

prompts, can produce faithful and interpretable ex- 325

planations to support clinical decision-making. 326

4 Conclusion 327

We propose DIAGNOLLM, a unified framework 328

that integrates Bayesian deconvolution, regulatory 329

genomics, and LLMs for interpretable disease di- 330

agnosis. Our GP-unmix model enables robust cell- 331

type-specific expression recovery, outperforming 332

prior methods. Combined with eQTL-informed 333

deep learning and LLM-based explanation, the 334

framework delivers both accurate predictions and 335

faithful, audience-specific reports, bridging statisti- 336

cal modeling with clinical transparency. Future ex- 337

tensions will explore broader disease applications 338

and integration of additional omics modalities to 339

enhance generalizability and translational impact. 340
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5 Limitations341

While DIAGNOLLM demonstrates promising re-342

sults in interpretable disease diagnosis, several limi-343

tations remain. First, the performance of GP-unmix344

depends on the availability and quality of single-345

cell reference datasets, which may not be uniformly346

available across all tissues or disease contexts. Sec-347

ond, although the LLM-generated reports align348

well with model outputs, their clinical validity has349

only been assessed via preliminary human evalua-350

tion, and more extensive user studies involving clin-351

icians and patients are necessary. Third, our current352

evaluation focuses on Alzheimer’s Disease; gener-353

alizability to other diseases or multi-label diagnos-354

tic settings remains to be validated. Finally, while355

we incorporate eQTL-derived features, other reg-356

ulatory modalities (e.g., epigenomic or proteomic357

data) are not yet included, which could limit bio-358

logical completeness in certain use cases.359

6 Ethics Statement360

This study aims to enhance the interpretability and361

transparency of machine learning models in clini-362

cal genomics, with the goal of supporting informed363

decision-making rather than replacing medical ex-364

pertise. All datasets used in this work are publicly365

available and de-identified, ensuring no personally366

identifiable information was accessed or processed.367

While the proposed framework generates audience-368

specific diagnostic reports, it is intended as a re-369

search tool and not for direct clinical deployment370

without expert oversight. We acknowledge that371

language models may inherit biases from training372

data and emphasize the need for careful validation373

in diverse patient populations. Future work will374

involve collaboration with medical professionals to375

ensure responsible, equitable, and context-sensitive376

use of these technologies in clinical practice.377
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A Additional Experimental Result of538

GP-Unmix539

As shown in figure 3, in human peripheral blood540

mononuclear cells (PBMCs), natural killer cell es-541

timates correlated strongly with flow cytometry542

(r = 0.71), exceeding existing methods by 105.1%543

in PCC.

Figure 3: Pearson correlation (per gene) across meth-
ods on Tasic dataset. GP-unmix outperforms TCA and
bMIND in gene-level CTS recovery.

544

B Step-by-Step Reasoning545

We conduct our experiments using the GPT-4o-546

mini model to generate diagnostic reports. The547

model is accessed via the OpenAI API, and we548

adopt the default decoding settings, including a549

temperature of 1.0, top-p of 1.0, and a maximum550

token limit of 512. No additional prompt tuning551

or system message customization was applied un-552

less otherwise noted, ensuring consistent and repro-553

ducible outputs across evaluations.554

Step-by-Step Reasoning Task. This task aims555

to help the LLM distinguish between two cell556

types—Oligodendrocytes (Class A) and OPCs557

(Class B)—based on the distribution of three key558

statistical features: BETA (effect size), SE (stan-559

dard error), and PVAL (p-value). Each training560

sample is a triplet of {BETA, SE, PVAL}, extracted561

from eQTL summary statistics corresponding to ei-562

ther Class A or B.563

Instead of directly predicting the label of a test564

sample, the LLM is prompted to summarize the ap-565

proximate range of each feature across the two566

classes, focusing on the central trend (e.g., in-567

terquartile ranges) and excluding outliers. For ex-568

ample, the model may infer that BETA values in569

Class A cluster around 0.02–0.05, while Class B570

shows more dispersed or weaker effects.571

This two-step process—first identifying range 572

boundaries, then comparing test instances—allows 573

the model to reason more transparently. It also fa- 574

cilitates downstream interpretation and aligns well 575

with biological intuition, as different cell types of- 576

ten exhibit characteristic feature distributions. 577

The prompt and the example output are shown 578

in Figure 4. 579

C DL Baseline Configuration. 580

For the binary classification tasks, we implement 581

a two-layer MLP with hidden sizes of 16 and 8. 582

The network consists of: (a) two fully connected 583

layers (input → 16 → 8 → 1), (b) ReLU activations 584

between layers, and (c) a sigmoid function at the 585

output layer for binary prediction. We optimize the 586

model using the Adam optimizer with a learning 587

rate of 0.001 and binary cross-entropy (BCE) loss. 588

All experiments are conducted using a test set 589

of 100 samples, consistent across both classifica- 590

tion tasks. For each training regime (low-data or 591

full-data), we use either 50 or 100 training sam- 592

ples, respectively, randomly selected from the full 593

dataset while ensuring class balance. The test set 594

remains fixed across all prompting variants for fair 595

comparison. 596

D Domain Knowledge Used to Train 597

LLMs 598

Cell-Type Classification Task. This task further 599

guides the LLM to distinguish between Oligoden- 600

drocytes (Class A) and OPCs (Class B), using 601

the same three statistical features: BETA, SE, and 602

PVAL. As before, each instance is a triplet ex- 603

tracted from eQTL summary statistics. 604

In addition to reasoning over feature distribu- 605

tions, the LLM is now provided with domain- 606

specific biological priors describing how these fea- 607

tures typically manifest in different cell types. For 608

instance, Oligodendrocytes tend to exhibit stronger 609

and more stable regulatory signals—reflected by 610

larger BETA values, lower SE, and more signifi- 611

cant PVALs—while OPCs often display weaker or 612

noisier patterns. 613

By incorporating these biological expectations 614

directly into the prompt, the LLM can better align 615

statistical evidence with known cellular behaviors. 616

This makes the classification process not only more 617

accurate but also more consistent with expert un- 618

derstanding in genomics. 619

The annotated domain knowledge and prompt 620
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example are shown in Figure 5. The domain knowl-621

edge is from (Yu et al., 2025).622

E LLM-Based Diagnostic Interpretability623

This interpretability task is designed to trans-624

late deep learning (DL) model predictions into625

audience-specific textual reports. The input to the626

LLM consists of:627

• A DL-predicted probability of Alzheimer’s628

disease (e.g., 0.10),629

• The top-5 contributing clinical features (e.g.,630

blood pressure, age), annotated with normal631

ranges and attribution scores.632

The LLM is instructed to generate structured633

outputs tailored to different audiences:634

• Physician Prompt: Focuses on clinical sum-635

mary, risk justification, and suggested next636

steps. It uses medical terminology and diag-637

nostic conventions.638

• Layperson Prompt: Translates the same pre-639

diction into plain language, highlighting be-640

havioral advice and simplifying medical rea-641

soning for non-experts.642

Each generation includes a binary judgment, ex-643

planation of contributing factors, and actionable644

suggestions. Examples of both prompt styles and645

corresponding outputs are shown in Figure 6 and646

Figure 7.647

F Human Evaluation Protocol and648

Examples649

To evaluate the interpretability and factual consis-650

tency of LLM-generated diagnostic reports, we651

conducted a manual annotation study involving one652

domain-expert rater and one layperson rater. Each653

report was assessed along four criteria. Both anno-654

tators provided informed consent prior to partici-655

pation and were clearly informed about the study’s656

purpose and how their evaluations would be used657

in model assessment. The domain-expert was a658

biological researcher affiliated with a U.S.-based659

academic institution, and the layperson was a grad-660

uate student with no background training. Both661

participants were volunteers recruited through aca-662

demic networks and were not financially compen-663

sated. Their voluntary participation was based on664

interest in the research topic, and no sensitive or665

personally identifiable health information was used 666

during annotation. Each report was assessed along 667

four criteria: 668

Final Judgment: Whether the binary diagnosis 669

aligns with the predicted probability. 670

Rationale: Whether the explanation refers to key 671

contributing clinical features. 672

Next Steps: Whether actionable next steps are in- 673

cluded. 674

Style: Whether the tone matches the intended au- 675

dience (physician vs. layperson). 676

No payment or compensation was provided for 677

their participation. Annotators were given clear 678

written instructions on how to assess each report 679

based on the criteria listed above. 680

Table 2 presents two annotated examples from 681

the human evaluation—one for a physician-facing 682

report and one for a layperson-facing report. 683

Sample 1: Patient ID 14 – Physician Report

Component Score Annotator Comment

Final Judg-
ment

Yes Model probability 1.000 ⇒ likely, re-
port says likely.

Rationale Yes Mentions 4 of top features: LDL,
TC/HDL Ratio, Age, HDL.

Next Steps Yes Found actionable recommenda-
tion(s).

Style Yes Tone appropriate for physician.

Sample 2: Patient ID 48 – Layperson Report

Component Score Annotator Comment

Final Judg-
ment

Yes Model probability 0.992 ⇒ likely, re-
port says likely.

Rationale Yes Mentions 2 of top features: Age,
BMI.

Next Steps Yes Found actionable recommenda-
tion(s).

Style Yes Tone and language suitable for gen-
eral audience.

Table 2: Manual evaluation of LLM-generated outputs
by audience type.
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Step-by-Step Reasoning Prompt and Output Example

Prompt: You are a bioinformatics expert. Your task is to analyze and summarize the distribution of
BETA, SE, PVAL values from two classes of eQTL samples (Class A and Class B). Please ignore rare
outliers and focus only on the range where the majority of values are concentrated.
Input:

Class A (Oligodendrocytes):

– BETA: 0.02483, SE: 0.05101, PVAL: 0.51584
– BETA: 0.02870, SE: 0.04923, PVAL: 0.36891
– BETA: 0.02015, SE: 0.05045, PVAL: 0.74187
– · · ·

Class B (OPCs):

– BETA: -0.05283, SE: 0.08523, PVAL: 0.67051
– BETA: 0.04713, SE: 0.07224, PVAL: 0.80923
– BETA: -0.01930, SE: 0.07116, PVAL: 0.53891
– · · ·

Output Format: The BETA of Class A is mostly within (lower bound)–(upper bound), while the
BETA of Class B tends to be within (lower bound)–(upper bound).
The SE of Class A is mostly within (lower bound)–(upper bound), while the SE of Class B tends to be
within (lower bound)–(upper bound).
The PVAL of Class A is mostly within (lower bound)–(upper bound), while the PVAL of Class B tends
to be within (lower bound)–(upper bound).

Output: Distribution Summary of Class A and Class B:
The BETA of Class A is mostly within 0.020–0.052, while the BETA of Class B tends to be within
-0.054–0.048.
The SE of Class A is mostly within 0.048–0.053, while the SE of Class B tends to be within 0.065–0.093.
The PVAL of Class A is mostly within 0.344–0.742, while the PVAL of Class B tends to be within
0.536–0.810.

Figure 4: Step-by-step reasoning prompt and LLM output showing feature-wise distribution analysis across cell
types.
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Example of Domain Knowledge

Domain Knowledge (for Cell-Type Reasoning):
BETA (Effect Size):

• Indicates direction and magnitude of gene regulation by the SNP.

• Larger absolute BETA (e.g., > 0.08 or < –0.08) suggests stronger regulation, often seen in mature
cells like Oligodendrocytes.

• Near-zero BETA values are typical for less differentiated cells (e.g., OPCs), indicating weak or
transient regulation.

SE (Standard Error):

• Reflects uncertainty in the BETA estimate.

• Smaller SE (e.g., < 0.06) implies more stable and confident effect size estimates, often in Oligo-
dendrocytes.

• Larger SE is frequently observed in OPCs due to high variability.

PVAL (p-value):

• Indicates the statistical significance of the SNP-gene association.

• PVAL < 1× 10−5 denotes strong association; PVAL > 0.05 suggests weak evidence.

• More significant PVALs are often found in Oligodendrocytes; OPCs tend to yield higher PVALs.

Figure 5: Domain knowledge used in cell-type classification, detailing biological interpretation of BETA (effect
size), SE (uncertainty), and PVAL (statistical significance). This knowledge informs the LLM’s reasoning about
eQTL characteristics of Oligodendrocytes and OPCs.
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Physician Prompt and Output Example

Prompt:
You are a clinical lab technician. Draft a concise report for physicians.
Predicted probability of Alzheimer’s Disease: 0.10
Top contributing features:
Systolic_BP_mmHg = 108.25 (normal: 90-120 mmHg, attribution -0.217)
LDL_mg_dL = 111.93 (normal: <100 mg/dL, attribution -0.168)
Age = 80.37 (normal: N/A, attribution +0.147)
Homocysteine_umol_L = 16.26 (normal: 5-15 µmol/L, attribution +0.146)
Sleep_Duration = 4.96 (normal: 7-9 hours/night, attribution +0.139)
Provide:
(a) Final judgment (Possibility of disease: yes / no) → Ensure your answer matches the predicted probability provided

above.
If the probability is below 0.5, say no.
If the probability is above 0.5, say yes.
(b) Plain-language rationale referencing the features above
(c) Typical next-step tests or medications
(d) Justify why those steps follow logically from the attributions and values above
Phys Report:
Clinical Lab Report
Patient ID: [Insert Patient ID]
Date: [Insert Date]
Prepared by: [Your Name], Clinical Lab Technician

Output:
Final Judgment: No
Plain-Language Rationale:
The predicted probability of developing Alzheimer’s Disease for this patient is 0.10, which is below the threshold of 0.5.

This indicates a low likelihood of the disease. The contributing features include:
Systolic Blood Pressure (108.25 mmHg): This value is within the normal range but slightly lower than optimal levels,

contributing negatively to the risk.
LDL Cholesterol (111.93 mg/dL): This is above the normal range, which also contributes negatively to the risk.
Age (80.37 years): This is a significant risk factor, contributing positively to the probability of Alzheimer’s.
Homocysteine (16.26 µmol/L): Elevated levels are associated with cognitive decline, contributing positively to the risk.
Sleep Duration (4.96 hours/night): This is below the recommended amount of sleep, which negatively impacts cognitive

health.
While age and homocysteine levels are concerning, the overall probability remains low.
Typical Next-Step Tests or Medications:
1. Cognitive Assessment: A comprehensive cognitive evaluation to monitor any changes in cognitive function over time.
2. Lifestyle Modification Recommendations: Encourage dietary changes to manage LDL cholesterol and promote better

sleep hygiene.
3. Homocysteine Level Monitoring: Regular monitoring of homocysteine levels, with potential supplementation of B

vitamins if indicated.
Justification for Next Steps:
Given the low predicted probability of Alzheimer’s Disease, immediate pharmacological intervention is not warranted.

However, the elevated homocysteine and LDL levels, along with inadequate sleep, suggest that lifestyle interventions and
monitoring are prudent. These steps aim to mitigate risk factors that could contribute to cognitive decline in the future,
aligning with the patient’s current health profile and risk factors identified in the report.

Figure 6: Clinician-facing prompt and output from the interpretability plug-in.
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Layperson Prompt and Output Example

Prompt:
Lay Prompt:
You are a family doctor explaining lab results to a patient with no medical background. Use plain everyday language.
Predicted probability of Alzheimer’s Disease: 0.10
Top contributing features:
Systolic_BP_mmHg = 108.25 (normal: 90-120 mmHg, attribution -0.217)
LDL_mg_dL = 111.93 (normal: <100 mg/dL, attribution -0.168)
Age = 80.37 (normal: N/A, attribution +0.147)
Homocysteine_umol_L = 16.26 (normal: 5-15 µmol/L, attribution +0.146)
Sleep_Duration = 4.96 (normal: 7-9 hours/night, attribution +0.139)
Explain briefly:
(a) Is the patient likely to have Alzheimer’s? (yes / no) → Your answer must align with the predicted probability shown

above.
If the probability is below 0.5, say no.
If the probability is above 0.5, say yes.
(b) The main reasons—in simple words
(c) One or two easy next steps the patient can take
(d) Briefly explain why these next steps make sense based on the above findings from the attributions and values

Output:
Lay Report:
Sure! Let’s go through your lab results together.
(a) Is the patient likely to have Alzheimer’s?
No. The predicted probability of having Alzheimer’s Disease is 0.10, which is below 0.5. This means it’s unlikely you

have it.
(b) The main reasons—in simple words:
Your lab results show a few things that could be concerning. You are 80 years old, which is a risk factor for Alzheimer’s.

Your homocysteine level is a bit high, and you’re not getting enough sleep, which can also be linked to memory issues. Your
blood pressure and cholesterol levels are okay, but they are not ideal.

(c) One or two easy next steps the patient can take:
1. Improve your sleep: Aim for 7-9 hours of sleep each night.
2. Talk to your doctor about your diet: Consider foods that can help lower homocysteine levels, like leafy greens and

beans.
(d) Why these next steps make sense based on the findings:
Getting enough sleep is important for brain health, and since your sleep duration is below the recommended amount,

improving it could help your overall cognitive function. Lowering your homocysteine levels through diet can also be
beneficial, as high levels can be linked to brain health issues. These steps can help reduce your risk factors and support your
brain health moving forward.

Figure 7: Layperson-facing prompt and output from the interpretability plug-in.
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